【建筑材料培训精品】第1章 土木工程材料的基本性质

合集下载

材料的基本性质

材料的基本性质

第一章 土木工程材料的基本性质第一节 土木工程材料的分类一、按材料的化学成分分类按材料的化学成分分类,可分为有机材料、无机材料和复合材料三大类。

二、按功能分类按功能分类,可分为结构材料和功能材料两大类。

结构材料——主要用作承重的材料,如梁、板、柱所用材料。

功能材料——主要利用材料的某些特殊功能,如用于防水、装饰、保温等的材料。

第二节 材料的物理性质一、密度材料在绝对密实状态下单位体积的质量称为密度,公式表示如下:Vm =ρ 式中:ρ——材料的密度,g/cm 3;m ——材料在干燥状态下的质量,g ;V ——材料在绝对密实状态下的体积,cm 3。

所谓绝对密实状态下的体积,是指不包括材料内部孔隙的固体物质的体积。

二、表现密度材料在自然状态下单位体积的质量,称为表观密度,公式表示如下:0V m =ρ 式中:ρ0——材料的表观密度,kg/cm 3;m ——材料的质量,kg ;V 0——材料在自然状态下的体积,m 3。

所谓自然状态下的体积,是指包括材料实体积和内部孔隙的外观几何形状的体积。

三、堆积密度散粒材料在自然堆积状态下单位体积的质量,称为堆积密度,公式表示如下:土木工程材料 有机材料——木材、石油沥青、塑料等 无机材料 金属材料——钢、铁、铝等非金属材料——石材、砖、玻璃、水泥、混凝土等复合材料——聚合物混凝土(1.1.1)(1.1.2)V m'='ρ 式中:ρ0’——散粒材料的堆积密度,kg/cm 3;m ——散粒材料的质量,kg ;V 0’——散粒材料的自然堆积体积,m 3。

散粒材料的自然堆积体积,既包含了颗粒自然状态下的体积,又包含了颗粒之间的空隙体积。

四、孔隙率孔隙率是指材料内部孔隙体积占材料总体积的百分率。

%1000⨯=V V n V式中:n ——材料的孔隙率;V V ——材料的内部孔隙体积,cm 3; V 0——材料的总体积,cm 3。

五、吸水性*吸水性是指材料在水中吸水的性质。

第1章 土木工程材料_基本性质

第1章 土木工程材料_基本性质

第一章土木工程材料的基本性质本章导学学习目的:土木工程材料有无机材料、有机材料及复合材料,它具有结构或功能的作用。

而土木工程包括建筑工程、道路工程、桥梁工程、地下工程、岩土工程等,土木工程材料为这些工程服务,通过学习其基本性质,了解土木工程基本性质与工程特性的关系。

教学要求:通过工程实例说明土木工程材料的分类;通过各种土木工程特点的分析,说明土木工程材料的物理、力学性质及耐久性;重点讲解土木工程材料的密度、与水有关的性质、强度、弹性、粘性与塑性。

1.1土木工程材料的分类土木工程材料是指在土木工程中所使用的各种材料及其制品的总称。

它是一切土木工程的物质基础。

由于组成、结构和构造不同,土木工程材料品种繁多、性能各不相同、在土木工程中的功能各异,而且价格相差悬殊,在土木工程中的用量很大,因此,正确选择和合理使用土木工程材料,对土木工程结构物安全、实用、美观、耐久及造价有着重大的意义。

由于土木工程材料种类繁多,为了研究、使用和论述方便,常从不同角度对它进行分类。

最通常的是按材料的化学成分及其使用功能分类。

1.1.1按化学成分分类根据材料的化学成分,可分为有机材料、无机材料以及复合材料三大类,如表1-1所示。

1.1.2按使用功能分类根据材料在土木工程中的部位或使用性能,大体上可分为二大类,即土木工程结构材料(如钢筋混凝土、预应力混凝土、沥青混凝土、水泥混凝土、墙体材料、路面基层及底基层材料等)和土木工程功能材料(如吸声材料、耐火材料、排水材料等)。

1.土木工程结构材料土木工程结构材料主要指构成土木工程受力构件和结构所用的材料。

如梁、板、柱、基础、框架、墙体、拱圈、沥青混凝土路面、无机结合料稳定基层及底基层和其它受力构件、结构等所用的材料都属于这一类。

对这类材料主要技术性能的要求是强度和耐久性。

目前所用的土木工程结构材料主要有砖、石、水泥、水泥混凝土、钢材、钢筋混凝土和预应力钢筋混凝土、沥青和沥青混凝土。

在相当长的时期内,钢材、钢筋混凝土及预应力钢筋混凝土仍是我国土木工程中主要结构材料;沥青、沥青混凝土、水泥混凝土、无机结合料稳定基层及底基层则是我国交通土建工程中主要路面材料。

