29.2三视图(4)

合集下载

人教版九年级数学下册:29.2 《三视图》教学设计4

人教版九年级数学下册:29.2 《三视图》教学设计4

人教版九年级数学下册:29.2 《三视图》教学设计4一. 教材分析《三视图》是人教版九年级数学下册第29章第2节的内容,本节主要让学生掌握三视图的概念,能从不同角度观察物体,并画出简单物体的三视图。

通过学习,学生能更好地理解三维空间物体的结构,提高空间想象能力。

二. 学情分析九年级的学生已经具备了一定的空间想象能力,对三维空间有一定的认识。

但部分学生可能对复杂物体的三视图理解起来较为困难,因此,在教学过程中要注重引导学生从不同角度观察物体,培养他们的空间想象力。

三. 教学目标1.知识与技能:让学生掌握三视图的概念,能画出简单物体的三视图。

2.过程与方法:通过观察、操作、交流等活动,培养学生的空间想象力。

3.情感态度价值观:激发学生学习数学的兴趣,感受数学与生活的联系。

四. 教学重难点1.重点:三视图的概念及简单物体的三视图画法。

2.难点:对复杂物体三视图的理解和画法。

五. 教学方法采用问题驱动法、情境教学法、合作学习法等,引导学生观察、思考、交流,培养他们的空间想象力。

六. 教学准备1.教具准备:多媒体课件、模型、画图工具等。

2.教学环境:教室里摆放一些立体模型,方便学生观察。

七. 教学过程1.导入(5分钟)利用多媒体课件展示一些日常生活中的立体物体,如家具、建筑物等,引导学生关注这些物体的不同视角。

2.呈现(10分钟)介绍三视图的概念,展示一个简单立方体的三视图,让学生直观地感受三视图的特点。

3.操练(10分钟)让学生分组合作,用准备好的模型进行观察,尝试画出每个模型的三视图。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)选取一些复杂一点的三视图图片,让学生独立完成画图。

教师选取部分学生的作品进行点评,指出优点和需要改进的地方。

5.拓展(10分钟)引导学生思考:三视图的应用场景有哪些?让学生举例说明,进一步体会三视图在实际生活中的重要性。

6.小结(5分钟)教师总结本节课的主要内容,强调三视图的概念和画法。

29.2核心素养【教学设计】《三视图》(人教)

29.2核心素养【教学设计】《三视图》(人教)

《29.2三视图》中山市坦洲中学张杰教学模式介绍:数学的核心素养包括数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。

这些数学学科素养既相对独立,又互相交融,是一个有机的整体。

核心素养下的教学设计是利用设计好的核心问题在课堂中培养学生的数学核心素质,重视学生在学习活动中的主体地位,让学生在积极参与学习活动的过程中得到发展。

教师创设情境设计问题,或通过富有启发性的讲授,或引导学生独立思考、自主探索、合作交流,组织学生操作实验、观察现象、提出猜想、推理论证等,有效地启发学生思考,使学生成为学习的主体,学会学习。

课堂教学中,要注重让学生理解和掌握数学的基础知识和基本技能,让学生感悟数学思想,积累数学活动经验,在学习数学和应用数学的过程中,发展数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等数学学科核心素养,让学生能与他人建立良好关系,有效地管理自己的学习、生活,能够发掘自身潜力,战胜学习数学中的困难,让学生能够适应未来社会、进行终身学习,实现全面发展。

设计思路说明:在初一,学生已经初步接触了正方体,长方体的几何特征以及从不同的方向看物体得到不同的平面图形的方法。

但是对于三视图的概念还不清晰;只接触了从简单几何体到三视图的单向转化,还无法准确的识别三视图的立体模型。

本节课是引导学生从投影的角度来认识这个问题,并且对于三个方向作了更明确的规定。

教学从整体到局部,从具体到抽象,理论联系实际尤其是联系生活,培养学生的应用意识和应用能力;重视实物与图形、空间图形与平面图形的相互转化;精心设计课件,注意多媒体技术为教学服务的意识;强调学生的动手操作和主动参与,让他们在观察、操作、想象、质疑和思维灵动等积极活动中认识空间几何体的三视图;提高空间想象能力和转化的数学思想。

第一课时一、讲什么1.教学内容《三视图)》是九年级数学下册第29章的第二小节的第1课时,内容属于《全日制义务教育数学课程标准2011版》中的“图形与几何”领域,是在学习了投影的基础上进一步对立体图形的认识。

人教版九年级数学下册第29章课题:29.2三视图教学设计

人教版九年级数学下册第29章课题:29.2三视图教学设计
4.引导学生树立正确的价值观,认识到学习几何知识不仅有助于解决实际问题,还能够培养良好的思维品质。
教学设计具体内容如下:
一、导入新课
1.引导学生回顾已学的几何知识,为新课的学习做好铺垫。
2.提问:“同学们,我们学习了这么多几何图形,那么如何将一个立体的物体表现在平面上呢?今天我们就来学习一种方法——三视图。”
3.小组合作任务:每组选择一个复杂的立体图形,如多面体或组合体,共同完成其三视图的绘制。在绘制过程中,注意讨论和解决遇到的问题,并在课堂上进行展示和分享。
4.写一篇小短文,介绍三视图在生活中的应用,以及学习三视图对提高空间想象能力的重要性。短文不少于300字,要求条理清晰、表达准确。
5.预习下一节课的内容,提前了解三视图在实际问题解决中的应用,为课堂学习做好准备。
3.教师简要回顾之前学习的几何知识,为新课的学习做好铺垫:“我们已经学习了平面图形、立体图形等,今天我们将进一步学习如何用三视图来表示立体图形。”
(二)讲授新知,500字
1.教师详细讲解三视图的定义,包括主视图、左视图、俯视图的概念,并通过实物模型和多媒体演示,让学生直观地了解三视图的形成过程。
2.教师以一个简单的立方体为例,逐步讲解如何绘制三视图,引导学生掌握绘制方法和技巧。
3.创设互动交流的平台,鼓励学生分享自己的绘制方法和解题思路,通过同伴教学和讨论,共同解决难点问题。
4.分层次设计练习,针对不同水平的学生提供不同难度的题目,使每个学生都能在练习中得到有效的提高。
5.教学过程中,注重反馈和评价,及时了解学生的学习进展,针对性地调整教学策略。通过个性化的指导,帮助学生克服学习中的困难。
1.空间想象能力有限,难以将立体物体与三视图相互转换。
2.对三视图的绘制方法和技巧掌握不够熟练,容易产生混淆。

