七年级数学上册期末测试卷2
人教版七年级上学期数学《期末测试卷》及答案
3.某书上有一道解方程的题: +1=x,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x=-2,那么□处应该是数字( )
A.7B.-10C.2D.-2
4.下列说法正确的是()
A. 近似数24.00与24.0的精确度一样
B. 近似数100万精确到万位
二.填空题:(每空3分,共244分)
13.如图,D是AB上一点,CE∥BD,CB∥ED,EA⊥BA于点A,若∠ABC=38°,则∠AED=____.
14.如图,如果AB∥CD,CD∥EF,∠1=36°, ∠2=76°那么∠BCE等于____________
15.已知线段AB=6cm,点C在直线AB上,且CA=4cm,O是AB的中点,则线段OC的长度是_____cm.
(1)若两车同时相向而行,则几小时后相遇?
(2)若两车同时相向而行,则几小时后相距84千米?
(3)若两车同时反向而行,则几小时后相距672千米?
24.如图:已知△ABC与△DEF是一副三角板的拼图,A,E,C,D在同一条线上
(1)求证EF∥BC;
(2)求∠1与∠2的度数.
25.为了庆祝商都正式营业,商都推出了两种购物方案,方案一:非会员购物所有商品价格可获得九五折优惠:方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.
6.多项式a3-4a2b2+3ab-1的项数与次数分别是( )
A.3和4B.4和4C.3和3D.4和3
[答案]B
[解析]
[分析]
多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.
[详解]解:多项式a3-4a2b2+3ab-1的项有:a3、-4a2b2、3ab、-1,共4项,所以项数为4;
人教版七年级数学上学期期末冲刺模拟测试卷 (二)含答案与解析
人教版七年级上学期期末冲刺模拟测试卷 (二)数 学学校:___________姓名:___________班级:___________考号:___________(考试时间:120分钟 试卷满分:120分)注意事项:1.答题前,考生务必将自己的学校、班级、姓名、考试号、考场号、座位号,用0.5毫米黑色墨水签字笔填写在答题卷相对应的位置上,并认真核对;2.答题必须用0.5毫米黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卷上,保持卷面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。
一、选择题(每小题3分,共30分)1.(2020湘潭) 6-的绝对值是( )A .6-B .6C .61-D .16 2.如图所示,某同学的家在A 处,书店在B 处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线( )A .A→C→D→B B .A→C→F→BC .A→C→E→F→BD .A→C→M→B 3.若|b+2|与(a ﹣3)2互为相反数,则b a 的值为( )A .﹣bB .﹣18C .﹣8D .8 4.下列说法中,正确的是( )A .单项式223x y -的系数是﹣2,次数是3 B .单项式a 的系数是0,次数是0C .﹣3x 2y+4x ﹣1是三次三项式,常数项是1D .单项式232ab -的次数是2,系数为92- 5.下列说法正确的是( )A.近似数4.60与4.6的精确度相同B.近似数5千万与近似数5000万的精确度相同C.近似数4.31万精确到0.01D.1.45×104精确到百位6.(2020金华)如图,在编写数学谜语题时;“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+27.(2020黔南州)某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元8.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程23t=32,未知数系数化为1,得t=1D.方程10.20.5x x--=1化成3x=69.(2020河北)如图1,已知∠ABC,用尺规作它的角平分线,如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.b均无限制B.a>0,b>12DE的长C.a有最小限制,b无限制D.a≥0,b<12DE的长10.(2020西藏)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…若第n个相同的数是103,则n等于()A.18B.19C.20D.21二、填空题(每小题3分,共24分)11.在式子:2a、3a、1x y、﹣12、1﹣x﹣5xy2、﹣x、6xy+1、a2﹣b2中,其中多项式有个.12.(2020绵阳)若多项式xy|m-n|+(n-2)x2y2+1是关于x、y的三次多项式,则mn=_____.13.3x m+5y2与x3y n是同类项,则m n的值是13.(2020广东)已知:x=5-y,xy=2,计算:3x+3y-4xy的值为______.14.若(a﹣1)x|a|+3=﹣6是关于x的一元一次方程,则a=;x=.15.如图,BO⊥AO,∠BOC与∠BOA的度数之比为1:5,那么∠COA=,∠BOC的补角=.16.(2020凉山州)点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A. 10cmB. 8cmC. 10cm或8cmD. 2cm或4cm17.已知直线AB和CD相交于O点,OE⊥AB,∠1=55°,则∠BOD=度.18.(2020黄冈一模)在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S =1+3+32+33+34+35+36+37+38 ①,然后在①式的两边都乘以3,得:3S =3+32+33+34+35+36+37+38+39 ②, ②一①得:3S ―S =39-1,即2S =39-1,∴S =39―12. 得出答案后,爱动脑筋的张红想:如果把“3”换成字母m (m ≠0且m ≠1),能否求出1+m +m 2+m 3+m 4+…+m 2020的值?如能求出,其正确答案是___________.三、解答题(共66分)19.(8分)化简并求值:﹣6(a 2﹣2ab+b 2)+2(2a 2﹣3ab+3b 2),其中a=1,b=12. 20.(8分)解方程:(1)x+5(2x ﹣1)=3﹣2(﹣x ﹣5)(2)32x +﹣2=﹣225x -. 21.(6分)已知多项式x 2y m+1+xy 2﹣3x 3﹣6是六次四项式,单项式6x 2n y 5﹣m 的次数与这个多项式的次数相同,求m+n 的值.22.(8分)线段AB=12cm ,点C 为AB 上的一个动点,点D 、E 分别是AC 和BC 的中点. (1)若点C 恰好是AB 中点,求DE 的长?(2)若AC=4cm ,求DE 的长.23.(8分)一位同学做一道题:“已知两个多项式A 、B ,计算2A+B”.他误将“2A+B”看成“A+2B”求得的结果为9x 2﹣2x+7,已知B=x 2+3x ﹣2,求正确答案.24.(2020广州)(8分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.25.(2020安徽)(10分)某超市有线上和线下两种销售方式与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a 元,线上销售额为x 元,请用含a ,x 的代数式表示2020年4月份的线下线下销售额(直接在表格中填写结果);时间销售总额(元) 线上销售额(元) 线下销售额(元) 2019年4月份a x a-x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.26.(10分)如图,已知OE 是∠AOC 的角平分线,OD 是∠BOC 的角平分线. (1)若∠AOC=120°,∠BOC=30°,求∠DOE 的度数;(2)若∠AOB=90°,∠BOC=α,求∠DOE 的度数.参考答案与解析一、选择题(每小题3分,共30分)1.(2020湘潭) 6-的绝对值是( )A .6-B .6C .61-D .16【答案】B【解析】根据绝对值的定义,得|6|6-=,故选:B .2.如图所示,某同学的家在A 处,书店在B 处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线( )A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B 【答案】B【解析】根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.故选:B.3.若|b+2|与(a﹣3)2互为相反数,则b a的值为()A.﹣b B.﹣18C.﹣8 D.8【答案】C【解析】∵|b+2|与(a﹣3)2互为相反数,∴|b+2|+(a﹣3)2=0,∴b+2=0,a﹣3=0,解得:b=﹣2,a=3.∴b a=(﹣2)3=﹣8.故选:C.4.下列说法中,正确的是()A.单项式223x y-的系数是﹣2,次数是3B.单项式a的系数是0,次数是0C.﹣3x2y+4x﹣1是三次三项式,常数项是1D.单项式232ab-的次数是2,系数为92-【答案】D【解析】A、单项式223x y-的系数是﹣23,次数是3,系数包括分母,错误;B、单项式a的系数是1,次数是1,当系数和次数是1时,可以省去不写,错误;C、﹣3x2y+4x﹣1是三次三项式,常数项是﹣1,每一项都包括这项前面的符号,错误;D、单项式232ab-的次数是2,系数为92-,符合单项式系数、次数的定义,正确;故选:D.5.下列说法正确的是()A.近似数4.60与4.6的精确度相同B.近似数5千万与近似数5000万的精确度相同C.近似数4.31万精确到0.01D.1.45×104精确到百位【答案】D【解析】A、近似数4.60精确到百分位,4.6精确到十分位,故错误;B、近似数5千万精确到千万位,近似数5000万精确到万位,故错误;C、近似数4.31万精确到百位.故错误;D、正确.故选:D.6.(2020金华)如图,在编写数学谜语题时;“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+2【答案】D【解析】设“□”内数字为x,根据题意可得;3×(20+x)+5=10x+2,故选D.7.(2020黔南州)某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元【答案】C【解析】设该商品每件的进价为x元,依题意,得12×0.8-x=2,解得,x=7.6.故选C.8.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程23t=32,未知数系数化为1,得t=1D.方程10.20.5x x--=1化成3x=6【答案】D【解析】A、方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,故本选项错误;B、方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,故本选项错误;C、方程23t=32,未知数系数化为1,得t=94,故本选项错误;D、方程10.20.5x x--=1化成3x=6,故本选项正确.故选:D.9.(2020河北)如图1,已知∠ABC,用尺规作它的角平分线,如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.b均无限制B.a>0,b>12DE的长C.a有最小限制,b无限制D.a≥0,b<12DE的长【答案】B【解析】以B为圆心画弧时,半径a必须大于0,分别以D,E为圆心,以b为圆心画弧时,b必须大于12DE,否则没有交点.故选:B.10.(2020西藏)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…若第n个相同的数是103,则n等于()A.18B.19C.20D.21【答案】A【解析】第1个相同的数是1=0×6+1,第2个相同的数是7=1×6+1,第3个相同的数是13=2×6+1,第4个相同的数是19=3×6+1,…第n个相同的数是6(n-1)+1=6n-5,所以6n-5=103,解得n=18.故选:A.二、填空题(每小题3分,共24分)11.在式子:2a、3a、1x y、﹣12、1﹣x﹣5xy2、﹣x、6xy+1、a2﹣b2中,其中多项式有个.【答案】3.【解析】1﹣x﹣5xy2、6xy+1、a2﹣b2是多项式,共3个,故答案为:3.12.(2020绵阳)若多项式xy|m-n|+(n-2)x2y2+1是关于x、y的三次多项式,则mn=_____.【答案】0或8.【解析】∵xy|m-n|+(n-2)x2y2+1是关于x、y的三次多项式,∴n-2=0,1+|m-n|=3,∴n-n=2或n-m=2,∴m=4或m=0,∴mn=0或8.故答案为:0或8.13.3x m+5y2与x3y n是同类项,则m n的值是【答案】4【解析】∵3x m+5y2与x3y n是同类项,∴m+5=3,n=2,解得:m=﹣2,n=2,∴m n=(﹣2)2=4.故答案为:4.13.(2020广东)已知:x=5-y,xy=2,计算:3x+3y-4xy的值为______.【答案】7【解析】∵x=5-y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)-4xy=3×5-4×2=15-8=7.故答案为:7.14.若(a﹣1)x|a|+3=﹣6是关于x的一元一次方程,则a=;x=.【答案】﹣1,92.【解析】由一元一次方程的特点得10 ||1aa-≠⎧⎨=⎩,解得:a=﹣1,将a=﹣1代入方程得﹣2x+3=6,解得:x=92.故答案为:﹣1,92.15.如图,BO⊥AO,∠BOC与∠BOA的度数之比为1:5,那么∠COA=,∠BOC的补角=.【答案】72°,162°.【解析】∵BO⊥AO,∠BOC与∠BOA的度数之比为1:5,∴∠COA=45×90°=72°,则∠BOC=18°,故∠BOC的补角=180°﹣18°=162°.故答案为:72°,162°.16.(2020凉山州)点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A. 10cmB. 8cmC. 10cm或8cmD. 2cm或4cm【答案】C【解析】∵C是线段AB的中点,AB=12cm,∴AC=BC=12AB=12×12=6(cm),点D是线段AC的三等分点.①当AD=23AC时,如图,BD=BC+CD/=BC+13AC=6+4=10(cm).所以线段BD的长为10cm或8cm.17.已知直线AB和CD相交于O点,OE⊥AB,∠1=55°,则∠BOD=度.【答案】35°【解析】∵OE ⊥AB ,∴∠AOE=90°∵∠1=55°,∴∠AOC=90°﹣55°=35°,∴∠BOD=∠AOC=35°(对顶角相等).18.(2020黄冈一模)在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S =1+3+32+33+34+35+36+37+38 ①,然后在①式的两边都乘以3,得:3S =3+32+33+34+35+36+37+38+39 ②, ②一①得:3S ―S =39-1,即2S =39-1,∴S =39―12. 得出答案后,爱动脑筋的张红想:如果把“3”换成字母m (m ≠0且m ≠1),能否求出1+m +m 2+m 3+m 4+…+m 2020的值?如能求出,其正确答案是___________.【答案】S =202111m m --. 【解析】设S =1+m +m 2+m 3+m 4+…+m 2020,在所示设式的两边都乘以m ,得:mS =m +m 2+m 3+m 4+…+m 2020+m 2021,两式相减可得出答案.设S =1+m +m 2+m 3+m 4+…+m 2020…………………①,在①式的两边都乘以m ,得:mS =m +m 2+m 3+m 4+…+m 2020+m 2021 …………………② ②一①得:mS ―S =m 2021-1.∴S =202111m m --. 三、解答题(共66分)19.(8分)化简并求值:﹣6(a 2﹣2ab+b 2)+2(2a 2﹣3ab+3b 2),其中a=1,b=12. 【答案】﹣2a 2+6ab ,1.【解析】原式=﹣6a 2+12ab ﹣6b 2+4a 2﹣6ab+6b 2=﹣2a2+6ab,当a=1、b=12时,原式=﹣2×12+6×1×1 2=﹣2+3=1.20.(8分)解方程:(1)x+5(2x﹣1)=3﹣2(﹣x﹣5)(2)32x+﹣2=﹣225x-.【答案】(1)x=2;(2)x=1.【解析】(1)去分母,得:x+10x﹣5=3+2x+10,移项,得:x+10x﹣2x=3+10+5,合并同类项,得:9x=18,系数化为1,得:x=2;(2)去分母,得:5(x+3)﹣20=﹣2(2x﹣2),去括号,得:5x+15﹣20=﹣4x+4,移项,得:5x+4x=4﹣15+20,合并同类项,得:9x=9,系数化为1,得:x=1.21.(6分)已知多项式x2y m+1+xy2﹣3x3﹣6是六次四项式,单项式6x2n y5﹣m的次数与这个多项式的次数相同,求m+n的值.【答案】m+n=3+2=5.【解析】∵多项式x2y m+1+xy2﹣3x3﹣6是六次四项式,∴2+m+1=6,∴m=3,∵单项式26x2n y5﹣m的次数与这个多项式的次数相同,∴2n+5﹣m=6,∴2n=1+3=4,∴n=2.∴m+n=3+2=5.22.(8分)线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,求DE的长?(2)若AC=4cm,求DE的长.【答案】(1)DE的长是6cm;(2)DE的长是6cm.【解析】(1)∵AB=12cm,点C恰好是AB中点,∴AC=BC=6cm,∵点D、E分别是AC和BC的中点,∴CD=3cm,CE=3cm,∴DE=CD+CE=6cm,即DE的长是6cm;(2)∵AB=12cm,AC=4cm,∴CB=8cm,∵点D、E分别是AC和BC的中点,∴DC=2cm,CE=4cm,∴DE=DC+CE=6cm,即DE的长是6cm.23.(8分)一位同学做一道题:“已知两个多项式A、B,计算2A+B”.他误将“2A+B”看成“A+2B”求得的结果为9x2﹣2x+7,已知B=x2+3x﹣2,求正确答案.【答案】2A+B=15x2﹣13x+20.【解析】根据题意得A=9x2﹣2x+7﹣2(x2+3x﹣2)=9x2﹣2x+7﹣2x2﹣6x+4=(9﹣2)x2﹣(2+6)x+4+7=7x2﹣8x+11.所以2A+B=2(7x2﹣8x+11)+x2+3x﹣2=14x2﹣16x+22+x2+3x﹣2=15x2﹣13x+20.24.(2020广州)(8分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.【答案】(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆.【解析】(1)50×(1-50%)=25(万元),故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是x辆,则今年每改装的无人驾驶出租车是(260-x),辆,依题意有50×(260-x)+25x=9000,解得,x=160.故明年改装的无人驾驶出租车是160辆.25.(2020安徽)(10分)某超市有线上和线下两种销售方式与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下线下销售额(直接在表格中填写结果);(2)求2020年4月份线上销售额与当月销售总额的比值.【答案】(1)该超市2020年4月份线下销售额为1.04(a-x)元;(2)2020年4月份线上销售额与当月销售总额的比值为0.2.【解析】(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a-x)元.(2)依题意,得1.1a=1.43x+1.04(a-x),解得:x=213a,∴21.43 1.430.22130.21.1 1.1 1.1ax aa a a⋅===答:2020年4月份线上销售额与当月销售总额的比值为0.2.26.(10分)如图,已知OE是∠AOC的角平分线,OD是∠BOC的角平分线.(1)若∠AOC=120°,∠BOC=30°,求∠DOE的度数;(2)若∠AOB=90°,∠BOC=α,求∠DOE的度数.【答案】(1)∠DOE=45°;(2)∠DOE=45°.【解析】(1)∵OE是∠AOC的角平分线,OD是∠BOC的角平分线,∠AOC=120°,∠BOC=30°,∴∠EOC=60°,∠DOC=15°,∴∠DOE=∠EOC﹣∠DOC=60°﹣15°=45°;(2))∵OE是∠AOC的角平分线,OD是∠BOC的角平分线,∠AOB=90°,∠BOC=α,∴∠EOC=12(90°﹣α),∠DOC=12α,∴∠DOE=∠EOC﹣∠DOC=12(90°﹣α)﹣12α=45°.。
2023-2024年人教版七年级上册数学期末检测题(含简单答案)
二、填空题(每题 3 分,共 24 分)
C. 1 或 9
D. 9 或 1
9.如果 5m 表示向东走 5m ,那么 10m 表示 . 10.小明写作业时不慎将两滴墨水滴在数轴上(如图),请你判断墨迹盖住的整数有 个.
