高二下学期期中考试(简单)
广东省佛山市广东顺德德胜学校2023-2024学年高二下学期期中考试数学试卷(含简单答案)
顺德德胜学校2023-2024学年高二下学期期中考试数学本试卷共4页.满分150分,考试时间120分钟.注意项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效在草稿纸、试题卷上答题无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.4.保持答题卡卡面清洁,不折叠、不破损.考试结束后请将答题卡和答题卷交回,试卷由考生自己保管.第I 卷(选择题)一、单选题:本题共8小题,每小题5分,共0分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 某影城有一些电影新上映,其中有3部科幻片、4部警匪片、3部战争片及2部喜剧片,小明从中任选1部电影观看,不同的选法共有( )A. 9种B. 12种C. 24种D. 72种2. 已知函数,则( )A. 6 B. 8 C. 12 D. 163. 已知公差为的等差数列满足:,且,则( )A. B. C. D. 4. 函数的极小值点为( )A B. C. D. 5. 已知函数,则( )A. 1B. 2C.D. 6. 三次函数在上是减函数,则实数取值范围是( ).的()3f x x =0(2)(2)limx f x f x ∆→+∆-=∆d {}n a 5321a a -=20a =d =1-012()3612f x x x =+-()4,10-()2,10--42-()()2131ln 2f x f x x x ='-++()1f '=1212-()32f x mx x x =--(),-∞+∞mA. B. C D. 7. 某个体户计划同时销售A ,B 两种商品,当投资额为千元时,在销售A ,B 商品中所获收益分别为千元与千元,其中,,如果该个体户准备共投入5千元销售A ,B 两种商品,为使总收益最大,则B 商品需投( )千元.A. B. C. D. 8. 已知定义在上的函数满足,且,则的解集是( )A. B. C. D. 二、多选题:本题共3小题,每小题6分,共18分.在每小题出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 下列说法中正确的有( )A. 4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有种报名方法B. 4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有种报名方法C. 4名同学争夺跑步、跳高、跳远三项冠军(每项冠军只允许一人获得),共有种可能结果D. 4名同学争夺跑步、跳高、跳远三项冠军(每项冠军只允许一人获得),共有种可能结果10. 下面是关于公差的等差数列的四个命题,其中正确的有( )A. 数列是等差数列B. 数列是等差数列C. 数列是递增数列D. 数列是递增数列11. 已知函数的导函数为,则( )A. 函数的极小值点为B.C. 函数的单调递减区间为D. 若函数有两个不同的零点,则.1,3⎛⎤-∞- ⎥⎝⎦(),1-∞1,3⎛⎫-∞- ⎪⎝⎭(],1-∞()0x x >()f x ()g x ()2f x x =()()4ln 21g x x =+12325272()0,∞+()f x ()()0xf x f x '-<()22f =()ee 0x xf ->(),ln2-∞()ln2,+∞()20,e ()2e ,+∞344334430d >{}n a {}21n a -{}21n a -n a n ⎧⎫⎨⎬⎩⎭{}3n a nd +()(1)e x f x x =+()f x '()f x 21e -(2)0f '-=()f x (,2)-∞-()()g x f x a =-21,e a ⎛⎫∈-+∞ ⎪⎝⎭第II 卷(非选择题)三、填空题:本题共3小题,每小题6分,共15分12. 已知等比数列前项和为,,,则______.13. 如图,现在提供3种颜色给A ,B ,C ,D 4个区域涂色,规定每个区域只涂一种颜色,且相邻区域颜色不相同,共有___________种不同的涂色方案?14. 已知函数,,,则的最大值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 求下列函数的导数:(1);(2);(3);(4);(5);(6)16. 已知是等差数列,是等比数列,且(1)求的通项公式;(2)设,求数列的前n 项和.17. 已知函数.(1)求函数在点处的切线方程(2)求函数在上的最大值和最小值18. 已知数列的前n 项和为.(1)求证:数列是等差数列;的{}n a n n S 5227a a =326S =414S a a =+()e 1x f x =-0a b >>()()f a f b =()e 2a b -ln 3y =3y x -=()1023y x =+21e x y +=()ln 32y x =-sin 4y x={}n a {}n b 23111443,9,,,b b a b a b ===={}n a n n nc a b =+{}n c ()33f x x x -=()f x ()2,2()f x []2,1-{}n a 1*11,1,2,n n n n S a a S n ++==+∈N 2n n S ⎧⎫⎨⎬⎩⎭(2)设的前n 项和为;①求;②若对任意的正整数n ,不等式恒成立,求实数的取值范围.19. 已知函数.(1)讨论的单调性;(2)当恒成立时,求取值范围;(3)证明:.的{},3n n n nS b b =n T n T 52n n T λ-<⋅λ()1e 1-=--x f x a x ()f x ()ln 0f x x x +-≥a 11eln(1)n i i n n =>++∑顺德德胜学校2023-2024学年高二下学期期中考试数学简要答案第I卷(选择题)一、单选题:本题共8小题,每小题5分,共0分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】C【3题答案】【答案】C【4题答案】【答案】D【5题答案】【答案】C【6题答案】【答案】A【7题答案】【答案】B【8题答案】【答案】A二、多选题:本题共3小题,每小题6分,共18分.在每小题出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分【9题答案】【答案】BC【10题答案】【答案】ABD【11题答案】【答案】BC第II卷(非选择题)三、填空题:本题共3小题,每小题6分,共15分【12题答案】【答案】##【13题答案】【答案】24【14题答案】【答案】四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)(2)(3)(4)(5) (6)【16题答案】【答案】(1)(2)【17题答案】【答案】(1);(2)的最小值是,的最大值是.【18题答案】【答案】(1)证明略(2)①;②1073171e0y '=43y x -'=-()92023y x '=+212e x y +'=32323y x x ⎛⎫'=> ⎪-⎝⎭4cos 4y x'=21n a n =-2312n n -+9160x y --=()f x 2-()f x 2()25253nn T n ⎛⎫=-+⨯ ⎪⎝⎭73λ>【19题答案】【答案】(1)答案略 (2) (3)证明略1a。
北京市第一六六中学高二下学期期中考试数学试题(含简单答案)
【答案】D
【4题答案】
【答案】A
【5题答案】
【答案】A
【6题答案】
【答案】B
【7题答案】
【答案】C
【8题答案】
【答案】D
【9题答案】
【答案】C
【10题答案】
【答案】D
二、填空题(本大题共5小题,每小题5分)
【11题答案】
【答案】-5
【12题答案】
【答案】
【13题答案】
【答案】0(答案不唯一, 即可)
【14题答案】
【答案】36
【15题答案】
【答案】②③④
三、解答题(本大题共6小题,解答应写出文字说明,证明过程或演算步骤.)
【16题答案】
【答案】(1)平均分为69;
(2)分布列略,数学期望为 .
