非线性方程求解matlab

合集下载

非线性方程组求解-Matlab-fsolve-Read

非线性方程组求解-Matlab-fsolve-Read

非线性方程组求解-Matlab-fsolve实例一:①建立文件fun.m:function y=fun(x)y=[x(1)-0.5*sin(x(1))-0.3*cos(x(2)), ...x(2) - 0.5*cos(x(1))+0.3*sin(x(2))];②>>clear;x0=[0.1,0.1];fsolve(@fun,x0,optimset('fsolve'))注:...为续行符m文件必须以function为文件头,调用符为@;文件名必须与定义的函数名相同;fsolve()主要求解复杂非线性方程和方程组,求解过程是一个逼近过程。

实例二:①建立文件fun.mfunction F=myfun(x)F=[x(1)-3*x(2)-sin(x(1));2*x(1)+x(2)-cos(x(2))];②然后在命令窗口求解:>> x0=[0;0]; %设定求解初值>> options=optimset('Display','iter'); %设定优化条件>> [x,fv]=fsolve(@myfun,x0,options) %优化求解%MATLAB显示的优化过程Norm of First-order Trust-region Iteration Func-count f(x) step optimality radius0 3 1 2 11 6 0.000423308 0.5 0.0617 12 9 5.17424e-010 0.00751433 4.55e-005 1.253 12 9.99174e-022 1.15212e-005 9.46e-011 1.25 Optimization terminated: first-order optimality is less than options.TolFun.x =0.49660.0067fv =1.0e-010 *0.31610.0018实例三:求下列非线性方程组在(0.5,0.5) 附近的数值解。

MATLAB教学视频:非线性方程(组)在MATLAB中的求解方法

MATLAB教学视频:非线性方程(组)在MATLAB中的求解方法

0.6
0.8
1 t
1.2
1.4
1.6
1.8
2
二元方程组的图解法
用图解法,求二元方程组的解,其中 x 和 y 的范围均为 [-5, 5]
2 − xy x =5 e 3 2 2 x+ y x cos x + y + y e = 10 ( )
2
将方程组移项,改写成 f(x, y) = 0 的形式
f(t)
0 -0.1 -0.2
对于非多项式方程,只能求出一个解
-0.3 -0.4 -0.5
0
0.2
0.4
0.6
0.8
1 t
1.2
1.4
1.6
1.8
2
solve 函数的局限性
求解一元非线性方程 (超越方程)
f ( x ) = sin ( x ) + cos ( x x ) − 10
对于稍许复杂的方程,求解结果出现很大误差
一元方程的图解法
一个有阻尼的振动系统,振动方程如下,求出 x (t) = 0.1 对应的时刻 t
x ( t ) = 0.8 e −6t sin ( 30t )
根据振动方程,有
x ( t ) = 0.8 e −6t sin ( 30t ) = 0.1
移项,可得
0.8 e −6t sin ( 30t ) − 0.1 = 0
初值 x0 分别设定为0, 0.1, 0.2, 0.3, 0.4, 0.5 等,求解方程 F 的根,并观察结果
非线性方程 (组) 数值解的一般求法
◼ 使用 fsolve 函数的第二种调用格式,求解方程 F 的根 [x,fval,exitflag] = fsolve(fun,x0,options) ◼ 使用 optimset 函数,设置 options

matlab牛顿迭代法求方程

matlab牛顿迭代法求方程

一、引言在数值计算中,求解非线性方程是一项常见的任务。

牛顿迭代法是一种常用且有效的方法,它通过不断逼近函数的零点来求解方程。

而在MATLAB中,我们可以利用其强大的数值计算功能来实现牛顿迭代法,快速求解各种非线性方程。

二、牛顿迭代法原理与公式推导1. 牛顿迭代法原理牛顿迭代法是一种利用函数的导数信息不断逼近零点的方法。

其核心思想是利用当前点的切线与x轴的交点来更新下一次迭代的值,直至逼近方程的根。

2. 公式推导与迭代过程假设要求解方程f(x)=0,在初始值x0附近进行迭代。

根据泰勒展开,对f(x)进行一阶泰勒展开可得:f(x) ≈ f(x0) + f'(x0)(x - x0)令f(x)≈0,则有:x = x0 - f(x0)/f'(x0)将x带入f(x)的表达式中,即得到下一次迭代的值x1:x1 = x0 - f(x0)/f'(x0)重复以上过程,直至达到精度要求或者迭代次数上限。

三、MATLAB中的牛顿迭代法实现1. 编写函数在MATLAB中,我们可以编写一个函数来实现牛顿迭代法。

需要定义原方程f(x)的表达式,然后计算其一阶导数f'(x)的表达式。

按照上述推导的迭代公式,编写循环语句进行迭代计算,直至满足精度要求或者达到最大迭代次数。

2. 调用函数求解方程在编写好牛顿迭代法的函数之后,可以通过在MATLAB命令窗口中调用该函数来求解具体的方程。

传入初始值、精度要求和最大迭代次数等参数,即可得到方程的近似根。

四、牛顿迭代法在工程实践中的应用1. 求解非线性方程在工程领域,很多问题都可以转化为非线性方程的求解问题,比如电路分析、控制系统设计等。

利用牛顿迭代法可以高效地求解这些复杂方程,为工程实践提供了重要的数值计算手段。

2. 优化问题的求解除了求解非线性方程外,牛顿迭代法还可以应用于优化问题的求解。

通过求解目标函数的导数等于0的方程,可以找到函数的极值点,从而解决各种优化问题。

第六章 MATLAB非线性方程求根

第六章 MATLAB非线性方程求根

if ( abs(c-a)<=tolerance )
fprintf( ' Tolerance is satisfied. \n' );break
end
if ( it>it_limit )
fprintf( 'Iteration limit exceeded.\n' ); break
end
if( Ya*Yb <= 0 ) c = b; Yc = Yb;
分别画出 f (x), g(x) 1
的图形,两条曲线 0.8
0.6
的交点即为原方程 0.4
y
的根,从图中观
0.2
察,根大约为0.38。 0
-0.2
y=xsin(1/x) y=0.2exp(-x)
-0.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 x
二、二分法
对于求解给定区间的根,二分法是一种既简单 又稳健的方法,可以与图解法结合使用。
E1=sym('x^x-4=0');E2=sym('2*x*y+x=1');
[x,y]=solve( E1,E2)
x1=double(x),y1=double(y) 出来的结果为:
x=
log(4)/lambertw(log(4))
y=
-1/2*(log(4)-lambertw(log(4)))/log(4)
f (xn1)