11.单项式 πx2 y5z 的系数是
.
5
12.单项式 x3 ya 与 6xb y 是同类项,则 a b3
24.已知 A、B 两点在数轴上分别表示数 a、b
(1)对照数轴填写表格:
a
6 6 6 3 2.5
b
4 0 3 7 2.5
A、B 两点的距离 2 6
(2)若 A、B 两点间的距离记为d ,则d 与 a、b 的数量关系为________. (3)求出数轴上到 4 和 4 的距离之和为 8 的所有整数的和. (4)动点 A 从 10 出发向数轴正方向运动,动点 A 的速度是 3 个单位长度/秒,同时,动 点 B 从 5 出发向数轴正方向运动,动点 B 的速度是 2 个单位长度/秒,当 A、B 两点相距 5 个单位长度时,求点 A 的运动时间为多少秒?
(1
0.5)
1 3
2
(3)2
.
18.解下列方程: (1) 3x 7 32 2x ;
(2) 2x 3 3x 1 1.
5
2
19.先化简,再求值: a3
3a2b 3ab2 ab
3
1 3
a3
a2b
ab2
,其中
a,b
满足
(a 2)2 b 1 0 .
20.已知有理数 a、b、c 在数轴上的位置,
BOC 的度数为 .
16.一个两位数的个位数字与十位数字的和是 8,把这个两位数加上 18,结果恰好成为
浙教版2022-2023学年七年级上学期期末数学模拟测试卷(二)(解析版)
浙教版2022-2023学年七年级上学期期末数学模拟测试卷(二)(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列结论正确的是()A.-2的倒数是2B.64的平方根是8C.16的立方根为4D.算术平方根是本身的数为0和1【答案】D【解析】A、-2的倒数是−12,故选项A错误,不符合题意;B、64的平方根是±8,故选项B错误,不符合题意;C、16的立方根为√163,故选项C错误,不符合题意;D、算术平方根是本身的数为0和1,故选项D正确,符合题意.故答案为:D.2.下列结论不正确的是()A.-2是4的一个平方根B.有理数与数轴上的点一一对应C.任何有理数都有相反数D.算术平方根等于它本身的数是0和1【答案】B【解析】A、-2是4的一个平方根,说法正确,不符合题意;B、实数与数轴上的数一一对应,说法错误,符合题意;C、任何有理数都有相反数,说法正确,不符合题意;D、算术平方根等于它本身的数是0和1,说法正确,不符合题意;故答案为:B.3.已知x=1是关于x的一元一次方程2x−a=0的解,则a的值为()A.-1B.-2C.1D.2【答案】D【解析】把x=1代入方程2x-a=0,得:2-a=0,解得:a=2,故答案为:D.4.若x2=3,则x的值是()A.−√3B.√3C.±9D.± √3【答案】D【解析】若x2=3,则x的值是± √3.故答案为:D.5.关于整式的概念,下列说法正确的是()A.−6πx2y35的系数是−65B.32x3y的次数是6C.3是单项式D.−x2y+xy−7是5次三项式【答案】C【解析】A、−6πx 2y35的系数为−6π5,所以本选项错误,故不符合题意;B、32x3y的次数是4,所以本选项错误,故不符合题意;C、3是单项式,所以本选项正确,故符合题意;D、多项式−x2y+xy−7是三次三项式,所以本选项错误,故不符合题意;故答案为:C.6.已知m是最小的正整数,n是最大的负整数,a,b互为相反数,x,y互为倒数,则m2+n3+a+b−xy 的值是()A.-2B.-1C.0D.1【答案】B【解析】由题可得:m =1,n =−1,a +b =0,xy =1, 则原式=12+(−1)3+0−1=−1 故答案为:B .7.如图所示,数轴上点A 、B 对应的有理数分别为a 、b ,下列说法正确的是( ).A .ab >0B .|a|<|b|C .a +b >0D .a −b <0 【答案】D【解析】根据图示,可得a <0<b ,且|a|>|b|, ∴ab <0,|a|>|b|,a +b <0,a −b <0, 故答案为:D.8.已知点A ,B ,C 在同一条直线上,若线段AB =3,BC =2,AC =1,则下列判断正确的是( ) A .点A 在线段BC 上 B .点B 在线段AC 上 C .点C 在线段AB 上 D .点A 在线段CB 的延长线上 【答案】C【解析】由题意可作图.故答案为:C.9.如图,O 为直线AB 上一点,OM 平分∠AOC ,ON 平分∠BOC ,则图中互余的角有( )A .4对B .3对C .2对D .1对【答案】A【解析】∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC=∠AOM= 12 ∠AOC ,∠NOC=∠BON= 12∠BOC ,∴∠MOC+∠NOC= 12(∠AOC+∠BOC )=90°,∴∠MOC 与∠NOC 互余,∠MOA 与∠NOC 互余,∠MOC 与∠NOB 互余,∠MOA 与∠NOB 互余. 故选A . 10.学校在一次研学活动中,有n 位师生乘坐m 辆客车,若每辆客车乘50人,则还有12人不能上车;若每辆客车乘55人,则最后一辆车空了13个座位.下列四个等式:①50m +12=55m −13 ;②50m −12=55m +13 ;③n−1250=n+1355 ;④n+1250=n−1355. 其中正确的是( ) A .①② B .①③ C .③④ D .①④ 【答案】B【解析】按师生人数不变列方程得:50m+12=55m -13, 按乘坐客车的辆数不变列方程得: n−1250=n+1355,所以,等式①③正确. 故答案为B.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.不小于−3而小于2的所有整数的和等于 . 【答案】−5【解析】∵不小于−3而小于2的整数有−3,−2,−1,0,1, ∴这些整数的和为:−3+(−2)+(−1)+0+1=−5. 故答案为:-5.12.已知a 、b 为常数,且三个单项式2xy 2、axy 3-b 、-xy 相加得到的和仍为单项式,则a+b 的值为 . 【答案】-1或3【解析】因为2xy 2和-xy 不是同类项,要使它们的和是单项式,只有2xy 2与axy 3-b 的和为零或者- xy 与axy 3-b 的和是零.则应该有: a=-2,=3- b 或a=1,1=3-b , 所以a=-2, b=1或a=1,b=2. 所以a+b= - 1或a+b=3. 故答案是:-1或3.13.某快递公司在市区的收费标准为:寄一件物品,不超过1千克付费10元;超出1千克的部分加收2元/千克.乐乐在该公司寄市区内的一件物品,重x ( x >1 )千克,则需支付 元.(用含x 的代数式表示) 【答案】(2x+8) 【解析】依题意可知,乐乐在该公司寄市区内的一件物品,重x (x >1)千克,则需支付10+2(x -1)=(2x+8)元.故答案为(2x+8).14.如图网格中每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是【答案】√6 【解析】如图,此图是轴对称图形,∴S 阴影部分=2S ∠ABC +2S ∠CDE=2×12×2×2+2×12×2×1=4+2=6,∵把阴影部分剪拼成一个正方形, ∴这个正方形的边长为√6. 故答案为:√615.若已知x+y=3,xy=-4,则(1+3x )-(4xy -3y )的值为 . 【答案】26【解析】原式=1+3x -4xy+3y=1+3(x+y )-4xy , 把x+y=3,xy=-4代入得:原式=1+9+16=26. 故答案为:26.16.如图1是三个直立于水面上的形状完全相同的几何体(下底面为圆面,单位:厘米),将它们拼成如图2的新几何体,求该新几何体的体积(结果保留π) ;【答案】60π立方厘米【解析】π×22×10+12(π×22×10)=40π+20π=60π(立方厘米).故答案为为60π立方厘米.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤. 17.计算:(1)−17+23+(−16)−(−17)(2)−22×(−112)2 −√−643−√169×|−3| 【答案】(1)解:原式=−17+23+(−16)+(+17) =−17+(+17)+23+(−16) =23+(−16) =7;(2)解:原式=−4×94−(−4)−43×3=−9 −(−4)−4 =−9+4−4 =-9.18.在日常工作中,洒水车每天都道路上来回洒水. 我们约定洒水车在行驶过程中,向北的行程记为正数,向南的行程记为负数. 2022年9月20日这一天,某台洒水车从市政工程处出发,所走的路程(单位:千米)为:+5,+7.5,−8,−3,+9.5,+2.5,−11,−3.5问:(1)这天收工时,这台洒水车离市政工程处多远?它在市政工程处的南边还是北边? (2)这台洒水车这一天共行车多少千米?(3)若洒水车每走1千米耗油0.2升,请问这一天这台洒水车在洒水过程中耗油多少升? 【答案】(1)解:+5+7.5−8−3+9.5+2.5−11−3.5=−1. 则这台洒水车离市政工程处1千米,在市政工程处的南边.答:则这台洒水车离市政工程处1千米,在市政工程处的南边. (2)解:+5+7.5+8+3+9.5+2.5+11+3.5=50(千米). 这台洒水车这一天共行车50千米. (3)解:50×0.2=10(升). 这一天耗油10升.19.已知一个数m 的两个不相等的平方根分别为a +2和3a -6. (1)求a 的值; (2)求这个数m . 【答案】(1)解:∵数m 的两个不相等的平方根为a +2和3a −6, ∴(a +2)+(3a −6)=0, ∴4a =4, 解得a =1;(2)解:∵a=1,∴a +2=1+2=3,3a −6=3−6=−3, ∴m =(±3)2=9, ∴m 的值是9.20.如图,正方形ABCD 与正方形BEFG ,且A 、B 、E 在一直线上,已知AB =a ,BE =b ; 求(1)用含a 、b 的代数式表示阴影部分的面积;(2)当a =5厘米,b =3厘米时,求阴影部分的面积. 【答案】(1)解:根据阴影部分面积的面积等于大正方形的面积加上小正方形的面积减去△ADC 的面积和△AEF 的面积 ∵AB =a ,BE =b ,∴S =a ⋅a +b ⋅b −12a ⋅a −12(a +b)⋅b S =12a 2+12b 2−12ab(2)解:把a =5厘米,b =3厘米代入上式可得S =12×52+12×32−12×5×3 =252+92−152=192(平方厘米)21.已知代数式A =2x 2−2xy +x −1;B =x 2+xy +2y −1; (1)求A −2B ;(2)当x =−1,y =−2时,求A −2B 的值; (3)若A −2B 的值与的x 取值无关,求y 的值, 【答案】(1)解:∵A =2x 2−2xy +x −1,B =x 2+xy +2y −1, ∴A −2B =(2x 2−2xy +x −1)−2(x 2+xy +2y −1)=2x 2−2xy +x −1−2x 2−2xy −4y +2=−4xy +x −4y +1;(2)解:当x =−1,y =−2时, 原式=−4xy +x −4y +1=−4×(−1)×(−2)+(−1)−4×(−2)+1=−8−1+8+1=0;(3)解:∵A −2B =−4xy +x −4y +1=(−4y +1)x −4y +1的值与x 的取值无关, ∴−4y +1=0,∴y =14.22.如图,点M 在线段AB 上,线段BM 与AM 的长度之比为5∠4,点N 为线段AM 的中点.(1)若AB =27cm ,求BN 的长.(2)在线段AB 上作出一点E ,满足MB =3EB ,若ME =t ,求AB 的长(用含t 的代数式表示). 【答案】(1)解:由题知BM∠AM=5∠4,不妨设BM =5x , AM=4 x , ∴ BM+AM=9x ,∵ AB=27cm ,且AB= BM+AM , ∴ BM+AM=9x=27, ∴x =3,∴AM=12cm ,BM=15cm . ∵点N 是线段AM 的中点, ∴MN=12AM=6cm ,∴BN = BM+MN=15+6=21cm . (2)解:如图所示:∵BM∠AM=5∠4,∴AM=45BM ,∵MB= 3 EB , ∴ME=23MB = t ,∴MB =32t ,∵AB= AM+ BM = 45BM + BM=95BM ,∴AB= 95×32t=2710t .23.如图,已知直线AB,CD相交于点O,∠COE=90°.(1)若∠AOC=37°,求∠BOE的度数.(2)若∠BOD:∠BOC=3:6,求∠AOE的度数.【答案】(1)解:∵∠COE=90°,∠AOC=37°,∴∠BOE=180°−∠AOC−∠COE=180°−37°−90°=53°(2)解:∵∠BOD:∠BOC=3:6,∠BOD+∠BOC=180°,∴∠BOD=60°,∵∠BOD=∠AOC,∴∠AOC=60°,∵∠COE=90°,∴∠AOE=∠COE+∠AOC=90°+60°=150°24的主叫时间都为m分钟(m>360).①请用含m的代数式分别表示该月他们的话费,化简后...填空:小聪该月的话费为元;小明该月的话费为元.②若该月小聪比小明的话费还要多14元,求他们的通话时间.(2)若小慧的两个手机号码分别办理了58元、88元套餐.该月她的两个号码主叫时间一共为220分钟,总话费为152元,求她两个号码的主叫时间分别可能是多少分钟.【答案】(1)0.2m+58;64+0.15m;解:②由题意可得:0.2m+58=64+0.15m+14,解得:m=400,∴他们的通话时间为400分钟;(2)解:设办理了58元套餐的手机号码主叫时间为x分钟,当x≤50时,220-x≥170,则58+88+0.2(220-x-150)=152,解得:x=40,220-40=180分钟;当50<x<70时,则58+0.25(x-50)+88+0.2(220-x-150)=152,解得:x=90,不符合,舍去;当x≥70时,则58+0.25(x-50)+88=152,解得:x=74,220-74=146分钟,综上:两个号码的主叫时间分别是40分钟和180分钟或74分钟和146分钟.【解析】(1)①由题意可得:小聪该月的话费为88+0.2(m-150)=0.2m+58(元),小明该月的话费为118+0.15(m-360)=64+0.15m(元),。
2022-2023学年度七年级上册数学期末测试题(2022
1.2015年11月11日某淘宝卖家卖出两件商品,它们的售价均为120元,其中一件盈利20%,一件亏损20%,在这次买卖中这位卖家( ) A .不赔不赚 B .赔了10元 C .赚了10元 D .赔了50元 2.如果收入100元记作+100元,那么支出50元记作( ). A. -50元 B. +50元 C. +100元 D. -100元3.有理数a 、b 在数轴上对应的位置如图所示:则下列关系成立的是( )A.a-b>0B.a+b>0C.a-b=0D.a+b<04.在,,,,五个数中,非负的有理数共有( )A .个 B.个C .个D .个5.有理数a 、b 在数轴上的对应的位置如图所示,则( )A .a +b <0B .a +b >0C .a -b =0D .a -b >06.去括号应得( )A. B. C. D.7.如图所示,桌上放着一个茶壶,4个同学从各自的方向观察,请指出图中右边的四幅图,从左至右分别是由哪个同学看到的( )A .250×300%+250×200%B .250×200%+250×150%C .250×100%+250×200%D .250×300%+250×300%A .①②③④B .①③②④C .②④①③D .④③①②8.下列说法正确的个数是( )①一个有理数不是整数就是分数;②一个有理数不是正数就是负数;③一个整数不是正的就是负的;④一个分数不是正的,就是负的. A .1B .2C .3D .49.下列意义叙述不正确的是( ).A .若上升3米记作+3米,则0米指不升不降B .鱼在水中高度为米的意义指鱼在水下2米C .温度上升是指下降D .盈利元是指赚了10元10.在广场的电子屏幕上有一个旋转的正方体,正方体的六个面上分别标有“恩施六城同创”六个字,如图1是小明在三个不同时刻所观察到的图形,请你帮小明确定与“创”相对的面上的字是 ( )A.恩B.施C.城D.同11.按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为656,则满足条件的x 的不同值最多有 ( )A.2个B.3个C.4个D.5个12.下列说法:①规定了原点、正方向的直线是数轴; ②数轴上两个不同的点可以表示同一个有理数; ③有理数在数轴上无法表示出来;④任何一个有理数都可以在数轴上找到与它对应的唯一点 其中正确的是( ) A .①②③④ B .②②③④ C .③④ D .④13.下面两图是某班全体学生上学时,乘车、步行、骑车的人数分布条形统计图和扇形统计图(两图均不完整),则下列结论中错误的是( )A .该班总人数为50人B .骑车人数占总人数的20%C .乘车人数是骑车人数的倍D .步行人数为30人14.如图所示的正方体,如果把它展开,可以是下列图形中的( )A .B .C .D .15.有理数a 、b 在数轴上的对应的位置如图所示,则正确的是( )A.a +b >0B.a +b <0C.a -b =0D.a -b >016.若a,b 互为相反数,则a+2a+…+100a+100b+99b+…+b=________;17.比较大小<用“>'或“<'表示):__________18.如图,将七个小正方形中的一个去掉,就能成为一个正方体的展开图,则去掉的小正方形的序号是_______.19.单项式的系数是______.20.如图所示,在天平的左盘上的两个物品取下一个,右盘取下_________个砝码才能使天平仍然平衡.解答题(每题10分,共70分) 21.(1)计算:(2)先化简,再求值:其中a =-2。