三视图说课稿

三视图说课稿

义务教育课程标准试验教科书九年级数学下册29.2《三视图》说课稿第1课时甘肃省环县车道乡初级中学孙建新一、教材分析1.1、教材的地位和作用《三视图》是新人教版九年级第二十九章第二节第一课时的内容,是在学习空间几何体结构特征和投影之后的情况下教学的。

三视图是空间几何体的一种表示形式,是立体几何的基础之一。

学好三视图有利于培养学生空间想象能力,几何直观能力,有利于培养学生学习立体几何的兴趣,为高中的后续学习打下基础 .因此我将从投影的角度加深对三视图概念的理解和会画简单几何体的三视图作为本节课的重点.1.2、教材的内容和结构本课时教学内容先是从不同角度观察飞机、军舰、坦克和字典来引出试图的概念,进而分析三视图的形成原理、位置和大小关系,让学生充分认识三视图,然后以画简单的几何体模型的三视图为例详细阐述三视图的画法和要掌握的要领。

1.3、教学目标设计知识与技能:1、能识别简单物体的三视图,了解主视图、俯视图、左视图和三视图的概念.2、了解各个视图之间的尺寸关系;长对正、高平齐、宽相等.3、会画直棱柱等简单几何体的三视图.过程与方法:感受从不同方向观察同一物体可能看到不一样的结果,培养学生全面观察的能力.情感态度与价值观:1、培养学生自主学习与合作的学习方式,使学生体会从生活中发现数学。

2、在应用数学解决生活之中问题的过程中,品尝成功的喜悦,激发学生应用数学的热情。

1.4、教学重点、难点分析教学重点:1.从投影的角度加深对三视图概念的理解.2.会画简单几何体的三视图.教学难点:1.对三视图概念理解的升华.2.正确画出三棱柱等简单几何体的三视图二、学生情况分析学生已经学习了中心投影和平行投影以及正投影,本课时主要是在正投影的基础上来研究三视图。

九年级的学生观察、操作、猜想能力较强,但是他们的空间想象能力还很薄弱,思维的广阔性、敏捷性、严密性、灵活性比较欠缺。

因此本节课的难点是对三视图概念理解的升华,正确画出规则的几何体的三视图。

人教版九年级数学下册:29.2 《三视图》教案5

人教版九年级数学下册:29.2 《三视图》教案5

人教版九年级数学下册:29.2 《三视图》教案5一. 教材分析《三视图》是人教版九年级数学下册第29.2节的内容,主要让学生掌握三视图的概念,能从不同角度观察物体,并画出其三视图。

这部分内容是学生空间观念形成的重要阶段,有助于培养学生的空间想象能力和抽象思维能力。

二. 学情分析九年级的学生已经具备了一定的空间想象力,但对三维物体的认识还不够深入。

在学习本节课之前,学生已经学习了平面图形的绘制和变换,对观察物体有一定基础。

但如何将平面图形转化为三维物体,并从中获取三视图,对学生来说是一个挑战。

三. 教学目标1.知识与技能:让学生掌握三视图的概念,能从不同角度观察物体,并画出其三视图。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生空间想象能力和抽象思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生团队协作精神,感受数学与现实生活的联系。