土木工程材料材料基本性质

土木工程材料材料基本性质

火烧
难碳化
防火处理的 木材和刨花板
可燃材料
高温 火烧
立即起火 或微燃
木材
42
1.1.4 热工性质
• 耐燃性
钢铁、铝、玻璃等材料受到火烧或高温作 用会发生变形、熔融,所以虽然是非燃烧
材料,但不是耐燃的材料
43
1.1.4 热工性质
• 耐燃性
44
1.1.4 热工性质
• 耐燃性案例
某在建住宅楼不慎发生火灾,混凝土被破坏
组成相同,其构造不同,强度也不同。
孔隙率愈大
强度愈低
53 6-23
1.2.1 强度
• 影响材料强度的几个因素
2. 材料的强度也与其含水状态有关, 含有水分的材料,其强度较干燥时的低
3. 材料的强度也与其温度有关 一般温度高时,材料的强度将降低
例如:沥青混凝土,钢铁
54 7-23
1.2.1 强度
• 影响材料强度的几个因素
• 耐水性
材料长期在水作用下不破坏,强度也不显著降低的性质
耐水性用 软化系数
KR的大小表明材料在浸 水饱和强度降低的程度。
KR值愈小,表示材料吸水饱和后 强度下降愈多,即耐水性愈差。
28
1.1.3 与水有关的性质
• 耐水性
一般来说,材料被水浸湿后,强度均会有所降低。这是 因为水分被组成材料的微粒表面吸附,形成水膜,削弱
对于细微连通的孔隙,孔隙率愈大,则吸水率愈大。 封闭的孔隙内水分不易进去,而开口大孔虽然水分易进入,
但不易存留,只能润湿孔壁,所以吸水率仍然较小。
24
1.1.3 与水有关的性质
•吸水性与吸湿性
空气湿度 环境温度
吸湿性
微小开口孔隙

土木工程材料基本性质

土木工程材料基本性质

1.1.3 与水有关的性质
3.耐水性(Water resistance)
材料长期在水的作用下既不破坏强度又不显著下降的性质
指标:软化系数
fb KR fg
fb——材料饱水状态抗压强度,MPa fg——材料干燥状态抗压强度,MPa KR>0.85,称为耐水材料
砖浸水后强度下降
现象
某地发生历史罕 见的洪水。洪水退后, 许多砖房倒塌,其砌 筑用的砖多为未烧透 的多孔的红砖,见右 图。请分析原因。
土木工程要求材料具备哪些性能?
土木工程的功能
承受荷载 长期可靠性 防水、隔热 隔声、防火 采光、绝缘
要求的材料性能
强度、刚度 耐久性 物理性能 安全性
不污染环境
第1章 土木工程材料基本性质
1.1 材料的物理性质 1.2 材料的力学性质 1.3 材料的耐久性与环境协调性
1.4 材料的组成、结构、构造及其对性能的影响
值越大,材料越轻质高强
1.2.2 弹性与塑性
1.弹性——外力作用产生变形,外力取消能完全恢复。
指标:弹性模量
E
意义:E表示材料抵抗变形的指标,E值越大,材料
越不易变形,即抵抗变形的能力越强。
2.塑性——外力作用产生变形,外力取消变形不能恢复
1.2.3 韧性与脆性
1.脆性——无明显塑性变形,突然破坏。 脆性材料:石、砖、砼、陶瓷、玻璃、铸铁等
1.3 材料的耐久性与环境协调性
基础知识
1.3.1 材料的耐久性
1.3.2 材料的环境协调性
1.3.1 材料的耐久性
材料在长期使用过程中,能保 持其原有性能而不变质、不破坏的 性质,统称之为耐久性,它是一种 复杂的、综合的性质,包括材料的 抗冻性、耐热性、大气稳定性和耐 腐蚀性等。材料在使用过程中,除 受到各种外力作用外,还要受到环 境中各种自然因素的破坏作用,这 些破坏作用可分为物理作用、化学 作用和生物作用。要根据材料所处 的结构部位和使用环境等因素,综 合考虑其耐久性,并根据各种材料 的耐久性特点,合理地选用。