2022-2023年人教版初中数学七年级上册期末考试测试卷及答案(共五套)
2022-2023年人教版数学七年级上册期末考试测试卷及答案(一)一、单选题(本题共10小题,每小题5分,共50分)1.某商品的标价为150元,若以8折降价出售.相对于进价仍获利20%,则该商品的进价为()A.120元B.110元C.100元D.90元2.震惊世界的MH370失联事件发生后第30天,中国“海巡01”轮在南印度洋海域搜索过程中,首次侦听到疑是飞机黑匣子的脉冲信号,探测到的信号所在海域水深4500米左右,其中4500用科学记数法表示为()A.4.5×10B.4.5×10C.45.0×10D.0.45×103.有理数a,b在数轴上的对应点的位置如图所示,则下列各式成立的是()A.B.C.D.4.在下列数中,负数的个数是()A.0个B.1个C.2个D.3个5.下列说法中正确的是()A.正整数与正分数统称为正有理数B.正整数与负整数统称为整数C.正分数、0、负分数统称为分数D.一个有理数不是正数就是负数6.若|a|=|b|,则()A.a=b B.a=﹣b C.a=±b D.=±17.下列各组数中,互为相反数的是()A.(﹣3)和﹣3B.(﹣3)和3C.(﹣2)和﹣2D.|﹣2|和|﹣2|8.把多项式x-xy+xy+x-3按x的降幂排列是()A.x+x+xy-3-xyB.-xy+xy+x+x-3C.-3-xy+xy+x+xD.x+x+xy-xy-39.已知,,…,都是正数,如果M=(++…+)(++…+),N=(++…+)(++…+),那么M,N的大小关系是()A.M>N B.M=N C.M<N D.不确定10.已知有理数a,b,c在数轴上的位置如图所示,下列错误的是()A.b+c<0B.−a+b+c<0C.|a+b|<|a+c|D.|a+b|>|a+c|二、填空题(本题共5小题,每小题5分,共25分)11.有理数、在数轴上的位置如图所示,下列说法:①,②,③,④,⑤;其中正确的序号有.12.已知|x|=3,|y|=2,且xy>0,则x−y的值等于.13.计算:−1+24÷(−2)−3×()=.14.若、、都是非零有理数,其满足,则的值为.15.绝对值小于2019的所有整数之和为.三、计算题(本题共3小题,每小题9分,共27分)16.计算:(1)(4分)(2)(5分)17.有理数a,b,c在数轴上的位置如图所示,化简:.18.单项式xy与多项式xy+y+的次数相同,求m的值.四、解答题(本题共4小题,每小题12分,共48分)19.如图,延长线段AB到C,使BC=3AB,点D是线段BC的中点,如果CD=3cm,那么线段AC的长度是多少?20.植树节甲班植树的株数比乙班多20%,乙班植树的株树比甲班的一半多10株,若乙班植树x株.(1)列两个不同的含x的代数式表示甲班植树的株数.(2)根据题意列出以x为未知数的方程.(3)检验乙班、甲班植树的株数是不是分别为25株和35株.21.如图,是直线上一点,为任一射线,平分,平分,(1)分别写出图中与的补角;(2)与有怎样的数量关系,请说明理由.22.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)画一条数轴,并在数轴上分别用A、B表示出1和3的两点(2)数轴上表示1和3的两点之间的距离是;(3)点A、B、C在数轴上分别表示有理数1、3、x,那么C到A的距离与C到B的距离之和可表示为(用含绝对值的式子表示)(4)若将数轴折叠,使得表示1和3的两点重合,则原点与表示数的点重合参考答案一、单选题(本题共10小题,每小题5分,共50分)1.【考点】一元一次方程的应用.【分析】利润=售价﹣进价=进价×利润率,据此列方程求解.【解答】解:设该商品的进价为x元.根据题意得150×0.8﹣x=20%•x.解得x=100.即该商品的进价为100元.故选:C.【点评】此题考查一元一次方程的应用,搞清楚销售问题中各个量之间的关系是关键.2.【答案】B【解析】解:4500=4.5×10故答案为:B3.【答案】D【解析】∵由图可知a<0<b,且|a|>|b|,<0∴a<−b,故答案为:D.4.【答案】D【解析】解:−(−3)=3,属于正数;(−2)²=4,属于正数;0既不是正数,也不是负数;−3²=−9,属于负数;−|−3|=−3,属于负数;-是负数;综上所述,负数的个数有3个。
2022-2023年青岛版初中数学七年级上册期末考试检测试卷及部分答案(三套)
2022-2023年青岛版数学七年级上册期末考试测试卷及答案(一)一.单选题(共10题;共30分)1.一轮船从A地到B地需7天,而从B地到A地只需5天,则一竹排从B地漂到A地需要的天数是()A. 12B. 35C. 24D. 472.已知一个单项式的系数是2,次数是3,则这个单项式可以是()A. ﹣2xy2B. 3x2=C. 2xy3D. 2x33.下列各式计算正确的是()A. ﹣2a+5b=3abB. 6a+a=6a2C. 4m2n﹣2mn2=2mnD. 3ab2﹣5b2a=﹣2ab24.由方程组,可以得到x+y+z的值等于()A. 8B. 9C. 10D. 115.下列代数式书写规范的是()A. a×2B. 2aC. (5÷3)aD. 2a26.下列计算中,正确的是()A. ﹣2(a+b)=﹣2a+bB. ﹣2(a+b)=﹣2a﹣b2C. ﹣2(a+b)=﹣2a﹣2bD. ﹣2(a+b)=﹣2a+2b7.若x=1是关于x的方程ax+1=2的解,则a是()A. 1B. 2C. -1D. -28.甲、乙两地相距100千米,一艘轮船往返两地,顺流用4小时,逆流用5小时,那么这艘轮船在静水中的航速与水速分别是()A. 24千米/时,8千米/时B. 22.5千米/时,2.5千米/时C. 18千米/时,24千米/时D. 12.5千米/时,1.5千米/时9.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.则这款空调每台的进价()A. 1000B. 1100C. 1200D. 130010.甲队有工人272人,乙队有工人196人,如果要求乙队的人数是甲队人数的,应从乙队调多少人去甲队.如果设应从乙队调x人到甲队,列出的方程正确的是()A. 272+x=(196﹣x)B. (272﹣x)=196﹣xC. (272+x)=196﹣xD. ×272+x=196﹣x二.填空题(共8题;共24分)11.单项式a2b4c的系数是________ ,次数是_______12.如果x﹣y=3,m+n=2,则(x+m)﹣(y﹣n)的值是_______13.观察下列图形,若将一个正方形平均分成n2个小正方形,则一条直线最多可穿过________个小正方形14.已知一个两位数M的个位上的数字是a,十位上的数字是b,交换这个两位数的个位与十位上的数字的位置,所得的新数记为N,则3M﹣2N=________(用含a和b的式子表示).15.某市出租车收费标准为:起步价为7元,3千米后每千米的价格为1.5元,小明乘坐出租车走了x千米(x>3),则小明应付________元.16.方程x+5= (x+3)的解是________.17.若x=﹣1是关于x的方程2x+3m﹣1=0的解,则m=________.18.某班发放作业本,若每人发4本,则还余12本;每人发5本,则还少18本,则该班有学生________人.三.解答题(共6题;共42分)19.化简:(1)5a2+3ab﹣4﹣2ab﹣5a2 (2)﹣x+2(2x﹣2)﹣3(3x+5)20.﹣7(7y﹣5)21.父亲告诉小明:“距离地面越远,温度越低,”并给小明出示了下面的表格.根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你知道距离地面5千米的高空温度是多少吗?(4)你能猜出距离地面6千米的高空温度是多少吗?22.说出下列代数式的意义:(1)2a﹣3c;(2);(3)ab;(4)a2﹣b2.23.用方程描述下列实际问题中数量之间的相等关系:妈妈给小明25元钱,要他买每个2元和每个3元的面包共11个,小明该买这两种面包各几个?24.列方程解应用题:为了丰富社会实践活动,引导学生科学探究,学校组织七年级同学走进中国科技馆,亲近科学,感受科技魅力.来到科技馆大厅,同学们就被大厅里会“跳舞”的“小球矩阵”吸引住了(如图1).白色小球全部由计算机精准控制,每一只小球可以“悬浮”在大厅上空的不同位置,演绎着曲线、曲面、平面、文字和三维图案等各种动态造型.已知每个小球分别由独立的电机控制.图2,图3分别是9个小球可构成的两个造型,在每个造型中,相邻小球的高度差均为a.为了使小球从造型一(如图2)变到造型二(如图3),控制电机使造型一中的②,③,④,⑥,⑦,⑧号小球同时运动,②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒,当每个小球到达造型二的相应位置时就停止运动.已知⑦号小球比②号小球晚秒到达相应位置,问②号小球运动了多少米?参考答案:一.单选题1.B2.D3.D4.A5.D6.C7.A8.9.C 10.C二.填空题11.35π;7 12.5 13.(2n﹣1) 14.﹣17a+28b 15.(1.5x+2.5) 16.x=﹣7 17.1 18.30三.解答题19.解:(1)原式=5a2﹣5a2+3ab﹣2ab﹣4=.0+ab﹣4=ab﹣4(2)原式=﹣x+4x﹣4﹣9x﹣15=﹣6x﹣1920.解:﹣7(7y﹣5)=﹣49y+35.21.解:(1)上表反映了温度和距地面高度之间的关系,高度是自变量,温度是因变量.(2)由表可知,每上升一千米,温度降低6摄氏度,可得解析式为t=20﹣6h;(3)由表可知,距地面5千米时,温度为零下10摄氏度;(4)将t=6代入h=20﹣t可得,t=20﹣6×6=﹣16.22.解:(1)2a﹣3c表示甲车的速度是a,乙车的速度是b,甲车两小时比乙车三小时多行驶多少;(2)表示甲车的速度是a,乙车的速度是b,甲车三小时是乙车5小时行驶的多少倍;(3)ab表示矩形的宽是a,矩形的长是b。
七年级上册数学期末检测卷 二
第1页(共8页)xx 县20 —20 学年度第一学期期末教学质量监测义务教育七年级数 学 试 卷(本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页,全卷满分150分,考试时间120分钟。
)题号Ⅰ Ⅱ总分 总分人一 二三 19 20 21 22 23 24 25 得分第Ⅰ卷(选择题 共48分)一、选择题(本大题12个小题,每小题4分,共48分.请在每小题给出的4个选项中,将唯一正确的答案序号填在题后括号里.)1.31的相反数是( ) A .-31B .-3C .3D .31 2.下列合并同类项正确的是( ). A. 07722=-ba b aB .xy y x 725=+C .731022=-x xD .422633x x x =+ 3.下列几何体,主视图是三角形的是( )A .B .C .D .4.单项式2-ab π的系数和次数分别是 ( )A .-1,4B .π,4C .1,4D .π-,35.安岳县人口大约160万.这个数用科学记数法表示为( ) A .160×104B .2106.1⨯C .6106.1⨯D .71016.0⨯得 分 评 卷 人///////////密///////封///////线///////内///////不///////要///////答///////题///////////学校 班级 姓名 考号第2页(共8页)6.如图1,OC 是∠AOB 的平分线,OD 是∠AOC 的平分线,且∠AOD =35°,则∠AOB 等于( )A .70°B .105°C .140°D .135°7.从一个n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成7个三角形,则n 的值为( ) A . 6 B .7 C .8 D .98.在一条直线上,依次有A ,B ,C ,D 四点,如果点B 是线段AC 的中点,点C 是线段BD 的中点.则下列说法错误..的是( ) A .AB =31AD B .AB >CD C .AB =21BD D .AD =3BC 9.已知2)3(-a 与b +2互为相反数,则a b 的值为( )A .6B .-8C .8D .-610.若有理数a 、b 在数轴上对应的点如图2所示,则下列结论中正确的是( ) A .0>-a bB .b a >C .0>+b aD .0>-b a11.下列说法正确的个数有( ).①绝对值大于2且小于5的的所有整数有5个;②如果一个角与它的余角相等,那么这个角的补角是135°;③当我们在植树的时候,要整齐地栽一行树,只要确定两端树坑的位置就可以了.这一方法用数学知识解释为“两点确定一条直线”;④用四舍五入法将1.5046精确到0.01为1.5.A. 1个B. 2个C. 3个D. 4个12.如图3,AB ∥EF ,则α、β、γ之间的关系为( ) A .γβα+=B .180=-+βγα C .90=-+αγβD .90=-+γβα图3ABCEF βγαB第3页(共8页)第Ⅱ卷(非选择题 共102分)二、填空题(本大题6个小题,每小题4分,共24分.请把答案直接填在题中的横线上.)13.-2的倒数是 .14.如果代数式)3()522+-+mx x x (中不含x 的一次项,则m = . 15.已知x x 32+的值是7,则1932++x x 的值为 .16.将如图4所示的正方体的展开图重新折叠成正方体,和“你”字相对的汉字是 . 17.如图5,∠1=∠2,DE ∥BC ,则下列结论:①BD ∥FG ,②∠ADE =∠C ,③BD 平分∠ABC ,④∠ADB +∠CFG =180°,其中正确的结论有 .(填序号)18.古希腊的毕达哥拉斯和他的学派不仅证明了“三角形内角之和等于两个直角”,还发现了完美数,即“除其本身以外全部因数之和等于本身”的数.我们把小于它本身的因数叫做这个自然数的真约数.如6的所有真约数是1,2,3,而且6=1+2+3.就把6叫做完美数.则下列数64,52,28中是完美数的是 .BC第4页(共8页)三、解答题(本大题共7个小题,共78分,解答应写出必要的文字说明、证明过程或演算步骤.)19.(本小题满分12分)计算下列各题: (1)124332125⨯⎪⎭⎫⎝⎛-- (2)180°-67°43′38″(3)415.881232223---)(---÷⎥⎦⎤⎢⎣⎡⨯20.(本小题满分10分)先化简,再求值:已知多项式A =2244y xy x +-,B =225y xy x -+ .求:(1)A -4B (2)在(1)的结论下,求当x =81,y =1时代数式的值.第5页(共8页)21.