六年级奥数2

合集下载

小学六年级奥数--面积计算(二)

小学六年级奥数--面积计算(二)

二、精讲精练
练习3: 3.如图所示,AB=BC=8厘米,求阴影部分的面积。
二、精讲精练
【例题4】如图19-14所示,求阴影部分的面积(单位:厘米)。 【思路导航】我们可以把三角形ABC看成是长方形的一部分,把它还 原成长方形后(如图所示)。
I和II的面积相等。 因为原大三角形的面积与后加上的三角形面积相等,并且空白部分的 两组三角形面积分别相等,所以
二、精讲精练
练习5: 4、如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。
谢谢观看
二、精讲精练 练习1: 1.求下面各个图形中阴影部分的面积(单位:厘米)。
二、精讲精练 练习1: 2.求下面各个图形中阴影部分的面积(单位:厘米)。
二、精讲精练 练习3: 3.求下面各个图形中阴影部分的面积(单位:厘米)。
二、精讲精练
【例题2】求图中阴影部分的面积(单位:厘米)。 【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形 (如图所示)。
二、精讲精练
练习2: 3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
二、精讲精练
【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影 部分的面积相等。求长方形ABO1O的面积。
【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相 等。又因为图中两个阴影部分的面积相等,所以扇形的面积等于 长方形面积的一半(如图19-10右图所示)。所以 3.14×12×1/4×2=1.57(平方厘米)
从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积 的一半。
3.14×-4×4÷2÷2=8.56(平方厘米) 答:阴影部分的面积是8.56平方厘米。
二、精讲精练

六年级奥数培优专题二 实践与应用(一)

六年级奥数培优专题二 实践与应用(一)

六年级奥数培优专题二实践与应用(一)第一讲行程问题(一)【专题导引】行程问题的三个基本量是距离、速度和时间。

其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。

行程问题的主要数量关系是:距离=速度×时间。

它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和。

(2)相背而行:相背距离=速度和×时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差。

在环行跑道上,速度快的在前,慢的在后。

追及距离=速度差×时间。

解行程问题时,要注意充分利用图示把题中的情形形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

【典型例题】【例1】两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。

甲车比乙车早到48分钟,当甲车到达时,乙车还距工地24千米。

甲车行完全程用了多少个小时?【试一试】1、甲、乙两地之间的距离是420千米。

两辆汽车同时从甲地开往乙地。

第一辆汽车每小时行42千米,第二辆汽车每小时行28千米。

第一辆汽车到乙地立即返回。

两辆车从开出到相遇共用多少小时?2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。

两车同时从两地开出,相遇时甲车距B地还有多少千米?【例2】两辆汽车同时从东、西两站相向开出。

第一次在离东站60千米的地方相遇。

之后,两车继续以原来的速度前进。

各自到达对方车站后都立即返回。

又在距中点西侧30千米处相遇。

两站相距多少千米?【试一试】1、两辆汽车同时从南、北两站相对开出,第一次在离南站55千米的地方相遇,之后两车继续以原来的速度前进。

各自到站后都立即返回,又在距中点南侧15千米处相遇。

两站相距多少千米?2、两列火车同时从甲、乙两站相向而行。

第一次相遇在离甲站40千米的地方。

两车仍以原速继续前进。

六年级奥数题及答案-经典 (2)

六年级奥数题及答案-经典 (2)

六年级奥数题及答案1.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?2.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求乙的存款3.糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。

再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。

”小明原有玻璃球多少个?搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。

老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。

第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。

试问该老板第二次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。

六年级奥数-第二讲.比和比例.教师版

六年级奥数-第二讲.比和比例.教师版

比和比例(二)例题精讲:模块一、比例转化【例1】某团体有100名会员,男女会员人数之比是14:11,会员分成三组,甲组人数与乙、丙两组人数之和一样多,各组男女会员人数之比依次为12:13、5:3、2:1,那么丙组有多少名男会员?【例2】 (2007年华杯赛总决赛)A、B、C三项工程的工作量之比为1:2:3,由甲、乙、丙三队分别承担.三个工程队同时开工,若干天后,甲完成的工作量是乙未完成的工作量的二分之一,乙完成的工作量是丙未完成的工作量的三分之一,丙完成的工作量等于甲未完成的工作量,则甲、乙、丙队的工作效率的比是多少?【巩固】某次数学竞赛设一、二、三等奖.已知:①甲、乙两校获一等奖的人数相等;②甲校获一等奖的人数占该校获奖总人数的百分数与乙校相应的百分数的比为5:6;③甲、乙两校获二等奖的人数总和占两校获奖人数总和的20%;④甲校获三等奖的人数占该校获奖人数的50%;⑤甲校获二等奖的人数是乙校获二等奖人数的4.5倍.那么,乙校获一等奖的人数占该校获奖总人数的百分数等于多少?【例3】①某校毕业生共有9个班,每班人数相等.②已知一班的男生人数比二、三班两个班的女生总数多1;③四、五、六班三个班的女生总数比七、八、九班三个班的男生总数多1.那么该校毕业生中男、女生人数比是多少?模块二、按比例分配与和差关系(一)量倍对应【例4】一些苹果平均分给甲、乙两班的学生,甲班比乙班多分到16个,而甲、乙两班的人数比为13:11,求一共有多少个苹果?【巩固】小新、小志、小刚三人拥有的藏书数量之比为3:4:6,三人一共藏书52本,求他们三人各自的藏书数量.【巩固】在抗洪救灾区活动中,甲、乙、丙三人一共捐了80元.已知甲比丙多捐18元,甲、乙所捐资的和与乙、丙所捐资的和之比是10:7,则甲捐元,乙捐元,丙捐元.【巩固】有120个皮球,分给两个班使用,一班分到的13与二班分到的12相等,求两个班各分到多少皮球?【例5】一班和二班的人数之比是8:7,如果将一班的8名同学调到二班去,则一班和二班的人数比变为4:5.求原来两班的人数.【例6】幼儿园大班和中班共有32名男生,18名女生.已知大班男生数与女生数的比为5:3,中班男生数与女生数的比为2:1,那么大班有女生多少名?【巩固】参加植树的同学共有720人,已知六年级与五年级人数的比是3:2,六年级比四年级多80人,三个年级参加植树的各有多少人?【巩固】圆珠笔和铅笔的价格比是4:3,20支圆珠笔和21支铅笔共用71.5元.问圆珠笔的单价是每支多少元?【例7】甲乙两车分别从A,B两地出发,相向而行.出发时,甲、乙的速度比是5∶4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米.问:A,B两地相距多少千米?【例8】师徒二人加工一批零件,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟.完成任务时,师傅比徒弟多加工100个零件,求师傅和徒弟一共加工了多少个零件?【巩固】师徒二人共加工零件400个,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟.完成任务时,师傅比徒弟多加工多少个零件?【例9】A、B、C三个水桶的总容积是1440公升,如果A、B两桶装满水,C桶是空的;若将A桶水的全部和B桶水的15,或将B桶水的全部和A桶水的13倒入C桶,C桶都恰好装满.求A、B、C三个水桶容积各是多少公升?【巩固】学而思学校四五六年级共有615名学生,已知六年级学生的12,等于五年级学生的25,等于四年级学生的37。