【17题答案】
【答案】(1)
(2)答案略(3)证明略
【18题答案】
【答案】(1)
(2)分布列略,期望
(3)青年人
老年人
中年人
青年人
酸奶
鲜奶
酸奶
鲜奶
酸奶
鲜奶
满意
100
10
不满意
50
30
30
50
50
80
(1)从样本中任意取1人,求这个人恰好对生产的酸奶质量满意的概率;
(2)从该地区青年人中随机选取3人,以频率估计概率,记这3人中对酸奶满意的人数为 ,求 的分布列与期望;
(3)依据表中三个年龄段的数据,你认为哪一个消费群体鲜奶的满意度提升0.1,使得整体对鲜奶的满意度提升最大?(直接写出结果)
6.已知直线 与圆 相交于 两点,且 (其中 为原点),那么 的值是
A. B. C. D.
北京市2023-2024学年高二下学期期中考试化学试题含答案
北京市2023-2024学年第二学期期中测试高二化学(答案在最后)试卷说明:试卷分值100,考试时间90分钟,I卷为选择题,共22个小题,II卷为主观题,包括第23至第27题可能用到的相对原子质量:H1B11C12N14O16Cu64I卷一.选择题(共22个小题,每题2分,共44分。
每小题只有一个正确选项,请选择正确答......案填在机读卡相应的题号处............)1.下列变化过程只需要破坏共价键的是A.碘升华B.金刚石熔化C.金属钠熔融D.氯化钠溶于水【答案】B【解析】【详解】A.碘升华破坏的是分子间作用力,A错误;B.金刚石中碳碳之间是共价键,融化的时候,需要破坏共价键,B正确;C.金属钠属于金属晶体,融化的时候破坏的是金属键,C错误;D.氯化钠中存在着钠离子和氯离子之间的离子键,溶于水时破坏的是离子键,D错误;故选B。
2.某粗苯甲酸样品中含有少量氯化钠和泥沙。
用重结晶法提纯苯甲酸的实验步骤中,下列操作未涉及的是A. B. C. D.【答案】C【解析】【详解】A.图中加热溶解,便于分离泥沙,故A正确;B.冷却结晶可析出苯甲酸晶体,故B正确;C.重结晶实验中不涉及萃取、分液,故C错误;D.苯甲酸在水中溶解度随温度降低而减小,需要趁热过滤,防止损失,故D正确;故选:C。
3.下列物质的类别与所含官能团都正确的是A.醛类—CHOB.羧酸—COOHC.酚类—OH D.CH 3OCH 3酮类—O—【答案】B【解析】【详解】A .属于酯类,官能团为-COO-,A 错误;B .属于羧酸,官能团为-COOH ,B 正确;C .属于醇类,官能团为-OH ,C 错误;D .CH 3OCH 3属于醚类,官能团为醚键:-O-(与氧原子直接相连的原子为碳原子),D 错误;故选B 。
4.下列物质的一氯代物只有一种的是A.乙烷B.丙烷C.邻二甲苯D.对二甲苯【答案】A【解析】【详解】A .乙烷只有一种位置的H 原子,因此其一氯取代产物只有一种,A 符合题意;B .丙烷有2种不同位置的H 原子,因此其一氯取代产物有2种,B 不符合题意;C .邻二甲苯有3种不同位置的H 原子,因此其一氯代物有3种不同结构,C 不符合题意;D .对二甲苯有2种不同位置的H 原子,因此其一氯代物有2种不同结构,D 不符合题意;故合理选项是A 。
北京大学附属中学(行知、未名学院)2023-2024学年高二下学期期中考试数学试卷(含简单答案)
北京大学附属中学(行知、未名学院)2023-2024学年高二下学期期中考试数学试卷考生须知:1.本试卷共4页,分为两部分:第一部分为选择题,共40分;第二部分为非选择题,共60分.2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效.第一部分必须用2B 铅笔作答,第二部分必须用黑色字迹的签字笔作答.3.考试结束后,考生应将答题卡放在桌面上,待监考员收回.第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知等差数列通项公式为,则公差为()A 5B. 4C. 2D. 32. 下列函数中,既是奇函数又在区间上单调递增的函数是( )A. B. C. D.3. 已知函数,下面说法正确的是( )A. 在上的平均变化率为1B. C. 是的一个极大值点 D. 在处的瞬时变化率为24. 在数列中,,且,则其前项的和为()A. 841B. 421C. 840D. 4205. 已知函数的定义域为,其导函数的图象如图所示,则下列结论中错误的是( )的.{}n a 32n a n =+()0,∞+ln y x x=+3y x x =+1y x x=+2sin y x x=+()sin2f x x =()f x π0,4⎡⎤⎢⎥⎣⎦()cos2f x x'=π3x =()f x ()f x 0x ={}n a 11a =()*12N n n a a n n ++=∈41()y f x =R ()y f x ='A. 2是的极大值点B. 在处的切线斜率大于0C.D. 在上一定存在最小值6. 设等比数列的前项和为,则“” 是“数列为递增数列”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件7. 已知为等差数列,是其前项和,若,且,则当取得最大值时,( )A. 3B. 6C. 7D. 88. 若函数在上单调,则实数的取值范围是( )A B. C. D. 9. 给出以下值:①,②,③,④,其中使得函数有且仅有一个零点的是( )A. ①④B. ②④C. ①②③D. ①②④10. 李华学了“斐波那契数列”后对它十分感兴趣,于是模仿构造了一个数列:,,,. 给出下列结论:①;②;③设,则;④设,则有最大值,但没有最小值.其中所有正确结论的个数是( )A. 1B. 2C. 3D. 4第二部分(非选择题 共60分)二、填空题共5小题,每小题4分,共20分.11. 已知等比数列中,,,则该数列的前项和为______.12. 设,使存在极值的一个的值可以是______.13. 设,若的单调减区间为,则______,______..()f x ()f x ()()0,0f ()()34f f <()f x ()3,5-{}n a n n S 321a a a >>{}n S {}n a n S n 83S S >130S <n S n =()2ln 2x f x x =-(),m +∞m [)1,+∞()1,+∞()0,1(]0,1k e k =-1e k =-0k =1k =()e xk f x x=-{}n a 11a =22a =33a =312n n n n a a a a +++=+-20232023a =20242020a =-123n n S a a a a =++++ 20235056S =123n n T a a a a =⋅⋅⋅⋅ n T {}n a 28a =-34a =4()3231f x x ax x =+++()f x a ()2ln f x ax bx x =++()f x ()1,2=a b =14. 函数的定义如下表:1234551234已知,且数列满足对任意的,均有.若,则正整数的值为______.15. 牛顿和拉弗森在17世纪提出了“牛顿迭代法”,相比二分法可以更快速给出近似值,至今仍在计算机等学科中被广泛应用. 如图,设是方程的根,选取作为初始近似值.过点作曲线在处的切线,切线方程为,当时,称与轴的交点的横坐标是的1次近似值;过点作曲线在处的切线,切线方程为,当时,称与轴的交点的横坐标是的2次近似值;重复以上过程,得到的近似值序列. 这就是所谓的“牛顿迭代法”.(1)当,时,的次近似值与次近似值可建立等式关系:______;(2)若取作为2次近似值为______(用分数表示).三、解答题共4小题,共40分.解答应写出文字说明,演算步骤或证明过程.16. 已知函数.(1)求曲线在处切线方程;(2)求函数的单调区间;(3)求函数在区间上的最小值.17. 已知数列为等差数列,,,数列满足,.的的()f x x ()f x 04a ={}n a *n ∈N ()1n n a f a -=123180105m m m a a a a +++++++= m r ()0f x =0x r ()()00,x f x ()y f x =()()00,x f x 1l ()00f x '≠1l x 1x r ()()11,x f x ()y f x =()()11,x f x 2l ()10f x '≠2l x 2x r r {}n x ()0n f x '≠*n ∈N r 1n +1n x +n n x 1n x +=02x =r ()3211233f x x x x =+-+()y f x =0x =()f x ()f x []1,4-{}n a 11a =2410a a +={}n b 11b =121n n b b +=+(1)求数列的通项公式;(2)求证:数列是等比数列;(3)设,求数列的前项和.18. 设函数.(1)求的单调区间;(2)若,设,求证:不存在极大值.19. 已知数列是无穷数列,.(1)若,,写出,的值;(2)已知数列中,求证:数列中有无穷项为;(3)已知数列中任何一项都不等于,且,记,其中为,中较大的数. 求证:数列是递减数列.{}n a {}1n b +n n n c a b =+{}n c n n S ()2e axf x x =()f x 1a =()()g x f x x =-()g x {}n a 11111,0,0n n n n n n n n na a a a a a a a a --+----≥⎧=⎨--<⎩11a =22a =4a 5a {}n a 0k a ={}n a 0{}n a 0120a a >>{}()*212max ,n n n b a a n -=∈N{}max ,m n m n {}n b北京大学附属中学(行知、未名学院)2023-2024学年高二下学期期中考试数学试卷简要答案第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.【1题答案】【答案】D【2题答案】【答案】B【3题答案】【答案】D【4题答案】【答案】A【5题答案】【答案】C【6题答案】【答案】D【7题答案】【答案】B【8题答案】【答案】A【9题答案】【答案】B【10题答案】【答案】C第二部分(非选择题共60分)二、填空题共5小题,每小题4分,共20分.【11题答案】【答案】10【12题答案】【答案】(答案不唯一).【13题答案】【答案】①.## ②. 【14题答案】【答案】145【15题答案】【答案】 ①. ②. 三、解答题共4小题,共40分.解答应写出文字说明,演算步骤或证明过程.【16题答案】【答案】(1)(2)增区间,减区间 (3)【17题答案】【答案】(1) (2)证明略 (3)【18题答案】【答案】(1)答案略 (2)证明略【19题答案】【答案】(1), (2)证明略(3)证明略4140.2532-()()n n n f x x f x '-975631y x =+()(),1,3,-∞+∞()1,3133-21n a n =-1222n n n ++--41a =50a =。