(本小题满分10分)如图6是一些棱长均为2cm 的小立方块所搭几何体从上面看到的形状图,小正方形中的数字表示该位置的小立方块的个数.(1)请画出从正面和左面看到的这个几何体的形状图; (2)这个几何体的体积是 cm 3.22.(本小题满分10分)已知:如图7,∠1+∠2=180°,∠3=∠C ,求证:∠A =∠4. 证明:∵∠1+∠CFD =180°,(邻补角定义) ∠1+∠2=180° (已知)∴∠CFD =∠2 ( )∴CF ∥BE ( ) ∴∠C =∠BED ( ) ∵∠3=∠C (已知)∴∠3=∠BED (等量代换) ∴AB ∥CD ( ) ∴∠A =∠4 ( )得 分 评 卷 人图6主视图 左视图B432F1 G H D EA C 图7///////////密///////封///////线///////内///////不///////要///////答///////题///////////分评卷人23.(本小题满分11分)如图8,将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)比较大小:∠AOD∠BOC(填“>”、“=”、“<”)(2)若∠BOD=35°,则∠AOC= ;若∠AOC=135°,则∠BOD= ;(3)猜想∠AOC与∠BOD的数量关系,并说明理由.图8第6页(共8页)第7页(共8页)24.(本小题满分12分)某电动车厂计划平均每天生产n 辆电动车(每周工作五天),而实际产量与计划产量相比有出入,下表记录了某周五个工作日每天实际产量情况(超过计划产量记为正、少于计划产(1)用含n 的整式表示本周五天生产电动车的总数;(2)该厂实行每日计件工资制,每生产一辆车可得200元,若超额完成任务,则超过部分每辆另奖50元;少生产一辆扣80元.当n =50时,该厂工人这一周的工资总额是多少元?(3)若将上面第(2)问中“实际每日计件工资制”改为“实行每周计件工资制”,其他条件不变,当n =50时,试说明在此方式下这一周工人的工资总额与按日计件的工资总额哪一个更多?25.(本小题满分13分)如图9,已知数轴上点A表示的数为-12,点B表示的数是6.动点P从点A出发,以每秒6个单位长度的速度沿着数轴向右匀速运动;动点Q从B出发,以每秒3个单位长度的速度沿着数轴向右匀速运动,设运动时间为t(t>0)秒.(1)用含t的代数式表示点P、Q对应的数.(2)若P、Q同时出发,问当P、Q之间的距离是6个单位长度时,P、Q表示的数各是多少?(3)若P、Q同时出发,多少秒时,点P、Q到原点的距离相等?第8页(共8页)。
2024-2025学年人教版七年级数学上册期末 测试卷
2024-2025学年人教版七年级数学上册期末测试卷1.有理数的倒数是()A.B.C.D.2.篆刻是中华传统艺术之一,雕刻印章是篆刻基本功.如图是一块雕刻印章的材料,其俯视图为()A.B.C.D.3.单项式表示球的表面积,其中表示圆周率,表示球的半径.下列说法中,正确的是()A.系数是4,次数是2B.系数是4,次数是3C.系数是,次数是3D.系数是,次数是24.光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于.下列正确的是()A.B.C.是一个12位数D.是一个13位数5.《九章算术》中有这样一道题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注步为长度单位).设走路快的人要走x步才能追上,则正确的是()A.依题意B.依题意C.走路快的人要走200步才能追上D.走路快的人要走300步才能追上6.一个正两位数M,它的个位数字是a,十位数字是,把M十位上的数字与个位上的数字交换位置得到新两位数N,则的值总能()A.被3整除B.被9整除C.被10整除D.被11整除7.已知整数m同时满足下列两个条件,写出一个符合条件的m的值:________.①在数轴上位于原点左侧;②绝对值大于2且小于68.用代数式表示“x的2倍与y的差”为__.9.如图,点A在点O的北偏东方向上,点B在点O的南偏西方向上,则的度数为____.10.将长度相同的木棒按如图所示的方式摆放,图1中有5根木棒,图2中有9根木棒,图3中有13根木棒,…,按此规律摆放下去,则图9中木棒的根数是____.11.某市居民每月用水收费标准如下:用水量/立方米单价/元a超过10的部分李阿姨家11月份用水5立方米,交水费11元.若李阿姨12月份交水费元,则李阿姨12月份的用水量是____.12.科技创新小组为测试新款机器人的性能,令机器人在一个长的笔直测试道上来回运动,当机器人到达起点或终点时立即按当前运行速度折返,每次运动时间为,运动过程如下:第次从起点出发以的速度运动到记录点;第次从出发以的速度运动到记录点;第次从出发以的速度运动到记录点;第次从出发以的速度运动到记录点,到达后停止.若机器人的运动速度不超过,记录点恰好为终点,则的值为______.13.(1)计算:.(2)若单项式与是同类项,求的值.14.阅读下面解题过程并解答问题:计算:.解:原式(第一步)(第二步)(第三步).(1)上面解题过程有两处错误:第一处是第步,错误原因是;第二处是第步,错误原因是.(2)请写出正确的计算过程.15.解方程:(1);(2)16.春节快到了,小明同学准备了一份礼物送给自己的好朋友.他设计了一个正方体盒子进行包装,如图所示,由于粗心少设计了其中一个顶盖,请你把它补上,使其成为一个两面均有盖的正方体盒子.(1)共有___________种弥补方法;(2)任意画出一种成功的设计图(在图中补充),并将这些数字分别填入六个小正方形,使得折成的正方体相对面上的两个数相加得0(直接在图中填上即可).17.已知整式.(1)当,求整式的值;(2)若整式比整式大,求整式.18.某仓库5月份前6天,每天粮食相对于前一天(单位:袋)变化如图10,增加粮食记作“”,减少粮食记作“”.(1)通过计算说明前6天,仓库粮食总共的变化情况;(2)在1~7号中,如果前四天的仓库粮食变化情况是后三天变化情况的一半,求7号这天仓库粮食变化情况.19.如图,为了方便学生停放自行车,学校建了一块长边靠墙的长方形停车场,其他三面用护栏围起,其中停车场的长为米,宽比长少米.(1)用含a、b的代数式表示护栏的总长度;(2)若,,每米护栏造价80元,求建此停车场所需护栏的费用.20.追本溯源题(1)来自于课本中的定义,请你完成解答,利用定义完成题(2).(1)如图1,点M把线段分成相等的两条线段与,点M叫做线段的___,____.拓展延伸(2)如图2,线段上依次有D,B,E三点,,E是的中点,.①求线段的长;②求线段的长.21.根据表中的素材,完成下面的任务:如何设计奖品购买及兑换方案?素材1文具店销售某种钢笔与笔记本,已知钢笔每支10元,笔记本每本5元.素材2学校用1100元购买这种钢笔和笔记本,其数量之比为.素材3文具店开展“满送”优惠活动,每满130元送1张兑换券,满260元送2张兑换券,以此类推.学校花费1100元后,将兑换券全部用于商品兑换.最终,笔记本与钢笔数量相同.问题解决任务1探究购买方案分别求出兑换前购买钢笔和笔记本的数量.任务2确定兑换方式求出用于兑换钢笔的兑换券的张数.22.数轴上两点A、B,A在B左边,原点O是线段上的一点,已知,且.点A、B对应的数分别是a、b,点P为数轴上的一动点,其对应的数为x.(1)_____,_____;(2)若,求x的值;(3)若点P以每秒2个单位长度的速度从原点O向右运动,同时点A以每秒1个单位长度的速度向左运动,点B以每秒3个单位长度的速度向右运动,设运动时间为t秒.请问在运动过程中,的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.23.【实践操作】在数学实践活动课上,同学们准备研究如下问题:如图,点A,O,B在同一条直线上,将一直角三角尺如图①放置,是直角,直角顶点与点O重合,平分.【问题发现】(1)若,求的度数;(2)猜想图①中和的度数之间的关系,写出你的结论,并说明理由.【变式探究】将这一直角三角尺如图②放置,其他条件不变,试探究和的度数之间的关系,写出你的结论,并说明理由.。
人教版七年级数学上册 期末模拟测试题(二)(含答案)
七年级上册 数学 期末模拟测试(二)一、选择题共10小题,每小题3分,共30分. 在每小题给出的四个选项中,选出符合题目要求的一项并填在表格中.1.3-的相反数是 A .3B .3-C .13D . 13-2.2013年内,小明的体重增加了4kg ,我们记为+4,小亮的体重减少了3kg ,应记为 A .-3 B .3C .4-D . +43. 微信是现代社会人的一种生活方式,截止2013年8月,微信用户已超过4亿,目前还约以每天1 600 000用户人数在增长,将1 600 000用科学记数法表示为A . 70.1610⨯ B . 61.610⨯ C . 71.610⨯ D . 51610⨯ 4. 下列各式中运算正确的是A. 32m m -=B. 220a b ab -=C. 33323b b b -=D. 2xy xy xy -=-5. 若0>>b a ,则在数轴上表示数a ,b 的点正确的是A B C D6. 方程组25328x y x y -=⎧⎨-=⎩,消去y 后得到的方程是A. 01043=--x xB. 8543=+-x xC. 8)25(23=--x xD. 81043=+-x x 7.一个角的补角为158°,那么这个角的余角是A.22°B. 52°C. 68°D.112° 8.列式表示“x 的2倍与y 的和的平方”正确的是0b a0a b b 0a a 0bA . 2)2(y x +B . 2)(2y x +C . 22y x + D . 222y x +9. 下图是某月的日历表,在此日历表上可以用一个矩 形圈出33⨯个位置的9个数(如6,7,8,13,14, 15,20,21,22). 若圈出的9个数中,最大数与最 小数的和为46,则这9个数的和为 A .69 B .84 C .126 D .20710.如图,一个几何体上半部为正四棱椎,下半部为立方体,且有一个面涂有颜色,下列图形中,不是该几何体的表面展开图的是第二部分(非选择题 共70分)二、 填空题: 本大题共8小题,每题3分,共24分. 请把答案填在题中横线上. 11.数轴上,a 所表示的点A 到原点的距离是2,则a 等于 . 12. 单项式22m n -的系数是 ;次数是 . 13.方程10.2512x -=的解是 . 14. 如图,直线AB ,CD 相交于点O ,OA 平分∠EOC , ∠EOC =76°,则∠BOD = .15.已知22x x -=,则2332x x -+的值是 .16. 已知1=a ,2=b ,3=c ,如果c b a >>,则c b a -+= . 17. 若328a b +=,且31a b -=-,则()2014a b -的值是 .18. 如图,在边长为1的小正方形组成的网格中, 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L . 例如图中△ABC 是格点三角形,对应的1S =,0N =,4L =.图中格点四边形DEFG 对应的,,S N L 分别是 ;已知格点多边形的面积可表示为S aN bL c =++,其中a ,b ,c 为常数. 若某格点多边形对应的71N =,18L =, 则S = (用数值作答).三、计算题: 本大题共3小题,共13分.计算应有演算步骤. 19.(本小题满分4分)2(4)8(2)(3)--+÷-+-.20.(本小题满分4分)3201411(1)[(12)6]22⎛⎫--+-÷÷- ⎪⎝⎭.21. (本小题满分5分)先化简,再求值:()2223232x y x y xy x y xy ⎡⎤----⎣⎦,其中1,2x y =-=-.四、解方程(组): 本大题共4小题,共16分.解答应有演算步骤. 22.(本小题满分8分)(1)213(5)x x +=--; (2) 71132x x-+-=.23. (本小题满分8分)(1)212316x y x y -=⎧⎨+=⎩,; (2) 4(1)3(1)2,2.23x y y x y --=--⎧⎪⎨+=⎪⎩五、画图题24.(本小题满分5分)如图,已知平面上有四个点A ,B ,C ,D .(1)连接AB ,并画出AB 的中点P ; (2)作射线AD ;(3)作直线BC 与射线AD 交于点E .五、解答题: 本大题共2小题,共12分.解答应写出文字说明、证明过程或演算步骤. 25. (本小题满分6分)根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高 cm ,放入一个大球水面升高 cm ;DC BA(2)如果要使水面上升到50cm ,应放入大球、小球各多少个 26.(本小题满分6分)已知, OM 和ON 分别平分∠AOC 和∠BO C.(1)如图:若C 为∠AOB 内一点,探究MON ∠与AOB ∠的数量关系;(2)若C 为∠AOB 外一点,且C 不在OA 、OB 的反向延长线上,请你画出图形,并探究MON ∠与AOB ∠的数量关系.参考答案一、选择题(每小题3分,共30分)二、填空题(每个题3分,共24分)11. 2±; 12. 23-,; 3. 6x =; 14.38︒; 15. 8; 16. 2或0; 17. 1 ; 18. 3,1,6, 79.注:第12题答对一个得2分,答对2个得3分;第18题第一空1分,第二空2分. 三、计算题:(共13分)19. 解:2(4)8(2)(3)--+÷-+- =2443+--=1-. ………4分 20. 解: 3201411(1)[(12)6]22⎛⎫--+-÷÷- ⎪⎝⎭=111(2)()28--÷-=3182-⨯ =11-. ………4分21. 解: ()2223232x y x y xy x y xy ⎡⎤----⎣⎦2223(263)x y x y xy x y xy =--+-()22357x y x y xy =--22357x y x y xy =-+227x y xy =-+当1,2x y =-=-时,原式22718x y xy =-+=. ………………………5分四、解方程(组)(共16分)22. (1)213(5)x x +=--解:去括号,得 21315x x +=-+. 移项合并同类项,得 514x =. 系数化1,得 145x =. ……….4分 (2)71132x x-+-= 解:去分母,得 2(7)3(1)6x x --+=. 去括号,得 214336x x ---= 移项合并同类项,得 23x -=系数化1,得 23x =-. …………….……….4分 23. (1)212316.x y x y -=⎧⎨+=⎩①②,解:由①得:21x y =+ ③把③代入②得:2(21)316y y ++=.解得2y =. ………….…….……..……….2分 把2y =代入③得,5x =. ….……..………. 3分∴这个方程组的解为5,2.x y =⎧⎨=⎩ .…….…….…….……….4分注:其它解法按相应标准给分.(2) 4(1)3(1)2,2.23x y y x y--=--⎧⎪⎨+=⎪⎩①②解:由①得:450x y --= ③ 由②得:3212x y += ④⨯+③2④得:1122x =.解得2x =. 把2x =代入④得,3y =.∴这个方程组的解为2,3.x y =⎧⎨=⎩ ……...……….…….…….……….4分注:其它解法按相应标准给分. 五、作图题 (共5分) 24. 如图……………………………… 5分 六、解答题(共12分)25. 解:(1) 2,3 . …………………… 2分 (2)设应放入x 个大球,y 个小球,由题意得325026,10.x y x y +=-⎧⎨+=⎩………………… 4分解这个方程组得4,6.x y =⎧⎨=⎩答:应放入4 个大球,6个小球. ……………………… 6分 注:列一元一次方程按照相应的标准给分. 26. 解:(1)OM 和ON 分别平分∠AOC 和∠BO C ,∴ 1111==()2222MON MOC NOC AOC BOC AOC BOC AOB ∠∠+∠∠+∠=∠+∠=∠. ……………………… 3分 (2)当C 在如图所示的位置时,11==2211().22MON MOC NOC AOC BOCAOC BOC AOB ∠∠-∠∠-∠=∠-∠=∠当C 在如图所示的位置时,PEABCD11==2211().22MON NOC MOC BOC AOCBOC AOC AOB ∠∠-∠∠-∠=∠-∠=∠当C 在如图所示的位置时,11==2211()(360)221180.2MON MOC NOC AOC BOCAOC BOC AOB AOB ∠∠+∠∠+∠=∠+∠=︒-∠=︒-∠ ………………………6分。