其中 h 取得很小
fn1
f (xn1) f (xn1 h) h
上两式分别为向前和向后差分近似。差分近似 中的误差很小,对于牛顿迭代法的收敛性没有很明 显的影响,然而当根的附近有奇点时使用差分近似 要小心。

matlab 方程组 解

matlab 方程组 解

matlab 方程组解一、概述Matlab是一种强大的数学计算软件,它可以用来解决各种数学问题,包括解方程组。

在Matlab中,求解方程组是一个非常重要的功能,因为很多实际问题都可以转化为方程组的形式。

本文将详细介绍如何使用Matlab求解线性方程组和非线性方程组。

二、线性方程组1. 线性方程组的定义线性方程组是指各个未知量的次数都不超过1次的代数方程组。

例如:2x + 3y = 54x - 5y = 6就是一个包含两个未知量x和y的线性方程组。

2. Matlab中求解线性方程组方法在Matlab中,可以使用“\”或者“inv()”函数来求解线性方程组。

其中,“\”表示矩阵左除,即Ax=b时,求解x=A\b;“inv()”函数表示矩阵求逆,即Ax=b时,求解x=inv(A)*b。

例如,在Matlab中求解以下线性方程组:2x + 3y = 54x - 5y = 6可以使用以下代码:A=[2,3;4,-5];b=[5;6];x=A\b输出结果为:x =1.00001.0000其中,“A”为系数矩阵,“b”为常数矩阵,“x”为未知量的解。

三、非线性方程组1. 非线性方程组的定义非线性方程组是指各个未知量的次数超过1次或者存在乘积项、幂项等非线性因素的代数方程组。

例如:x^2 + y^2 = 25x*y - 3 = 0就是一个包含两个未知量x和y的非线性方程组。

2. Matlab中求解非线性方程组方法在Matlab中,可以使用“fsolve()”函数来求解非线性方程组。

该函数需要输入一个函数句柄和初始值向量,输出未知量的解向量。

例如,在Matlab中求解以下非线性方程组:x^2 + y^2 = 25x*y - 3 = 0可以使用以下代码:fun=@(x)[x(1)^2+x(2)^2-25;x(1)*x(2)-3];x0=[1;1];[x,fval]=fsolve(fun,x0)输出结果为:Local minimum found.Optimization completed because the size of the gradient is less thanthe default value of the function tolerance.<stopping criteria details>ans =1.60561.8708其中,“fun”为函数句柄,表示要求解的非线性方程组,“x0”为初始值向量,“[x,fval]”为输出结果,其中“x”表示未知量的解向量,“fval”为函数值。

数值分析中求解非线性方程的MATLAB求解程序

数值分析中求解非线性方程的MATLAB求解程序

数值分析中求解非线性方程的MATLAB求解程序1. fzero函数:fzero函数是MATLAB中最常用的求解非线性方程的函数之一、它使用了割线法、二分法和反复均值法等多种迭代算法来求解方程。

使用fzero函数可以很方便地求解单变量非线性方程和非线性方程组。

例如,要求解方程f(x) = 0,可以使用以下语法:``````2. fsolve函数:fsolve函数是MATLAB中求解多维非线性方程组的函数。

它是基于牛顿法的迭代算法来求解方程组。

使用fsolve函数可以非常方便地求解非线性方程组。

例如,要求解方程组F(x) = 0,可以使用以下语法:``````3. root函数:root函数是MATLAB中求解非线性方程组的函数之一、它采用牛顿法或拟牛顿法来求解方程组。

使用root函数可以非常方便地求解非线性方程组。

例如,要求解方程组F(x) = 0,可以使用以下语法:``````4. vpasolve函数:vpasolve函数是MATLAB中求解符号方程的函数。

它使用符号计算的方法来求解方程,可以得到精确的解。

vpasolve函数可以求解多变量非线性方程组和含有符号参数的非线性方程。

例如,要求解方程组F(x) = 0,可以使用以下语法:```x = vpasolve(F(x) == 0, x)```vpasolve函数会返回方程组的一个精确解x。

5. fsolve和lsqnonlin结合:在MATLAB中,可以将求解非线性方程转化为求解最小二乘问题的形式。

可以使用fsolve函数或lsqnonlin函数来求解最小二乘问题。

例如,要求解方程f(x) = 0,可以将其转化为最小二乘问题g(x) = min,然后使用fsolve或lsqnonlin函数来求解。

具体使用方法可以参考MATLAB官方文档。

6. Newton-Raphson法手动实现:除了使用MATLAB中的函数来求解非线性方程,还可以手动实现Newton-Raphson法来求解。

非线性方程组求解及matlab实现讲解

非线性方程组求解及matlab实现讲解

x0
X
例:牛顿法计算x^2-25=0的解
f(x)=x2-25,则f’(x)=2x 可构造迭代公式如下:
xi2 25 xi 1 xi 2 xi
取x0=2代入上式,得x1=7.25,继续递推, 依次得5.35、5.0114、5.000001、5.0000000001 …
牛顿法注意事项

逐步扫描法计算示例-方程x2-2=0的正数解
计算方程 x 2 2 0 的正数解
二分法

若函数f(x)在区间[a,b]内单调连续,且f(a)f(b)<0, 则在闭区间[a,b]内必然存在方程f(x)=0的根x*
二分法的图形解释 二分法的MATLAB程序
k=0; while abs(b-a)>eps x=(a+b)/2; if sign(f(x))==sign(f(b)) b=x; else a=x; end k=k+1; end


f '( x) 0, f "( x) 连续且不变号,则只 在有根区间[a,b]上, 要选取的初始近似根x0满足 f ( x0 ) f "( x0 ) 0 ,切线法 必定收敛。 在单根附近,牛顿公式恒收敛,而且收敛速度很快。 但是需要注意如果初始值不在根的附近,牛顿公式 不一定收敛 在实际使用中,牛顿法最好与逐步扫描法结合起来, 先通过逐步扫描法求出根的近似值,然后用牛顿公 式求其精确值,以发挥牛顿法收敛速度快的优点
c x
不动点迭代法