广东省广州市广东实验中学越秀学校2023-2024学年高二下学期期中考试数学试题(含简单答案)
广东实验中学越秀学校2023-2024学年高二下学期期中考试数学本试卷分选择题和非选择题两部分,共4页,满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考号填写在答题卷上.2.选择题每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将答题卷收回.第一部分选择题(共58分)一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目的要求.)1. 在等差数列中,,则值是()A. 12B. 18C. 24D. 302. 已知函数 的导函数 的图象如图所示,那么对于函数 ,下列说法正确的是( )A. 在 上单调递增B. 在 上单调递减C. 在 处取得最大值D. 在 处取得极大值3. 已知离散型随机变量X 的分布列,则( )A. 1B.C.D.4. 已知等比数列的各项互不相等,且,,成等差数列,则( )的{}n a 3712a a +=72S S -()y f x =()f x '()y f x =(),1∞--()1,∞+1x =2x =(1,2,3,4,5)5k P X ak k ⎛⎫=== ⎪⎝⎭13105P X ⎛⎫<<= ⎪⎝⎭231513{}n a 14a 312a 23a 2021202320202022a a a a -=-A. 1B. 2C. 3D. 45. 老师有6本不同的课外书要分给甲、乙、丙三人,其中甲分得2本,乙、丙每人至少分得一本,则不同的分法有( )A. 248种B. 168种C. 360种D. 210种6. 的展开式中常数项为( )A. 120B. C. 180D. 7. 若函数恰有2个零点,则实数a 的取值范围是( )A. B. C. D. 8. 已知数列的前n 项和为且,若对任意恒成立,则实数a 的取值范围是( )A. B. C. D. 二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9. 甲,乙,丙,丁,戊五人并排站成一排,下列说法正确的是( )A. 如果甲,乙必须相邻且乙在甲右边,那么不同的排法有24种B. 最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种C. 甲乙不相邻的排法种数为82种D. 甲乙丙按从左到右的顺序排列的排法有20种10. 定义“等方差数列”:如果一个数列从第二项起,每一项的平方与它的前一项的平方的差都等于同一个常数,那么这个数列就叫做等方差数列,这个常数叫做该数列的方公差.设数列是由正数组成的等方差数列,且方公差为2,,则( )A. 数列的前60项和B. 数列的前60项和的()62132x x x ⎛⎫-- ⎪⎝⎭120-180-()e x f x a x =-10,e ⎛⎫ ⎪⎝⎭(0,1)1,e ⎛⎫-∞ ⎪⎝⎭(,0)-∞{}n a n S 2n nn a =(1)nn n S a a +>-*N n ∈(,1)(2,)-∞-⋃+∞(1,2)-3(1,)2-3(,1)(,)2-∞-+∞ {}n a 135a =11n n a a +⎧⎫⎨⎬+⎩⎭60S =11n n a a +⎧⎫⎨⎬+⎩⎭605S =C. 数列的通项公式是D. 数列的通项公式是11. 已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1000件需另投入2.7万元.设该公司一年内生产该品牌服装x 千件并全部销售完,每千件的销售收入为万元,且当该公司在这一品牌服装的生产中所获得的年利润最大时,则有( )A. 年产量为9000件B. 年产量为10000件C. 年利润最大值38万元D. 年利润最大值为38.6万元第二部分 非选择题(共92分)三、填空题:(本题共3小题,每小题5分,共15分.)12 已知数列满足,且对任意,有,则______.13. 设抛掷一枚骰子的点数为随机变量X______.14. 已知定义在上的函数满足,且,则的解集是______.四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数在点处的切线与直线垂直.(1)求的值;(2)求的单调区间和极值.16. (1)若,求的值;(2)在的展开式中,二项式系数最大的项只有第五项,①求的值;②若第项是有理项,求的取值集合;③求系数最大的项.为.{}2n a221n a n =-{}2n a 221n a n =+()R x ()22110.8,010,301081000,103x x R x x xx ⎧-<≤⎪⎪=⎨⎪->⎪⎩{}n a 11a =*n ∈N ()11nn n a a n +=+-⋅22a ==()0,∞+()f x ()()0xf x f x '-<()22f =()e e0xxf ->()21ex x af x -+=()()1,1f 420240x y ++=a ()f x 423401234(2x a a x a x a x a x -=++++1234a a a a +++22nx ⎫-⎪⎭n k k17. 已知数列的前项和为,满足.(1)求的通项公式;(2)删去数列的第项(其中),将剩余的项按从小到大的顺序排成新数列,设的前项和为,请写出的前6项,并求出和.18. 为建设“书香校园”,学校图书馆对所有学生开放图书借阅,可借阅的图书分为“期刊杂志”与“文献书籍”两类.已知该校小明同学的图书借阅规律如下:第一次随机选择一类图书借阅,若前一次选择借阅“期刊杂志”,则下次也选择借阅“期刊杂志”的概率为,若前一次选择借阅“文献书籍”,则下次选择借阅“期刊杂志”的概率为.(1)设小明同学在两次借阅过程中借阅“期刊杂志”的次数为X ,求X 的分布列与数学期望;(2)若小明同学第二次借阅“文献书籍”,试分析他第一次借哪类图书的可能性更大,并说明理由.19. 已知函数在处取得极值.(1)求的值;(2)设(其中),讨论函数的单调性;(3)若对,都有,求n 取值范围.的{}n a n n S 22n n S a =-{}n a {}n a 3i 1,2,3,i =⋅⋅⋅{}n b {}n b n nT{}n b 6T 2n T 1335()ln ()af x x x a x=+∈R 1x =(e)f ()322111()2()2x P x m x x f x x x+=--+m ∈R ()P x [1,3]x ∀∈2164()ln 11nx x f x x n x x +--+-≤-+广东实验中学越秀学校2023-2024学年高二下学期期中考试数学简要答案一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目的要求.)【1题答案】【答案】D【2题答案】【答案】D【3题答案】【答案】C【4题答案】【答案】D【5题答案】【答案】D【6题答案】【答案】D【7题答案】【答案】A【8题答案】【答案】C二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)【9题答案】【答案】ABD【10题答案】【答案】BC【11题答案】【答案】AD第二部分非选择题(共92分)三、填空题:(本题共3小题,每小题5分,共15分.)【12题答案】【答案】【13题答案】【14题答案】【答案】四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)(2)单调递减区间为和,单调递增区间为,的极大值为,极小值为.【16题答案】【答案】(1);(2)①;②;③.【17题答案】【答案】(1)(2)前6项为2,,,,,;;【18题答案】【答案】(1)分布列略,(2)小明第一次选择借阅“期刊杂志”的可能性更大,理由略【19题答案】【答案】(1) (2)答案略(3)10-(),ln 2-∞3a =-(),1-∞-()3,+∞()1,3-()f x ()263ef =()212e f -=-88-8n ={}1,3,5,7,91171792T x -=2n n a =22425272826438T =()26817nn T =-2930()1e e ef =+5,2⎡⎫+∞⎪⎢⎣⎭。