七年级上册数学期末考试卷
七年级上册数学期末考试卷七年级上册数学期末考试卷考试可以帮助教师提供反馈信息,通过考试,我们可以知道学生哪些知识点还不懂,哪些知识点是比较熟悉的。
下面是店铺精心整理的七年级上册数学期末考试卷,希望对你有帮助!七年级上册数学期末考试卷 1一选择题(共20分)1.零不属于( )A.正数集合B.有理数集合C.整数集合D.非正有理数集合12.已知下列各数-8, 2.1, , 3, 0,﹣2.5, 10, -1中,其中非负数的个数是( ) 9A.2个B.3个C.4个D.5个3.下列各组数中,互为相反数的是( )111 A.|-︱和﹣ B.|-︱和﹣3 333111C.|-︱和 D.|-︱和3 3334.甲?乙?丙三地的海拔高度为20米,-15米,-10米,那么最高的地方比最低的地方高( )A.10米B.25米C.35米D.5米5.质检员抽查某零件的质量,超过规定尺寸的记为正数,不足规定尺寸的记为负数,结果第一个0.13mm, 第二个–0.12mm, 第三个0.15mm, 第四个0.11mm,则质量最好的零件是( )A. 第一个B. 第二个C. 第三个D. 第四个6.绝对值相等的两数在数轴上对应两点的距离为8,则这两个数为( )A.±8B.0和-8C. 0和8D.4和-47.下列判断正确的是( )A.比正数小的数一定是负数B.零是最小的有理数C.有最大的负整数和最小的正整数D.一个有理数所对应的点离开原点越远,则它越大8.一个数的平方仍然得这个数,则此数是( )A.0B.±1C. ±1和0D.1和09.圆柱的侧面展开图是( )A.圆形B.扇形C.三角形D.四边形10.下列说法正确的是( )A.两点之间的距离是两点间的线段;B.同一平面内,过一点有且只有一条直线与已知直线平行;C.同一平面内,过一点有且只有一条直线与已知直线垂直;D.与同一条直线垂直的两条直线也垂直.二填空(共24分)1.六棱柱有_____个顶点,_____个面。
2022-2023年北师大版初中数学七年级上册期末考试检测试卷及答案(共五套)
2022-2023年北师大版数学七年级上册期末考试测试卷及答案(一)一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)已知2x3y2与﹣x3m y2的和是单项式,则式子4m﹣24的值是()A.20B.﹣20C.28D.﹣22.(3分)﹣的相反数是()A.﹣2B.2C.﹣D.3.(3分)下列运算正确的是()A.2a+3b=5a+b B.2a﹣3b=﹣(a﹣b)C.2a2b﹣2ab2=0D.3ab﹣3ba=0 4.(3分)若2(a+3)的值与4互为相反数,则a的值为()A.﹣1B.﹣C.﹣5D.5.(3分)解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误()A.①B.②C.③D.④6.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3B.4C.5D.67.(3分)下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交8.(3分)有理数,a、b在数轴上的位置如图所示,则a、b、﹣b、﹣a的大小关系是()A.b<﹣a<a<﹣b B.b<a<﹣b<﹣aC.b<﹣b<﹣a<a D.b<a<﹣a<﹣b9.(3分)儿子今年12岁,父亲今年39岁,()父亲的年龄是儿子的年龄的2倍.()A.5年后B.9年后C.12年后D.15年后10.(3分)已知:点A,B,C在同一条直线上,点M、N分别是AB、AC的中点,如果AB=10cm,AC=8cm,那么线段MN的长度为()A.6cm B.9cm C.3cm或6cm D.1cm或9cm二、填空题(本大题共10个小题,每小题3分,共30分)11.(3分)若一个角的余角是它的2倍,这个角的补角为.12.(3分)若关于x的方程3x+2b+1=x﹣(3b+2)的解是1,则b=.13.(3分)如果(a﹣2)x a﹣2+6=0是关于x的一元一次方程,那么a=.14.(3分)如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖块数为.(用含n的代数式表示)15.(3分)单项式﹣的系数是,次数是.16.(3分)有理数a、b、c在数轴上的对应点如图所示,化简:|b|﹣|c+b|+|b ﹣a|=.17.(3分)如图,圈中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数可能是.18.(3分)如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=BC﹣EB;③CE=CD+BD﹣AC;④CE=AE+BC﹣AB.其中正确的是(填序号).三、解答题(共40分)19.(8分)计算(1)(﹣)×(﹣30);(2)1÷(﹣1)+0÷4﹣5×0.1×(﹣2)3.20.(8分)解方程(1)3(x+2)﹣1=x﹣3;(2)﹣1=.21.(8分)先化简,再求值:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.22.(8分)用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?23.(14分)如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.参考答案:一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)下列运算正确的是()A.2a+3b=5a+b B.2a﹣3b=﹣(a﹣b)C.2a2b﹣2ab2=0D.3ab﹣3ba=0【解答】解:A、2a、3b不是同类项,不能合并,此选项错误;B、2a﹣3b=﹣(a﹣b),此选项错误;C、2a2b、﹣2ab2不是同类项,不能合并,此选项错误;D、3ab﹣3ba=0,此选项正确;故选:D2.(3分)已知2x3y2与﹣x3m y2的和是单项式,则式子4m﹣24的值是()A.20B.﹣20C.28D.﹣2【解答】解:由题意可知:2x3y2与﹣x3m y2是同类项,∴3=3m,∴m=1,∴4m﹣24=4﹣24=﹣20,故选(B)3.(3分)﹣的相反数是()A.﹣2B.2C.﹣D.【解答】解:根据相反数的含义,可得﹣的相反数是:﹣(﹣)=.故选:D.4.(3分)若2(a+3)的值与4互为相反数,则a的值为()A.﹣1B.﹣C.﹣5D.【解答】解:∵2(a+3)的值与4互为相反数,∴2(a+3)+4=0,∴a=﹣5,故选C5.(3分)解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误()A.①B.②C.③D.④【解答】解:方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x﹣x﹣2x=4+1;③合并同类项,得x=5;④化系数为1,x=5.其中错误的一步是②.故选B.6.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3B.4C.5D.6【解答】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.故选:C.7.(3分)下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交【解答】解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选D.8.(3分)有理数,a、b在数轴上的位置如图所示,则a、b、﹣b、﹣a的大小关系是()A.b<﹣a<a<﹣b B.b<a<﹣b<﹣a C.b<﹣b<﹣a<a D.b<a<﹣a<﹣b 【解答】解:根据图示,可得b<﹣a<a<﹣b.故选:A.9.(3分)儿子今年12岁,父亲今年39岁,()父亲的年龄是儿子的年龄的2倍.()A.5年后B.9年后C.12年后D.15年后【解答】解:设x年后父亲的年龄是儿子的年龄的2倍,根据题意得:39+x=2(12+x),解得:x=15.答:15年后父亲的年龄是儿子的年龄的2倍.故选D.10.(3分)已知:点A,B,C在同一条直线上,点M、N分别是AB、AC的中点,如果AB=10cm,AC=8cm,那么线段MN的长度为()A.6cm B.9cm C.3cm或6cm D.1cm或9cm【解答】解:(1)点C在线段AB上,如:点M是线段AB的中点,点N是线段BC的中点,MB=AB=5,BN=CB=4,MN=BM﹣BN=5﹣4=1cm;(2)点C在线段AB的延长线上,如:点M是线段AB的中点,点N是线段BC的中点,MB=AB=5,BN=CB=4,MN=MB+BN=5+4=9cm,故选:D.二、填空题(本大题共10个小题,每小题3分,共30分)11.(3分)若一个角的余角是它的2倍,这个角的补角为150°.【解答】解:设这个角为x°,则它的余角为(90﹣x)°,90﹣x=2x解得:x=30,180°﹣30°=150°,答:这个角的补角为150°,故答案为:150°.12.(3分)若关于x的方程3x+2b+1=x﹣(3b+2)的解是1,则b=﹣1.【解答】解:把x=1代入方程3x+2b+1=x﹣(3b+2)得:3+2b+1=1﹣(3b+2),解得:b=﹣1,故答案为:﹣1.13.(3分)如果(a﹣2)x a﹣2+6=0是关于x的一元一次方程,那么a=3.【解答】解:∵(a﹣2)x a﹣2+6=0是关于x的一元一次方程,∴a﹣2=1,解得:a=3,故答案为:3.14.(3分)如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖块数为2+3n.(用含n的代数式表示)【解答】解:观察图形发现:第1个图案中有白色瓷砖5块,第2个图案中白色瓷砖多了3块,依此类推,第n个图案中,白色瓷砖是5+3(n﹣1)=3n+2.15.(3分)单项式﹣的系数是﹣,次数是3.【解答】解:∵单项式﹣的数字因数是﹣,所有字母指数的和=2+1=3,∴此单项式的系数是﹣,次数是3.故答案为:﹣,3.16.(3分)有理数a、b、c在数轴上的对应点如图所示,化简:|b|﹣|c+b|+|b ﹣a|=﹣b+c+a.【解答】解:由数轴可知:c<b<0<a,∴b<0,c+b<0,b﹣a<0,∴原式=﹣b+(c+b)﹣(b﹣a)=﹣b+c+b﹣b+a=﹣b+c+a,故答案为:﹣b+c+a17.(3分)如图,圈中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数可能是26或5.【解答】解:∵按逆时针方向有8﹣6=2;11﹣8=3;15﹣11=4;∴这个数可能是20+6=26或6﹣1=5.18.(3分)如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=BC﹣EB;③CE=CD+BD﹣AC;④CE=AE+BC﹣AB.其中正确的是①②④(填序号).【解答】解:如图,①CE=CD+DE,故①正确;②CE=BC﹣EB,故②正确;③CE=CD+BD﹣BE,故③错误;④∵AE+BC=AB+CE,∴CE=AE+BC﹣AB=AB+CE﹣AB=CE,故④正确;故答案是:①②④.三、解答题(共40分)19.(8分)计算(1)(﹣)×(﹣30);(2)1÷(﹣1)+0÷4﹣5×0.1×(﹣2)3.【解答】解:(1)原式=﹣10+2=﹣8;(2)原式=﹣1+0﹣0.5×(﹣8)=﹣1+4=3.20.(8分)解方程(1)3(x+2)﹣1=x﹣3;(2)﹣1=.【解答】解:(1)去括号,得:3x+6﹣1=x﹣3,移项,得:3x﹣x=﹣3﹣6+1,合并同类项,得:2x=﹣8,系数化为1,得:x=﹣4;(2)去分母,得:3(x+1)﹣6=2(2﹣x),去括号,得:3x+3﹣6=4﹣2x,移项,得:3x+2x=4+6﹣3,合并同类项,得:5x=7,系数化为1,得:x=.21.(8分)先化简,再求值:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.【解答】解:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2)=4x2﹣4y2﹣3x2y2﹣3x2+3x2y2+3y2=x2﹣y2,当x=﹣1,y=2时,原式=(﹣1)2﹣22=﹣3.22.(8分)用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?【解答】解:设小拖拉机每小时耕地x亩,则大拖拉机每小时耕地(30﹣x)亩,根据题意得:30﹣x=1.5x,解得:x=12.答:小拖拉机每小时耕地12亩.23.(14分)如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.【解答】解:(1)根据C、D的运动速度知:BD=2,PC=1,则BD=2PC,∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∵AB=12cm,AB=AP+PB,∴12=3AP,则AP=4cm;(2)根据C、D的运动速度知:BD=4,PC=2,则BD=2PC,∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∵AB=12cm,AB=AP+PB,∴12=3AP,则AP=4cm;(3)根据C、D的运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处,即AP=4cm;(4)如图:∵AQ ﹣BQ=PQ ,∴AQ=PQ +BQ ;又∵AQ=AP +PQ ,∴AP=BQ ,∴PQ=AB=4cm ;当点Q'在AB 的延长线上时,AQ′﹣AP=PQ′,所以AQ′﹣BQ′=PQ=AB=12cm .综上所述,PQ=4cm 或12cm .2022-2023年北师大版数学七年级上册期末考试测试卷及答案(二)一.选择题(每小题3分)1.下列选项中,比3-小的数是()A.1- B.0 C.21 D.5-2.第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是()3.下列各式符合代数式书写规范的是()A.a b B.7⨯a C.12-m 元 D.x 2134.2017年12月11日,深圳证券交易所成功招标发行深圳轨道交通专项债劵,用来建设地铁14号线,该项目估算资金总额约为39500000000元,将39500000000元用科学计数法表示为()A.1110395.0⨯元B.101095.3⨯元C.91095.3⨯元D.9105.39⨯元5.下列计算正确的是()A.2624a a a =+ B.ab ba ab =-67 C.ab b a 624=+ D.325=-a a 6.如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是()7.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为()A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短8.深圳市12月上旬每天平均空气质量指数(AQI)分别为:35,42,55,78,57,64,58,69,74,82,为了描述这十天空气质量的变化情况,最适合用的统计图是()A.折线统计图B.频数直方图C.条形统计图D.扇形统计图9.如图,AB=24,点C 为AB 的中点,点D 在线段AC 上,且AD:CB=1:3,则DB 的长度为()A.12B.18C.16D.2010.若2=x 是方程01424=-+m x 的解,则m 的值为()A.10B.4C.3D.