四. 教学重难点1.重点:三视图的概念及绘制方法。

2.难点:如何培养学生空间想象能力,将三维物体转化为三视图。

五. 教学方法1.采用问题驱动法,引导学生主动探究三视图的奥秘。

2.利用多媒体展示,直观地呈现三维物体与三视图之间的关系。

3.实行小组合作,让学生在讨论中加深对三视图的理解。

4.注重实践操作,让学生动手绘制三视图,提高空间想象力。

六. 教学准备1.多媒体教学设备。

2.教学课件。

3.实体模型。

4.绘图工具。

七. 教学过程导入(5分钟)教师通过展示一些日常生活中的物体图片,让学生观察并思考:这些物体在平面上的投影是什么样子?从而引出三视图的概念。

呈现(10分钟)教师利用多媒体展示三维物体与三视图的对应关系,让学生直观地感受三视图的形成过程。

同时,教师讲解三视图的绘制方法,引导学生认识主视图、左视图、俯视图。

操练(10分钟)学生分组讨论,每组选取一个三维物体,尝试绘制其三视图。

教师巡回指导,解答学生疑问。

巩固(5分钟)教师选取几组学生绘制的三视图,让学生判断正确与否,并说明理由。

2020学年人教版初中数学九年级下册第29章投影与视图29.2三视图教案

2020学年人教版初中数学九年级下册第29章投影与视图29.2三视图教案

29.2三视图1.会从投影的角度理解视图的概念.2.探索三视图中三个视图间的位置关系和大小关系.3.会画简单几何体及简单组合体的三视图.4.学会根据物体的三视图描述出几何体的基本形状或实物原型.5.体会三视图与实物模型之间的关系.1.通过观察、操作、猜想、讨论、合作等活动,使学生体会到三视图中各部分之间位置及大小的对应关系,积累数学活动的经验.2.感受三视图的形成过程和方法,探索简单几何体的三视图的画法,进一步发展空间想象能力及动手操作能力.3.通过探究由物体的三视图还原出物体的形状,进一步认识物体与其三视图之间的关系,提高学生的空间想象能力.1.使学生学会关注生活中有关投影的数学问题,提高数学的应用意识,养成细致、严谨的态度.2.培养学生自主学习与合作交流的学习方式,加强学生从生活中发现数学的能力.3.通过探究物体的三视图,学会多角度看问题,品尝成功的喜悦,激发学生学习数学的热情.4.在探究三视图向立体图形转化的过程中,使学生感受数学的和谐美,培养学生动手实践能力,发展空间想象能力.【重点】1.从投影的角度理解三视图的概念.2.会画简单的三视图.3.根据物体的三视图描述出几何体的基本形状或实物原型.【难点】1.对三视图概念理解的升华及正确画出三棱柱的三视图.2.学会根据物体的三视图描述出几何体的基本形状或实物原型.第课时1.会从投影的角度理解视图的概念.2.探索三视图中三个视图间的位置关系和大小关系.3.会画简单几何体及简单组合体的三视图.1.通过感受从不同方向观察同一物体可能看到不一样的图形,培养学生全面观察的能力.2.通过观察、操作、猜想、讨论、合作等活动,使学生体会到三视图中各部分之间位置及大小的对应关系,积累数学活动的经验.1.通过探究物体的三视图,培养学生动手能力及观察能力,养成细致、严谨的学习态度.2.通过主动探究、合作交流,体会将空间图形转化为平面图形的几何美,同时培养学生的团队意识.3.通过探究物体的三视图,学会多角度看问题,激发学生学习数学的热情.【重点】从投影的角度理解三视图的概念;会画简单的三视图.【难点】对三视图概念理解的升华及正确画出三棱柱的三视图.导入一:从我们熟悉的古诗:“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”中,你能得到什么启示?【师生活动】教师展示图片,学生结合图片赏析古诗,思考得到的启示并回答问题,教师点评,导出课题.导入二:某次军事演习中展示了我国不少先进的武器,左图是一架飞机,你能知道右图是从哪几个角度展示的吗?【师生活动】学生观察回答,教师点评,导出新课.[设计意图]教师从学生熟悉的古诗入手,学生结合古诗和图片,感受从多个角度观察物体,引出本节课课题,激发学生的学习兴趣;由三个方向反映飞机的形状,为理解本节课的三视图埋下伏笔.一、观察体验【师生活动】教师拿一本英汉词典,让学生分别从词典的前面、左面、上面观察,会看到什么平面图形?学生观察思考,小组合作交流,小组代表回答,师生共同归纳概念.【课件展示】视图:当我们从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图.【思考】视图是不是投影?(视图可以看成是物体在某一方向光线下的正投影)【师生活动】学生思考回答,教师点评.[设计意图]从学生熟悉的物体入手,让学生经历从不同方向观察物体的活动过程,让学生对三视图形成感性认识,激发学生的求知欲望,为顺利完成本节课的学习做好铺垫.二、新知探究思路一教师引导学生思考,形成概念.【师生活动】教师准备一个长方体,对长方体在教室墙角处的三个墙面进行正投影,或利用课件,边演示边讲解三视图的概念.【课件展示】如图(1),我们用三个互相垂直的平面作为投影面,其中正对着我们的平面叫做正面,下方的平面叫做水平面,右边的平面叫做侧面.对一个物体(例如一个长方体)在三个投影面内进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.【思考】(1)物体的三视图分别是哪个方向上的正投影?(2)如图(2),展开的这三个视图的位置有什么关系?(3)主视图、左视图、俯视图分别反映了长方体的哪些特征?(4)如何画物体的三视图?(5)结合三视图的位置关系和大小关系,画三视图时主视图与俯视图之间、主视图与左视图之间、左视图与俯视图之间应分别注意什么?【师生活动】学生观察、思考、讨论,教师在巡视过程中帮助有困难的学生,学生展示结果后,教师点评归纳.【结论】(1)正面上的正投影就是主视图,水平面上的正投影就是俯视图,侧面上的正投影就是左视图.(2)三个视图的位置关系是:主视图在左上边,它的正下方是俯视图,左视图在主视图的右边.(3)三视图中,主视图与俯视图表示同一物体的长,主视图和左视图表示同一物体的高,左视图和俯视图表示同一物体的宽,三个视图的大小是相互联系的.(4)画物体的三视图时,三个视图都要放在正确的位置,并且使主视图与俯视图的长对正,主视图和左视图的高平齐,左视图和俯视图的宽相等.(5)画三视图时应注意“长对正,高平齐,宽相等”.思路二教师准备一个长方体,对长方体在教室墙角处的三个墙面进行正投影.(如思路一中图(1)) 【学生活动】思考回答下列问题:(1)什么是主视图、左视图和俯视图?它们分别是哪个方向上的正投影?(2)将物体的三视图画在同一个平面时,它们的位置、大小有什么关系?(3)将某物体的三视图展开到同一平面,你还能确定它们各自的名称吗?(4)如何绘制一个几何体的三视图?(5)三视图彼此之间还有什么关系?【师生活动】学生自主学习教材后,思考教师提出的问题,然后小组合作交流,探讨画图规律、总结、展示,教师在巡视过程中帮助有困难的学生,点评学生的回答,共同归纳出结论.【结论】(参考思路一)[设计意图]探究活动以简单的基本几何体为例,发现三个视图的大小关系,让学生感受从三维空间向二维空间的转换过程,初步领悟画法.学生在教师的引导下(或自主学习)观察、思考、讨论、归纳,培养学生抽象、概括能力,发展学生的空间思维,激发学生的求知欲.