河北省唐山市十县一中联盟2023-2024学年高二下学期期中考试数学试题(含简单答案)
唐山市十县一中联盟2023-2024学年高二下学期期中考试数学本试卷共4页,19小题,满分150分.考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 某公园有4个门,从一个门进,另一个门出,则不同的走法种数为( )A. 4B. 6C. 12D. 162. 下列运算正确的是( )A. B. C. D. 3. 4幅不同的国画和2幅不同的油画排成一列,2幅油画不相邻,则不同的排法种数为( )A. 240B. 360C. 480D. 7204. 若曲线在点处的切线与直线平行,则( )A B. C. 0 D. 15. 在的展开式中只有第5项的二项式系数最大,则正整数( )A. 7B. 8C. 9D. 106. 从4名医生,3名护士中选出3人组成一个医疗队,要求医生和护士都有,则不同的选法种数为( )A. 12B. 18C. 30D. 607. 已知函数,则( )A. B. C. D. 8. 如图,已知正方形,边长为2,点,分别在线段,上,,将沿折起,使得点到达点的位置,且平面平面,则五棱锥体积的最大值为( ).ππ(sin )cos 33'=(2)2ln 2x x '=1[ln()]x x '-=-(cos )sin x x'=()sin ln(1)f x a x x =++(0,0)21y x =-=a 2-1-()1n x +n =22()e (2)1x f x f x -'=++(3)f '=e 2-e 2+e 5+e 10+ABCD E F AB BC //EF AC BEF △EF B P PEF ⊥ADCFE P ADCFE -A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知为函数导数,的图象如图所示,则( )A. 是的极大值点B. 当时,取得最小值C. 在区间上单调递减D. 在区间上单调递增10. 已知,是正整数,且,则下列等式正确的是( )A. B. C D. 11. 已知函数有两个极值点,,且,则( )A. B. C. D. 三、填空题:本题共3小题,每小题5分,共15分.12. 已知为函数的导数,则______.13. 从黄瓜、白菜、豆角、韭菜、青椒5种蔬菜种子中选出3种分别种在,,三块不同土地上,每块土地只种1种,其中黄瓜不种在土地上,则不同的种法共有__________种.14. 展开式中的的系数为__________.的.的()f x '()f x ()y f x ='0x =()f x 1x =()f x ()f x ()0,1()f x ()1,∞+m n m n ≤461010A A =3441C C C n n n ++=()111A A m m n n n +++=123C C C C 2n n n n n n ++++= ()32f x x kx =-+a b a b <0k ≥0a b +=()2f a >()2f b <()f x '21()f x x x=+()1f '=A B C A ()52x y y -+25x y四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15. 某学习小组共6人,其中男生3名,女生3名.(1)将6人排成一排,3名男生从左到右的顺序一定(不一定相邻),不同排法有多少种?(2)从6人中选出4人,女生甲和女生乙至少1人在内的不同选法共有多少种?16. 已知曲线上一点.(1)当时,求曲线在点处的切线方程;(2)若在点处的切线与两坐标轴围成的三角形面积为9,求实数的值.17. 已知函数.(1)求极值;(2)若方程有两个不相等的实数根,求的值.18. 已知,求下列各式的值.(1);(2);(3).19. 已知,为的导数.(1)证明:当时,;(2)讨论在上的零点个数,并证明的()31f x x mx =--()()1,1P f 2m =()y f x =P ()f x P m ()2e xf x x =()f x ()()f x a a =∈R a ()()523456012345621x x a a x a x a x a x a x a x +-=++++++5a 0246a a a a +++12345623456a a a a a a +++++()2cos e x f x x x =+-()f x '()f x 0x ≥()1f x '≤()f x R ()f x <唐山市十县一中联盟2023-2024学年高二下学期期中考试数学简要答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】C【2题答案】【答案】B【3题答案】【答案】C【4题答案】【答案】D【5题答案】【答案】B【6题答案】【答案】C【7题答案】【答案】A【8题答案】【答案】A二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AC【10题答案】【答案】BC【11题答案】【答案】BCD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】1【13题答案】【答案】48【14题答案】【答案】四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)120(2)14【16题答案】【答案】(1);(2)或.【17题答案】【答案】(1)极大值为,极小值为0 (2)【18题答案】【答案】(1)3(2)16 (3)0【19题答案】【答案】(1)证明略(2)有2个零点,证明略30-3y x =-527224e 24e a =。
江苏省南通市2023-2024学年高二下学期期中质量监测数学试题(含简单答案)
南通市2023-2024学年高二下学期期中质量监测数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上指定位置上,在其他位置作答一律无效.3.本卷满分为150分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知向量,,若,则( )A. B. C. 4D. 22. 记函数的导函数为.若,则( )A. B. 0C. 1D. 23. 某产品的广告费用(单位:万元)与销售额(单位:万元)之间有如下关系:2456830405060已知与的线性回归方程为,则等于( )A. 68B. 69C. 70D. 714. 已知函数,则的图象大致为( )A. B.(1,,2)a m = (2,4,)b n =- //a bm n +=4-6-()f x ()f x '()sin f x x x =+()0f '=1-x y x yay x 715y x =+a ()ln f x x x =-()f xC. D.5. 在的展开式中,含项的系数为( )A 16B. -16C. 8D. -86. 甲、乙两人投篮命中率分别为和,并且他们投篮互不影响.现每人分别投篮2次,则甲与乙进球数相同的概率为( )A.B.C. D.7. 今年春节,《热辣滚汤》、《飞驰人生2》、《熊出没之逆转时空》、《第二十条》引爆了电影市场,小帅和他的同学一行四人决定去看电影.若小帅要看《飞驰人生2》,其他同学任选一部,则恰有两人看同一部影片的概率为( )A.B.C.D.8. 已知函数,若对任意正数,,都有恒成立,则实数a 的取值范围( )A. B. C. D. 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 有3名学生和2名教师排成一排,则下列说法正确的是( )A. 共有120种不同的排法B. 当2名教师相邻时,共有24种不同的排法C. 当2名教师不相邻时,共有72种不同的排法D. 当2名教师不排在两端时,共有48种不同的排法.4(1)(2)x x -+3x 121373611361336173696491619324564()21ln 2f x a x x =+1x ()212x x x ≠()()12121f x f x x x ->-10,4⎛⎤ ⎝⎦10,4⎛⎫⎪⎝⎭1,4⎡⎫+∞⎪⎢⎣⎭1,4⎛⎫+∞⎪⎝⎭10. 已知,则( )A. 展开式各项的二项式系数的和为B. 展开式各项的系数的和为C.D. 11. 如图所示的空间几何体是由高度相等的半个圆柱和直三棱柱组合而成,,,是上的动点.则( )A. 平面平面B. 为的中点时,C. 存在点,使得直线与的距离为D. 存在点,使得直线与平面所成的角为三、填空题:本题共3小题,每小题5分,共15分.12. 已知随机变量,且,则__________.13. 已知事件相互独立.若,则__________.14. 若函数有绝对值不大于1的零点,则实数的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数.(1)求曲线在处的切线方程;(2)求在上的最值.1002100012100(12)x a a x a x a x -=++++ 10021-024********a a a a a a a a ++++>++++ 123100231000a a a a ++++< ABF DCE -AB AF ⊥4AB AD AF ===G »CDADG ⊥BCGG »CD//BF DG G EFAG G CF BCG 60()22,X N σ:(1)0.7P X >=(23)P X <<=,A B ()()0.6,0.3P A P B A ==()P AB =()334f x x x a =-+a ()()1e xf x x =-()y f x =()()1,1f ()f x []1,2-16. 