六年级奥数专题 行程综合二(学生版)

六年级奥数专题 行程综合二(学生版)

学科培优 数学 “行程综合二” 学生姓名授课日期 教师姓名授课时长 知识定位 通常我们所接触的行程问题可以称作为“参考系速度为0”的行程问题,例如当我们研究甲乙两人在一段公路上行走相遇时,这里的参考系便是公路,而公路本身是没有速度的,所以我们只需要考虑人本身的速度即可。

但是在流水行船问题中,我们的参考系将不再是速度为0的参考系,因为水本身也是在流动的,所以这里我们必须考虑水流速度对船只速度的影响.重难点在于1.流水行船中的相遇与追击2.火车问题知识梳理知识点:行程综合(二)流水问题:顺水速度=船速+水速, 逆水速度=船速-水速. ( 其中为船在静水中的速度,为水流的速度)由上可得:船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2.流水行船中的相遇与追击:水船顺V V V +=水船逆V V V -=船V 水V(1)两只船在河流中相遇问题.当甲、乙两船(甲在上游、乙在下游)在江河里相向开出,它们单位时间靠拢的路程等于甲、乙两船速度和.这是因为:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速.这就是说,两船在水中的相遇问题与静水中的及两车在陆地上的相遇问题一样,与水速没有关系.(2)同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,也只与路程差和船速有关,与水速无关.这是因为:甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速.也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.这说明水中追及问题与在静水中追及问题一样.由上述讨论知,解流水行船问题,更多地是把它转化为已学过的相遇和追及问题来解答火车问题⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.例题精讲【试题来源】【题目】两港相距 120 千米,甲船往返两港需 60 小时,逆流航行比顺流航行多用了 20 小时.乙船的静水速度是甲船的静水速度的 3 倍,那么乙船往返两港需要多少小时?【试题来源】【题目】一艘轮船顺流航行 120 千米,逆流航行 80 千米共用 16 时;顺流航行 60 千米,逆流航行 120 千米也用 16 时。

六年级奥数题及答案(二)

六年级奥数题及答案(二)

(一)小学六年级奥数试题及答案:列方程解应用题1.甲的存款是乙的4倍,如果甲取出110元,乙存入110元,那么乙的存款是甲的3倍.甲、乙原来各有存款多少元?考点:列方程解含有两个未知数的应用题.分析:根据“如果甲取出110元,乙存入110元,那么乙的存款是甲的3倍”,可找出数量之间的相等关系式为:(甲原来的存款-110)×3=乙原来的存款+110,再根据“原来甲的存款是乙的4倍”,设原来乙的存款为x元,那么甲的存款就是4x元,据此列出方程并解方程即可.解答:解:设原来乙的存款为x元,那么甲的存款就是4x元,由题意得:(4x-110)×3=x+110,12x-330=x+110,12x-x=110+330,11x=440,x=40,甲的存款:4×40=160(元);答:甲原有存款160元,乙原有存款40元.点评:此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.(二)六年级奥数题及答案:组合图形的面积2.长方形ABCD的边上有两点E.F,线段AF、BF、CE、BE把长方形分成若干块,其中三个小木块的面积标注在图上,阴影部分的面积是多少平方米?考点:组合图形的面积.分析:所求的影阴部分,恰好是三角形ABF与三角形CBE的公共部分,而S1,S2,S3这三块是长方形中没有被三角形ABF与三角形CBE盖住的部分.因此,△ABF面积+△CBE 面积+(S1+S2+S3)=长方形面积+阴影部分面积.而△ABF的底是长方形的长,高是长方形的宽;△CBE的底是长方形的宽,高是长方形的长.因此,三角形ABF面积与三角形CBE面积,都是长方形面积的一半.解答:解:设长方形的面积为S,则S△CBE=S△ABF=(1/2)S,由图形可知,S+S阴影=S△CBE+S△ABF+15+46+36,S阴影=(1/2)S+(1/2)S+15+46+36-S=97(平方米),答:阴影部分的面积是97平方米.点评:本题考查长方形面积、三角形面积的计算.本题明白所求的影阴部分,恰好是三角形ABC与三角形CDE的公共部分,而面积为15、46、36这三块是长方形中没有被三角形ABC与三角形CDE盖住的部分是解决本题的关键,从而根据S+S阴影=S△CBE+S△ABF+15+46+36建立等量关系求解.(三)六年级奥数题及答案:四边形面积3.在平行四边形ABCD中,三角形AOD的面积为12平方厘米,三角形BOC的面积是平行四边形面积的1/5,求平行四边形的面积.考点:平行四边形的面积.分析:根据题意可知,三角形BOC和三角形AOD的高等于平行四边形ABCD的高,三角形的面积等于与它等底等高的平行四边形的面积的一半,所以可用1/2平行四边形的面积减去1/5平行四边形的面积等于三角形AOD的面积,列式解答即可得到答案.解答:解:设平行四边形ABCD的面积为x平方厘米,答:平行四边的面积是40平方厘米.点评:解答此题的关键是根据三角形BOC和三角形AOD的高等于平行四边形ABCD的高确定三角形BOC和三角形AOD的面积等于平行四边形ABCD的面积的一半,然后再列式计算即可.。

六年级奥数:行程问题(二)

六年级奥数:行程问题(二)