三、例题讲解【课件展示】画出下图中基本几何体的三视图.【师生活动】教师板演圆柱的三视图,并总结画图步骤.学生讨论完成正三棱柱、四棱锥、球的三视图.学生在画图时,教师提示:看得见部分的轮廓线画成实线,因被其他部分遮挡而看不见部分的轮廓线画成虚线.学生板演,教师点评.解:如下图.【追问】你能归纳画三视图的具体步骤吗?【师生活动】学生思考回答,教师点评,共同归纳.【结论】(1)确定主视图的位置,画出主视图.(2)在主视图正下方画出俯视图,注意与主视图“长对正”.(3)在主视图右方画出左视图.注意与主视图“高平齐”,与俯视图“宽相等”.画出如图的支架(一种小零件)的三视图,其中支架的两个台阶的高度和宽度相等.教师引导分析:支架的形状是由两个大小不等的长方体构成的组合体.画三视图时要注意这两个长方体的上下、前后位置关系.【师生活动】学生独立完成画图,小组交流答案,教师巡视过程中帮助有困难的学生,小组代表到黑板展示,教师点评,归纳总结.【结论】画组合体的三视图时,构成组合体的各部分的视图也要遵守“长对正,高平齐,宽相等”的规律.解:如图是支架的三视图.[设计意图]通过练习画图,使学生进一步加深对三视图的理解,充分认识视图与物体形状的联系,体验三视图的形成过程,提高学生分析问题和解决问题的能力,进一步培养空间观念.[知识拓展](1)三个视图分别从不同方向表示物体的形状,单独一个视图难以全面反映物体的形状,三者合起来才能较全面地反映物体的形状.(2)对于同一个物体,观察的角度不同,所得到的视图一般不同.(3)在生产实践中常用三视图描述物体(如机械零件、建筑物等)的形状.(4)俯视图在主视图的正下方,左视图在主视图的右边,画三视图时,三个视图要放在正确的位置,不能随意乱放.三视图要保证“长对正、高平齐、宽相等”,这三个关系是看图与画图的基本规律.一般情况下,一个视图不能确定物体的空间形状,看图时必须将各视图对照起来看,这样才能看清物体的全貌.1.一个物体(例如一个长方体)在三个投影面内进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.2.三个视图的位置是:主视图在左上边,它的正下方是俯视图,左视图在主视图的右边.3.“长对正,高平齐,宽相等”.1.如图的物体的主视图为()2.下列几何体中,左视图是圆的是()3.在①长方体,②球,③圆锥,④竖放的圆柱,⑤竖放的正三棱柱,这五种几何体中,其主视图、左视图、俯视图都完全相同的是.(填序号)4.画出图中几何体的三视图.【答案与解析】1.B 解析:下面正方体的主视图是正方形,上面正方体的主视图是正方形,因此这个几何体的主视图由两个正方形组成,且下面正方形的边长大于上面正方形的边长,且上面正方形位于下面正方形的中间.故选B .2.D 解析:图形A 的左视图是等腰三角形;图形B 的左视图是长方形;图形C 的左视图是梯形;图形D 的左视图是圆.故选D.3.②解析:①长方体的主视图是长方形、左视图是长方形、俯视图也是长方形,但是长方形的长和宽不一定一样长;②球的主视图、左视图、俯视图都是圆;③圆锥的主视图、左视图都是等腰三角形,俯视图是带圆心的圆;④圆柱的主视图、左视图都是长方形,俯视图是圆;⑤正三棱柱的主视图是长方形(中间可能有一条实线),左视图是长方形,俯视图是三角形.故填②.4.解:如下图为该几何体的三视图.第1课时1.观察体验2.新知探究3.例题讲解例1俯视图例2一、教材作业二、课后作业【基础巩固】1.如图的立体图形的左视图是()2.如下图是由5个大小相同的正方体组成的几何体,它的主视图是()3.下列立体图形,俯视图是正方形的是()4.下列几何体,主视图和俯视图均为矩形的是()5.从不同方向看如图的一只茶壶,你认为是俯视效果图的是()6.在下面的四个几何体中,它们各自的左视图与主视图不一样的是()7.如图是由一个圆柱体和一个长方体组成的几何体,其主视图是()8.写出一个俯视图和主视图完全相同的几何体:.9.如图是由6个同样大小的正方体摆成的几何体,将正方体①移走后,所得几何体的主视图,左视图,俯视图.(填“改变”或“不变”)10.下面是用5个小正方体搭成的四种几何体,分别画出它们的三视图.【能力提升】11.如图的几何体的俯视图是()12.将如图放置的一个直角三角形ABC(∠C=90°)绕斜边AB旋转一周所得到的几何体的主视图是四个图形中的(只填序号).13.画出如图的立体图形的三视图.【拓展探究】14.由10个棱长为1的小立方体组成如图的几何体,画出这个几何体的三视图,并求出这个几何体的表面积.【答案与解析】1.A解析:左视图是从物体左面看所得到的图形,此立体图形的左视图是直角三角形,且直角在左侧.故选A.2.C解析:从正面看,共两层,下层是两个正方形,上层左边是一个正方形.故选C.3.A解析:A的俯视图是正方形,故A正确;B的俯视图是圆,故B错误;C的俯视图是三角形且中间有三条相交于一点的线,故C错误;D的俯视图是带圆心的圆,故D错误.故选A.4.D解析:A中图形的主视图是矩形,俯视图是圆,故A错误;B中图形的主视图和俯视图都是圆,故B错误;C中图形的主视图是矩形且中间有一条虚线,俯视图是三角形,故C错误;D中图形的主视图是矩形,俯视图是矩形,故D正确.故选D.5.A解析:俯视图就是从物体的上面向下看物体得到的图形,选项A中的图形是从茶壶上面向下看得到的图形.故选A.6.D解析:A中左视图和主视图均为正方形,不符合题意;B中左视图和主视图均为圆,不符合题意;C中左视图和主视图均为正方形且有2条竖直的虚线,不符合题意;D中左视图和主视图为不全等的三角形,符合题意.故选D.7.B解析:主视图是从前面看到的平面图形,圆柱的主视图为长方形,长方体的主视图也是长方形,并且下边长方形的长比上边的长方形的长要长.故选B.8.球(答案不唯一)解析:球的俯视图与主视图都为圆.9.改变不变改变解析:主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形.将正方体①移走后,所得几何体的主视图改变,左视图不变,俯视图改变.10.解:如下图.11.B解析:俯视图是从上往下看得到的图形,从上面看可以看到一个矩形且中间有一条实线.故选B.12.(2)解析:直角三角形ABC(∠C=90°)绕斜边AB旋转一周所得到的几何体是同底的两个圆锥.因为AC<BC,所以上边的圆锥母线小于下边圆锥母线,它的主视图是两个同底的等腰三角形,并且上边三角形的腰小于下边三角形的腰.故填(2).13.解:如下图.14.解:三视图如下图.从上面看到图形的面积为6×(1×1)=6,从前面、后面看到图形的面积为2×6×(1×1)=12,从两个侧面看到图形的面积为2×6×(1×1)=12,从底面看到图形的面积为6×(1×1)=6,故这个几何体的表面积为6+12+12+6=36.本节课通过学生熟悉的古诗引出课题,激发学生的学习兴趣;以不同角度观察英汉字典,使学生很好地理解同一物体会有不同的视图,很自然地引出三视图的概念,然后教师利用课件展示长方体在墙角处三个面上的投影,学生观察、思考、讨论、归纳,得出三个视图的位置与大小关系,进一步培养学生的抽象概括能力,发展学生的空间思维.最后的例题加深了对三视图的理解和掌握,同时归纳出画三视图的具体步骤,培养学生分析问题、解决问题及归纳总结的能力.