如图,在直四棱柱中,底面是梯形,,且是的中点.(1)求点到平面的距离;(2)求二面角正弦值.17. “五一”假期期间是旅游的旺季,某旅游景区为了解不同年龄游客对景区的总体满意度,随机抽取了“五一”当天进入景区的青、老年游客各120名进行调查,得到下表:满意不满意青年8040老年10020(1)依据小概率值的独立性检验,能否认为“是否满意”与“游客年龄”有关联;(2)若用频率估计概率,从“五一”当天进入景区的所有游客中任取3人,记其中对景区不满意的人数为,求的分布列与数学期望.附:,其中.0.100.050.0100.0050.0012.7063.8416.6357.87910.82818.已知函数.(1)讨论单调性;的的1111ABCD A B C D -ABCD //AB ,DC DA DC ⊥111,2AD DD CD AB E ====AB C 1BC D 1B C D E --0.005α=X X ()()()()22()n ad bc a b c d a c b d χ-=++++n a b c d =+++()20P x χ≥0x 21()(1)ln ,R 2f x ax a x x a =+--∈()f x(2)当时,证明:;(3)若函数有两个极值点,求的取值范围.19. 现有外表相同,编号依次为的袋子,里面均装有个除颜色外其他无区别的小球,第个袋中有个红球,个白球.随机选择其中一个袋子,并从中依次不放回取出三个球.(1)当时,①假设已知选中恰为2号袋子,求第三次取出的是白球的概率;②求在第三次取出的是白球的条件下,恰好选的是3号袋子的概率;(2)记第三次取到白球的概率为,证明:.的0a >3()22f x a≥-2()()F x ax x f x =--11222,()3x x x x <<12()()F x F x -()1,2,3,,3n n ≥ n ()1,2,3,,k k n = k n k -4n =p 2p 1<南通市2023-2024学年高二下学期期中质量监测数学简要答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】D【3题答案】【答案】C【4题答案】【答案】A【5题答案】【答案】B【6题答案】【答案】C【7题答案】【答案】B【8题答案】【答案】C二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AC【10题答案】【答案】AC【11题答案】【答案】AB三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】##【13题答案】【答案】##【14题答案】【答案】四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1);(2),.【16题答案】【答案】(1(2).【17题答案】【答案】(1)能认有关 (2)分布列略,【18题答案】【答案】(1)答案略; (2)证明略; (3).【19题答案】【答案】(1)①;② (2)证明略为0.2150.1232511,44⎡⎤-⎢⎥⎣⎦e e 0x y --=2max ()(2)e f x f ==min ()(0)1f x f ==-13()34E X =3(0,ln 2)4-1216。
福建省福州第八中学2023-2024学年高二下学期期中考试数学试卷(含简单答案)
福州第八中学2023-2024学年高二下学期期中考试数学考试时间:120分钟试卷满分:150分一、单选题:本题共8小题.每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知随机变量服从两点分布,,则其成功概率( )A. 0B. 1C. 0.3D. 2. 已知数列为等比数列,若,则的值为( )A. -4B. 4C. -2D. 23. 设随机变量,若,则等于()A. 0.2B. 0.7C. 0.8D. 0.94. 设是一个离散型随机变量,其分布列为则等于( )A. 1B. C.D. 5. 已知点P ,Q 分别为圆与上一点,则的最小值为()A. 4B. 5C. 7D. 106. 已知,则( )A. 64B. 32C. 63D. 317. 若,则( )A. B. C. D. 为X ()0.7E X =0.7{}n a 2580a a +=64a a ()24,X N σ~()0.8P X m >=()8P X m >-X X234P1212q-22q q 1121+22:1C x y +=22:(7)4D x y -+=||PQ ()01223344414729n n n n n n nn C C C C C -+-+⋅⋅⋅+-⋅⋅=123n n n n n C C C C +++⋅⋅⋅+=()221ln ln π,ln ,33ea b c ===-c a b <<b c a <<c b a<<b a c<<8. 已知双曲线的左顶点为是双曲线的右焦点,点在直线上,且的离心率是( )A. B. C.D. 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 连续抛掷一枚骰子2次,记事件A 表示“2次结果中正面向上的点数之和为奇数”,事件B 表示“2次结果中至少一次正面向上的点数为偶数”,则( )A. 事件A 与事件B 不互斥 B. 事件A 与事件B 相互独立C. D. 10. 已知直线经过抛物线的焦点,与交于A ,两点,与的准线交于点,则( )A. B. 若,则C. 若,则的取值范围是 D.若,,成等差数列,则11. 甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复次这样的操作,记甲口袋中黑球个数为,恰有1个黑球的概率为,恰有2个黑球的概率为,则下列结论正确的是( )A. ,B. 数列是等比数列C. 数列是等比数列D. 的数学期望三、填空题:本题共3小题,每小题5分,共15分.12. 已知抛物线C 的顶点在原点,焦点在x 轴上,且抛物线上有一点P (4,m )到焦点的距离为6.则抛物线C 的方程为________.2222:1(0,0)x y C a b a b -=>>()0,,A F c C P 2x c=tan APF ∠C 2+4+()34P AB =()2|3P A B =()1x my =-()2:20E x py p =>F E B E l C 2p =3AF FB =m =()0,1N -AN AF⎡⎣FA AC FB FC BF=()*Nn n ∈nXn p n q 21627p =2727q ={}21n n p q +-{}21n n p q +-n X ()()*11N 3nn E X n ⎛⎫=+∈ ⎪⎝⎭13. “畅通微循环,未来生活更舒适”.我国开展一刻钟便民生活圈建设,推进生活服务业“规范化、连锁化、便利化、品牌化、特色化、智能化”发展,以提质便民为核心,高质量建设国际消费中心城市,便民商业体系向高品质发展.某调研机构成立5个调研小组,就4个社区的便民生活圈的建设情况进行调研,每个调研小组选择其中1个社区,要求调研活动覆盖被调研的社区,共有派出方案种数为____________14. 设为的展开式的各项系数之和,,,表示不超过实数x 的最大整数,则的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在中,内角A ,B ,C 的对边分别为a ,b ,c ,且.(1)求A 的大小;(2)若,BC 边上高的长.16. 已知是公差不为零的等差数列,,且成等比数列.(1)求数列通项公式;(2)若,求前1012项和.17. 已知函数,.(1)当时,求函数的极值;(2)若任意且,都有成立,求实数的取值范围.18. 为了引导居民合理用电,国家决定实行合理的阶梯电价,居民用电原则上以住宅为单位(一套住宅为一户).阶梯级别第一阶梯第二阶梯第三阶梯月用电范围(度)某市随机抽取10户同一个月的用电情况,得到统计表如下:居民用电户编号12345678910用电量(度)538690124214215220225420430的的*n n N a ∈,()()2+3+1n nx x -=23c t -R t ∈1222=[]+[]++[]555n n n b na a a n )22()+(+)n n t b c -ABC V 2cos 2a B c +=3b =c ={}n a 11a =125,,a a a {}n a 114(1)n n n n nb a a ++=-⋅{}n b 1012T 21()ln(1)14f x a x x =-++211()()1e 2x g x f x x ⎛⎫=+-- ⎪⎝⎭1a =-()f x 12,(1,)x x ∈+∞12x x ≠()()21211g x g x x x -≥-a [0,210](210,400](400,)+∞(1)若规定第一阶梯电价每度0.5元,第二阶梯超出第一阶梯部分每度0.6元,第三阶梯超出第二阶梯的部分每度0.8元,试计算某居民用电户用电450度时应交电费多少元?(2)现要从这10户家庭中任意选取3户,求取到第二阶梯电量的户数的分布列与期望;(3)以表中抽到的10户作为样本估计全市居民用电,现从全市中依次抽取10户,记取到第一阶梯电量的户数为,当时对应的概率为,求取得最大值时的值.19. 已知椭圆(常数),点,,为坐标原点.(1)求椭圆离心率的取值范围;(2)若是椭圆上任意一点,,求的取值范围;(3)设,是椭圆上的两个动点,满足,试探究的面积是否为定值,说明理由.