第1章 土木工程材料基本性质1

第1章  土木工程材料基本性质1

θ
σsl
(b)憎水性材料
σ sg − σ sl cos θ = σ lg
θ--润湿角(接触角)
土木工程材料
1、亲水性与憎水性
根据水与材料表面的润湿角 的大小, 根据水与材料表面的润湿角θ的大小,有:
亲水性 0≤θ≤ 90°时,材料表面可被水所湿润; 90° 材料表面可被水所湿润; 材料表面被水湿润,水可被材料所吸附; 材料表面被水湿润,水可被材料所吸附; 材料的这种性能称为亲水性,这种材料称为亲 材料的这种性能称为亲水性,这种材料称为亲 水性材料。 水性材料。 憎水性 90o< θ≤180o时,材料表面不可被水湿润; 材料表面不可被水湿润; 材料称为憎水性材料, 材料称为憎水性材料,这种性能称为材料的憎 水性。 水性。
土木工程材料
m ρ '0 = V '0
(3)堆积密度 (3)堆积密度
• 松堆积方式测得的堆积密度值要明显小于紧堆积时 的测定值。 的测定值。 • 工程中通常采用松散堆积密度,确定颗粒状材料的 工程中通常采用松散堆积密度, 堆放空间。 堆放空间。
土木工程材料
密度、 密度、表观密度和堆积密度测量方法
土木工程材料
(2)表观密度 (2)表观密度
• 表观密度的大小除取决于密度外,还与材料孔隙率 表观密度的大小除取决于密度外, 及孔隙的含水程度有关。 及孔隙的含水程度有关。 • 材料孔隙越多,表观密度越小; 材料孔隙越多,表观密度越小; • 当孔隙中含有水分时,其质量和体积均有所变 当孔隙中含有水分时, 因此在测定表观密度时,须注明含水情况, 化。因此在测定表观密度时,须注明含水情况, 没有特别标明时常指气干状态下的表观密度, 没有特别标明时常指气干状态下的表观密度, 在进行材料对比试验时, 在进行材料对比试验时,则以绝对干燥状态下 测得的表观密度值(干表观密度)为准。 测得的表观密度值(干表观密度)为准。 • 工程上可以利用表观密度推算材料用量,计算构件 工程上可以利用表观密度推算材料用量, 自重,确定材料的堆放空间。 自重,确定材料的堆放空间。

第一章 土木工程材料的基本性质

第一章 土木工程材料的基本性质

空气声: 选择密实、沉重的材料
固体声: 采用不连续的结构处理
第1章 土木工程材料的基本性质
1.2 材料的基本力学性质 一、 强度和比强度
强度:材料在外力作用下抵抗破坏的能力
极限强度:材料在外力作用下失去承载能力时的极限应力 根据外力作用方式的不同,材料有抗压强度、抗拉强
度、抗弯强度、抗剪强度等。
材料所受外力:
耐久性
第1章 土木工程材料的基本性质
1.1 材料的物理性质 一、 与质量状态有关的物理性质
1. 密度:材料在绝对密实状态下,单位体积的
质量。
m V
––– 密度,g/cm3;
m ––– 材料在干燥状态下的质量,g; V––– 材料在绝对密实状态下的体积,cm3。
测量方法 有较多孔隙的材料,
比强度:按单位体积的质量计算的材料强度, 等于材料强度与其容积密度之比 衡量材料是否轻质、高强的指标
常用土木工程材料的强度(单位:MPa) 材料名称 抗压强度 抗拉强度 抗弯强度 120~250 5~8 10~14 花岗岩 7.5~30 1.8~4.0 普通粘土砖 7.5~60 1.0~4.0 普通混凝土 30~50 80~120 60~100 松木(顺纹) 235~600 235~600 建筑钢材
膨胀珍珠岩
矿棉
矿棉板
膨胀珍珠岩板
第1章 土木工程材料的基本性质
2.热阻R
热阻: 材料层厚度与导热系数的比值,表明热量通过材料 层时所受到阻力。 影响因素: 孔隙结构,含水状况,材料的组成,温度等
第1章 土木工程材料的基本性质
3.热容量——用比热c表示
热容量: 材料受热时吸收热量,冷却时放出热量的性质。
Q 比热: c m (T1 T2 )

土木工程材料建筑材料的基本性质

土木工程材料建筑材料的基本性质
颗粒材料体积
8
土木工程材料
二、密度、表观密度和堆积密度
密度 表观密度 堆积密度
9
土木工程材料
1.密 度 (specific density)
定义:
材料在绝对密实状态下单位体积旳质量。
绝密体积:材料在绝对密实状态下旳体积。
不涉及内部孔隙旳体积。如图:
计算式: m
V
绝对密实材料
测定措施:李氏瓶法、排水法。 注意:测试时,材料必须是绝对干燥状态。
10
土木工程材料
试 验 演 示
1.密 度(specific density)
李氏瓶法
11
土木工程材料
2.表观密度(relative density)
定义:材料在自然状态下单位体积旳质量。
表观体积:整体材料旳外观体积V0 (如图) (V0=闭口孔+开口孔+实体)
计算公式:
0
测定措施
m V0
➢ 规则材料:几何法
亲水性材料旳吸水(湿)性比憎水性材料强 ➢亲水性孔壁使水自动吸入; ➢憎水性孔壁难以使水吸入。
32
土木工程材料
思索题
1.为何房屋一楼潮湿?怎样处理?
原因:地下水沿材料毛细管上升,然后 在空气中挥发。 处理问题旳原理与方法
➢ 阻塞毛细通道,掺加引气剂 ➢ 对材料中旳毛细管壁进行憎水处理。
33
土木工程材料
37
土木工程材料
4. 抗渗性
➢定义:材料抵抗压力水渗透旳性质。 ➢指标:
渗透系数 or 抗渗等级
在一定时间t内,透过材料试件 在原则试验措施下进行透
旳水量Q,与试件旳渗水面积 A及水头差H成正比,与渗透 距离(试件旳厚度)d成反比。