在整节课中,学生积极思考,课堂气氛活跃,学生参与意识较强,发挥了学生在课堂上的主体作用.本节课的重点是探索物体三个视图之间的关系,并能画出物体的三视图,在教学设计中,通过教师的课件展示和问题的引导,以学生活动为主,通过自主学习、观察思考、合作交流、归纳结论等数学活动,让学生经历知识的形成过程,达到真正理解和掌握三视图有关知识的目的,但在实际操作中,由于部分学生空间想象能力较差,不能很好地观察并画出组合体的三视图,在以后教学中要加强学生的空间想象能力的培养,多给学生交流的时间和空间.以学生熟悉的生活实例导出本节课课题,体会数学与生活之间的联系,再从不同方向观察物体,通过思考、交流等活动很自然地引出视图、三视图的概念.教师通过课件展示长方体在正面、侧面、水平面的正投影,给学生足够的时间和空间讨论交流三个视图之间的位置及大小关系,归纳出“长对正,高平齐,宽相等”的结论,从而非常容易地归纳出画三视图的具体步骤,然后以学生活动为主,进行画三视图练习巩固所学知识,在整个教学设计中,让学生经历知识的形成过程,达到提高数学思维、培养学生能力的目的.(1)本节课的重点是在学习投影的基础上探究几何体的三视图,以观察几何体在三个方向上的正投影导入新课,为本节课的学习做好铺垫.在探究新知的过程中,注重发挥学生的积极主动性和参与性,注重学生在教学活动中自主探索、合作交流,如通过小组活动,让学生自己体会与感受从不同方向看同一个物体看到不同的图形,发展学生空间观念.学生在探究三视图的过程中,通过观察、思考、交流、操作等数学活动,让学生参与其中,亲身体验概念的形成过程,使学生快乐、轻松地成为学习的主人,体会成功的喜悦.在数学课上,学习能力的培养是课堂最重要的部分,学生在小组合作等数学活动中探究归纳出数学结论,可以提高学生数学思维,培养分析问题、解决问题的能力.(2)通过进行小组合作学习等数学活动,可以提高学生的合作参与意识与能力,培养学生善于倾听他人意见和帮助别人共同提高的品质,在数学活动中要给学生的反思以充足的时间.学生学习能力的培养不仅能使学生扎实有效地理解和掌握最基础的知识,形成基本的数学技能,而且能培养学生的数学应用意识和能力,给不同层次的学生创设学好数学的机会,特别是更有利于培养学生善于探索,勇于创新的精神.第课时1.学会根据物体的三视图描述出几何体的基本形状或实物原型.2.体会三视图与实物原型之间的关系.1.经历探索由简单的几何体的三视图还原几何体的过程,进一步发展空间想象能力.2.通过观察探究等活动使学生能根据物体的三视图还原出物体的形状,进一步认识物体与其三视图之间的关系.1.使学生学会关注生活中有关投影的数学问题,提高数学的应用意识.2.在探究三视图向立体图形转化的过程中,使学生感受数学的和谐美,培养学生动手实践能力,发展空间想象能力.3.通过学生对“三视图”的学习,逐步养成严谨、细致、规范的行为习惯,同时激发学生热爱生活、热爱数学的情感.【重点】根据物体的三视图描述出几何体的基本形状或实物原型.【难点】根据物体的三视图想象几何体的形状.导入一:【复习提问】1.画一个立体图形的三视图时要注意什么?2.说一说直三棱柱、圆柱、圆锥、球的三视图.【师生活动】教师提出问题,学生回顾上节课内容并作出回答,教师点评.导入二:【课件展示】动手操作:下图是一根钢管,画出它的三视图.【师生活动】学生独立完成后小组交流答案,小组代表板演,教师点评,最后强调易错点:画图时规定,看得见部分的轮廓线画成实线,因被其他部分遮挡而看不见部分的轮廓线画成虚线.解:如图是钢管的三视图,其中的虚线表示钢管的内壁.[设计意图]通过有针对性的复习引入新课,让学生初步了解研究三视图是生活的需要,激发学生的学习兴趣,同时为本节课的学习做好铺垫.一、观察体验欣赏机械制图中三视图与对应的立体图形的图片,说说三视图与对应的立体图形有怎样的关系.【师生活动】教师出示图片,学生观察,探讨二者之间的关系,初步感知由图想物的过程.[设计意图]学生通过观察探讨三视图与立体图形之间的对应关系,培养学生的空间观念,为新课的探索做好铺垫,同时通过认识三视图与其对应的立体图形在工件生产中的作用,使学生感受知识的应用价值,激发学生学习数学的兴趣.二、探究新知如图,分别根据三视图说出立体图形的名称.思路一学生通过自主学习解答.【师生活动】学生独立思考后小组合作交流,尝试画出立体图形,板书答案,教师巡视过程中帮助有困难的学生,点评结果,强调注意事项.解:(1)从三个方向看立体图形,视图都是矩形,可以想象出这个立体图形是长方体,如图(1).(2)从正面、侧面看立体图形,视图都是等腰三角形,从上面看,视图是带圆心的圆,可以想象这个立体图形是圆锥,如图(2).【归纳】由三视图想象立体图形时,要先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后再综合起来考虑整体图形.思路二教师引导分析解答.【思考】(1)长方体与圆锥的三视图分别是什么形状?(2)如果一个物体的三个视图均是长方形,那么这个物体是什么形状?(3)如果一个物体的主视图和左视图是等腰三角形,俯视图是带圆心的圆,那么这个物体的形状是什么?(4)由三视图想象几何体,分别通过观察哪个视图确定几何体的前面、左面和上面?【师生活动】学生在教师提出的问题下思考回答,然后尝试画出立体图形,教师及时点评,最后归纳总结.解:(同思路一)【归纳】(同思路一)根据物体的三视图(如图),描述物体的形状.教师引导分析:由主视图可知,物体正面是;由俯视图可知,由上向下看物体有两个面的视图是,且有一条棱(中间的实线表示)可见到,两条棱(虚线表示)被遮挡;由左视图知,物体的左侧有两个面的视图是,且有一条棱(中间的实线表示)可见到.综合各视图可知,物体的形状是.【师生活动】教师引导学生总结由图想物的基本方法,学生结合例题小组讨论交流,师生共同归纳总结.解:物体是正五棱柱形状的,如下图.【追问】仔细观察以上两题的解题思路,由视图还原立体图形时应注意什么?【师生活动】学生独立思考后小组合作交流,师生共同归纳结论.【结论】主视图反映物体的长和高,主要提供正面的形状;左视图反映物体的高和宽,主要提供左侧面的形状;俯视图反映物体的长和宽,主要提供上面的形状,由俯视图看不出物体的高.某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如图).请按照三视图确定制作每个密封罐所需钢板的面积.(图中尺寸单位:mm)教师引导分析:对于某些立体图形,若沿其中一些线(例如棱柱的棱)剪开,可以把立体图形的表面展开成一个平面图形——展开图.在实际生产中,三视图和展开图往往结合在一起使用.解决本题的思路是先由三视图想象出密封罐的形状,再进一步画出展开图,从而计算面积.【思考】(1)根据三视图,该物体的形状是什么?(2)该立体图形的展开图是什么?(3)如何求立体图形展开图的面积?(1)【师生活动】教师引导学生分析解题思路,学生思考问题后独立完成,小组内交流答案,教师巡视过程中帮助有困难的学生,对学生的答案进行点评,规范解题格式.解:由三视图可知,密封罐的形状是正六棱柱(如图(1)).密封罐的高为50mm,底面正六边形的直径为100mm,边长为50mm,如图(2)是它的展开图.(2)由展开图可知,制作一个密封罐所需钢板的面积为:6×50×50+2×6×1×50×50sin60°2)=6×502×(1+√32。