的Y Yk =k P k P k 222:1x y aγ+=2a ≥(),1A a (),1B a -O P γOP mOA nOB =+m n +()11,M x y ()22,N x y γOM ON OA OB k k k k ⋅=⋅OMN V福州第八中学2023-2024学年高二下学期期中考试数学简要答案一、单选题:本题共8小题.每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】A【6题答案】【答案】C【7题答案】【答案】C【8题答案】【答案】B二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AD【10题答案】【答案】AD【11题答案】【答案】ACD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】y 2=8x 【13题答案】【答案】240【14题答案】【答案】##02四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1) (2)【16题答案】【答案】(1) (2)【17题答案】【答案】(1)极小值为,无极大值 (2)【18题答案】【答案】(1)259元 (2)分布列略,期望为 (3)4【19题答案】【答案】(1) (2) (3)的面积为定值,理由略.15π6A =3221n a n =-101220242025T =221,e ⎡⎫+∞⎪⎢⎣⎭65e ⎫∈⎪⎪⎭[]1,1m n +∈-OMN V 2a。
河北省石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试题(含简单答案)
石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试卷(时间:120分钟,分值150分)一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列函数的求导正确的是()A. B.C. D.2. 设曲线和曲线在它们的公共点处有相同的切线,则的值为()A. 0B.C. 2D. 33. 已知随机变量的分布列如下,随机变量满足,则随机变量的期望E(Y)等于()012A. B. C. D.4. 函数的大致图像是()A. B.C. D.5. 为了培养同学们的团队合作意识,在集体活动中收获成功、收获友情、收获自信、磨砺心志,2023年4月17日,石家庄二中实验学校成功举办了首届“踔厉奋发新征程,勇毅前行赢未来”25公里远足活动. 某班()22x x'-=-()2e2ex x'=()cos cos sinx x x x x'=-()()122xx x-'=⋅()e xf x a b=+()πcos2xg x c=+()02P,+ab cπX Y21Y X=-YXP1613a43835373()(1)ln1f x x x=+-现有5名志愿者分配到3个不同的小组里协助班主任摄影,记录同学们的青春光影,要求每个人只能去一个小组,每个小组至少有一名志愿者,则不同的分配方案的总数为( )A 120B. 150C. 240D. 3006. 的展开式中的系数为( )A B. 17C. D. 137. 设,,,则( )A. B. C. D. 8. 若方程有三个不同的解,则实数的取值范围是( )A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知,则下列结论正确的是( )A. B. C. D. 展开式中最大的系数为10. 已知函数,下列说法正确的有( )A. 若,,则函数F (x )有最小值B. 若,,则过原点可以作2条直线与曲线相切C. 若,且对任意,恒成立,则D. 若对任意,任意,恒成立,则的最小值是11 已知函数,若且,则有( )...()632x x ⎛- ⎝6x 17-13-35ln 23a =253e 5b =1c =c b a >>a b c >>a c b >>c a b>>()()23ln 12ln x a x ax x x--=a 224e 104e 4e ⎛⎫+ ⎪-⎝⎭,224e 114e 4e ⎛⎫+ ⎪-⎝⎭,()224e 10114e 4e ⎛⎫+⋃ ⎪-⎝⎭,,()224e 1014e 4e ⎧⎫+⋃⎨⎬-⎩⎭,()62601262a a x a x a x =+++⋯+3360a =-()()2202461351a a a a a a a +++-++=(6612622a a a ++⋯+=--2a ()()()2e 114ax F x m x m =++++0m =1a =-1m =-0a ≠()y F x =0a =m ∈R ()0F x >11x -<<R m ∈0x >()0F x ≥a 2e()()y f x x =∈R ()0f x >()()0f x xf x '+>A. 可能是奇函数或偶函数B. C. 当时, D. 三、填空题:本题共3小题,每小题5分,共15分.12. 为弘扬我国古代“六艺文化”,某夏令营主办方计划利用暑期开设“礼”、“乐”、“射”、“御”、“书”,“数”六门体验课程,每周一门,连续开设六周,则课程“御”“书”“数”排在不相邻的三周,共有______种排法.13. 某校辩论赛小组共有5名成员,其中女生比男生多,现要从中随机抽取2名成员去参加外校交流活动,若抽到一男一女的概率为,则抽到2名男生的概率为_____________.14. 若,使得成立(其中为自然对数的底数),则实数的取值范围是_____________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知二项式的展开式中,所有项的二项式系数之和为,各项的系数之和为,(1)求的值;(2)求其展开式中所有的有理项.16. 某学校为了增进全体教职工对党史知识的了解,组织开展党史知识竞赛活动并以支部为单位参加比赛.现有两组党史题目放在甲、乙两个纸箱中,甲箱有个选择题和个填空题,乙箱中有个选择题和个填空题,比赛中要求每个支部在甲或乙两个纸箱中随机抽取两题作答.每个支部先抽取一题作答,答完后题目不放回纸箱中,再抽取第二题作答,两题答题结束后,再将这两个题目放回原纸箱中.(1)如果第一支部从乙箱中抽取了个题目,求第题抽到的是填空题的概率;(2)若第二支部从甲箱中抽取了个题目,答题结束后错将题目放入了乙箱中,接着第三支部答题,第三支部抽取第一题时,从乙箱中抽取了题目.求第三支部从乙箱中取出的这个题目是选择题的概率.17. 已知函数.(1)求函数的极值;(2)若对任意恒成立,求的最大整数值.18. 张强同学进行三次定点投篮测试,已知第一次投篮命中的概率为,第二次投篮命中的概率为,前的()f x ()()11f f -<ππ42x <<()()cos22sin e cos x f x f x >()()01f >35[]0,2x ∃∈()1eln e e 1ln xa a x x a --+≥-+e 2.71828= a nx ⎛- ⎝a b 32a b +=n 5343222()ln f x x x x =+()f x ()()1k x f x -<1x >k 1312两次投篮是否命中相互之间没有影响.第三次投篮受到前两次结果的影响,如果前两次投篮至少命中一次,则第三次投篮命中的概率为,如果前两次投篮均未命中,则第三次投篮命中的概率为.(1)求张强同学三次投篮至少命中一次的概率;(2)记张强同学三次投篮命中的次数为随机变量,求的概率分布.19. 设定义在R 上的函数.(1)若存在,使得成立,求实数a 的取值范围;(2)定义:如果实数s ,t ,r 满足,那么称s 比t 更接近r .对于(1)中的a 及,问:和哪个更接近?并说明理由.石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试卷 简要答案一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】C 【2题答案】【答案】C 【3题答案】【答案】C 【4题答案】【答案】B 【5题答案】【答案】B 【6题答案】2315ξξ()()e xf x ax a =-∈R [)01,x ∈+∞()0e f x a <-s r t r -≤-1x ≥ex1e x a -+ln x【答案】C 【7题答案】【答案】A 【8题答案】【答案】B二、选择题:本题共3小题,每小题6分,共18分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BCD 【10题答案】【答案】ACD 【11题答案】【答案】BC三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】##【14题答案】【答案】四、解答题:本题共5小题,共77分. 解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)4 (2)【16题答案】【答案】(1) (2)【17题答案】【答案】(1)极小值,无极大值为1441100.121e,e ⎡⎤⎢⎥⎣⎦42135,54,81T x T x T x-===377122e --(2)3【18题答案】【答案】(1);(2)答案略.【19题答案】【答案】(1) (2)比更接近,理由略1115e a >ex1e x a -+ln x。
高二数学下学期期中考试试卷含答案