第1章 土木工程材料的基本性质

第1章 土木工程材料的基本性质

(2) 砖浸水后强度下降
某地发生历史罕见的洪水。洪水退后,许 多砖房倒塌,其砌筑用的砖多为未烧透的 多孔的红砖,见下图。请分析原因。

原因分析:这些红砖没有烧透,砖
内开口孔隙率大,吸水率高。吸水
后,红砖强度下降,特别是当有水
进入砖内时,未烧透的粘土遇水分

散,强度下降更大,不能承受房屋

未烧透的的重红量,砖从而导致房屋倒塌。
保温层的目的是较少外界温度变化对住户的 影响,材料保温性能的主要描述指标为导热 系数和热容量,其中导热系数越小越好。观
A B 察两种材料的剖面,可见A材料为多孔结构, B材料为密实结构,多孔材料的导热系数较 小,适于作保温层材料。
7.其它性质
1 耐火性
耐火材料、难熔材料、易熔材料
2 耐燃性
韧性材料:低碳钢、木材、玻璃钢等。
1.2.4 材料的硬度和耐磨性(了解性内容)
1.硬度——抵抗外物压入或刻划的能力。 可采用:莫氏硬度(石料、陶瓷等); 布氏、洛氏硬度(金属材料)。 特点:硬度高,耐磨性强,但不易加工。
2.耐磨性——材料表面抵抗磨损的能力。
(路面材料要求)
1.3 材料的耐久性
材料在各种环境因素作用下,在长期使用过程中 保持其性能稳定的性质。
5. 材料的抗冻性
——材料饱水状态下<,思能考经>:受孔多隙次率冻越融交替作用, 既不破坏,强度又不大显,著材降料低的的抗性冻质性。
抗冻等级:能经受冻融是否循越环差的?最大次数,

记为F50、F100、F200、F300 …
材料的孔隙包括开口孔隙和闭口孔隙两种,材料的孔 隙率则是开口孔隙率和闭口孔隙率之和。材料受冻融 破坏主要是因其孔隙中的水结冰所致。进入孔隙的水 越多,材料的抗冻性越差。水较难进入材料的闭口孔 隙中。若材料的孔隙主要是闭口孔隙,即使材料的孔 隙率大,进入材料内部的水分也不会很多。在这样的

第1章 土木工程材料的基本性质

第1章 土木工程材料的基本性质
大的变形而不至于破坏的性能,称为韧性。 特点:其应力—应变曲线下的面积较大,这个面积就 是其破坏前吸收的总能量。 具有这种性质的材料称为韧性材料,
32
1.6.4 硬度和耐磨性
• 硬度

材料表面抵抗被刻划、擦伤和磨损的能力,称为硬 度。
按测定方法分为:压痕硬度、冲击硬度、回弹硬度、 刻痕硬度等。
实体体积 ——李氏比重瓶法(粉末)
表观体积(实体+闭口) —— 排水法(水中重法) 毛体积(实体+闭口+开口)
——规则试件:计算法;
不规则试件:饱和排水法、封蜡排液法 堆积体积(实体+闭口+开口+间隙)——密度筒法
8
1.2.2
材料的孔隙率与密实度 ——单块材料
V0 V 0 孔隙体积 100 % 100 % (1 ) 100 % 孔隙率 P 总体积 V0
m1——材料湿质量,g mo——材料干质量,g
☺ 材料湿度与空气湿度达平衡时的含水率称为平衡含水率。 ☺ 影响材料含水率的因素有:环境温度和湿度、材料亲水性、 孔隙率、孔隙特征。 思考题:含水率为4%的湿砂重100g,其中水的重量 为4 g?
19
1.3.3
耐水性(Water resistance)
卸载后材料的变形行为:
变形可完全恢复 变形不可恢复或部分恢复
29
• 弹性
当撤去外力或外力恢复到原受力状态,材料能够完全 恢复原来变形的性质称为弹性; 具有这种性质的材料称为弹性材料; 根据其应力—应变曲线,有:线弹性和非线弹性。
• 塑性 非线性特征:
当撤去外力或外力恢复到原受力状态,材料仍保持变 应力~应变曲线不是直线 应力与应变成正比; 形后形状和尺寸、并不发生裂缝的性质称为塑性; 而是曲线 应力~应变曲线是一条直 具有这种性质的材料称为塑性材料; 应力与应变之比——弹性 线 模量不是常数 其应力—应变曲线是非线性的,且不连续,每一点的 应力与应变之比(直线斜率) 应力与应变之比都不相同。 是弹性模量,为常数。 E