六年级奥数行程问题(二)1. 甲乙两个人分别从AB 两地出发相向而行,甲的速度是乙的速度的4/5,相遇时间甲比乙上行使了全程的几分之几?2.甲乙两个人分别从AB两地同时出发相向而行,甲每个小时行使6千米,乙每小时行使5千米,他们在离中点500米的地方相遇,请问AB 两地相距多少千米?3. 王华从A镇到B镇探望外婆,去时的速度是每小时6千米,返时每小时4千米,往返平均速度为多少千米每小时?4. 客车货车两个车子同时从甲乙两地方相向而行,相遇时客车比货车少行了32千米,已知客车的速度的2/5等于货车速度的1/3,甲乙两地相距多少千米?5. 某人从山脚到山顶上去每分钟行使50米,从山顶原路返回山脚每分钟行使70米,他上山、下山一共用了48分钟,从山脚到山顶的山路一共是多长?6.甲乙两车同时从AB两地相对开除,甲车每个小时行使了50千米,乙车的速度是甲车的4/5,相遇后甲车继续行了2.4小时到达B 地,A B两地相距多少千米? 7.甲乙二人骑自行车分别从AB两地同时出发相向而行,相遇点距中点320千米,已知甲的速度是乙的5/6,甲每分钟行了800米,AB两地相距多少千米?8、小王从A城区骑自行车到B城区办事,每小时行了16千米,回来时乘车,每小时40千米,乘车比骑自行车少用了1.8小时,AB两城区相距多少千米?9、甲乙两人步行的速度之比是3:2,甲乙分别从AB两地同时出发,若相向而行,则一个小时后相遇莫若是同向而行,甲要几个小时追上乙呢?10、一辆汽车从甲地开往乙地,行前一半时间的速度与行后一半时间的速度之比是5:4,请问,行前一半路程和行后一半路程所用的时间的比是几比几?11、小明从家李出发到商店,去时每分钟走75米,回来时每分钟走50千米,因而去时比回来时少用了4分钟,小明家离商店多少米?12、两列对开的货车相遇了,甲车上的乘客看到乙车从旁边开过去,一共用了6秒,已经知道甲车每小时行45千米,乙车每小时行36千米,求乙车的长度?13、甲乙两个人同时从AB两地相向而行,甲走完全程的5/11的地方与乙相遇,如果甲每个小时行4.5千米,乙走完全程需要5小时,请问AB两地相距多少千米?14、甲乙两车同时从AB两镇中点向相反的方向行使,3小时后甲车到达A地,乙车离B地还有30千米,已知乙车的速度是甲的速度的3/4,AB两地之间的相距多少千米?15、某个小学组织学生排队去交游,队伍的步行速度是1米/秒,队尾的老师以2.5米/秒的速度赶到排头,然后立即返回队尾,一共用了10秒钟,请问队伍的长度是多少?16、铁路旁有以条小路,一列长110米的火车以30千米/小时的速度向东驶去,8点时追上向东行使的以个工人,15秒后离他而区域,8点6分时遇到以个向西行走的学生,12秒后离开这个学生,工人和学生什么时间相遇?17、甲乙丙三车的速度分别是60千米/小时、48千米/小时、42千米/小时,甲车和丙车从A地,乙车从B 地同时相向出发,乙车遇到甲车后30分钟又遇到了丙车,问AB两地相距多少千米?18、甲乙两人同时从山脚开始爬山,到达山顶后立即下山,他们两人下山的速度都是各自上山速度的2倍,甲到达山顶时乙人距山顶还又400米,甲回到山脚时乙刚好下到了半山腰。

六年级奥数题2

六年级奥数题2

巩固作业【三】家长你好,这些作业必须在家长的监督下完成,并签字,下次上课带来。

1、 小军到商店买卡通图片,正好赶上卡通图片降价20﹪,用同样多的钱多买了6张,小军原来准备买( )张卡通图片。

写解题过程2、 商品进价为400元,标价为600元,商店要求以利润不低于5﹪的售价打折出售,最低可以打折( )出售此商品。

写解题过程3、 一个长方体形状的木块,长8分米,宽4分米,高2分米,把它锯成若干个小正方体,然后再拼成一个大正方体,那么这个大正方体的表面积是( )平方分米。

4、 有一张厚度是0.1毫米的纸,将它对折1次后,厚度为2×0.1毫米。

对折10次后,厚度为( )毫米。

写解题过程5、 扑尔敏是一种治疗过敏的药品,成人一次口服4mg ,一日3次;儿童一日0.25mg /kg ,分3~4次口服。

读六年级的小兰体重30千克,她每次最多可以服用( )mg,她爸爸一天可以服用( )mg 。

6、 一段楼梯,若地板不算台阶则有7级台阶,规定每一步只能跨1级、2级或3级,则登上7级台阶共有( )方法。

7、 下面两个多位数1248624…、624824…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,将其个位数字写在第2位上。

对第2位数字再进行如上操作得到第3位数字…,后面的每一位数字都是由前一位数字进行如上操作得到的。

当第一位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( )。

8、 12 +56 +1112 +1920 +……+379380 (2890+56 +78 +710 )÷(56 +78 +710 )9、 果果和妈妈一起去超市,买洗漱用品花了总钱数的15 多100元,买小食品花了余下的13少20元,又买了一个600元的饮水机,正好花完所带的钱,果果妈妈一共带了多少元钱?10、一天上午,六一班学生缺席人数是出席人数的16 ,下午又有一名学生因事请假,这是出席人数是缺席人数的5倍。

小学数学六年级奥数《不定方程(二)》练习题(含答案)

小学数学六年级奥数《不定方程(二)》练习题(含答案)