高二数学下学期期中考试试卷含答案高二下学期数学期中考试试卷(含答案)时量:120分钟满分:150分一、选择题(共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.已知全集 $U=R$,集合 $M=\{x|x<1\}$,$N=\{y|y=2x,x\in R\}$,则集合 $\complement_U (M\cup N)$ =()A。
$(-\infty。
-1]\cup [2,+\infty)$B。
$(-1,+\infty)$C。
$(-\infty,1]$D。
$(-\infty,2)$2.曲线 $f(x)=2x-x^2+1$ 在 $x=1$ 处的切线方程为()A。
$5x-y-3=0$B。
$5x-y+3=0$C。
$3x-y-1=0$D。
$3x-y+1=0$3.已知函数 $f(x)=\sin(\omegax+\frac{\pi}{3})(\omega>0,0<\frac{\pi}{3}<\omega<\frac{\pi}{2 })$ 的图象与直线 $y=1$ 的交点中相邻两点之间的距离为$2\pi$,且函数 $f(x)$ 的图象经过点 $(\frac{\pi}{6},0)$,则函数 $f(x)$ 的图象的一条对称轴方程可以为()A。
$x=\frac{\pi}{6}$B。
$x=\frac{\pi}{4}$C。
$x=\frac{\pi}{3}$D。
$x=\frac{\pi}{2}$4.函数 $f(x)=\frac{e^x-1}{x(x-3)}$ 的图象大致是()A.图略]B.图略]C.图略]D.图略]5.在 $\triangle ABC$ 中,角 $A,B,C$ 的对边分别为$a,b,c$,$C=120^\circ$,若 $b(1-\cos A)=a(1-\cos B)$,则$A=$()A。
$90^\circ$B。
$60^\circ$C。
$45^\circ$D。
北京市第三十一中学2023-2024学年高二下学期期中考试数学试卷(含简单答案)
北京市第三十一中学2023-2024学年高二下学期期中考试数学试题姓名___________学号___________成绩___________班级___________(考试时间120分钟 试卷满分150分)一、选择题(共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.3,…,则9是这个数列的第( )A. 12项B. 13项C. 14项D. 15项2. 已知离散型随机变量服从二项分布,且,则 A.B.C.D.3. 2017年1月我市某校高三年级1600名学生参加了2017届全市高三期末联考,已知数学考试成绩(试卷满分150分).统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的,则此次期末联考中成绩不低于120分的学生人数约为A. 120B. 160C. 200D. 2404. 在数列 中,,则 ( )A. 2B.C.D.5. 如图,函数的图象在点处的切线是l ,则等于()A. B. 3 C. D. 16. 篮子里装有3个红球,3个白球和4个黑球.某人从篮子中随机取出两个球,记事件“取出的两个球颜色不同”,事件“取出一个白球,一个黑球”,( )X ()~6,X B p ()1E X =()D X =13122356()2100,X N σ~34{}n a 11111n na a a +==+,4a =325385()y f x =()2,P y (2)(2)f f '+4-2-A =B =()P B A =A.B.C.D.7. 已知是等差数列公差,是的首项,是的前项和,设甲:存在最小值,乙:且,则甲是乙的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8. 随机变量的分布列是234若,则随机变量方差的值为( )A.B.C.D.9. 设S n 是等差数列{a n }的前n 项和,若=,则等于( )A. 1 B. -1C. 2D.10. 对于正项数列中,定义:为数列的“匀称值”已知数列的“匀称值”为,则该数列中的( )A.B.C.D.二、填空题(共5小题,每小题5分,共25分11. 2,x ,y ,z ,18成等比数列,则x =________.12. 若数列的通项公式为,,数列的前30项和___________.13. 设某公路上经过的货车与客车的数量之比为,货车中途停车修理的概率为,客车为.今有一辆汽车中途停车修理,该汽车是货车的概率为________.14. 有10件产品,其中3件是次品,从中任取两件,若X 表示取得次品的个数,则P (X <2)等于________.的的211411322622d {}n a 1a {}n a n S {}n a n n S 10a >0d >ξξpa14b11()4E ξ=2ξ(2)D ξ111611811411253a a 5995S S 12{}n a 12323nn a a a na G n+++⋅⋅⋅+={}n a {}n a 2n G n =+10a =83125942110{}n a n a n =()*11N n n n b n a a +=∈⋅{}n b 30T =2:10.020.0115. 网络流行语“内卷”,是指一类文化模式达到某种最终形态后,既没办法稳定下来,也不能转变为新形态,只能不断地在内部变得更加复杂的现象.数学中的螺旋线可以形象地展示“内卷”这个词.螺旋线这个词来源于希腊文,原意是“旋卷”或“缠卷”,如图所示的阴影部分就是一个美丽的旋卷性型的图案,它的画法是:正方形的边长为4,取正方形各边的四等分点E 、F 、G 、H ,作第二个正方形,然后再取正方形各边的四等分点M 、N 、P 、Q ,作第三个正方形,按此方法继续下去,就可以得到下图.设正方形的边长为,后续各正方形的边长依次为、、…、、…,如图阴影部分,设直角三角形面积为,后续各直角三角形面积依次为、、…、、…,则下列说法正确的是___________.①正方形的面积为②③使不等式成立的正整数的最大值为4④数列的前项和三、解答题(共6小题,共85分)16. 已知等差数列共有20项,各项之和,首项(1)求数列的公差;(2)求第20项17. 某中学校本课程开设了A 、B 、C 、D 共4门选修课,每个学生必须且只能选修1门选修课,现有该校的甲、乙、丙3名学生(1)求这3名学生选修课所有选法的总数;(2)求恰有2门选修课没有被这3名学生选择的概率;(3)求A 选修课被这3名学生选择的人数的分布列及数学期望.的ABCD ABCD EFGH EFGH MNPQ ABCD 1a 2a 3a n a AEH 1b 2b 3b n b MNPQ 251614n n a -=⨯14n b >n {}n b n 4n S <{}n a 201050S =15a =d ξ18. 已知等比数列前项和为,,.(1)求数列的通项公式;(2)已知数列中,满足,求数列的前项和.19. 某部门为了解青少年视力发展状况,从全市体检数据中,随机抽取了名男生和名女生的视力数据.分别计算出男生和女生从小学一年级(年)到高中三年级(年)每年的视力平均值,如图所示.(1)从年到年中随机选取年,求该年男生的视力平均值高于上一年男生的视力平均值的概率;(2)从年到年这年中随机选取年,设其中恰有年女生的视力平均值不低于当年男生的视力平均值.求的分布列和数学期望:(3)由图判断,这名学生的视力平均值从哪年开始连续三年的方差最小?(结论不要求证明)20. 为了增强学生的国防意识,某中学组织了一次国防知识竞赛,高一和高二两个年级学生参加知识竞赛,(1)两个年级各派50名学生参加国防知识初赛,成绩均在区间上,现将成绩制成如图所示频率分布直方图(每组均包括左端点,最后一组包括右端点),估计学生的成绩的平均分(若同一组中的数据用该组区间的中点值为代表);的{}n a n n S 5190a a -=490S ={}n a {}n b 2log n n n b a a =+{}n b n n T 1001002010202120112021120102021122X X 200[]50,100(2)两个年级各派一位学生代表参加国防知识决赛,决赛的规则如下:①决赛一共五轮,在每一轮中,两位学生各回答一次题目,两队累计答对题目数量多者胜;若五轮答满,分数持平,则并列为冠军;②如果在答满5轮前,其中一方答对题目数量已经多于另一方答满5次题可能答对的题目数量,则不需再答题,譬如:第3轮结束时,双方答对题目数量比为,则不需再答第4轮了;③设高一年级的学生代表甲答对比赛题目的概率是,高二年级的学生代表乙答对比赛题目的概率是,每轮答题比赛中,答对与否互不影响,各轮结果也互不影响(i )在一次赛前训练中,学生代表甲同学答了3轮题,且每次答题互不影响,记为答对题目数量,求的分布列及数学期望(ii )求在第4轮结束时,学生代表甲答对3道题并刚好胜出的概率21. 已知数列的前项和为,且(1)求,并证明数列是等差数列:(2)若,求正整数的所有取值.的3:03423X X {}n a n n S 221nn n S a +=+1a 2n n a ⎧⎫⎨⎬⎩⎭222k k a S <k北京市第三十一中学2023-2024学年高二下学期期中考试数学试题简要答案一、选择题(共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)【1题答案】【答案】C【2题答案】【答案】D【3题答案】【答案】C【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】B【8题答案】【答案】C【9题答案】【答案】A【10题答案】【答案】D二、填空题(共5小题,每小题5分,共25分【11题答案】【答案】【12题答案】【答案】【13题答案】【答案】【14题答案】【答案】【15题答案】【答案】②③④三、解答题(共6小题,共85分)【16题答案】【答案】(1) (2)【17题答案】【答案】(1)64(2)(3)分布列略,期望为【18题答案】【答案】(1) (2)【19题答案】【答案】(1)(2)分布列略;数学期望 (3)自年开始的连续三年,名学生的视力平均值方差最小【20题答案】【答案】(1)学生的成绩的平均分的估计值为73.8分 (2)(i )分布列略,(ii ).【21题答案】30310.8014155d =20100a =9163432nn a =⋅()12132log 362n n n n T n ++=⋅++⋅-311()23E X =2017200()94E X =11256【答案】(1),证明略 (2)11a 1,2,3。