从给定的初值x0,按上式可以得到一个数列: { x0, x1, x2, …, xk, … }
如果这个数列有极限,则迭代格式是收敛的。 * x xk 就是方程的根 这时数列{xk}的极限 lim k 上述求非线性代数方程式数值解的方法称为直 接迭代法(或称为不动点迭代法)。这个方法 虽然简单,但根本问题在于当k->∞时,xk是否 收敛于x*,也就是必须找出收敛的充分条件

第4章 MATLAB 非线性方程(组)的求解

第4章  MATLAB 非线性方程(组)的求解
k
x*k
=
g(x* ),即x* 是 g 的不动点,也就是f 的根。
fixpt.m
逐次逼近: 将隐式方程归结为显式计 算
y
y=x
p1 p0
y=g(x)

x
x0
x1 x*
y
y=x
y=g(x)
p0
p1
x x1 x0 x*
y p0
y=x

y=g(x) p1
x0
x*
y
y=g(x) p0
x x1
y=x
是函数表达式中附加的参数x是返回的根fval是根x处的目标函数的值exitflag表明解存在的情况正数表明解存在负数表示解不存在遇到复数nan或者无穷大等
第4章 非线性方程(组)的求解
本章目标:求 f (x) = 0 的根
4.1 二分法 4.2 简单迭代法 4.3 Newton法 4.4 抛物线法 4.5 非线性方程组的求解 4.6 实例解析

p1
x x0 x* x1
4.3 Newton法
原理:将非线性方程线性化 —— Taylor 展开
取 x0 x*,将 f (x)在 x0 做一阶Taylor展开:
f (x)
f ( x0 )
f ( x0 )(x x0 )
f
(
2!
)
(
x

x0
)2,

x0

x
之间.
将 (x* x0)2 看成高阶小量,则有:
x = g (x)
f (x) 的根
g (x) 的不动点
从一个初值 x0 出发,计算 x1 = g(x0), x2 = g(x1), …,