29.2三视图全

29.2三视图全

投影规律
主视图反映了物体上下、左右的位置关系,即反映 了物体的 高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映 了物体的长度和宽度; 左视图反映了物体上下、前后的位置关系,即反映 了物体的高度和宽度。 由此可得出三视图之间的投影规律为: 主、俯视图——长对正;主、左视图——高平 齐;俯、左视图——宽相等。
画三视图是培养空间想象力的一个 重要途径. 在挑战自我的平台(由物体画三视图, 反过来由三视图想象实物的形状)充 分展现自我才华.
1. 下列几何体的三种视图有没有错误(不考虑尺寸)?为什么?如果错 了,应该怎样改正?
主 视 图
左 视 图
主 视 图
左 视 图
俯 视 图
俯 视 图
主 视 图
左 视 图


1. 画出如图所示的三棱柱的三视图(这个三柱上下底 面是正三角形).
三 棱 柱
主 视 图
左 视 图
俯 视 图
2. 画出半球和圆锥的三视图.
半 圆
主 视 图
左 视 图
圆 锥
主 视 图
左 视 图
俯 视 图
俯 视 图
·
3. 图中的立体图形可以看成由哪些基本几何体经过怎样的变化得到 的?三视图怎么画?
59
动手设计
请画出下面立体图形的三视图。
俯视方向
注意:根据“长对正,高平齐,宽相等” 画 三视图必须遵循的法则作图。
60
• ⒉由三视图描述几何体(或实物原型),一
般步骤为: • ① 想象:根据各视图想象从各个方向看到 的几何体形状; • ② 定形:综合确定几何体(或实物原型) 的形状; • ③ 定大小位置:根据三个视图“长对正, 高平齐,宽相等”的关系,确定轮廓线的位 置,以及各个方向的尺寸.

人教版九年级数学下册:29.2 《三视图》教案4

人教版九年级数学下册:29.2 《三视图》教案4

人教版九年级数学下册:29.2 《三视图》教案4一. 教材分析《三视图》是人教版九年级数学下册第29.2节的内容,主要介绍了三视图的概念及其表示方法。

通过本节课的学习,学生能够掌握三视图的定义,了解并熟练运用主视图、左视图、俯视图来表示一个几何体。

教材通过丰富的图片和实例,引导学生认识三视图,并通过对简单几何体的观察和绘制,使学生掌握三视图的绘制方法。

二. 学情分析九年级的学生已经具备了一定的空间想象能力,对立体几何有一定的了解。

但是,对于三视图的概念和表示方法,学生可能还比较陌生。

因此,在教学过程中,教师需要结合学生的实际情况,从简单到复杂,逐步引导学生理解和掌握三视图的知识。

三. 教学目标1.知识与技能:使学生掌握三视图的概念,能够识别和绘制简单几何体的三视图。

2.过程与方法:通过观察、思考、实践,培养学生空间想象能力和几何绘图能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的观察力和创新能力。

四. 教学重难点1.重点:三视图的概念及其表示方法。

2.难点:如何引导学生理解和掌握三视图的绘制方法,培养学生的空间想象能力。

五. 教学方法1.情境教学法:通过丰富的图片和实例,引导学生认识三视图,激发学生的学习兴趣。

2.实践教学法:让学生动手操作,观察和绘制简单几何体的三视图,培养学生的空间想象能力和几何绘图能力。

3.问题驱动法:教师提出问题,引导学生思考和探索,从而达到理解和发展知识的目的。

六. 教学准备1.教具:多媒体课件、几何模型、绘图工具。

2.学具:学生用书、练习本、绘图工具。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中常见的三视图图片,如房屋、汽车等,引导学生关注三视图,并提出问题:“你们知道这些图片是如何绘制出来的吗?”让学生思考三视图的概念和作用。

2.呈现(10分钟)教师通过多媒体课件,介绍三视图的概念,讲解主视图、左视图、俯视图的含义和表示方法。

同时,教师可以结合几何模型,让学生直观地感受三视图。

29.2 第3课时 由三视图确定几何体的面积或体积

29.2 第3课时 由三视图确定几何体的面积或体积

解:(1)先根据给出的三视图确定立体图形,并确定立体
图形的长、宽、高.
100cm
由三视图可确定该立体图形为正六棱柱,
50cm
它的长、宽、高如Байду номын сангаас所示
50cm
(2)将立体图形展开成一个平面图形(展开图),观 察它的组成部分.
平面展开图由:2个正六边形和6个正方形组成,如图所示.
(3)最后根据已知数据,求出展 开图的面积(即所需钢板的面积).
第二十九章 投影与视图
29.2 三视图
第3课时 由三视图确定几何体的面积或体积
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.能熟练地画出物体的三视图和由三视图想象出物体形状, 提高空间想象能力;(难点) 2.由三视图想象出立体图形后并能进行简单的面积或体积的 计算.(重点)
导入新课
复习引入
问题1.如图所示是一个立体图形的三视图,请根据视 图说出立体图形的名称,并画出它的展开图.
形的长、宽、高. (2)将立体图形展开成一个平面图形(展开图),观察
它的组成部分. (3)最后根据已知数据,求出展开图的面积.
当堂练习
1.一个长方体的左视图、俯视图及相关数据如图所示, 则其主视图的面积为( B )
A.6
B.8
C.12
D.24
主视图
2.如图是一个几何体的三视图,根据图中提供的数据 (单位:cm),可求得这个几何体的体积为 3 cm3 .
形的长、宽、高. (2)将立体图形展开成一个平面图形(展开图),观察
它的组成部分. (3)最后根据已知数据,求出展开图的面积.
做一做
一个机器零件的三视图如图所示(单位:cm),这个机器零件是 一个什么样的立体图形?它的体积是多少?

人教版数学九年级下册29.2三视图及其画法优秀教学案例

人教版数学九年级下册29.2三视图及其画法优秀教学案例
三、教学策略
(一)情景创设
1.利用实物模型和多媒体课件,创设生动、直观的教学情境,激发学生的学习兴趣。
2.设计有趣的实践活动,让学生在动手操作中体验三视图的魅力,提高空间想象力。
3.通过设置悬念和问题,引导学生主动探究,激发学生的求知欲。
在教学过程中,我会充分利用实物模型和多媒体课件,为学生创设生动、直观的教学情境,激发学生的学习兴趣。同时,我会设计一些有趣的实践活动,如让学生亲自观察和画出立体模型三视图,让学生在动手操作中体验三视图的魅力,提高空间想象力。此外,我会巧妙地设置悬念和问题,引导学生主动探究,激发学生的求知欲。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,激发学生学习数学的内在动力。
2.培养学生勇于探究、勇于尝试的精神,培养学生的创新意识。
3.培养学生严谨、细致的学习态度,提高学生自我学习的能力。
在教学过程中,我会关注学生的情感需求,创设轻松、愉快的课堂氛围,让学生在愉悦的情感状态下学习。同时,我会积极引导学生在课堂上勇于探究、勇于尝试,培养学生的创新意识。此外,我会强调严谨、细致的学习态度,让学生在掌握知识的同时,提高自我学习的能力。
(四)反思与评价
1.引导学生进行自我反思,发现自己的不足,及时调整学习方法和策略。
2.采用多元化评价方式,关注学生的学习过程和成果,客观、公正地评价学生。
3.鼓励学生互相评价,培养学生的批判性思维和客观评价能力。
在教学过程中,我会引导学生进行自我反思,发现自己的不足,及时调整学习方法和策略。我会定期组织学生进行自我评价和互相评价,让学生了解自己的学习状况,提高自我改进的能力。此外,我会采用多元化评价方式,关注学生的学习过程和成果,客观、公正地评价学生。通过反思与评价,学生可以更好地发现自己的优点和不足,提高自身学习能力。