-311.在如图所示的2018年元月份的月历表中,任意框出表中竖列上四个数,这四个数的和可能是()A.86B.78C.60D.10112.下列叙述:①最小的正整数是0;②36x π的系数是π6;③用一个平面去截正方体,截面不可能是六边形;④若AC=BC,则点C 是线段AB 的中点;⑤三角形是多边形;⑥绝对值等于本身的数是正数,其中正确的个数有()A.2B.3C.4D.5二、填空题(每小题3分)13.已知323y x m 和n y x 22-是同类项,则式子n m +的值是.14.在数轴上,与表示数1-的点的距离是三个单位长度的点表示的数是.15.某书店把一本新书按标价的八折出售,仍获利30%,若该书的进价为40元,则标价为元.16.如图所示的运算程序中,若开始输入的x 值为96,我们发现第1次输出的结果为48,第2次输出的结果为24,……,第2018次输出的结果为.三、解答题17.(本题15分)计算:(1);15)9()18(16--+--(2)-(;5324)8312761-⨯-+(3).6)5()2(322---⨯-+-18.(本题4分)先化简,再求值:),244(21)53(22----a a a a 其中a=31.19.(本题8分)解方程(1));3(1)2(2+-=+x x21.(本题5分):如图,∠AOC=21∠BOC=50°,OD 平分∠AOB,求∠AOB 和∠COD 的度数.22.(本题5分)深圳某小区停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为10元/辆.现在停车场有50辆中、小型汽车,期中中型汽车有x辆.(1)则小型汽车的车辆数为(用含x的代数式表示)(2)这些车共缴纳停车费580元,求中、小型汽车各有多少辆?23.(本题8分)如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点.(1)点A表示的数为__,点B表示的数为,线段AB的长为.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?参考答案2022-2023年北师大版数学七年级上册期末考试测试卷及答案(三)一、选择题(每题3分,共30分)1.在0,-2,1,5这四个数中,最小的数是()A.0B.-2C.1D.52.下列调查中,适宜采用抽样调查方式的是()A.调查奥运会上女子铅球参赛运动员兴奋剂的使用情况B.调查某校某班学生的体育锻炼情况C.调查一批灯泡的使用寿命D.调查游乐园中一辆过山车上共40个座位的稳固情况3.下列运算正确的是()A.6a2-a2=5B.2a+b=2abC.4ba2-3a2b=a2b D.2a2+3a4=5a64.如图,若A是有理数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是()A.a<1<-a B.a<-a<1C.1<-a<a D.-a<a<15.如图,两块三角尺的直角顶点O重合在一起,且OB平分∠COD,则∠AOD 的度数为()A.45°B.120°C.135°D.150°6.某市获“全国文明城市”提名,为此小王特制了一个正方体玩具,其表面展开图如图所示,正方体中与“全”字相对的字是()A.文B.明C.城D.市7.有一篮苹果平均分给若干人,若每人分2个,则还余下2个苹果,若每人分3个,则少7个苹果,设有x人分苹果,则可列方程为()A.3x+2=2x+7B.2x-2=3x+7C.3x-2=2x-7D.2x+2=3x-78.如图,把一根绳子对折成线段AB,从P处把绳子剪断,已知PB=2P A,若剪断后的各段绳子中最长的一段为40cm,则绳子的原长为()A.30cmB.60cmC.120cmD.60cm或120cm9.小王去早市为餐馆选购蔬菜,他指着标价为每千克3元的豆角问摊主:“这豆角能便宜吗?”摊主说:“多买按八折,你要多少千克?”小王报了质量后,摊主同意按八折卖给小王,并说:“之前有一人只比你少买5kg就是按标价,还比你多花了3元呢!”小王购买豆角的质量是()A.25kg B.20kgC.30kg D.15kg10.如图所示的图案均是由长度相同的木棒按一定规律拼搭而成的,第1个图案需7根木棒,第2个图案需13根木棒,…以此规律,第11个图案需要木棒的根数是()A.156B.157C.158D.159二、填空题(每题3分,共24分)11.22.5°=________°________′;12°24′=________°.12.某中学要了解七年级学生的视力情况,在全校七年级学生中抽取了25名学生进行检查,在这个问题中,总体是________________________,样本是________________________.13.我国“南仓”级远洋综合补给舰满载排水量为37000t ,把数37000用科学记数法表示为_______________________________________.14.若a +b =2,则代数式3-2a -2b =________.15.从中午12时开始,时钟的时针转过了80°的角,则此时的时间是________.16.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1dm 的正方体摆放在课桌上,如图所示,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为________.17.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC内,且∠BOE =13∠EOC ,∠DOE =60°,则∠EOC =________.18.某市为提倡节约用水,采取分段收费.若每户每月用水量不超过20m 3,每立方米收费2元;若用水量超过20m 3,超过的部分每立方米加收1元.小明家5月份缴水费64元,则他家该月用水________.三、解答题(19~23题每题6分,24~26题每题12分,共66分)19.计算:(1)-32-(-17)-|-23|+(-15);÷9121-+23--24).20.解方程:(1)3x+7=32-2x;(2)x-1-x3=x+5 6.21.化简求值:已知|2x+1|+=0,求4x2y-[6xy-3(4xy-2)-x2y]+1的值.22.如图是由小立方块搭成的几何体,请画出从正面、左面和上面看到的平面图形.23.如图,OC是∠AOD的平分线,∠BOC=12∠COD,那么∠BOC是∠AOD 的几分之几?说明你的理由.24.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分学生的兴趣爱好进行调查,将收集的数据整理并绘制成如图所示的两幅统计图.请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了________名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为________.25.某班计划购买一些乒乓球和乒乓球拍,现了解到的情况如下:甲、乙两家店出售同样品牌同种型号的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副乒乓球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需乒乓球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家店购买更合算?26.在数轴上,表示数m与n的点之间的距离可以表示为|m-n|.例如:在数轴上,表示数-3与2的点之间的距离是5=|-3-2|,表示数-4与-1的点之间的距离是3=|-4-(-1)|.利用上述结论解决如下问题:(1)若|x-5|=3,求x的值;(2)点A,B为数轴上的两个动点,点A表示的数是a,点B表示的数是b,且|a-b|=6(b>a),点C表示的数为-2.若A,B,C三个点中的某一个点是另两个点所连线段的中点,求a,b的值.参考答案:一、1.B2.C3.C4.A5.C6.B7.D8.D9.C点拨:设小王购买豆角的质量是x kg,则3×80%x=3(x-5)-3,整理得2.4x=3x-18,解得x=30.所以小王购买豆角的质量是30kg.10.B点拨:第1个图案需7根木棒,7=1×(1+3)+3,第2个图案需13根木棒,13=2×(2+3)+3,第3个图案需21根木棒,21=3×(3+3)+3,……第n个图案需[n(n+3)+3]根木棒,所以第11个图案需11×(11+3)+3=157(根)木棒.故选B.二、11.22;30;12.412.该中学七年级学生的视力情况;抽取的25名学生的视力情况13.3.7×10414.-115.14时40分16.33dm217.90°点拨:设∠BOE=x°,则∠EOC=3x°,∠DOB=60°-x°.由OD平分∠AOB,得∠AOB=2∠DOB,故3x+x+2(60-x)=180,解方程得x=30,所以∠EOC=90°,故答案为90°.18.28m3点拨:设小明家5月份用水x m3,因为20×2=40(元),64>40,所以x>20.根据题意可得2×20+(2+1)(x-20)=64,解得x=28.三、19.解:(1)原式=-32+17-23-15=-53.(2)原式=-11-[12×(-24)+23×(-24)-34×(-24)]=-11-(-12-16+18)=-1.20.解:(1)移项,得3x+2x=32-7.合并同类项,得5x=25.系数化为1,得x=5.(2)去分母,得6x-2(1-x)=x+5,去括号,得6x-2+2x=x+5,移项、合并同类项,得7x=7,系数化为1,得x=1.21.解:由|2x+1|+=0得2x+1=0,y-14=0,即x=-12,y=14.原式=4x2y-6xy+12xy-6+x2y+1=5x2y+6xy-5.当x=-12,y=14时,原式=5x2y+6xy-5=516-34-5=-5716.22.解:如图.23.解:∠BOC是∠AOD的四分之一.理由如下:因为OC是∠AOD的平分线,所以∠COD=12∠AOD.因为∠BOC=12∠COD,所以∠BOC=12×12∠AOD=14∠AOD.24.解:(1)100(2)喜欢民乐的人数为100×20%=20(人),补全条形统计图如图所示.(3)36°25.解:(1)设该班购买乒乓球x盒,则在甲店付款:100×5+(x-5)×25=(25x+375)元,在乙店付款:0.9×100×5+25×0.9×x=(22.5x+450)元,由25x+375=22.5x+450,解得x=30.答:当购买乒乓球30盒时,两种优惠办法付款一样.(2)当购买20盒乒乓球时,在甲店付款:25×20+375=875(元),在乙店付款:22.5×20+450=900(元),875<900,故在甲店购买更合算;当购买40盒乒乓球时,在甲店付款:25×40+375=1375(元),在乙店付款:22.5×40+450=1350(元),1350<1375,故在乙店购买更合算.答:购买20盒时,去甲店购买更合算;购买40盒时,去乙店购买更合算。
湘教版七年级数学上册期末综合测试卷二(含答案)
七年级数学(上册)期末综合测试卷二(含答案)一¡选择题(30分)1、下面的数中,与-3的和为0的是()A. 3;B. -3;C. ;D. ;2、据报道:在我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为()A. 1.94×1010;B. 0.194×1010;C. 19.4×109;D. 1.94×109;3、已知x<0,y>0,且,则x+y的值是()A. 非负数;B. 负数;C. 正数;D. 0;4、若与的和是单项式,则的值为()A. 1;B. -1;C. 2;D. 0;5、在解方程去分母真情的是()A. ;B. ;C. ;D. ;6、有苹果若干,分给小朋友吃,若每个小朋友分3个则剩1个,若每个小朋友分4个则少2个,设共有苹果x个,则可列方程为()A. 3x+4=4x-2;B. ;C.;D. ;7、一个两位数,个位数字与十位数字之和是9,如果将个位数字与十位数字对调后,所得新数比原数答9,则原来两位数是()A. 54;B. 27;C. 72;D. 45;8、已知某种商品的售价为204元,即使促销降价20﹪仍有20﹪的利润,则该商品的成本价是()A. 133;B. 134;C. 135;D. 136;9、如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOD的度数是()A. 20°;B. 40°;C. 50°;D. 80°;10、已知2001年至2012年某市小学学校数量(所)和在校学生数(人)得两幅统计图(如图①,图②),由图得出如下四个结论:①学校数量2007~2012年比2001~2006年更稳定;②在校学生数有两处连续下降,两次连续增长的变化过程;③2009年的大于1000;④2009~2012年,各相邻两年的学校数量增长和在校学生人数增长最快的年份学校数(所)20012002200320042005200620072008200920102011201202004006008001000120014001600135411971044897791605437418417408409415年份在校学生数(人)200120022003200420052006200720082009201020112012430000440000435000445000450000455000460000465000470000475000············467962448960456515447971458542458729456192452143445192453897465289472613图图x y 2134567812345678x y 2134567812345678图图都是2011~2012年;其中,正确的结论是( )A. ①②③④;B. ①②③;C. ①②;D. ③④;二、填空题(24分)11、绝对值大于2.6而小于5.3的所有负数之和为 。
北师大版初中数学七年级上册期末测试卷(标准难度)(含答案解析)