小学数学六年级奥数《不定方程(二)》练习题(含答案)一、填空题1.△+☆= .2.箱子里有乒乓球若干个,其中25%是一级品,五分之几是二级品,其余91个是三级品.那么,箱子里有乒乓球 个.3.某班同学分成若干小组去值树,若每组植树n 棵,且n 为质数,则剩下树苗20棵;若每组植树9棵,则还缺少2棵树苗.这个班的同学共分成了 组.4.不定方程23732=++z y x 的自然数解是 .5.王老师家的电话号码是七位数,将前四位数组成的数与后四位数组成的数相加得9063;将前三位组成的数与后四位组成的数相加得2529.王老师家的电话号码是 .6.有三个分子相同的最简假分数,化成带分数后为87,65,32c b a .已知a ,b ,c 都小于10,a ,b ,c 依次为 , , .7.全家每个人各喝了一满碗咖啡加牛奶,并且李明喝了全部牛奶(若干碗)的41和全部咖啡(若干碗)的61.那么,全家有 口人.8.某单位职工到郊外植树,其中31的职工各带一个孩子参加,男职工每人种13棵树,女职工每人种10棵,每个孩子种6棵,他们共种了216棵树,那么其中有女职工 人.9.将一个棱长为整数(单位:分米)的长方体6个面都涂上红色,然后把它们全部切成棱长为1厘米的小正方体.在这些小正方体中,6个面都没涂红色的有12块,仅有2面涂红色的有28块,仅有1面涂红色的有 块.原来长方体的体积是 立方分米.10.李林在银行兑换了一张面额为100元以内的人民币支票,兑换员不小心将支票上的元与角、分数字看倒置了(例如,把12.34元看成34.12元),并按看错的数字支付.李林将其款花去3.50元之后,发现其余款恰为支票面额的两倍,于是急忙到银行将多领的款额退回.那么,李林应退回的款额是 元.二、解答题11.一队旅客乘坐汽车,要求每辆汽车的乘客人数相等,起初每辆汽车乘22人,结果剩下一人未上车;如果有一辆汽车空车开走,那么所有旅客正好能平均分乘到其它各车上.已知每辆汽车最多只能容纳32人,求起初有多少辆汽车?有多少旅客?12.小王用50元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为200分、80分、30分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?13.一次数学竞赛准备了22支铅笔作为奖品发给一、二、三等奖的学生,原计划发给一等奖每人6支,二等奖每人3支,三等奖每人2支,后来改为一等奖每人9支,二等奖每人4支,三等奖每人1支,问:获一、二、三等奖的学生各几人?14.采购员用一张1万元支票去购物.购单价590元的A种物若干,又买单价670元的B种物若干,其中B种个数多于A种个数,找回了几张100元和几张10元的(10元的不超过9张).如把购A种物品和B 种物品的个数互换,找回的100元和几张10元的钞票张数也恰好相反.问购A物几个,B物几个?———————————————答案—————————————————————— 1. 5.依题意得11△+5☆=37,易知其自然数解为△=2,☆=3.所以△+☆=5. 2. 260.设箱子里共有n 个乒乓球,二级品占5a .依题意,得 n a n n =++⨯915%25 整理得 9120)415(⨯=-a n ① 易知 15-4 a >0,所以a ≤3.将a=1,2,3代入①知,只有a=2符合要求,此时n=260(个). 3. 11.设共分为x 组.由树苗总数可列方程 2029+=-nx x 22)9(=-x n因为22=1×22=2×11, n 是小于9的质数,对比上式得x=11(组).4. ⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===213125142z y x z y x z y x显然z 只能取1,2,3.当z=1时,1632=+y x ,其自然数解为x=2, y=4; x =5, y=2.当z=2时,932=+y x ,其自然数解为x=3, y=1. 当z=3时,232=+y x ,显然无自然数解.所以原方程的自然数解为:⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===213125142z y x z y x z y x5. 8371692.设电话号码的前三位为x ,后三位y ,第四位为a (a ≠0).由题意有 ⎩⎨⎧=++=++25291000906310y a x y a x①-②,化简得a x 111726+=. 当a=1时, x=837, y=692; 当a ≥2时, y <0,不合题意. 所以电话号码为8371692.6. 7,3,2.由题意有785623+=+=+c b a .解这个不定方程,得2,3,7===c b a . 7. 5.设全家共喝了x 碗牛奶和y 碗咖啡,依题意得:16141=+y x 整理得 1223=+y x .易得其自然数为x=2, y=3.故共喝牛奶和咖啡2+3=5(碗).因此,全家有5口人.① ②8. 3.设有女职工x 人,男职工y 人,那么有孩子3yx +人.这个条件说明3| x + y .由已知 216631310=⨯+++yx y x 即 7254=+y x 72)(4=++y y x 由12|4(x + y ),12|72. 所以12| y ,又5472x y -=≤5414572=. 所以, y=12, x=3.即有女职工3人.9. 32,80.画个示意图就不难推知:小正方体中仅两面涂色的每条棱上都有,并在同一个方向的4条棱上2为z y x ,,,则 ()⎩⎨⎧==++⨯12284xyz z y x剥去所有涂色的小块,得到上图.由上面两上算式可以推算出2,3===z y x ,仅1面涂色彩正方体有:2)232223(2)(⨯⨯+⨯+⨯=⨯⨯+⨯+⨯z x z y y x32216=⨯=(块).原来长方体的体积为80445)2()2()2(=⨯⨯=+⨯+⨯+=z y x V (立方分米).10. 17.82设支票上的元数与角、分数分别为x 和y ,则可列得方程 )100(2350)100(y x x y +=-+, 其中x ,y 为整数且0≤x ,y <100. 化简方程得 35019998+=x y由此推知2x <y 且为x 偶数,其可能取值为2,4,…,48. 又 985633298350199+++=+=x x x y , 56≤563+x ≤20056483=+⨯ 所以 98563=+x 或298⨯. 所以 324642==x x 或(舍去).故42=x ,此时32=y .即李林的支票面额为14.32元,竞换时误看成32.14元,李林应退款额为32.14-14.32=17.82元.11. 设起初有x 辆汽车,开走一辆汽车后每车乘n 人,依题意,得 )1(122-⨯=+⨯x n x , 所以 123221122-+=-+=x x x n 又n , x 为整数,所以(x -1)|23,故x -1=1或23,即x=2或x=24. 若x=2,则45122322=-=n 与n ≤32产生矛盾. 因此x=24或n=23,故起初有24辆汽车,有旅客22 x +1=529(名).12. 设苹果、梨子、杏子分别买了z y x ,,个,则 ⎩⎨⎧=++=++4050003080200z y x z y x消去z 得 380517=+y x ①所以 175380yx -=由0<y <40得 176221738017538017405380171010=<-<⨯-=y即 17622171010<<x又 5|5 y ,5|380,(5,17)=1,由①得5| x .所以x=15或x=20. 当x=15时, y=25, z=0,不合题意. 因此x=20, y=8, z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.13. 设获一、二、三等奖的人数分别为z y x ,,,根据题意有: ⎩⎨⎧=++=++224922236z y x z y x2×②得 4422818=++y x ③ ③-①得 22512=+y x ④ 解④求得整数解为x=1, y=2. 代入②可求得z=5.答:获得一等奖的有1人,获得二等奖的有2人,获三等奖的有5人.①②14. 设买A 种物品a 个, B 种物品b 个,找回100元的m 张,10元的n 张,则有:⎩⎨⎧--=+--=+nm b a n m b a 10010100005906701010010000670590其中b >a ,n <10.①-②得 )(9)(8m n a b -=- ③ 所以 )(98m n -,故m n -8,由b >a ,n <10知 m <n <10,因此, m -n =8,从而b -a =9. 由此推知n=9, m=1, b=a+9. 代入①式,解得a=3. B=12. 答:购A 物3个,B 物12个.①②。