matlab求解非线性方程组

matlab求解非线性方程组

非线性方程组求解1.mulStablePoint用不动点迭代法求非线性方程组的一个根function [r,n]=mulStablePoint(F,x0,eps)%非线性方程组:f%初始解:a%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-6;endx0 = transpose(x0);n=1;tol=1;while tol>epsr= subs(F,findsym(F),x0); %迭代公式tol=norm(r-x0); %注意矩阵的误差求法,norm为矩阵的欧几里德范数n=n+1;x0=r;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endend2.mulNewton用牛顿法法求非线性方程组的一个根function [r,n]=mulNewton(F,x0,eps)if nargin==2eps=1.0e-4;endx0 = transpose(x0);Fx = subs(F,findsym(F),x0);var = findsym(F);dF = Jacobian(F,var);dFx = subs(dF,findsym(dF),x0);r=x0-inv(dFx)*Fx;n=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);dFx = subs(dF,findsym(dF),x0);r=x0-inv(dFx)*Fx; %核心迭代公式tol=norm(r-x0);n=n+1;if(n>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend3.mulDiscNewton用离散牛顿法法求非线性方程组的一个根function [r,m]=mulDiscNewton(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=transpose(x0)-inv(J)*fx;m=1;tol=1;while tol>epsxs=r;fx = subs(F,findsym(F),xs);J = zeros(n,n);for i=1:nx1 = xs;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=xs-inv(J)*fx; %核心迭代公式tol=norm(r-xs);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;4.mulMix用牛顿-雅可比迭代法求非线性方程组的一个根function [r,m]=mulMix(F,x0,h,l,eps)if nargin==4eps=1.0e-4;endn = length(x0);J = zeros(n,n);Fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));C =D - J;inD = inv(D);H = inD*C;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = Hm*inD*Fx;r = transpose(x0)-dr; m=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));C =D - J;inD = inv(D);H = inD*C;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = Hm*inD*Fx;r = x0-dr; %核心迭代公式tol=norm(r-x0);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend5.mulNewtonSOR用牛顿-SOR迭代法求非线性方程组的一个根function [r,m]=mulNewtonSOR(F,x0,w,h,l,eps)if nargin==5eps=1.0e-4;endn = length(x0);J = zeros(n,n);Fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));L = -tril(J-D);U = -triu(J-D);inD = inv(D-w*L);H = inD*(D - w*D+w*L);;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = w*Hm*inD*Fx;r = transpose(x0)-dr;m=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));L = -tril(J-D);U = -triu(J-D);inD = inv(D-w*L);H = inD*(D - w*D+w*L);;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = w*Hm*inD*Fx;r = x0-dr; %核心迭代公式tol=norm(r-x0);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend6.mulDNewton用牛顿下山法求非线性方程组的一个根function [r,m]=mulDNewton(F,x0,eps)%非线性方程组:F%初始解:x0%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-4;endx0 = transpose(x0);dF = Jacobian(F);m=1;tol=1;while tol>epsttol=1;w=1;Fx = subs(F,findsym(F),x0);dFx = subs(dF,findsym(dF),x0);F1=norm(Fx);while ttol>=0 %下面的循环是选取下山因子w的过程r=x0-w*inv(dFx)*Fx; %核心的迭代公式Fr = subs(F,findsym(F),r);ttol=norm(Fr)-F1;w=w/2;endtol=norm(r-x0);m=m+1;x0=r;if(m>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endend7.mulGXF1用两点割线法的第一种形式求非线性方程组的一个根function [r,m]=mulGXF1(F,x0,x1,eps)format long;if nargin==3eps=1.0e-4;endx0 = transpose(x0);x1 = transpose(x1);n = length(x0);fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);for i=1:nxt = x1;xt(i) = x0(i);J(:,i) = (subs(F,findsym(F),xt)-fx1)/h(i);endr=x1-inv(J)*fx1;m=1;tol=1;while tol>epsx0 = x1;x1 = r;fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);for i=1:nxt = x1;xt(i) = x0(i);J(:,i) = (subs(F,findsym(F),xt)-fx1)/h(i);endr=x1-inv(J)*fx1;tol=norm(r-x1);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;8.mulGXF2用两点割线法的第二种形式求非线性方程组的一个根function [r,m]=mulGXF2(F,x0,x1,eps)format long;if nargin==3eps=1.0e-4;endx0 = transpose(x0);x1 = transpose(x1);n = length(x0);fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);xt = x1;xt(1) = x0(1);J(:,1) = (subs(F,findsym(F),xt)-subs(F,findsym(F),x1))/h(1);for i=2:nxt = x1;xt(1:i) = x0(1:i);xt_m = x1;xt_m(1:i-1) = x0(1:i-1);J(:,i) = (subs(F,findsym(F),xt)-subs(F,findsym(F),xt_m))/h(i);endr=x1-inv(J)*fx1;m=1;tol=1;while tol>epsx0 = x1;x1 = r;fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);xt = x1;xt(1) = x0(1);J(:,1) = (subs(F,findsym(F),xt)-subs(F,findsym(F),x1))/h(1);for i=2:nxt = x1;xt(1:i) = x0(1:i);xt_m = x1;xt_m(1:i-1) = x0(1:i-1);J(:,i) = (subs(F,findsym(F),xt)-subs(F,findsym(F),xt_m))/h(i);endr=x1-inv(J)*fx1;tol=norm(r-x1);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;9.mulVNewton用拟牛顿法求非线性方程组的一组解function [r,m]=mulVNewton(F,x0,A,eps)%方程组:F%方程组的初始解:x0% 初始A矩阵:A%解的精度:eps%求得的一组解:r%迭代步数:mif nargin==2A=eye(length(x0)); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendx0 = transpose(x0);Fx = subs(F, findsym(F),x0);r=x0-A\Fx;m=1;tol=1;while tol>epsx0=r;Fx = subs(F, findsym(F),x0);r=x0-A\Fx;y=r-x0;Fr = subs(F, findsym(F),r);z= Fr-Fx;A1=A+(z-A*y)*transpose(y)/norm(y); %调整A A=A1;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end10.mulRank1用对称秩1算法求非线性方程组的一个根function [r,n]=mulRank1(F,x0,A,eps)if nargin==2l = length(x0);A=eye(l); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-inv(A)*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-inv(A)*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;A1=A+ fr *transpose(fr)/(transpose(fr)*y); %调整A A=A1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end11.mulDFP用D-F-P算法求非线性方程组的一组解function [r,n]=mulDFP(F,x0,A,eps)if nargin==2l = length(x0);B=eye(l); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-B*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-B*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;B1=B+ y*y'/(y'*z)-B*z*z'*B/(z'*B*z); %调整AB=B1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end12.mulBFS用B-F-S算法求非线性方程组的一个根function [r,n]=mulBFS(F,x0,B,eps)if nargin==2l = length(x0);B=eye(l); %B取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-B*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-B*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;u = 1 + z'*B*z/(y'*z);B1= B+ (u*y*y'-B*z*y'-y*z'*B)/(y'*z); %调整B B=B1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end13.mulNumYT用数值延拓法求非线性方程组的一组解function [r,m]=mulNumYT(F,x0,h,N,eps)format long;if nargin==4eps=1.0e-8;endn = length(x0);fx0 = subs(F,findsym(F),x0);x0 = transpose(x0);J = zeros(n,n);for k=0:N-1fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endinJ = inv(J);r=x0-inJ*(fx-(1-k/N)*fx0);x0 = r;endm=1;tol=1;while tol>epsxs=r;fx = subs(F,findsym(F),xs);J = zeros(n,n);for i=1:nx1 = xs;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=xs-inv(J)*fx; %核心迭代公式tol=norm(r-xs);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;14.DiffParam1用参数微分法中的欧拉法求非线性方程组的一组解function r=DiffParam1(F,x0,h,N)%非线性方程组:f%初始解:x0%数值微分增量步大小:h%雅可比迭代参量:l%解的精度:eps%求得的一组解:r%迭代步数:nx0 = transpose(x0);n = length(x0);ht = 1/N;Fx0 = subs(F,findsym(F),x0);for k=1:NFx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endinJ = inv(J);r = x0 - ht*inJ*Fx0;x0 = r;end15.DiffParam2用参数微分法中的中点积分法求非线性方程组的一组解function r=DiffParam2(F,x0,h,N)%非线性方程组:f%初始解:x0%数值微分增量步大小:h%雅可比迭代参量:l%解的精度:eps%求得的一组解:r%迭代步数:nx0 = transpose(x0);n = length(x0);ht = 1/N;Fx0 = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nxt = x0;xt(i) = xt(i)+h(i);J(:,i) = (subs(F,findsym(F),xt)-Fx0)/h(i);endinJ = inv(J);x1 = x0 - ht*inJ*Fx0;for k=1:Nx2 = x1 + (x1-x0)/2;Fx2 = subs(F,findsym(F),x2);J = zeros(n,n);for i=1:nxt = x2;xt(i) = xt(i)+h(i);J(:,i) = (subs(F,findsym(F),xt)-Fx2)/h(i);endinJ = inv(J);r = x1 - ht*inJ*Fx0;x0 = x1;x1 = r;end16.mulFastDown用最速下降法求非线性方程组的一组解function [r,m]=mulFastDown(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endlamda = fx/sum(diag(transpose(J)*J));r=x0-J*lamda; %核心迭代公式fr = subs(F,findsym(F),r);tol=dot(fr,fr);x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;17.mulGSND用高斯牛顿法求非线性方程组的一组解function [r,m]=mulGSND(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endDF = inv(transpose(J)*J)*transpose(J);r=x0-DF*fx; %核心迭代公式tol=norm(r-x0);x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;18.mulConj用共轭梯度法求非线性方程组的一组解function [r,m]=mulConj(F,x0,h,eps)format long;if nargin==3eps=1.0e-6;endn = length(x0);x0 = transpose(x0);fx0 = subs(F,findsym(F),x0);p0 = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)*(1+h);p0(:,i) = -(subs(F,findsym(F),x1)-fx0)/h;endm=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endlamda = fx/sum(diag(transpose(J)*J));r=x0+p0*lamda; %核心迭代公式fr = subs(F,findsym(F),r);Jnext = zeros(n,n);for i=1:nx1 = r;x1(i) = x1(i)+h;Jnext(:,i) = (subs(F,findsym(F),x1)-fr)/h;endabs1 = transpose(Jnext)*Jnext;abs2 = transpose(J)*J;v = abs1/abs2;if (abs(det(v)) < 1)p1 = -Jnext+p0*v;elsep1 = -Jnext;endtol=norm(r-x0);p0 = p1;x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;19.mulDamp用阻尼最小二乘法求非线性方程组的一组解function [r,m]=mulDamp(F,x0,h,u,v,eps)format long;if nargin==5eps=1.0e-6;endFI = transpose(F)*F/2;n = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsj = 0;fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;afx = subs(F,findsym(F),x1);J(:,i) = (afx-fx)/h;endFIx = subs(FI,findsym(FI),x0);for i=1:nx2 = x0;x2(i) = x2(i)+h;gradFI(i,1) = (subs(FI,findsym(FI),x2)-FIx)/h;ends=0;while s==0A = transpose(J)*J+u*eye(n,n);p = -A\gradFI;r = x0 + p;FIr = subs(FI,findsym(FI),r);if FIr<FIxif j == 0u = u/v;j = 1;elses=1;endelseu = u*v;j = 1;if norm(r-x0)<epss=1;endendendx0 = r;tol = norm(p);m=m+1;if(m>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endendformat short;。