北师大版初中数学七年级上册期末测试卷考试范围:全册;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.一个无盖的正方体纸盒,将它展开成平面图形,可能的情形共有( )A. 11种B. 9种C. 8种D. 7种2.某车间原计划用13小时生产一批零件,实际每小时多生产了10件,用了12小时不但完成了任务,而且还多生产了60件,设原计划每小时生产x个零件,那么下列方程正确的是( )A. 13x=12(x+10)+60B. 12(x+10)=13x+60C. 113x=112(x+10)+60 D. 112(x+10)=113x+603.中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是( )A. 10B. 89C. 165D.2944.在我国远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,类似现在我们熟悉的“进位制”.如图所示是远古时期一位母亲记录孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满五进一,根据图示可知,孩子已经出生的天数是( )A. 27B. 42C. 55D. 2105.由襄阳东站到汉口站的某趟高铁,运行途中停靠的车站依次是:襄阳东站—枣阳—随州南—新安陆西—孝感东—汉口站,那么铁路运营公司要为这条线路制作的车票有( )A. 6种B. 12种C. 15种D. 30种6.按如图所示的运算程序,能使输出y值为1的是( )A. m=1,n=1B. m=1,n=0C. m=1,n=2D. m=2,n=17.一个两位数,个位上的数字是a,十位上的数字比个位的数字小1,则这个两位数可以表示为( )A. a(a−1)B. (a+1)aC. 10(a−1)+aD. 10a+(a−1)8.如图,C,D是线段AB上两点,M,N分别是线段AD,BC的中点,下列结论: ①若AD=BM,则AB=3BD; ②若AC=BD,则AM=BN; ③AC−BD=2(MC−DN); ④2MN=AB−CD.其中正确的结论是( )A. ① ② ③B. ③ ④C. ① ② ④D. ① ② ③ ④9.中国讲究五谷丰登,六畜兴旺,如图是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”、“牛”、“羊”、“马”、“鸡”、“狗”.将其围成一个正方体后,则与“牛”相对的是( )A. 羊B. 马C. 鸡D. 狗10.已知关于x的一元一次方程1x+3=2x+b的解为x=−3,那么关于y的一元一次方程20201(y+1)+3=2(y+1)+b的解为( )2020A. y=1B. y=−1C. y=−3D. y=−411.某市今年共有8万名学生参加了体育健康测试,为了了解这8万名考生的体育健康成绩,从中抽取了2000名学生的成绩进行统计分析.下列说法中正确的个数为( )①这种调查采用了抽样调查的方式;②8万名学生是总体;③2000名学生是总体的一个样本;④每名学生的体育健康成绩是个体.A. 2个B. 3个C. 4个D. 0个12.从1980年初次征战冬奥会,到1992年取得首枚冬奥会奖牌,再到2022年北京冬奥会金牌榜前三,中国的冰雪体育事业不断取得突破性成绩.历届冬奥会的比赛项目常被分成两大类:冰项目和雪项目.根据统计图提供的信息,有如下四个结论:①中国队在2022年北京冬奥会上获得的金牌数是参加冬奥会以来最多的一次;②中国队在2022年北京冬奥会上获得的奖牌数是参加冬奥会以来最多的一次;③中国队在冬奥会上的冰上项目奖牌数逐年提高;④中国队在冬奥会上的雪上项目奖牌数在2022年首次超越冰上项目奖牌数.上述结论中,正确的有( )A. 1个B. 2个C. 3个D. 4个第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.如图,长方形的长为3cm,宽为2cm,以该长方形的一边所在直线为轴,将其旋转一周,形成圆柱,其体积为______ cm3.(结果保留π)14.单项式(−2)3x m y2z的次数8,则m的值是.15.如图,已知线段AB=8cm,M是AB的中点,P是线段MB上一点,N为PB的中点,NB=1.5cm,则线段MP=cm.16.当x=时,代数式x+3与2−5x的差是−5.三、解答题(本大题共9小题,共72.0分。
七年级上册数学期末测试卷(2)
七年级上册期末测试卷班级: 姓名: 一、选择题(每小题3分,共36分)1.2022年昭通苹果又喜获丰收,据报道,今年苹果总产量60万吨,总产值42亿元,42亿元用科学计数法表示为( )元.A.42×108B.4.2×108C.4.2×109D.4.292.在数2022,−23,0,2.13 ,0.618,3.14,-1.732,π,-3中,是分数有( ). A.3个 B.4个 C.5个 D.6个3.下列选项中,不是同类项的是( ).A.7与8B.-1与πC.3mn 与−4nmD.−2x 2y 与xy 2 4.已知代数式y 2-2y +6 的值为7,那么2y 2-4y +1 的值为( ).A. 3B. 2C. 1D. 45. 已知多项式A=4a 2+5ab -6b ,B=-2a 2+3ab -4b ,则A -2B 为( ).A.8a 2+8ab -10bB.11ab-14bC.8a 2-ab+2bD.-ab +2b6.若A 、B 、C 三点在同一直线上,且线段AB = 4cm ,BC = 3cm ,那么 A 、C 两点的距离为( ).A. 1cmB. 7cmC. 1cm 或 7cmD. 以上答案都不对7.如图,在用量角器画∠AOB 等于 39°的的过程中,对于“先找点 B ,再画射线 OB.”这一作法隐含的数学依据是( ).A.两点确定一条直线;B.两点之间,线段最短;C.等角的补角相等;D.等角的余角相等.8.如图,如果正方体的六个面上分别标有:团、结、就、是、力、量.从三个不同的方向看到的情形如下,那么团、结、力对面的字分别是( ).A .量,就,是B .就,是,量C .量,是,就D .就,量,是力是团力就结结团量• OAB • OAB • OAB • OAB9.如图,平面图形绕轴旋转一周,可以得到圆锥的是( ).A. 甲B. 乙C.丙D. 丁10.如图,化简:|m+n|-|m-n|,则下列各式正确的是( ).A.2mB.-2mC.2nD.-2n11.某车间原计划13小时生产一批零件,后来每小时比计划多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x 个零件,则所列方程为( ).A .13x =12(x +10)+60B .12(x +10)=13x +60 C. x13−x+6012=10 D.x+6012−x13=1012.如图,以点O 为端点,作射线OA 、OB 、OC 、OD 、OE 、OF ,从射线OA 开始逆时针依次在射线上标出数字1、2、3、4、5、6、7…,则数字“2013”在( ).A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上二、填空题(每小题3分,共18分) 13.单项式−5πa 2b 34的系数是____−5π4____.14.若a 是最大的负整数,b 的相反数等于它本身,则b -a 2022的值为 . 15.若关于x 的方程(m -1)x |m|-2=5是一元一次方程,则m =________. 16.如图,OC 平分∠AOB ,若∠AOC =25°33′,则∠AOB =________. 17.若一个角的补角比这个角的4倍大15°,则这个角的余角为 . 18.如果方程x−43−8=x+224(31)621x a x a -+=+-的解与方程的解相同,则式子1a a-的值为: . 三、解答题(共46分)19.(6分)请按下列步骤作图:(不写作法、保留作图痕迹)如图,已知平面上-1-212.m . n丁丙乙甲第12题图OCB A第16题图的三个点A 、B 、C. (1)连接AC ; (2)画射线AB ; (3)画直线BC ; (4)在射线AB 上作一点D ,使得AD=2AB-AC ;20.(每题4分,共8分))计算:[]23327121)()(--⨯--)36()1276521(2-⨯-+)(21.(6分)昭阳区质检局对某种袋装食品进行抽查,从中抽取20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表: (1)这批样品的质量比标准质量多还是少?多或少几克? (2)若每袋标准质量为450克,则抽样检测的总质量是多少?22.(7分)某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母,一个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?与标准质量的差值(单位:克) ﹣5﹣2 0 1 3 6 袋数143453CA B23.(7分)如图,已知:∠BOC=2∠AOB,OD平分∠AOC,∠BOD=20°,求∠AOB 的度数.24.(12分)某市居民用水实行阶梯水价,实施细则如下表分档水量年用水量(立方米)水价(元/立方米)第一阶梯0 —180(含) 4第二阶梯181 —260(含) 6第三阶梯260 以上10例如:某户家庭年使用自来水300 m3,应缴纳:180×4 +(260-180)×6 +(300-260)×10 = 1600 元.(1)小刚家2022年共使用自来水 240m3,一共应缴纳多少钱?(2)昭通市政府倡导节约用水,小刚家2023年预计节约用水40%,则2023年小刚家的水费预算为多少?(3)若小强家2022年共缴纳自来水费1194元,他家2022年共使用自来水多少立方米?。
人教版七年级数学上册期末达标检测卷2套附答案
人教版七年级数学上册期末达标检测卷一、选择题(每题3分,共30分)1.如果水库水位上升5 m记作+5 m,那么水库水位下降3 m记作( ) A.-3 B.-2 C.-3 m D.-2 m2.下列语句中,正确的是( )A.绝对值最小的数是0 B.平方等于它本身的数是1C.1是最小的有理数 D.任何有理数都有倒数3.我们的祖国地域辽阔,其中领水面积约为370 000 km2,把370 000这个数用科学记数法表示为( )A.37×104 B.3.7×105 C.0.37×106 D.3.7×106 4.若A=x2-xy,B=xy+y2,则3A-2B为( )A.3x2-2y2-5xy B.3x2-2y2 C.-5xy D.3x2+2y25.已知-7是关于x的方程2x-7=ax的解,则式子a-a3的值是( )A.1 B.2 C.3 D.46.下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是( )7.若方程(m2-1)x2-mx-x+2=0是关于x的一元一次方程,则式子|m-1|的值为( )A.0 B.2 C.0或2 D.-28.如图,点C是线段AB上的一点,且AC=2BC.下列说法中,正确的是( )A.BC=1 2 ABB.AC=1 2 ABC.BC=1 3 ABD.BC=1 3 AC9.下列说法:①若点C是AB的中点,则AC=BC;②若AC=BC,则点C是AB的中点;③若OC是∠AOB的平分线,则∠AOC=12∠AOB;④若∠AOC=1∠AOB,则OC是∠AOB的平分线.其中正确的有( )2A.1个 B.2个 C.3个 D.4个10.永州市在五一期间举办的“阳明山杜鹃花旅游文化节”,吸引了众多游客.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1 000人,同时每小时走出景区的游客人数约为600人.已知阳明山景区游客的饱和人数为2 000人,则据此可知开幕式当天该景区游客人数饱和的时间约为( )A.10:00 B.12:00 C.13:00 D.16:00二、填空题(每题3分,共30分)11.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明______________________;用两个钉子把细木条钉在木板上,就能固定细木条,这说明________________________.12.绝对值不大于3的非负整数有________________.13.已知一个角的补角比这个角的余角的3倍大10°,则这个角的度数是________.14.若5x+2与-2x+9互为相反数,则x-2的值为________.15.自习课上,一名同学抬头看见挂在黑板上方的时钟显示为8:30,此时时针与分针的夹角是________.16.已知点O在直线AB上,且线段OA=4 cm,线段OB=6 cm,点E,F分别是OA,OB的中点,则线段EF的长为________cm.17.如图①所示的是一个正方体的表面展开图,将对应的正方体从如图②所示的位置依次翻过第1格、第2格,到第3格时正方体朝上的一面上的字是“________”.18.已知x2+xy=2,y2+xy=3,则2x2+5xy+3y2=________.19.某车间接到一批加工任务,计划每天加工120件,可以如期完成,实际加工时每天多加工20件,结果提前4天完成任务,则这批加工任务共有________件.20.如图,我们可以用长度相同的火柴棒按一定规律搭正多边形组成图案,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,第n个图案需要________根火柴棒,第2 022个图案需要________根火柴棒.三、解答题(26,27题每题10分,其余每题8分,共60分)21.计算:(1)-10-|-8|÷(-2)×⎝ ⎛⎭⎪⎫-12; (2)-3×23-(-3×2)3+48÷⎝ ⎛⎭⎪⎫-14.22.解方程:(1)8x =-2(x +4); (2)3x -14-1=5x -76.23.先化简,再求值:已知|2a +1|+(4b -2)2=0,求3ab 2-⎣⎢⎡⎦⎥⎤5a 2b +2⎝ ⎛⎭⎪⎫ab 2-12+ab 2+6a 2b 的值.24.如图,已知点A ,B ,C ,D ,E 在同一条直线上,且AC =BD ,E 是线段BC的中点.(1)点E 是线段AD 的中点吗?并说明理由.(2)当AD =10,AB =3时,求线段BE 的长.25.某班计划购买一些乒乓球和乒乓球拍,现了解到的情况如下:甲、乙两家店出售同样品牌同种型号的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副乒乓球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需乒乓球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家店购买更合算?26.在数轴上,表示数m与n的点之间的距离可以表示为|m-n|.例如:在数轴上,表示数-3与2的点之间的距离是5=|-3-2|,表示数-4与-1的点之间的距离是3=|-4-(-1)|.利用上述结论解决如下问题:(1)若|x-5|=3,求x的值;(2)点A,B为数轴上的两个动点,点A表示的数是a,点B表示的数是b,且|a-b|=6(b>a),点C表示的数为-2.若A,B,C三个点中的某一个点是另两个点所连线段的中点,求a,b的值.27.如图①,点O为直线AB上一点,过点O作射线OC,将一个直角三角尺按图中所示方式摆放(∠MON=90°).(1)将图①中的三角尺绕点O在平面内旋转一定的角度得到图②,使边OM恰好平分∠BOC,问:ON是否平分∠AOC?请说明理由.(2)将图①中的三角尺绕点O在平面内旋转一定的角度得到图③,使边ON在∠BOC的内部,如果∠BOC=60°,则∠BOM与∠NOC之间存在怎样的数量关系?请说明理由.答案一、1.C 2.A 3.B 4.A 5.B 6.B7.A 提示:方程整理后得(m 2-1)x 2-(m +1)x +2=0.因为方程为一元一次方程,所以m 2-1=0且-(m +1)≠0,所以m =1.所以|m -1|的值为0.故选A.8.C 9.B10.C 提示:设开幕式当天该景区游客人数饱和的时间约为x 时,则(x -8)×(1 000-600)=2 000,解得x =13.即开幕式当天该景区游客人数饱和的时间约为13:00.二、11.经过一点可以画无数条直线;两点确定一条直线12.0,1,2,313.50° 提示:设这个角是x °,则它的余角是(90-x )°,它的补角是(180-x )°,根据题意得180-x =3(90-x )+10,解得x =50.所以这个角的度数是50°.14.-173 提示:由题意得(5x +2)+(-2x +9)=0,解得x =-113,所以x -2=-113-2=-173. 15.75° 16.1或5 17.真 18.1319.3 360 20.(7n +1);14 155三、21.解:(1)原式=-10-8×⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-12 =-10-2=-12.(2)原式=-3×8-(-6)3+48×(-4)=-24+216-192=0.22.解:(1)去括号,得8x =-2x -8,移项、合并同类项,得10x =-8,系数化为1,得x =-0.8.(2)去分母,得3(3x -1)-12=2(5x -7),去括号,得9x -3-12=10x -14,移项,得9x -10x =-14+3+12,合并同类项,得-x =1,系数化为1,得x =-1.23.解:因为|2a +1|+(4b -2)2=0,所以2a +1=0,4b -2=0,所以a =-12,b =12. 3ab 2-[5a 2b +2⎝ ⎛⎭⎪⎫ab 2-12+ab 2]+6a 2b =3ab 2-(5a 2b +2ab 2-1+ab 2)+6a 2b=3ab 2-(5a 2b +3ab 2-1)+6a 2b=3ab 2-5a 2b -3ab 2+1+6a 2b=a 2b +1.将a =-12,b =12代入,得原式=a 2b +1=⎝ ⎛⎭⎪⎫-122×12+1=98. 24.解:(1)点E 是线段AD 的中点.理由:因为AC =BD ,即AB +BC =BC +CD ,所以AB =CD .因为E 是线段BC 的中点,所以BE =EC ,所以AB +BE =CD +EC ,即AE =ED ,所以点E 是线段AD 的中点.