第1章 土木工程材料的基本性质

第1章 土木工程材料的基本性质

不同材料,强度等级有不同的划分方法,具体划分在各章分讲 不同材料,强度等级有不同的划分方法,
常用材料强度
比强度——指材料强度与其表观密度 2. 比强度 指材料强度与其表观密度 之比。 之比。 意义:反映材料轻质高强的指标。值越大 材料越轻质高强 影响材料强度的因素 ①材料的组成、结构和构造 ②试验条件:试验方面的因素有:试件 大小、试件形状、加荷速度以及试件的 平整度等。 ③材料的含水情况 ④温度
1.4
耐久性与环境协调性
耐久性——材料抵抗外力破坏的能力。 材料抵抗外力破坏的能力。 1.4.1 耐久性 材料抵抗外力破坏的能力 综合性质: 抗渗性、抗冻性、抗蚀性、抗老化、耐热性、耐磨 性等不同环境中,应考虑相应的性质。 1.4.2 环境协调性 ——对资源和能源消耗少,对环境污染小,循环再生利用 率高。 目前,提倡“绿色建材”
注意:随含水量增加,减弱其内部结合力,导致强度下降。 注意:随含水量增加,减弱其内部结合力,导致强度下降。 KR:0~1之间,通常>0.80则认为是耐水材料 0~1之间,通常>0.80则认为是耐水材料 之间 >0.80则认为是 若在潮湿环境下的重要建筑物,必须选用>0.85的材料建造 若在潮湿环境下的重要建筑物,必须选用>0.85的材料建造 潮湿环境下的重要建筑物 >0.85
1.5.2 弹性和塑性 1.弹性——外力作用产生变形,外力取消能完全恢复。 指标:弹性模量
σ E= ε
意义:E表示材料抵抗变形的指标,E值越大,材料 越不易变形,即抵抗变形的能力越强。 2.塑性——外力作用产生变形,外力取消变形不能恢复
混凝土的应力应变曲线
钢的应力应变曲线
1.5.3 韧性和脆性 1.脆性——无明显塑性变形,突然破坏。 脆性材料:石、砖、砼、陶瓷、玻璃、铸铁等 特点:抗压强度远高于抗拉强度 2.韧性——产生一定变形不破坏,能吸收较大的能量。 韧性材料:低碳钢、木材、玻璃钢等。 采用冲击试验测定。

1-土木工程材料的基本性质

1-土木工程材料的基本性质
当材料两侧存在不同压力时,一切破坏因素 (如腐蚀性介质)都可通过水或气体进入材料内 部,然后把所分解的产物代出材料,使材料逐 渐破坏,如地下建筑、基础、压力管道、水工 建筑等经常受到压力水或水头差的作用,故要 求所用材料具有一定的抗渗性,对于各种防水 材料,则要求具有更高的抗渗性。
材料的抗渗性通常用两种指标表示:渗透系 数和抗渗等级。
材料的抗冻性:材料在水饱和状态下,能经受多次冻 融循环作用而不破坏,也不严重降低强度的性质。
材料的抗冻性用抗冻等级表示。
抗冻等级是以规定的试件,在规定试验条件下, 测得其强度降低不超过规定值,并无明显损坏和剥 落时所能经受的冻融循环次数,以此作为抗冻等级, 用符号“Fn”表示,其中n即为最大冻融循环次数。 如F25、F50等。
冻融破坏的大坝坝面
五、材料的热工性质
1、材料的导热性
材料传递热量的性质称为导热性,以导热系数表
示,即
Qa
At(T2 T1 )
式中:λ——材料的导热系数,w/(m·K); Q ——总传热量,J; a ——材料厚度,m;
材料具有亲水性的原因是材料与水接触 时,材料与水之间的分子亲合力大于水本身 分子间的内聚力。当材料与水பைடு நூலகம்间的分子亲 合力小于水本身分子间的内聚力时,材料表 现为憎水性。
材料被水湿润的情况可用润湿边角表示。当材料 与水接触时,在材料、水、空气这三相体的交点 处,作沿水滴表面的切线,此切线与材料和水接 触面的夹角,称为润湿边角(润湿角)。
材料内部孔隙的构造,可分为连通的与封闭的两种。
孔隙按尺寸分为微孔(≤2nm,无害孔)
毛细孔(2~50nm,少害孔)
大孔(≥50nm,有害孔)。
孔隙的大小及其分布、特征对材料的性能影响很大。

无机建筑材料 第一章建筑材料的基本性质

无机建筑材料  第一章建筑材料的基本性质
一般金属材料>非金属材料; 无机材料>有机材料; 晶体材料>非晶体材料
温度越高, λ越大(金属除外)
3. 热容量
材料加热时吸收热量,冷却时放出热量的性质,
称为热容量。大小用比热容(比热)表示
公式 Q=cm(T1-T2)
式中 Q-材料吸收或放出的热量(J) c-材料的比热(J/g·K) m-材料的质量(g) (T1 - T2) -材料受热或冷却前后的温差(K)
易熔材料:耐火度低于1350