matlab解非线性方程

matlab解非线性方程

matlab解非线性方程MATLAB求解非线性方程一、Matlab求解非线性方程的原理1. 非线性方程是指当函数中的变量出现不同的次方数时,得出的方程就是非线性的。

求解非线性方程的准确性决定于得出的解集是否丰富,以及解的精度是否符合要求。

2. Matlab是一款多功能的软件,可以快速求解工程中的数学方程和模型,包括一元非线性方程。

Matlab 具有非线性解析计算能力,可以极大地提高求解效率。

二、Matlab求解非线性方程的方法1. 使用数值解法求解:包括牛顿法、割线法、共轭梯度法、梯度下降法等,可以采用Matlab编写程序,来计算满足一元非线性方程的解。

2. 使用符号解法求解:在Matlab中,可以直接使用solve函数来解决一元非线性方程。

3. Matlab求解非线性方程的技巧:1)定义区间:对非线性方程给出一个精确定义的区间,matlab会将该区间分成若干区间,在这些区间内搜索解;2)多给出初始值:可以给出若干个初始值,令matlab均匀搜索多个解;3)改变算法:可以更改matlab中不同的求解算法;4)换元法:可以通过改变不同的元变量,将非线性方程变成多个简单的线性方程,然后利用matlab求解。

三、Matlab求解非线性方程的特点1. 高效:Matlab求解的方式高效有效,性能优异,可以节省大量的求解时间。

2. 准确:Matlab采用符号解法时,解的准确度精度更高,可以满足大部分要求。

3. 节省资源:Matlab求解非线性方程节省计算机资源,可以很好地利用资源,提高工作效率。

四、 Matlab求解非线性方程的步骤1. 对结构表达式编写程序;2. 设定相应的条件;3. 优化程序;4. 运行程序;5. 分析结果;6. 测试代码;7. 验证学习结果。

五、Matlab求解非线性方程的事例例1:已知一元非线性方程f ( x ) = x^3 - 4x - 9 = 0,求精度范围在[-5,5]之间的实根解法:使用Matlab符号解法求解solX = solve('x^3-4*x-9 = 0','x');输出结果为:solX =3-31运行程序,即可得到由-5到5的实根。

matlab非线性方程的解法(含牛拉解法)

matlab非线性方程的解法(含牛拉解法)

非线性方程的解法(含牛拉解法)1引 言数学物理中的许多问题归结为解函数方程的问题,即,0)(=x f (1.1) 这里,)(x f 可以是代数多项式,也可以是超越函数。

若有数*x 为方程0)(=x f 的根,或称函数)(x f 的零点。

设函数)(x f 在],[b a 内连续,且0)()(<b f a f 。

根据连续函数的性质知道,方程0)(=x f 在区间],[b a 内至少有一个实根;我们又知道,方程0)(=x f 的根,除了极少简单方程的根可以用解析式表达外,一般方程的根很难用一个式子表达。

即使能表示成解析式的,往往也很复杂,不便计算。

所以,具体求根时,一般先寻求根的某一个初始近似值,然后再将初始近似值逐步加工成满足精度要求为止。

如何寻求根的初始值呢?简单述之,为了明确起见,不妨设)(x f 在区间],[b a 内有一个实的单根,且0)(,0)(><b f a f 。

我们从左端出点a x =0出发,按某一预定的步长h 一步一步地向右跨,每跨一步进行一次根的“搜索”,即检查每一步的起点k x 和1+k x (即,h x k +)的函数值是否同号。

若有:0)(*)(≤+h x f x f k k (1.2) 那么所求的根必在),(h x x k k +内,这时可取k x 或h x k +作为根的初始近似值。

这种方法通常称为“定步长搜索法”。

另外,还是图解法、近似方程法和解析法。

2 迭代法2.1 迭代法的一般概念迭代法是数值计算中一类典型方法,不仅用于方程求根,而且用于方程组求解,矩阵求特征值等方面。

迭代法的基本思想是一种逐次逼近的方法。

首先取一个精糙的近似值,然后用同一个递推公式,反复校正这个初值,直到满足预先给定的精度要求为止。

对于迭代法,一般需要讨论的基本问题是:迭代法的构造、迭代序列的收敛性天收敛速度以及误差估计。

这里,主要看看解方程迭代式的构造。

对方程(1.1),在区间],[b a 内,可改写成为:)(x x ϕ= (2.1) 取],[0b a x ∈,用递推公式:)(1k k x x ϕ=+, ,2,1,0=k (2.2) 可得到序列:∞==0210}{,,,,k k k x x x x x (2.3)当∞→k 时,序列∞=0}{k k x 有极限x ~,且)(x ϕ在x ~附近连续,则在式(2.2)两边极限,得, )~(~x x ϕ= 即,x ~为方程(2.1)的根。