小学六年级奥数浓度问题(2)

小学六年级奥数浓度问题(2)

小学六年级奥数浓度问题(2)知识要点1.要区分两种物体的差别,我们可以根据物体的特点,采取不同的方式和方法,如可鉴别两种物体的形状、颜色、质量的差别。

但是,要想比较两种不同的但却盛在完全相同容器里的糖水,比较哪个容器里的糖水更甜,就不能用以上的方法进行区分。

哪个糖水更甜,就是说哪个容器里的糖水更浓些,这就是我们要学习的浓度问题。

2.我们把糖与糖水的重量的比值称为糖水的浓度,同样,我们把盐与盐水的重量的比值称为盐水的浓度。

3.将糖溶于水就得到了糖水,其中糖叫溶质,水叫溶剂,糖水叫溶液。

如果水的量不变,那么糖加得越多,糖水就越甜,也就是说糖水的甜度是由糖(溶质)与糖水(溶液=糖十水)两者质量的比值决定的,这个比值就叫糖水的含糖量。

4.在同一种重量单位里,溶质、溶剂、溶液以及浓度之间有以下关系: 溶质重量+溶剂重量=溶液重量浓度=溶质重量溶质重量溶剂重量×100%浓度=溶质重量溶液重量×100%5.有关浓度配比问题还经常用到下面的关系式: 溶液重量=溶质重量+溶剂重量 溶液重量=溶质重量÷浓度 溶剂重量=溶液重量×(1-浓度)6.解答浓度问题,根据题意列方程解答比较容易。

在列方程时,要注意寻找题目中的等量关系。

典例巧解(一)浓度中的稀释问题由浓度高的溶液经过添加溶剂变成浓度低的溶液的过程称为稀释。

在这种稀释的过程中,只是溶剂增加了,溶质的重量是不变的,这是解这类问题的关键。

例1 在浓度为10%,重量为100克的盐水中,加入多少克水就能得到浓度为8%的盐水?点拨 浓度为10%,重量为100克的盐水中盐的重量是:100×10%=10(克)。

在盐水中加入若干克水后,盐水的浓度变成8%,这时盐水中盐的重量没有改变,仍然是10克。

根据数量关系式“现在盐水的重量×现在的浓度=现在盐的重量”,可以求出现在盐水的重量。

再用现在盐水的重量减去原来盐水的重量就得到加入水的重量。

小学六年级奥数总复习之二(祥解)

小学六年级奥数总复习之二(祥解)

2-7 裂项法简算--巧计算问题4
裂项法的基本原理:1/n-1/(n+1)=((n+1)-n)/n*(n+1)=1/n*(n+1) 裂项法的推广应用1:1/n-1/(n+k)=k/n*(n+k) 或者:1/n×(n+k)= (1/n-1/(n+k)) 例1:1/1*2+1/2*3+1/3*4+…+1/99*100= 分析 通过观察,分母是两个连续的数,且分子为1,刚好符 合公式,从而通过裂项法消去前后项,达到化简的目的。 解:原式=1/1-1/2+1/2-1/3+1/3-1/4+…+1/99-1/100=11/100=99/100 例2:1/1×3+1/3 ×5+1/5×7+……+1/97 ×99 分析 通过对比裂项应用推广,分子小了一个2,因此只要在 每项前乘多一个1/2就可以了。 解:原式= 1/2(2/1×3+2/3×5+2/5×7+…+2/97×99)=1/2*(1/1-1/3+1/31/5+1/5-1/7+…+1/97-1/99)=1/2*(1-1/99)=1/2*98/99=49/99 例3:1+1/(1+2)+1/(1+2+3)+…+1/(1+2+3+…+100) 分析 分母每一项根据高斯公式=(1+n)*n/2,而这又刚好可 以使用裂项公式。 解:原式= 1/1+2/(1+2)*2+2/(1+3)*3+…+2/(1+100)*100=2/1*2+2/2*3+2/3* 4+…+2/100*101=2*(1/1*2)+1/2*3+1/3*4+…+1/100*102=2*(1/11/2+1/2-1/3+1/3-1/4+…+1/99-1/100+1/100-1/101)=2*(11/101)=2*100/101=200/101