耐烧材料与耐火材料
钢铁、铝、玻璃等材料受到火烧或高热作
用会发生变形、熔融,所以虽然是非燃烧 材料,但不是耐火的材料
【观察与讨论】:孔隙对材料性质的影 响
某工程顶层欲加保温层,以下两图为两种材料的
剖面,见图。请问选择何种材料?
A 材料剖面
B
1.1.5 与声有关的性质
引起固体材料受迫振动而发出的声能。
采用不连续的结构处理
1.1.6 与光有关的性质
光吸收比 材料吸收的光通量与入射光通量之比。 光反射比 材料反射的光通量与入射光通量之比。 光透射比 透过材料的光通量与入射光通量之比。 透明性

材料的透明性也是与光线有关的性质。
既能透光又能透视的物体称为透明体; 只能透光不能透视的物体称为半透明体; 既不能透光又不能透视的物体称为不透明体。
常见热导率参数:
泡沫塑料 λ=0.035
水 λ=0.58 冰 λ=2.2 空气 λ=0.023 松木 λ=1.17~0.35
大理石 钢材 混凝土
λ=3.5 λ=58 λ=1.51
影响热导率的因素
材料内部的孔隙构造-密闭的空气使λ降 材料的含水情况-含水、结冰使λ增 材料的组成与结构

第1章土木工程材料基本性质

第1章土木工程材料基本性质

历史回顾
因地制宜用材的万里长城
万里长城飞越崇山峻岭,是我国古代劳 动人民的杰作,也是建筑史上的丰碑。万里 长城选用材料因地制宜,堪称典范。
居庸关、八达岭一段,采用砖石结构。 墙身用条石砌筑,中间填充碎石黄土,顶部 再用三四层砖铺砌,以石灰作砖缝材料,坚 固耐用。平原黄土地区缺乏石料,则用泥土 磊筑长城,将泥土夯打结实,并以锥刺夯打 土检查是否合格。在西北玉门关一带,既无 石料又无黄土,以当地芦苇或柳条与砂石间 隔铺筑,共铺20层。
5 抗冻性 材料在吸水饱和状态下抵抗多次 冻融循环而重量损失不大,强度也无 显著降低的性质称为材料的抗冻性。 (水变冰体积膨胀约9%)
材料受冻融破坏主要是 因其中的水结冰所致,水结冰 时体积增大约9%,这对材料孔 隙产生很大的冻胀应力而开裂, 冻融循环次数越多,对材料的 破坏作用越大。
1.1.4 热工性质
1.热容量和比热容 材料的热容量是指材料在温度变化时吸收和放出热量的能力。 材料比热容的物理意义是指1kg重的材料,在温度每改变1K时所 吸收或放出的热量。 2.导热性 当材料两侧存在温度差时,热量将由温度高的一侧通过材料 传递到温度低的一侧,材料的这种传导热量的能力,称为导热性。 材料的导热性可用导热系数来表示。材料的导热系数愈小,表示 其绝热性能愈好。 3. 燃烧性能 按照建筑材料及制品燃烧性能分级规定,将建筑材料及制品 分为四个等级:A级(不燃材料或制品)、B1级(难燃材料或制 品)、B2级(可燃材料或制品)和B3级(易燃材料或制品)。
第1章 土木工程材料基本性质
本章学习指导 历史回顾 1.1 材料的物理性质 1.2 材料的力学性质 1.3 材料的耐久性与环境协调性 1.4 材料的组成、结构、构造及其对性能的影响 创新能力培养 常见问题及解答 练习题 参与式试验

土木工程材料

土木工程材料

第1章材料的基本性质1. 密度:材料在绝对密实状态下,单位体积的质量。

体积=实体2. 表观密度(视密度):材料在表观状态下,单位体积的质量。

体积=实体+封闭孔隙3. 毛体积密度(容重):材料在自然状态下,单位体积的重量。

体积=实体+封闭孔隙+开口孔隙4. 堆积密度:散粒材料在自然堆积状态下,单位体积的质量。

体积=实体+封闭孔隙+开口孔隙+空隙5. 密实度:材料体积内被固体物质所充实的程度。

6. 孔隙率:材料体积内孔隙体积所占的比例。

7. 填充率:散粒材料在堆积状态下,其颗粒的填充程度。

8. 空隙率:散粒材料在堆积状态下,颗粒之间的空隙体积所占的比例。

9. 亲水性材料:石料、砖瓦、水泥混凝土、木材憎水性材料:沥青、建筑塑料、多于有机涂料10. 吸水性:材料在水中吸收水分的性质,吸水能力的大小用吸水率表示11. 吸湿性:材料在潮湿空气中吸收水分的性质,用含水率表示。