非线性方程组求解及matlab实现

非线性方程组求解及matlab实现
复习与练习
按以下要求编写一个函数计算 A y / x sin(45) x 的值,其中x>0时,y= 3 x ; x<0时,y=2/x; x=0时,返 回错误信息(x cann’t be zero) 。 要求:1)主函数名称为excer1,x作为输如变量,A作 为输出变量;2) 主函数中包括一个子函数myfun用于 计算y的值。
c x
不动点迭代法

从给定的初值x0,按上式可以得到一个数列: { x0, x1, x2, …, xk, … }
如果这个数列有极限,则迭代格式是收敛的。 * x xk 就是方程的根 这时数列{xk}的极限 lim k


上述求非线性代数方程式数值解的方法称为直 接迭代法(或称为不动点迭代法)。这个方法 虽然简单,但根本问题在于当k->∞时,xk是否 收敛于x*,也就是必须找出收敛的充分条件
不动点

定义:函数g(x)的一个不动点(fixed point) 是指一个实数P,满足P = g(P) 从图形角度分析,函数y=g(x)的不动点是 y=g(x)和y=x的交点

不动点定理


设有(i) g,g’ ∈C[a,b], (ii) K是一个正常数,(iii) p0∈(a,b), (iv)对所有x ∈[a,b],有g(x)∈[a,b] 如果对于所有x ∈[a,b],有|g’(x)|≤K<1,则迭 代pn=g(pn-1)将收敛到惟一的不动点P ∈[a,b], 。 在这种情况下,P称为吸引(attractive)不动 点。对于所有x ∈[a,b],有|g’(x)| >1,则迭代 pn=g(pn-1)将不会收敛到P点。在这种情况下, P称为排斥(repelling)不动点,而且迭代显 示出局部发散性

数值分析中求解非线性方程的MATLAB求解程序(6种)

数值分析中求解非线性方程的MATLAB求解程序(6种)

数值分析中求解非线性方程的MATLAB求解程序(6种)数值分析中求解非线性方程的MATLAB求解程序(6种)1.求解不动点function [k,p,err,P]=fixpt(g,p0,tol,max1)%求解方程x=g(x) 的近似值,初始值为p0%迭代式为Pn+1=g(Pn)%迭代条件为:在迭代范围内满足|k|<1(根及附近且包含初值)k为斜率P(1)=p0;for k=2:max1P(k)=feval(g,P(k-1));err=abs(P(k)-P(k-1));relerr=err/(abs(P(k))+eps);p=P(k);if (err<tol)|(relerr<tol)< p="">break;endendif k==max1disp('超过了最长的迭代次数')endP=P';2.二分法function [c,err,yc]=bisect(f,a,b,delta)%二分法求解非线性方程ya=feval(f,a);yb=feval(f,b);if ya*yb>0break;max1=1+round((log(b-a)-log(delta))/log(2));for k=1:max1c=(a+b)/2;yc=feval(f,c);if yc==0a=c;b=c;elseif yb*yc>0b=c;yb=yc;elsea=c;ya=yc;endif b-a<delta< p="">break;endendc=(a+b)/2;err=abs(b-a);yc=feval(f,c);3.试值法function [c,err,yc]=regula(f,a,b,delta,epsilon,max1) %试值法求解非线性方程%f(a)和飞(b)异号ya=feval(f,a);yb=feval(f,b);if ya*yb>0disp('Note:f(a)*f(b)>0');for k=1:max1dx=yb*(b-a)/(yb-ya);c=b-dx;ac=c-a;yc=feval(f,c);if yc==0break;elseif yb*yc>0b=c;yb=yc;elsea=c;ya=yc;enddx=min(abs(dx),ac);if abs(dx)<delta|abs(yc)<epsilon< p="">break;endendc;err=abs(b-a)/2;yc=feval(f,c);4.求解非线性方程根的近似位置function R=approot(X,epsilon)%求解根近似位置%为了粗估算方程f(x)=0在区间[a,b]的根的位置,%使用等间隔采样点(xk,f(xk))和如下的评定准则:%f(xk-1)与f(xk)符号相反,%或者|f(xk)|足够小且曲线y=f(x)的斜率在%(xk,f(xk))附近改变符号。

非线性方程(组):MATLAB内置函数solve,vpasolve,fsolve,fzer。。。

非线性方程(组):MATLAB内置函数solve,vpasolve,fsolve,fzer。。。

求解函数多项式型⾮多项式型⼀维⾼维符号数值算法solve ⽀持,得到全部符号解若可符号解则得到根⽀持⽀持⽀持当⽆符号解时 符号解⽅法:利⽤等式性质得到标准可解函数的⽅法基本即模拟⼈⼯运算vpasolve ⽀持,得到全部数值解(随机初值)得到⼀个实根⽀持⽀持\times ⽀持未知fsolve 由初值得到⼀个实根由初值得到⼀个实根⽀持⽀持\times ⽀持优化⽅法,即⽤优化⽅法求解函数距离零点最近,具体⽅法为信赖域⽅法。

包含预处理共轭梯度(PCG)、狗腿(dogleg)算法和Levenberg-Marquardt 算法等fzero 由初值得到⼀个实根由初值得到⼀个实根⽀持\times \times ⽀持⼀维解⾮线性⽅程⽅法,⼆分法、⼆次反插和割线法的混合运⽤具体原理见数值求解⾮线性⽅程的和roots ⽀持,得到全部数值解\times ⽀持\times \times ⽀持特征值⽅法,即将多项式转化友矩阵(companion matrix)然后使⽤求矩阵特征值的算法求得所有解(那是另外⼀个问题了)⾮线性⽅程(组):MATLAB 内置函数solve,vpasolve,fsolve,fzer 。