六年级奥数练习题二

六年级奥数练习题二

六年级奥数练习题二分苹果:(高等难度)有一堆苹果平均分给幼儿园大、小班小朋友,每人可得6个,如果只分给大班每人可得10个,问只分给小班时,每人可得几个?粮食问题:(高等难度)甲仓有粮80吨,乙仓有粮120吨,如果把乙仓的一部分粮调入甲仓,使乙仓存粮是甲仓的60%,需要从乙仓调入甲仓多少吨粮食?粮食问题答案:①甲仓有粮:(80+120)÷(1+60%)=125(吨).②从乙仓调入甲仓粮食:125-80=45(吨).出三个正方形的边长是成比例缩小的,即为一个等比数列,而这个比就要用到相似三角形的知识点.这在以前讲沙漏原理或者三角形等积变形等专题的时候提到过.可以说是一道难度比较大的题.当然对于这种有特点竞赛:(高等难度)光明小学六年级选出的男生的1/11和12名女生参加数学竞赛,剩下的男生人数是剩下的女生人数的2倍.已知六年级共有156人,问男、女生各有多少人?竞赛答案:②女生人数:156-99=57(人).分数方程:(中等难度)若干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去.再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子?准确值案:设原来小球数最少的盒子里装有a只小球,现在增加了b只,由于小聪没有发现有人动过小球和盒子,这说明现在又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.同样,现在另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.现在变成:将42分拆成若干个连续整数的和,一共有多少种分法,每一种分法有多少个加数?因为42=6×7,故可以看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数;又因为42=14×3,故可将42:13+14+15,一共有3个加数;又因为42=21×2,故可将42=9+10+11+12,一共有4个加数.所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子.巧克力豆:(高等难度)甲、乙、丙三人各有巧克力豆若干粒,要求互相赠送.先由甲给乙、丙,甲给乙、丙的豆数依次等于乙、丙原来各人所有豆数.依同办法,再由乙给甲、丙,所给豆数依次等于甲、丙各人现有的豆数.最后由丙给甲、乙,所给的豆数依次等于甲、乙各人现有的豆数.互赠后每人恰好各有豆32粒,问原来三人各有豆多少粒?巧克力豆答案:答:甲、乙、丙原有巧克力豆各为52粒、28粒、16粒.阴影面积:(高等难度)如右图,在以AB为直径的半圆上取一点C,分别以AC和BC为直径在△ABC外作半圆AEC 和BFC.当C点在什么位置时,图中两个弯月型(阴影部分)AEC和BFC的面积和最大.阴影面积答案:求面积:(高等难度)下图中,ABCD是边长为1的正方形,A,E,F,G,H分别是四条边AB,BC,CD,DA的中点,计算图中红色八边形的面积.求面积答案:至此,我们对各部分的面积都已计算出来,如下图所示.【又解】设O为正方形中心(对角线交点),连接OE、OF,分别与AF、BG交于M、N,设AF与EC的交点为P,连接OP,△MOF的面积为正方形面积的,N为OF中点,△OPN面积等于△FPN面积,又△OPN面积与△OPM面积相等,所以△OPN面积为△MOF面积的,为正方形面积的,八边形面积等于△OPM面积的8倍,为正方形面积的追击问题:(高等难度)如下图,甲从A出发,不断往返于AB之间行走.乙从C出发,沿C—E—F—D—C围绕矩形不断行走.甲的速度是5米/秒,乙的速度是4米/秒,甲从背后第一次追上乙的地点离D点____________米.追击问题答案:平均数:(高等难度)有4个不同的数字共可组成18个不同的4位数.将这18个不同的4位数由小到大排成一排,其中第一个是一个完全平方数,倒数第二个也是完全平方数.那么这18个数的平均数是:_______.平均数答案:奇偶性应用:(高等难度)在圆周上有1987个珠子,给每一珠子染两次颜色,或两次全红,或两次全蓝,或一次红、一次蓝.最后统计有1987次染红,1987次染蓝.求证至少有一珠子被染上过红、蓝两种颜色.奇偶性应用答案:假设没有一个珠子被染上过红、蓝两种颜色,即所有珠子都是两次染同色.设第一次染m 个珠子为红色,第二次必然还仅染这m个珠子为红色.则染红色次数为2m次.∵2m≠1987(偶数≠奇数)∴假设不成立.∴至少有一个珠子被染上红、蓝两种颜色.牛吃草:(高等难度)一水库原有存水量一定,河水每天均匀入库.5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干.若要求6天抽干,需要多少台同样的抽水机?牛吃草答案:水库原有的水与20天流入水可供多少台抽水机抽1天?20×5=100(台).水库原有的水与15天流入的水可供多少台抽水机抽1天?6×15=90(台).每天流入的水可供多少台抽水机抽1天?(100-90)÷(20-15)=2(台).原有的水可供多少台抽水机抽1天?100-20×2=60(台).若6天抽完,共需抽水机多少台?60÷6+2=12(台).答:若6天抽完,共需12台抽水机.逻辑推理:(高等难度)数学竞赛后,小明、小华、小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌.王老师猜测:"小明得金牌;小华不得金牌;小强不得铜牌."结果王老师只猜对了一个.那么小明得___牌,小华得___牌,小强得___牌.逻辑推理答案:逻辑问题通常直接采用正确的推理,逐一分析,讨论所有可能出现的情况,舍弃不合理的情形,最后得到问题的解答.这里以小明所得奖牌进行分析.解:①若"小明得金牌"时,小华一定"不得金牌",这与"王老师只猜对了一个"相矛盾,不合题意.②若小明得银牌时,再以小华得奖情况分别讨论.如果小华得金牌,小强得铜牌,那么王老师没有猜对一个,不合题意;如果小华得铜牌,小强得金牌,那么王老师猜对了两个,也不合题意.③若小明得铜牌时,仍以小华得奖情况分别讨论.如果小华得金牌,小强得银牌,那么王老师只猜对小强得奖牌的名次,符合题意;如果小华得银牌,小强得金牌,那么王老师猜对了两个,不合题意.综上所述,小明、小华、小强分别获铜牌、金牌、银牌符合题意.乒乓球训练(逻辑):(高等难度)甲、乙、丙三人用擂台赛形式进行乒乓球训练,每局2人进行比赛,另1人当裁判.每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战.半天训练结束时,发现甲共打了15局,乙共打了21局,而丙共当裁判5局.那么整个训练中的第3局当裁判的是_______.乒乓球训练(逻辑)答案:本题是一道逻辑推理要求较高的试题.首先应该确定比赛是在甲乙、乙丙、甲丙之间进行的.那么可以根据题目中三人打的总局数求出甲乙、乙丙、甲丙之间的比赛进行的局数.⑴丙当了5局裁判,则甲乙进行了5局;⑵甲一共打了15局,则甲丙之间进行了15-5=10局;⑶乙一共打了21局,则乙丙之间进行了21-5=16局;所以一共打的比赛是5+10+6=31局.此时根据已知条件无法求得第三局的裁判.但是,由于每局都有胜负,所以任意连续两局之间不可能是同样的对手搭配,就是说不可能出现上一局是甲乙,接下来的一局还是甲乙的情况,必然被别的对阵隔开.而总共31局比赛中,乙丙就进行了16局,剩下的甲乙、甲丙共进行了15局,所以类似于植树问题,一定是开始和结尾的两局都是乙丙,中间被甲乙、甲丙隔开.所以可以知道第奇数局(第1、3、5、……局)的比赛是在乙丙之间进行的.那么,第三局的裁判应该是甲.应用题:(高等难度)我国某城市煤气收费规定:每月用量在8立方米或8立方米以下都一律收6.9元,用量超过8立方米的除交6.9元外,超过部分每立方米按一定费用交费,某饭店1月份煤气费是82.26元,8月份煤气费是40.02元,又知道8月份煤气用量相当于1月份的,那么超过8立方米后,每立方米煤气应收多少元?应用题答案:图形面积:(高等难度)直角三角形ABC的两直角边AC=8cm,BC=6cm,以AC、BC为边向形外分别作正方形ACDE 与BCFG,再以AB为边向上作正方形ABMN,其中N点落在DE上,BM交CF于点T.问:图中阴影部分(与梯形BTFG)的总面积等于多少?图形面积答案:图形:(高等难度)如图,长方形ABCD中,E为的AD中点,AF与BE、BD分别交于G、H,OE垂直AD于E,交AF于O,已知AH=5cm,HF=3cm,求AG.图形答案:。