12. 耐水性:材料长期在饱和水的作用下抵抗破坏,保持原有功能的性质。

用软化系数表示,耐水性材料其软化系数应不低于0.85 13. 抗渗性:材料在压力水作用下,抵抗渗透的性质,用渗透系数表示。

渗透系数越小的材料其抗渗性越好,材料抗渗性的高低与材料的孔隙率和孔隙特征有关。

14. 抗冻性:材料在吸水饱和状态下,抵抗多次冻融循环的性质,用抗冻等级表示。

15. 导热性:热量在材料中传导的性质。

用导热系数表示。

导热系数的物理意义:在一块面积为一平方米的壁板上,板的两侧表面温度差为1K时,在单位时间内通过板面的热量。

导热系数值越小,材料的绝热性能越好。

习惯上吧导热系数不大于0.175W/(m·k)的材料称绝热材料。

材料受潮或冻结后,其导热系数将有所增加。

16. 比热的物理意义:表示1g材料温度升高或降低1K时所吸收或放出的热量。

比热C与材料质量m的乘积成为材料的热容量。

热容量较大,导热系数较小的材料,才是良好的绝热材料。

17. 弹性:材料在外力作用下发生变形,当外力取消后,材料能完全恢复原来形状和尺寸的性质。

第1章 土木工程材料的基本性质

第1章 土木工程材料的基本性质
性的环境作用及评定。 【重点】材料基本性质的概念含义、公式表达,各性质之
间的区别与联系,材料性质与其组成、结构、构造以及环境因
素的关系,材料强度的计算与测定。 【难点】材料基本性质的影响因素及其作用机理。
Civil Engineering Materials
1.1 材料的物理性质
1.1.1 与质量有关的性质
mb mg Vw 1 WV 100% 100% Vg Vg w
(1-9)
式中 WV ——材料的体积吸水率(%);
VW ——材料吸水饱和时吸入水的体积(cm3 ) ;
Civil Engineering Materials
1.1.2 与水有关的性质
Vg ——材料在干燥状态下的自然体积(cm3);
1.1.1 与质量有关的性质
2.密实度与孔隙率 (l)密实度(D) 密实度是指材料体积内被固体物质所充实的程度,即材料中固 体物质的体积占材料总体积的百分率。按下式计算:
D
V 100% 0 100% V0
(1-4)
(2)孔隙率(P)
孔隙率是指材料内部孔隙的体积占材料总体积的百分率。可用
Civil Engineering Materials
常用土木工程材料的密度、表观密度、堆积密度和孔隙率
材料 石灰石 花岗岩 碎石(石灰石) 砂 黏土 普通黏土砖 黏土空心砖 水泥 普通混凝土 轻骨料混凝土 木材 钢材 泡沫塑料 玻璃 密度 (g/cm3) 2.60 2.60~2.90 2.60 2.60 2.60 2.50~2.80 2.5 3.1 — — 1.55 7.85 — 2.55 表观密度 (kg/m3) 1800~2600 2500~2800 — — — 1600~1800 1000~1400 — 2000~2800 800~1900 400~800 7850 20~50 2550 堆积密度 (kg/m3) — — 1400~1700 1450~1650 1600~1800 — — 1200~1300 — — — — — — 孔隙率(%) — 0.5~3.0 — — — 20~40 — — 5~20 — 55~75 0 — 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、非晶体(又称玻璃体或无定形体)
是熔融物在急速冷却时,质点来不及按规律 排列所形成的内部质点无序排列(短程有序,长程无序) 的固体或固态液体。
非晶体特性: (1)各向同性,无固定熔点和几何形状; (2)不稳定,内部存在大量的化学能。
微观结构形式及其主要特性
微观结构
原子晶体 (以共价键结合)
常见材料 金刚石、石英、刚玉
与同组成晶体相比强度、硬度密度化学 稳定性、导热性、导电性差,各向同性
(二)亚微观结构(显微或细观结构) 光学显微镜所看到的组织结构(μm)。 主要研究材料内部的晶粒、颗粒等的大小和形态、晶界或界面, 孔隙与微裂纹的大小、形状及分布。 材料的亚微观结构对材料的强度、耐久性等有很大的影响。材 料的亚微观结构相对较易改变。
二、材料的结构 (一)微观结构 原子、分子层次的结构(Ǻ) 借助电子显微镜、X-射线衍射仪等研究。决定强度、硬度、熔点等。
1、晶体:是质点(原子或分子、离子)按一定规律在空间重复排列的固体, 具有特定几何外形和固定熔点。
晶体分为原子晶体、分子晶体、离子晶体、金属晶体 晶体特性: (1)各向异性:因观察方向不同而表现出的差异; (2)最小内能:内部质点规则排列,质点间引力和斥力平衡; (3)最稳定性:化学成分相同而处于不同状态下的物质,以晶体最稳定。