MATLAB 函数 solve, vpasolve, fsolve, fzero, roots 功能和信息概览 也就是说,之前写了⼏篇关于⾮线性求解的,如⼆分法、⽜顿法(参见)、⼆次反插法(参见),只有⼀个库函数⽤了类似的⽅法。

各函数⽤法详解1. (符号/数值)解⽅程(组)函数 solve 官⽅参考页: solve 是基本的⽤于符号解⽅程的内置函数,返回类型为符号变量矩阵(m\times n sym)。

当⽆法符号求解时,抛出警告并输出⼀个数值解。

基本形式为:solve(eqn, var, Name, Val); % eqn 为符号表达式/符号变量/符号表达式的函数句柄, var 为未知量; Name 为附加要求,Val 为其值 可以⽤solve 解⼀维⽅程。

MATLAB求解非线性方程

MATLAB求解非线性方程
第一步:定义变量syms x y z ...;
第二步:求解[x,y,z,...]=solve('eqn1','eqn2',...,'eqnN','var1','var2',...'varN');
第三步:求出n位有效数字的数值解x=vpa(x,n);y=vpa(y,n);z=vpa(z,n);...。
If FUN is parameterized, you can use anonymous functions to capture the
problem-dependent parameters. Suppose you want to solve the system of
nonlinear equations given in the function myfun, which is parameterized
具体例子如下:
x^2 + x*y + y = 3
x^2 - 4*x + 3 = 0
解法:
>> [x,y] = solve('x^2 + x*y + y = 3','x^2 - 4*x + 3 = 0')
运行结果为
x =
1 3
y =
1 -3/2
即x等于1和3;y等于1和-1.5

>>[x,y] = solve('x^2 + x*y + y = 3','x^2 - 4*x + 3= 0','x','y')
2、变参数非线性方程组的求解

MATLAB实例:非线性方程数值解法(迭代解)

MATLAB实例:非线性方程数值解法(迭代解)

MATLAB实例:⾮线性⽅程数值解法(迭代解)MATLAB实例:⾮线性⽅程数值解法(迭代解)很久之前写过⼀篇关于“”,本博⽂相当于之前这⼀篇的延续与拓展,介绍四种求解⼀元⾮线性⽅程的数值解法(迭代解),包括:⽜顿迭代法,Halley迭代法,Householder迭代法以及预测校正⽜顿-哈雷迭代法(Predictor-Corrector Newton-Halley,PCNH),具体参考⽂献[1],来源于这篇⽂章:THREE-STEP ITERATIVE METHOD WITH EIGHTEENTH ORDER CONVERGENCE FOR SOLVING NONLINEAR EQUATIONS。

1. 迭代更新公式2. MATLAB程序newton.mfunction [x1, k]=newton(t1,esp,m)syms x;fun=x^3+4*(x^2)-10;for k=1:mif abs(subs(diff(fun,'x'),x,t1))<espx1=t1;break;elseif subs(diff(fun,'x',2),x,t1)==0break;disp('解题失败!')elset0=t1;t1=t0-subs(fun,x,t0)/subs(diff(fun,'x'),x,t0);if abs(t1-t0)<espx1=t1;break;endendendend% x1=vpa(x1,15);halley.mfunction [x1, k]=halley(t1,esp,m)syms x;fun=x^3+4*(x^2)-10;for k=1:mif abs(subs(diff(fun,'x'),x,t1))<espx1=t1;break;elseif subs(diff(fun,'x',2),x,t1)==0break;disp('解题失败!')elset0=t1;t1=t0-(2*subs(fun,x,t0)*subs(diff(fun,'x'), x, t0))/(2*(subs(diff(fun,'x'), x, t0))^2-subs(fun, x, t0)*subs(diff(fun,'x',2),x,t0)); if abs(t1-t0)<espx1=t1;break;endendendend% x1=vpa(x1,15);householder.mfunction [x1, k]=householder(t1,esp,m)syms x;fun=x^3+4*(x^2)-10;for k=1:mif abs(subs(diff(fun,'x'),x,t1))<espx1=t1;break;elseif subs(diff(fun,'x',2),x,t1)==0break;disp('解题失败!')elset0=t1;t1=t0-(subs(fun, x, t0))/(subs(diff(fun,'x'),x,t0))-(((subs(fun, x, t0))^2)*subs(diff(fun,'x',2),x,t0))/(2*(subs(diff(fun,'x',2),x,t0))^3); if abs(t1-t0)<espx1=t1;break;endendendend% x1=vpa(x1,15);PCNH.mfunction [x1, k]=PCNH(t1,esp,m)syms x;fun=x^3+4*(x^2)-10;for k=1:mif abs(subs(diff(fun,'x'),x,t1))<espx1=t1;break;elseif subs(diff(fun,'x',2),x,t1)==0break;disp('解题失败!')elset0=t1;w=t0-subs(fun,x,t0)/subs(diff(fun,'x'),x,t0);y=w-(2*subs(fun,x,w)*subs(diff(fun,'x'), x, w))/(2*(subs(diff(fun,'x'), x, w))^2-subs(fun, x, w)*subs(diff(fun,'x',2),x,w)); t1=y-(subs(fun, x, y))/(subs(diff(fun,'x'),x,y))-(((subs(fun, x, y))^2)*subs(diff(fun,'x',2),x,y))/(2*(subs(diff(fun,'x',2),x,y))^3);if abs(t1-t0)<espx1=t1;break;endendendend% x1=vpa(x1,15);demo.mclearclc% Input: 初始值,迭代终⽌条件,最⼤迭代次数[x1, k1]=newton(1,1e-4,20); % ⽜顿迭代法[x2, k2]=halley(1,1e-4,20); % Halley迭代法[x3, k3]=householder(1,1e-4,20); % Householder迭代法[x4, k4]=PCNH(1,1e-4,20); % 预测校正⽜顿-哈雷迭代法(PCNH)fprintf('⽜顿迭代法求解得到的⽅程的根为:%.15f, 实际迭代次数为:%d次\n', x1, k1);fprintf('Halley迭代法求解得到的⽅程的根为:%.15f, 实际迭代次数为:%d次\n', x2, k2);fprintf('Householder迭代法求解得到的⽅程的根为:%.15f, 实际迭代次数为:%d次\n', x3, k3);fprintf('预测校正⽜顿-哈雷迭代法(PCNH)求解得到的⽅程的根为:%.15f, 实际迭代次数为:%d次\n', x4, k4); %% 函数图像x=-5:0.01:5;y=x.^3+4.*(x.^2)-10;y_0=zeros(length(x));plot(x, y, 'r-', x, y_0, 'b-');xlabel('x');ylabel('f(x)');title('f(x)=x^3+4{x^2}-10');saveas(gcf,sprintf('函数图像.jpg'),'bmp'); %保存图⽚3. 数值结果求解$f(x)=x^3+4{x^2}-10=0$⽅程在$x_0=1$附近的根。