六年级奥数工程问题二

六年级奥数工程问题二

六年级奥数工程问题二一、考点,难点回顾1.工作总量=工作效率×工作时间2.进水问题和排水问题3.用方程解决工程问题4.工作总量是2的工程问题二、知识点回顾有些工程题中,工作效率、工作时间和工作总量三者之间的数量关系很不明显,这时我们就可以考虑运用一些特殊的思路,如综合转化、整体思考等方法来解题.三、典型例题及课堂练习题王牌例题1修一条路,甲队每天修8小时,5天完成;乙队每天修10中时,6天完成.两队合作,每天工作6小时,几天可以完成?【思路导航】】把前两个条件综合为"甲队40小时完成",后两个条件综合为"乙队60小时完成"。

则1÷(18×5 +110×6)÷6=4(天)或1÷[(18×5 +110×6)×6]= 4(天)答:4天可以完成。

举一反三11.修一条路,甲队每天修6小时,4天可以完成;乙队每天修8小时,5天可以完成.现在让甲、乙两队合修,要求2天完成.每天应修几小时?2.一项工作,甲组3人8天能完成,乙组4人7天也能完成.现在由甲组2人和乙组7人合作,多少天可以完成?3.货场上有一堆沙子,如果用3辆卡车4天可以运完,用4辆马车5天可以运完,用20辆小板车6天可以运完.现在用2辆卡车、3辆马车和7辆小板车共同运两天后,全改用小板车运,必须在两天内运完.问后两天需要多少辆小板车?王牌例题2有两个同样的仓库乃和B,搬运一个仓库里的货物,甲需要10小时,乙需要12小时,丙需要15小时.甲和丙在乃仓库,乙在B 仓库,同时开始搬运.中途丙又转向帮助乙搬运.最后,两个仓库同时搬完,丙帮助甲、乙各多少时间?【思路导航】设搬运一个仓库的货物的工作量为"1".从整体上看,相当于三人共同完成工作量"2".① 三人同时搬运了2÷(110 +112 +115)=8(时) ② 丙帮甲搬了(1-110 ×8) ÷115=3(时) ③ 丙帮乙搬了8-3=5(时)答:丙帮甲搬了3小时,帮乙搬了5小时.举一反三21. 师、徒两人加工相同数量的零件,师傅每小时加工自己任务的110,徒弟每小时加工自己任务的一。

(完整版)六年级奥数-第二讲.比和比例.教师版

(完整版)六年级奥数-第二讲.比和比例.教师版

比和比例(二)例题精讲:模块一、比例转化【例 1】某团体有100名会员,男女会员人数之比是14:11,会员分成三组,甲组人数与乙、丙两组人数之和一样多,各组男女会员人数之比依次为12:13、5:3、2:1,那么丙组有多少名男会员?【例 2】 (2007年华杯赛总决赛)A、B、C三项工程的工作量之比为1:2:3,由甲、乙、丙三队分别承担.三个工程队同时开工,若干天后,甲完成的工作量是乙未完成的工作量的二分之一,乙完成的工作量是丙未完成的工作量的三分之一,丙完成的工作量等于甲未完成的工作量,则甲、乙、丙队的工作效率的比是多少?【巩固】某次数学竞赛设一、二、三等奖.已知:①甲、乙两校获一等奖的人数相等;②甲校获一等奖的人数占该校获奖总人数的百分数与乙校相应的百分数的比为5:6;③甲、乙两校获二等奖的人数总和占两校获奖人数总和的20%;④甲校获三等奖的人数占该校获奖人数的50%;⑤甲校获二等奖的人数是乙校获二等奖人数的4.5倍.那么,乙校获一等奖的人数占该校获奖总人数的百分数等于多少?【例 3】①某校毕业生共有9个班,每班人数相等.②已知一班的男生人数比二、三班两个班的女生总数多1;③四、五、六班三个班的女生总数比七、八、九班三个班的男生总数多1.那么该校毕业生中男、女生人数比是多少?模块二、按比例分配与和差关系(一)量倍对应【例 4】一些苹果平均分给甲、乙两班的学生,甲班比乙班多分到16个,而甲、乙两班的人数比为13:11,求一共有多少个苹果?【巩固】小新、小志、小刚三人拥有的藏书数量之比为3:4:6,三人一共藏书52本,求他们三人各自的藏书数量.【巩固】在抗洪救灾区活动中,甲、乙、丙三人一共捐了80元.已知甲比丙多捐18元,甲、乙所捐资的和与乙、丙所捐资的和之比是10:7,则甲捐元,乙捐元,丙捐元.【巩固】有120个皮球,分给两个班使用,一班分到的13与二班分到的12相等,求两个班各分到多少皮球?【例 5】一班和二班的人数之比是8:7,如果将一班的8名同学调到二班去,则一班和二班的人数比变为4:5.求原来两班的人数.【例 6】幼儿园大班和中班共有32名男生,18名女生.已知大班男生数与女生数的比为5:3,中班男生数与女生数的比为2:1,那么大班有女生多少名?【巩固】参加植树的同学共有720人,已知六年级与五年级人数的比是3:2,六年级比四年级多80人,三个年级参加植树的各有多少人?【巩固】圆珠笔和铅笔的价格比是4:3,20支圆珠笔和21支铅笔共用71.5元.问圆珠笔的单价是每支多少元?【例 7】甲乙两车分别从A,B两地出发,相向而行.出发时,甲、乙的速度比是5∶4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米.问:A,B两地相距多少千米?【例 8】师徒二人加工一批零件,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟.完成任务时,师傅比徒弟多加工100个零件,求师傅和徒弟一共加工了多少个零件?【巩固】师徒二人共加工零件400个,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟.完成任务时,师傅比徒弟多加工多少个零件?【例 9】A、B、C三个水桶的总容积是1440公升,如果A、B两桶装满水,C桶是空的;若将A桶水的全部和B桶水的15,或将B桶水的全部和A桶水的13倒入C桶,C桶都恰好装满.求A、B、C三个水桶容积各是多少公升?【巩固】学而思学校四五六年级共有615名学生,已知六年级学生的12,等于五年级学生的25,等于四年级学生的37。