(2)因为AD =10,AB =3,所以BC =AD -2AB =10-2×3=4,所以BE =12BC =12×4=2. 故线段BE 的长为2.25.解:(1)设该班购买乒乓球x 盒,则在甲店付款:100×5+(x -5)×25=(25x +375)元,在乙店付款:0.9×100×5+25×0.9×x =(22.5x +450)元,由25x +375=22.5x +450,解得x =30.答:当购买乒乓球30盒时,两种优惠办法付款一样.(2)当购买20盒时,在甲店付款:25×20+375=875(元),在乙店付款:22.5×20+450=900(元),故在甲店购买更合算;当购买40盒时,在甲店付款:25×40+375=1 375(元),在乙店付款:22.5×40+450=1 350(元),故在乙店购买更合算.答:购买20盒时,去甲店购买更合算;购买40盒时,去乙店购买更 合算.26.解:(1)因为|x -5|=3,所以在数轴上,表示数x 与5的点之间的距离为3,所以x =8或x =2.(2)因为|a -b |=6(b >a ),所以在数轴上,点B 与点A 之间的距离为6,且点B 在点A 的右侧.当点C 为线段AB 的中点时,如图①所示,AC =BC =12AB =3.因为点C表示的数为-2,所以a=-2-3=-5,b=-2+3=1.当点A为线段BC的中点时,如图②所示,AC=AB=6.因为点C表示的数为-2,所以a=-2+6=4,b=a+6=10.当点B为线段AC的中点时,如图③所示,BC=AB=6.因为点C表示的数为-2,所以b=-2-6=-8,a=b-6=-14.综上,a=-5,b=1或a=4,b=10或a=-14,b=-8.27.解:(1)ON平分∠AOC.理由如下:因为∠MON=90°,所以∠BOM+∠AON=90°,∠MOC+∠NOC=90°.又因为OM平分∠BOC,所以∠BOM=∠MOC,所以∠AON=∠NOC,所以ON平分∠AOC.(2)∠BOM=∠NOC+30°.理由如下:因为∠NOC+∠NOB=60°,∠BOM+∠NOB=90°,所以∠BOM=∠NOC+30°.人教版七年级数学上册期末达标测试卷一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是( )A.-3℃ B.8℃ C.-8℃ D.11℃2.有理数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是( ) A.|a|>|b| B.|ac|=ac C.b<d D.c+d>03.下列方程是一元一次方程的是( )A.x-y=6 B.x-2=x C.x2+3x=1 D.1+x=34.截至2月底,我国口罩日产量已超过7 000万只.7 000万用科学记数法表示为( )A.7×106 B.0.7×108 C.7×108 D.7×1075.下列运算正确的是( )A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.如图是一个正方体的平面展开图,则原正方体中与“你”字所在面相对的字是( )A .遇B .见C .未D .来7.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元8.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是( )A .∠1=∠3B .∠1=180°-∠3C .∠1=90°+∠3D .以上都不对9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线; ④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上. 其中正确的有( )A .1个B .2个C .3个D .4个二、填空题(本题共6小题,每小题4分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________. 12.若-13xy 3与2x m -2y n +5是同类项,则n m =________. 13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.如图,OA 的方向是北偏东15°,OC 的方向是北偏西40°,若∠AOC =∠AOB ,则OB 的方向是__________.15.已知点O在直线AB上,且线段OA的长为4 cm,线段OB的长为6 cm,点E,F分别是OA,OB的中点,则线段EF的长为______________.16.观察如图摆放的三角形,则第四个图中的三角形有________个,第n个图中的三角形有__________个.三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(8分)计算:-3×(-4)+(-2)3÷(-2)2-(-1)2 022.18.(8分)解方程:x-22-1=x+13-x+86.19.(8分)先化简,再求值:(2x2-2y2)-3(x2y2+x2)+3(x2y2+y2),其中x =-1,y=2.20.(8分)如图,已知直线l和直线外三点A,B,C,按下列要求画图:(1)画射线AB;(2)连接BC,并延长CB至D,使得BD=BC;(3)在直线l上确定点E,使得AE+CE最小.21.(8分)如图①是一些小正方体所搭立体图形从上面看到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面和左面看到的图形.22.(10分)如图,直线AB,CD相交于O点,OM平分∠AOB.(1)若∠1=∠2,求∠NOD的度数;(2)若∠BOC=4∠1,求∠AOC与∠MOD的度数.23.(10分)阅读下面材料:数学课上,老师给出了如下问题:如图①,∠AOB=80°,OC平分∠AOB.若∠BOD=20°,请你补全图形,并求出∠COD的度数.以下是小红的解答过程:解:如图②,因为OC平分∠AOB,∠AOB=80°,所以∠BOC=12∠AOB=__________°.因为∠BOD=20°,所以∠COD=∠__________+∠__________=________°.小李说:“我觉得这个题有两种情况,小红考虑的是OD在∠AOB外部的情况,事实上,OD还可能在∠AOB的内部”.请完成以下问题:(1)请你将小红的解答过程补充完整;(2)根据小李的想法,请你在图③中画出另一种情况对应的图形,并求出此时∠COD的度数.(要求写出解答过程)24.(12分)在“节能减排,做环保小卫士”活动中,小明对两种照明灯的使用情况进行了调查,得出如下表所示的数据:功率使用寿命价格普通白炽灯100瓦(即0.1千瓦) 2 000小时3元/盏优质节能灯20瓦(即0.02千瓦) 4 000小时35元/盏已知这两种灯的照明效果一样,小明家所在地的电价是每度0.5元.(注:用电度数=功率(千瓦)×时间(小时),费用=灯的售价+电费) 请你解决以下问题:(1)如果选用一盏普通白炽灯照明1 000小时,那么它的费用是多少?(2)在白炽灯的使用寿命内,设照明时间为x小时,请用含x的式子分别表示用一盏白炽灯的费用和用一盏节能灯的费用;(3)照明多少小时时,使用这两种灯的费用相等?(4)如果计划照明4 000小时,购买哪一种灯更省钱?请你通过计算说明理由.25.(14分)如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________;(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数;(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于电子蚂蚁P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变.请判断哪个结论正确,并求出正确结论的值.答案一、1.D 2.B 3.D 4.D 5.D 6.D 7.C 8.C 9.C 10.C二、11.23;512.-813.-514.北偏东70°15.1 cm或5 cm16.14;(3n+2)三、17.解:原式=12+(-8)÷4-1=12-2-1=9.18.解:去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.19.解:原式=2x2-2y2-3x2y2-3x2+3x2y2+3y2=-x2+y2.当x=-1,y=2时,原式=-(-1)2+22=3.20.解:(1)如图,射线AB即为所求作的射线.(2)如图,BD=BC.(3)连接AC,交直线l于点E,根据两点之间,线段最短,可得此时AE+CE最小.21.解:如图所示.22.解:(1)因为OM平分∠AOB,所以∠1+∠AOC=90°.因为∠1=∠2,所以∠2+∠AOC=90°,所以∠NOD=180°-90°=90°.(2)因为∠BOC=4∠1,所以90°+∠1=4∠1,所以∠1=30°,所以∠AOC=90°-30°=60°,∠MOD=180°-30°=150°. 23.解:(1)40;BOC;BOD;60(2)如图即为另一种情况对应的图形.因为OC平分∠AOB,∠AOB=80°,所以∠BOC=12∠AOB=40°.因为∠BOD=20°,所以∠COD=∠BOC-∠BOD=40°-20°=20°.24.解:(1)根据题意得1 000×0.1×0.5+3=53(元),则选用一盏普通白炽灯照明1 000小时,它的费用是53元.(2)用一盏白炽灯的费用为0.1x×0.5+3=0.05x+3(元),用一盏节能灯的费用为0.02x×0.5+35=0.01x+35(元).(3)根据题意得0.05x+3=0.01x+35,解得x=800.则照明800小时时,使用这两种灯的费用相等.(4)用节能灯更省钱,理由:当x=4 000时,用白炽灯的费用为2 000×0.1×0.5×2+3×2=206(元);用节能灯的费用为4 000×0.02×0.5+35=75(元),因为75<206,所以用节能灯更省钱.25.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)②正确,即ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m.由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册期末测试卷2
一、选择题(每小题3分,共36分)
1、下列说,其中正确的个数为( )
①正数和负数统称为有理数;②一个有理数不是整数就是分数;③有最小的负数,没有最大的正数;④符号相反的两个数互为相反数;⑤a -一定在原点的左边。
A .1个
B .2个
C .3个
D .4个
2、下列计算中正确的是( )
A .532a a a =+
B .22a a -=-
C .33)(a a =-
D .22)(a a --
3、b a 、两数在数轴上位置如图3所示,将b a b a --、、
、用“<”连接,其中正确的是( )
A .a <a -<b <b -
B .b -<a <a -<b
C .a -<b <b -<a
D .b -<a <b <a - 4、据《2011年国民经济与社会发展统计公报》报道,2011年我国国民生产总值为471564亿元,471564亿元用科学记数法表示为(保留三个有效数字)( )
A .13107.4⨯元
B .12107.4⨯元
C .131071.4⨯元
D .131072.4⨯元
5、下列结论中,正确的是( )
A .单项式7
32
xy 的系数是3,次数是2 B .单项式m 的次数是1,没有系数
C .单项式z xy 2-的系数是1-,次数是4
D .多项式322++xy x 是
三次三项式
6、在解方程13
3221=+--x x 时,去分母正确的是( ) A .134)1(3=+--x x B .63413=+--x x
-1 a 0 1 b
图3
C .13413=+--x x
D .6)32(2)1(3=+--x x
7、某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机
的原售价为( )
A .1800元
B .1700元
C .1710元
D .1750元
8、中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我
的羊数就是你的羊数的2倍”。
乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”。
若设甲有x 只羊,则下列方程正确的是( )
A .)2(21-=+x x
B .)1(23-=+x x
C .)3(21-=+x x
D .12
11++=-x x 9、某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500
米。
一列火车以每小时120千米的速度迎开来,测得火车头与队首学生相遇,到车尾与队末学生相遇,共经过60秒。
如果队伍长500米,那么火车长( )
A .1500米
B .1575米
C .2000米
D .2075米
10、下列图形中,不是正方体的展开图的是( )
11、下列4个角中,最有可能与70°角互补的角是( )
12、已知点A 、B 、P 在一条直线上,则下列等式中,能判断点P 是线段AB
的中点的个数有( )
①AP=BP ; ②BP=2
1AB ; ③AB=2AP ; ④AP+PB=AB 。
A .1个 B .2个 C .3个 D .4个
二、填空题(每小题3分,共18分)
13、当1=x 时,代数式13++bx ax 的值为2012.则当1-=x 时,代数式
13++bx ax 的值为 。
A
C
B
D
A B C D
14、='-'64325452 ° ′; 125.13= ° ′ ″。
15、如果关于x 的方程0322=-+m x x ,的解是1-=x ,则=m 。
16、若∠AOB=8175' ,∠AOC=3527' ,则∠BOC= 。
17、如果把6.48712保留三位有效数字可近似为 。
18、某商店将某种超级VCD 按进价提高35%,然后打出“九折酬宾,外送50
元出租费的广告”,结果每台VCD 仍获利208元,那么每台VCD 的进价是 元。
三、计算题(每小题6分,共18分)
19、)278()3(412232-⨯-+⨯- 20、822
79)227()5(227⨯-⨯-+-⨯
21、解方程:
4
23163x x --=+
四、化简求值(每小题6分,共12分)
22、已知3=+y x ,1=xy ,求代数式)53()25(y xy x --+的值。
23、求代数式]6)(23[2122222+----y x y x 的值,其中2,1-=-=y x 。
五、解答题(24题8分,25~26每题9分,27题10分,共36分)
24、某商场正在热销2008年北京奥运会吉祥物“福娃”玩具盒徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?
25.如图,已知∠AOB=90°,∠EOF=60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠AOC 和∠COB 的度数。
26、盛夏,某校组织珠江夜游,在流速为2.5千米/时的航段,从A 地上船,沿江而下至B 地,然后逆江而上到C 地下船,共乘船4小时。
已知A ,C 两地相距10千米,船在静水中的速度为7.5千米/时,求A ,B 两地间的距离。
27、,某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球乒乓球拍。
乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的九折优惠。
该班需球拍5副,乒乓球若干盒(不小于5盒)。
问:
⑴当购买乒乓球多少盒时,两种优惠办法付款一样?
⑵当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?
O A
E
B
F
C
共计145元 共计280元。