主要特性 强度、硬度、熔点高,密度小
晶体
离子晶体
氯化钠、石膏、石灰岩 强度、硬度、熔点较高,但波动较大。
(以离子键结合)
分子晶体
石蜡及部分有机化合物 强度、硬度、熔点较低。大部分可溶,
(以分子键结合)
密度小
金属晶体
铁、钢、铝及其合金
(以金属键结合)
强度、硬度变化大,密度大
非晶体
质点无规律排列 玻璃、火山灰、粉煤灰
第1章 材料的基本性质 1-1 材料的组成、结构与性质
材料在使用过程中,受到各种不利因素影响 (力、介质)。因此,材料需具备抵抗这些不利因 素作用的能力,即具备各种性能。决定这些性质 的内部因素是材料的组成和结构,要了解材料的 性质,必须了解材料的组成、结构与性质间的关 系。 一、材料的组成
(四)堆积密度 条件:自然堆积、气干状态
p
mw' Vp
mw' V0 Vv
绝干状态:绝干堆积密度,ρpd=m/Vp 其它状态:注明含水状态
泡沫塑料、泡沫玻璃
轻质、保温、低强度
纤维结构
木、竹、岩棉、玻纤、钢纤
高抗拉、大多轻质保温、吸声
聚集结构
陶瓷、砖、某些天然石材
强度较高
复合 粒状聚集结构 材料
纤维聚集结构
各种混凝土钢筋混凝土 岩棉板、纤维板、纤维增强塑料
综合性能好、价格低 轻质、保温,或高抗拉
多孔结构
加气混凝土、泡沫混凝土
轻质保温
叠合结构
(一)孔隙的分类
孔隙大小:微孔、毛细孔、大孔。小于20nm的微孔,视为无害 孔隙。
形状:球形、片状(即裂纹)、管状、墨水瓶状、带尖角的孔隙。 常压下水能否进入孔隙:开口孔隙(连通孔隙)
闭口孔隙(封闭孔隙)。
(二)孔隙形成 1.水分子的占据作用: 实际用水量高于理论用水量。 2.外加的发泡作用 如生产加气混泥土的发泡剂,可在材料中形成大量的孔隙。 3.火山爆发作用 火山爆发时,喷到空中的岩浆,冷却后在岩石中形成大量孔隙。 4.焙烧作用 材料中掺入的可燃材料在高温下燃烧掉而形成孔隙;由于某些
成分的作用产生气体而形成孔隙
(三)孔隙对材料性质的影响 一般情况下,孔隙率↑
体积密度↓ 堆积密度↓
强度↓ 耐磨性↓ 抗冻性↓ 抗渗性↓ 耐腐蚀性↓ 耐水性↓ 耐久性↓ 保温性↑吸声性↑ 吸水性↑吸湿性 ↑
1-2 材料的基本状态参数
一、不同结构状态下的密度 (一)密度(绝对密度、真密度) 条件:干燥、绝对密实状态
(三)宏观结构(构造) 用肉眼或放大镜即可分辨的组织结构(mm)。 主要研究材料中的大孔隙、裂纹、不同材料的组合与复合方式 (或形式)、各组成材料的分布等。如岩石的层理,混凝土中的砂石
材料的宏观结构及其相应的主要性质
材料的宏观结构
单一 致密结构 材料
多孔结构
常用材料 钢材、玻璃、沥青、部分塑料
主要特性 高强,或不透水、耐腐
纸面石膏板、胶合板、加芯板 综合性能好
(四)组成、结构和性能的关系 1、材料的宏观结构不同, 即使组成与微观结构相同, 材料的性质同或相似, 即使组成或微观结构不同, 材料的性质与用途相同或相似。 如泡沫玻璃、泡沫塑料。
三、结构中的孔隙与材料性质的关系
(一)化学组成
(二)矿物组成 具一定化学成分和结构特征的 单质或化合物(决定材料的主要性质)。 (三)化组与矿组关系 1、化组不同,矿组不同; 2、化组相同,矿组可不同,且性质不同。 例如:石墨和金刚石 (四)组成与性质关系
金刚石是典型的原子晶体,每个碳原子以sp3杂化轨道与其他 四个碳原子形成共价单键,形成正四面体排布。由于C―C键的 键能大(346.9kJ·mol”),且形成“无限”分子,熔化时要打 开所有的C―C键的话需要吸收大量热量,故其熔点是所有元素 中最高的(3570℃,略低于石墨),硬度也是最大的。又因金 刚石中碳原子的所有外围电子都参与定域共价键的形成,晶体 中没有自由电子,故不导电。而在石墨中,碳原子以sp2杂化 轨道与同平面内相邻的三个碳原子形成共价单键,且排成六元 环形的网状结构。平面中各碳原子还剩有一与平面垂直的未杂 化的p轨道,彼此重叠,形成一不定域的大π (Лba)键。在大 丌键中电子能自由移动,相当于金属晶体中的自由电子,故石 墨沿着层的方向能导电、导热。也由于大π键的存在,使得石 墨的熔点略高于金刚石。各网状平面之间是以范德华力结合的, 故石墨极易沿片层方向剥开和滑动,质软,在纸上抹擦都会留 下痕迹。不论金刚石或石墨,化学性质都很稳定。
m
V
式中 ρ—密度g/cm3; m—绝干质量g; V—绝对密实体积cm3。
(二)表观密度(视密度) 条件:干燥、不含开孔
mm
a
Va
V
Vcp
(三)体积密度 条件:自然气干状态
0
mw V0
mw V Va p
V
mw Vcp Vop
绝干状态:绝干体积密度(ρ0d=m/Vo) 其它状态:注明含水状态
相关文档
最新文档