六年级奥数长方体与正方体(二)学生版

六年级奥数长方体与正方体(二)学生版

六年级奥数长方体与正方体〈二〉学生版如右图,长方体共有六个面〈每个面都是长方形〉,八个顶点,十二条棱.cba HGFEDCBA⒈在六个面中,两个对面是全等的,即三组对面两两全等. 〈叠放在一起能够完全重合的两个图形称为全等图形.〉 ⒉长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.3.正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.长方体与正方体的体积立体图形的体积计算常用公式:立体图形 示例体积公式 相关要素长方体V abh = V Sh = h 、b 、a 三要素: h、S 二要素: 正方体3V a =V Sh= a一要素: h、S 二要素:不规则形体的体积常用方法: ⒈化虚为实法 ⒉切片转化法例题精讲长方体与正方体(二)3.先补后去法4.实际操作法5.画图建模法【例 1】一个长方体的棱长之和是28厘米,而长方体的长宽高的长度各不相同,并且都是整厘米数,则长方体的体积等于立方厘米。

【例 2】将几个大小相同的正方体木块放成一堆,从正面看到的视图是图〈a〉,从左向右看到的视图是图〈b〉,从上向下看到的视图是图〈c〉,则这堆木块最多共有___________块。

【例 3】一根长方体木料,体积是0.078立方米.已知这根木料长1.3米.宽为3分米,高该是多少分米?孙健同学把高错算为3分米.这样,这根木料的体积要比0.078立方米多多少?【例 4】如图,两个同样的铁环连在一起长28厘米,每个铁环长16厘米。

8个这样的铁环依此连在一起长厘米。

【例 5】某工人用薄木板钉成一个长方体的邮件包装箱,并用尼龙编织条〈如图所示〉在三个方向上的加固.所用尼龙编织条分别为365厘米,405厘米,485厘米.若每个尼龙加固时接头重叠都是5厘米.问这个长方体包装箱的体积是多少立方米?高长【例 6】某工人用木板钉成一个长方体邮件包装箱,并用三根长度分别为235厘米、445厘米、515厘米的尼龙带进行加固〈如下图〉,若每根尼龙带加固时截头重叠都是5厘米,那么这个长方体包装箱的体积是立方米。

六年级奥数年龄问题(二)学生版

六年级奥数年龄问题(二)学生版

6-1-8.年龄问题(二)教学目标1.六年级奥数年龄问题〈二〉学生版2.利用已经学习的和差、和倍、差倍的方法求解年龄问题.知识精讲知识点说明:一、年龄问题变化关系的三个基本规律:1.两人年龄的倍数关系是变化的量.2.每个人的年龄随着时间的增加都增加相等的量;3.两个人之间的年龄差不变二、年龄问题的解题要点是:1.入手:分析题意从表示年龄间倍数关系的条件入手理解数量关系.2.关键:抓住“年龄差”不变.3.解法:应用“差倍”、“和倍”或“和差”问题数量关系式.4.陷阱:求过去、现在、将来。

年龄问题变化关系的三个基本规律:1.两人年龄的差是不变的量;2.两个人的年龄增加量是不变的;3.两人年龄的倍数关系是变化的量;年龄问题的解题正确率保证:验算!例题精讲年龄问题的综合【例 1】小芬家由小芬和她的父母组成,小芬的父亲比母亲大4岁,今年全家年龄的和是72岁,10年前这一家全家年龄的和是44岁.今年三人各是多少岁?【巩固】全家四口人,父亲比母亲大3岁,姐姐比弟弟大2岁.四年前他们全家的年龄和为58岁,而现在是73岁.问:现在各人的年龄是多少?【巩固】有一家三口,爸爸比妈妈大3岁,他们全家今年的年龄加起来正好是58岁,而5年前他们全家人年龄加起来刚好是45岁。

小孩子今年____岁。

【巩固】一家三口人,爸爸与妈妈大3岁,现在他们一家人的年龄之和是80岁,10年前全家人的年龄之和是51岁,女儿今年岁。

【例 2】李伟5年前的年龄与张磊8年后的年龄相等,李伟4年后与张磊3年前的年龄和是36岁,李伟和张磊两人今年各多少岁?【例 3】爸爸15年前的年龄相当于儿子12年后的年龄,当爸爸的年龄是儿子的4倍时,爸爸多少岁?【例 4】小亮4年前的年龄与小红7年后的年龄之和是39岁,小红比小亮大8岁,则小红今年的年龄是__________岁,小亮今年的年龄是_______岁,________年前,小红的年龄是小亮年龄的3倍.【例 5】东东3年前的年龄与西西4年后的年龄之和是25岁,东东3年后的年龄等于西西l年前的年龄,求东东、西西今年的年龄各是多少?【例 6】哥哥5年后的年龄与弟弟3年前的年龄和是29岁,弟弟现在的年龄是两人年龄差的4倍.哥哥今年多少岁?【例 7】14年前爸爸的年龄是儿子的5倍,14年后父子二人年龄和是98岁,父子二人今年分别多少岁?【例 8】幼儿园的王阿姨今年的年龄是小华今年年龄的8倍,是小华3年后年龄的4倍,则小华今年____岁。

【精品】小学六年级奥数2

【精品】小学六年级奥数2

抽屉原理、奇偶性问题1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。

这时拿出1副同色的后4个抽屉中还剩3只手套。

再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推。

把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套。

这时拿出1副同色的后,4个抽屉中还剩下3只手套。

根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的。

以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只)答:最少要摸出9只手套,才能保证有3副同色的。

2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样?解:每人取1件时有4种不同的取法,每人取2件时,有6种不同的取法.当有11人时,能保证至少有2人取得完全一样:当有21人时,才能保证到少有3人取得完全一样. 答案为213.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?解:需要分情况讨论,因为无法确定其中黑球与白球的个数。

当黑球或白球其中没有大于或等于7个的,那么就是: 6*4+10+1=35(个)如果黑球或白球其中有等于7个的,那么就是: 6*5+3+1=34(个)如果黑球或白球其中有等于8个的,那么就是: 6*5+2+1=33如果黑球或白球其中有等于9个的,那么就是: 6*5+1+1=324.地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同?(如果能请说明具体操作,不能则要说明理由)答:不可能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档