29.2三视图(教案)-九年级下学期数学教材解读(人教版)

29.2三视图(教案)-九年级下学期数学教材解读(人教版)
举例:
-对于空间想象力不足的学生,可以通过实物模型、多媒体演示等方法,帮助他们理解三视图与实际物体之间的关系。
-在绘制三视图时,指导学生注意物体各部分之间的比例关系,避免出现错误。
-在解决实际问题时,引导学生将三视图知识与生活实际相结合,如分析建筑设计图、机械制图等。
四、教学流程
(一)导入新课(用时5分钟)
2.提高学生的逻辑思维能力,使其能够准确绘制物体的三视图,并运用三视图解决实际问题。
3.增强学生的几何直观,使其能够理解几何图形之间的相互关系,为后续学习几何知识打下坚实基础。
4.培养学生的团队协作能力,通过小组讨论、互助学习,共同探究三视图的应用。
5.激发学生对数学学科的兴趣,使其体会数学在现实生活中的重要性,增强数学应用的意识。
3.三视图的应用:通过三视图来想象和描述物体的形状。
4.实际例子:运用三视图解决生活中的实际问题,如建筑设计、机械制图等。
本节课我们将结合教材中的例题和练习,让学生掌握三视图的基本知识,培养空间想象力和逻辑思维能力。
二、核心素养目标
本节课的核心素养目标包括:
1.培养学生的空间想象力,使其能够通过三视图想象出物体的实际形状。
其次,空间想象力是本节课的一个难点。在实践活动和小组讨论中,我发现有些学生在这方面表现得不够理想。为了培养学生的空间想象力,我打算在接下来的课程中增加一些空间几何的实物模型和多媒体演示,让学生更直观地感受三视图与实际物体之间的关系。
此外,在小组讨论环节,学生们对于三视图在实际生活中的应用提出了很多有趣的观点,这让我感到很欣慰。但同时,我也注意到有些小组在讨论过程中偏离了主题。在今后的教学中,我需要加强对学生的引导,确保讨论内容紧扣教学目标。
29.2三视图(教案)-九年级下学期数学教材解读(人教版)

专题29.2 三视图(解析版)

专题29.2  三视图(解析版)

专题29.2 三视图1.视图:从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图。

视图可以看作物体在某一方向光线下的正投影。

2.主视图、俯视图、左视图(1)对一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;(2)在水平面内得到的由上向下观察物体的视图,叫做俯视图;(3)在侧面内得到的由左向右观察物体的视图,叫做左视图。

主视图与俯视图的长对正;主视图与左视图的高平齐;左视图与俯视图的宽相等。

【例题1】如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的()A.主视图会发生改变B.俯视图会发生改变C.左视图会发生改变D.三种视图都会发生改变【答案】A【解析】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.【点拨】本题考查了简单组合体的三视图,从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.【例题2】如图是由一个长方体和一个球组成的几何体,它的主视图是()A. B. C. D.【答案】C【解析】从正面看几何体,确定出主视图即可.几何体的主视图为:【点拨】主视图就是从几何体正面看得到的图形。

【例题3】如图所示的几何体的俯视图是()A B C D【答案】D【解析】此几何体的俯视图如图:【点拨】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【例题4】下列几何体中,俯视图不是圆的是()A.四面体 B.圆锥C.球 D.圆柱【答案】A【解析】分别找出从图形的上面看所得到的图形即可.A.俯视图是三角形,故此选项正确;B.俯视图是圆,故此选项错误;C.俯视图是圆,故此选项错误;D.俯视图是圆,故此选项错误。

【点拨】此题主要考查了简单几何体的三视图,关键是掌握俯视图是从几何体的上面看所得到的图形.1.如图是由4个相同的小立方体搭成的几何体,则它的主视图是()A.B.C.D.【答案】B【解析】主视图有2列,每列小正方形数目分别为1,2.如图所示:它的主视图是:.【点拨】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.2.如图是由5个大小相同的小正方体摆成的几何体,它的俯视图是()A. B. C. D.【答案】D【解析】根据俯视图是从上面看到的图象判定则可.从上面看下来,上面一行是横放3个正方体,左下角一个正方体.【点拨】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()A.πB.2πC.3πD.(+1)π【答案】C【解析】由三视图可知:该几何体是一个圆锥,其轴截面是一个高为的正三角形.∴正三角形的边长==2.∴圆锥的底面圆半径是1,母线长是2,∴底面周长为2π∴侧面积为2π×2=2π,∵底面积为πr2=π,∴全面积是3π.4.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个 B.5个C.6个 D.7个【答案】B.【解析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.由主视图和左视图可确定所需正方体个数最少时俯视图为:,则搭成这个几何体的小正方体最少有5个.5.如图所示,该几何体的俯视图是()A.B.C.D.【答案】C.【解析】根据俯视图是从物体的上面看得到的视图进行解答即可.从上往下看,可以看到选项C所示的图形.故选:C.6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【答案】C.【解析】根据从上边看得到的图形是俯视图,可得答案.从上边看是一个田字,“田”字是中心对称图形.7.如图是由4个相同的小正方体搭成的几何体,则该几何体的主视图是()A. B.C. D.【答案】C【解析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.解:从正面看,下面一行是横放3个正方体,上面一行是一个正方体.如图所示:【点拨】本题考查了三种视图中的主视图,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.8.下列图形中,主视图为①的是()A.B.C. D.【答案】B.【解析】主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.A.主视图是等腰梯形,故此选项错误;B.主视图是长方形,故此选项正确;C.主视图是等腰梯形,故此选项错误;D.主视图是三角形,故此选项错误.9.下列几何体中,主视图与俯视图不相同的是()A.正方体 B.四棱锥 C.圆柱 D.球【答案】B.【解析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.四棱锥的主视图与俯视图不同.10.下列几何体的左视图为长方形的是()A. B.C.D.【答案】C.【解析】找到个图形从左边看所得到的图形即可得出结论.A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.11.把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()A.B.C.D.【答案】D.【解析】根据从正面看得到的图形是主视图,可得答案.从正面看是一个等腰三角形,高线是虚线.12.如图所示的几何体的主视图是()A.B.C.D.【答案】B.【解析】根据从正面看得到的图形是主视图,可得答案.从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形.13.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【答案】C.【解析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.从左边看竖直叠放2个正方形.14.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是()A.B.C.D.【答案】D.【解析】根据从左边看得到的图形是左视图,可得答案.从左边看第一层是两个正方形,第二层是左边一个正方形.15.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【答案】B.【解析】根据从上面看得到的图形是俯视图,可得答案.从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形.16.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.6【答案】C.【解析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.17.如图所示的几何体的左视图是()A.B.C.D.【答案】D.【解析】根据从左边看得到的图形是左视图,可得答案.从左边看是两个等宽的矩形,矩形的公共边是虚线。