matlab求解非线性方程组及极值

matlab求解非线性方程组及极值

matlab求解非线性方程组及极值默认分类2010-05-18 15:46:13 阅读1012 评论2 字号:大中小订阅一、概述:求函数零点和极值点:Matlab中三种表示函数的方法: 1. 定义一个m函数文件, 2.使用函数句柄; 3.定义inline函数, 其中第一个要掌握简单函数编写, 二, 三中掌握一个。

函数的'常规'使用有了函数了, 我们怎么用呢, 一种是直接利用函数来计算, 例如: sin(pi), 还有我们提到的mysqr(3)...另一种是函数画图, 例如Plottools中提到的ezplot, ezsurf... 但是这也太小儿科了, 有没有想过定义函数后, 利用它来: 求解零点(即解f(x)=0方程), 最优化(求最值/极值点), 求定积分, 常微分方程求解等. 当然这里由于篇幅有限(空间快满了)以及这个只是'基础教程'的缘故, 只提及一些皮毛知识, 掌握这些后, 如果需要你可以进一步学习.解f(x)=0已知函数求解函数值=0所表示的方程, Matlab中有两个函数可以做到, fzero和fsolve前者只能解一元方程, 后者可以解多元方程组, 不过基本使用形式上差不多:解=fzero(函数, 初值, options)解=fsolve(函数, 初值, options)关于解: fzero给出的是x单值的解, fsolve给出的是解x可能处于的区间, 当然, 这个区间很窄.关于'函数', 还记得前面提到的三种表示方法吧, 在这里都可以用, 记住就是: 如果直接使用函数名, 要用单引号将它括起来, 而函数句柄, inline函数可以直接使用.关于'初值': 电脑比较笨, 它寻找解的办法是尝试不同地x值, 摸索解在哪里, 所以我们一开始就要给它指明从哪里开始下手, 初值这里, 可以只给它一个值, 让它在这个值附近找解, 也可以给它一个区间(区间用[下限,上限]这种方式表示), 它会在这个区间内找解.fzero的一些局限, 如果你给定的初值是区间, 而恰好函数在区间端点处同号, fzero会出错, 而如果你只给一个初值, fezro又有可能'走错方向', 例如给初值2让它解mysqr这个函数方程就出错了, FT!寻找函数极值/最值Matlab中也有两个函数可以做到, 是: fminbnd: 寻找一元函数极小值; fminsearch: 寻找多元函数极小值(当然一元也行). 别问我怎么没有找极大值的Matlab函数, 你把原函数取负数, 寻找它的极小值不就行了. 相关语法:x=fminbnd(函数, 区间起始值, 区间终止值)x=fminsearch(函数, 自变量初值)相关说明: fminbnd中指定要查找极小值的自变量区间, 好像不指定也行, 不过那样的话, 如果函数有多个极小值就可能比较难以预料结果了.fminsearch中要给定一个初值, 这个初值可以是自变量向量(将自变量依次排在一起组成向量)的初值, 也可以是表示向量初值区间的一个矩阵.函数: 那三种形式都适用, 但是记住, 直接使用函数名称需要加单引号!cite from:/qq529312840/blog/item/3687e4c7e7e2d6d9d0006049.html二、实例+讲解(1)非线性方程数值求解:1 单变量非线性方程求解在MATLAB中提供了一个fzero函数,可以用来求单变量非线性方程的根。

matlab中的fslove函数

matlab中的fslove函数

matlab中的fslove函数MATLAB中的fslove函数是一个用于求解非线性方程的函数。

在数学和工程领域中,非线性方程是一类不能表示为一次方程的方程。

这类方程在实际问题中非常常见,因此求解非线性方程的方法具有重要意义。

fslove函数的使用方法非常简单,只需要输入一个函数句柄和一个初始值,即可得到方程的解。

函数句柄是指对方程左侧的函数进行封装,初始值是指近似解的初始估计值。

fslove函数会根据这个初始值,通过迭代的方式逐步逼近方程的解。

在使用fslove函数时,我们需要注意一些问题。

首先,初始值的选择对求解的结果有很大影响。

如果初始值选择不当,可能会导致求解失败或者得到错误的解。

因此,我们需要根据具体问题的特点,选择一个合适的初始值。

fslove函数在求解非线性方程时,可能会遇到收敛速度过慢的问题。

这时,我们可以通过设置迭代的最大次数来控制求解的精度和效率。

如果迭代次数超过了设定的最大次数,fslove函数会给出一个警告信息。

fslove函数还可以求解多元非线性方程组。

这时,我们需要将多元方程组转化为向量形式,然后使用fslove函数进行求解。

在求解多元方程组时,初始值的选择尤为重要,因为多元方程组的解可能有多个。

在实际应用中,fslove函数具有广泛的用途。

例如,在电路设计中,我们经常需要求解非线性电路方程,通过使用fslove函数,可以高效地求解电路的工作点。

在数值分析中,fslove函数可以用于求解微分方程的边界条件。

此外,在优化问题中,fslove函数可以用于求解目标函数的最优解。

fslove函数是MATLAB中一个非常强大的工具,可以用于求解各种非线性方程。

通过合理选择初始值和设定迭代次数,我们可以得到准确且高效的求解结果。

无论是在科研还是工程实践中,fslove函数都能帮助我们解决复杂的非线性问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档