人教版九年级数学下册:29.2 《三视图》说课稿4

人教版九年级数学下册:29.2 《三视图》说课稿4

人教版九年级数学下册:29.2 《三视图》说课稿4一. 教材分析《人教版九年级数学下册:29.2 《三视图》》这一节的内容,主要让学生掌握三视图的概念,了解并掌握主视图、左视图和俯视图的画法,以及它们之间的关系。

教材通过具体的实物图片,让学生直观地了解三视图的生成过程,以及如何从不同角度观察物体,培养学生的空间想象能力和抽象思维能力。

二. 学情分析九年级的学生已经具备了一定的空间想象能力和抽象思维能力,他们对立体图形有一定的了解。

但是,由于三视图的概念和画法比较抽象,学生可能难以理解和掌握。

因此,在教学过程中,教师需要关注学生的认知水平,通过生动形象的讲解和大量的练习,帮助学生理解和掌握三视图的知识。

三. 说教学目标1.知识与技能目标:让学生掌握三视图的概念,了解并掌握主视图、左视图和俯视图的画法,以及它们之间的关系。

2.过程与方法目标:通过观察实物,培养学生的空间想象能力和抽象思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的观察能力和创新能力。

四. 说教学重难点1.教学重点:三视图的概念,主视图、左视图和俯视图的画法。

2.教学难点:如何从不同角度观察物体,理解三视图之间的关系。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、合作交流法等,引导学生主动探究,提高学生的参与度和积极性。

2.教学手段:利用多媒体课件,展示实物图片,让学生直观地了解三视图的生成过程。

同时,通过布置练习题,让学生在实践中掌握三视图的知识。

六. 说教学过程1.导入新课:通过展示实物图片,让学生观察并描述物体的形状,引出三视图的概念。

2.讲解示范:讲解三视图的概念,示范如何画出主视图、左视图和俯视图。

3.学生练习:布置练习题,让学生独立完成,巩固三视图的知识。

4.合作交流:学生分组讨论,分享彼此的解题心得,互相学习,提高解题能力。

5.总结提升:教师引导学生总结三视图的画法和它们之间的关系,提高学生的抽象思维能力。

29.2 《三视图》测试题练习题常考题试卷及答案

29.2 《三视图》测试题练习题常考题试卷及答案

29.2 三视图一、单选题(共20题;共40分)1.如图,由五个完全相同的小正方体组合成一个立体图形,它的俯视图是()A. B. C. D.2.如图,在长方体的数学课本上放有一个圆柱体,则它的主视图为()A. B.C. D.3.如图是由5个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是()A. B. C. D.4.如图,一个由圆柱和长方体组成的几何体水平放置,它的俯视图是()A. B. C. D.5.右边几何体的左视图是()A. B. C. D.6.如图所示的工件,其俯视图是()A. B. C. D.7.如图的几何体是由五个同样大小的正方体搭成的,其主视图是()A. B. C. D.8.一个立体图形的三视图如图所示,则该立体图形是()A. 圆柱B. 圆锥C. 长方体D. 球9.如图几何体是由6个大小完全一样的正方体组合而成的,它的俯视图是()A. B. C. D.10.下列四个几何体:其中左视图与俯视图相同的几何体共有()A. 1个B. 2个C. 3个D. 4个11.用4个完全相同的小正方体组成如图所示的立体图形,它的主视图是()A. B. C. D.12.下列立体图形中,主视图是圆的是()A. B. C. D.13.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,俯视图是()A. B. C. D.14.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A. B. C. D.15.如图竖直放置的圆柱体的俯视图是()A. 长方体B. 正方体C. 圆D. 等腰梯形16.如图,是由一个圆柱体和一个长方体组成的几何体,其俯视图是()A. B. C. D.17.图中所示的几何体的左视图是()A. B. C. D.18.下列几何体中,左视图与主视图不相同的只可能是()A. B. C. D.19.桌面上放置的几何体中,主视图与左视图可能不同的是()A. 圆柱B. 正方体C. 球D. 直立圆锥20.下列几何体中,俯视图是矩形的是()A. B. C D.二、填空题(共20题;共27分)21.从正面看,从左面看,从上面看都一样的几何体可能是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 下列几何体的三种视图有没有错误(不考虑尺寸)?为什么?如果错 了,应该怎样改正?
主 视 图
左 视 图 主 视 图 左 视 图 俯 视 图
俯 视 图
主 视 图
左 视 图
俯 视 图
主 视 图
左 视 图
俯Байду номын сангаас视 图
主 视 图
左 视 图
俯 视 图
主 视 图
左 视 图
俯 视 图
主 视 图
左 视 图
3. 根据三视图描述物体的形状.
主 视 图
左 视 图
俯 视 图
实 物 形 状
主 视 图
左 视 图
俯 视 图
实 物 形 状
5.根据三视图描述物体的形状,试画出物体的表面展开图.
主 视 图 左 视 图
俯 视 图
实 物 形 状
展 开 图
俯 视 图
主 视 图
左 视 图
俯 视 图
主 视 图
俯 视 图
主 视 图
左 视 图
俯 视 图
主 视 图
俯 视 图
主 视 图
左 视 图
俯 视 图
2. 画出下列几何体的三种试图:
主 视 图
左 视 图
俯 视 图
主 视 图
左 视 图
俯 视 图
主 视 图
左 视 图
俯 视 图
主 视 图
左 视 图
俯 视 图
相关文档
最新文档