福建省厦门第一中学2023-2024学年高二下学期期中考试数学试卷(含简单答案)
厦门第一中学2023-2024学年高二下学期期中考试数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 一个小球从的高处下落,其位移(单位:)与时间(单位:)之间的关系为,则时小球的瞬时速度(单位:)为( )A. B. C. D. 2. 设抛物线焦点为,点为曲线第一象限上的一点,若,则直线的倾斜角是( )A. B. C. D. 3. 若点是曲线上任意一点,则点到直线的最小距离为( )A. B. C. 2 D. 84. 在等比数列中,是函数的极值点,则A. B. C. D.5. 有2男2女共4名大学毕业生被分配到三个工厂实习,每人必须去一个工厂且每个工厂至少去1人,且工厂只接收女生,则不同分配方法种数为( )A. 12B. 14C. 22D. 246. 已知定义在上的函数满足,且,则的解集是( )A. B. C. D. 7. 若甲盒中有2个白球、2个红球、1个黑球,乙盒中有x 个白球()、3个红球、2个黑球,现从甲盒中随机取出一个球放入乙盒,再从乙盒中随机取出一个球,若从甲盒中取出的球和从乙盒中取出的球颜色相同的概率大于等于,则的最大值为( )A. 4 B. 5 C. 6 D. 78. 已知函数对定义域内任意,都有,则正实数取值范围为( )的的5m y m t s 24.9y t =-0.5s t =m/s 4.9-9.8- 4.99.823C y x =:F A C 3FA =FA π3π42π33π4P 2ln y x x =-P 4y x =-{}n a 37,a a 321()4913f x x x x =++-5a =4-3-34,,A B C A ()0,∞+()f x ()()0xf x f x '-<()22f =()ee 0x xf ->(),ln2-∞()ln2,+∞()20,e ()2e ,+∞x N ∈512x ()ln e mx f x x x =-12x x <1212()()1f x f x x x -<-mA B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得3分,有选错的得0分.9. 已知的展开式中,各项的二项式系数之和为128,则( )A. B. 只有第4项的二项式系数最大C. 各项系数之和为1 D. 的系数为56010. 现有4个编号为1,2,3,4盒子和4个编号为1,2,3,4的小球,要求把4个小球全部放进盒子中,则( )A. 没有空盒子的方法共有24种B. 可以有空盒子的方法共有128种C. 恰有1个盒子不放球的方法共有144种D. 没有空盒子且恰有一个小球放入自己编号的盒子的方法有8种11. 已知直线与曲线相交于不同两点,,曲线在点处的切线与在点处的切线相交于点,则( )A. B. C. D. 三、填空题:本题共3小题,每小题5分,共15分.12. 已知函数,,则的最小值为______.13. 展开式中常数项为12,则______.14. 已知双曲线的左、右焦点分别为,,过点的直线与双曲线的右支交于,两点,若,且双曲线,则______.四、解答题:共77分,解答应写出文字说明、证明过程或演算步骤.15. 已知是等差数列,,且,,成等比数列.(1)的通项公式;(2)设数列的前项和为,满足,求的最小值..的1(0,e (0,e]1[,)e +∞[e,)+∞212nx x ⎛⎫- ⎪⎝⎭7n =5x y kx =ln y x =11(,)M x y 22(,)N x y ln y x =M N 00(,)P x y 1k e <<0120e x x x =1201y y y +=+121y y <()f x x x =-[0,π]x ∈()f x 21(2)(1)nx x +-n =()2222:10,0x y E a b a b-=>>1F 2F 2F E A B 1AB AF =E 1cos BAF ∠={}n a 26a =54a -5a 56a +{}n a 11n n a a +⎧⎫⎨⎬⎩⎭n n S 110n S >n16. 如图,在三棱柱中,底面是边长为2的等边三角形,,,分别是线段,的中点,在平面内的射影为.(1)求证:平面;(2)若点为棱的中点,(ⅰ)求点到平面的距离;(ⅱ)求平面与平面夹角的余弦值.17. 已知函数,,其中为常数.(1)若时,求函数图象在点处的切线方程与坐标轴围成的面积;(2)若对任意,不等式恒成立,求实数的取值范围.18. 已知椭圆C:过点,长轴长为.(1)求椭圆方程及离心率;(2)直线l :与椭圆C 交于两点M 、N ,直线AM 、AN 分别与直线交于点P 、Q ,O 为坐标原点且,求证:直线l 过定点,并求出定点坐标.19. 已知函数,.(1)当时,求的单调区间;(2)当时,记极小值点为.(ⅰ)证明:存在唯一零点;(ⅱ)求证:.(参考数据:)的111ABC A B C -12CC =D E AC 1CC 1C ABC D 1A C ⊥BDE F 11B C F BDE FBD BDE ()(1)e x f x x a =+-21()2g x x ax =+a 2a =()f x (0,(0))f [0,)x ∈+∞()()f x g x ≥a ()222210x y a b a b+=>>()2,1A --y kx m =+4x =-OP OQ =()2ln 12a f x x x x =--a ∈R 1a =()f x a<0()f x 0x ()f x 1x 104x x >3e 20.85≈厦门第一中学2023-2024学年高二下学期期中考试数学试卷简要答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】A【2题答案】【答案】A【3题答案】【答案】B【4题答案】【答案】B【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】C【8题答案】【答案】C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得3分,有选错的得0分.【9题答案】【答案】AD【10题答案】【答案】ACD【11题答案】【答案】ACD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】5【14题答案】【答案】##四、解答题:共77分,解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)(2)【16题答案】【答案】(1)证明略;(2)(ⅰⅱ.【17题答案】【答案】(1),; (2)【18题答案】【答案】(1); (2)证明略,定点坐标为.【19题答案】【答案】(1)单调递减区间为,无单调递增区间(2)(ⅰ)证明略;(ⅱ)证明略π14-18-0.125-22n a n =+9210x y -+=141a ≥22182x y +=(4,0)-()0,∞+。
辽宁省葫芦岛市东北师范大学连山实验高中2023-2024学年高二下学期期中考试数学试题(含简单答案)
东北师范大学连山实验高中2023-2024学年高二下学期期中考试数学试卷注意事项:1.本试卷分第I 卷(进择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号、班叙填写在答题卡上.2.回答第I 卷时,进出每小题答案后,用2B 铅笔把答题卡上对应题目的答聚标号涂黑.如需改动,用粮皮擦干净后,再进涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无放.第I 卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只蒋一项是符合题目要求的.1. 在数列中,若,,则( )A B. C. 1D. 42. 已知函数的导函数为,若,则( )A. B. C. 1D. 23. 随机变量,函数没有零点的概率是,则μ的值为( )A. 1B. 2C. 3D. 44. 设是数列的前项和,,,,,则( )A. B. C. D.5. 点A 是曲线上任意一点,则点A 到直线的最小距离为( )A.B.C.D.6. 中国古代许多著名的数学家对推导高阶等差数列的求和公式很感兴趣,创造并发展了名为“垛积术”的算法,展现了聪明才智,如南宋数学家杨辉在《详解九章算法•商功》一书中记载的三角垛、方垛等的求和都与高阶等差数列有关.如图是一个三角垛,最顶层有个小球,第二层有个,第三层有个,第四层有个,则第层小球的个数为( ).{}n a 11a =142n na a +=-12a =2-43-()fx ()f x '()2(1)ln f x xf x '=+(1)f '=2-1-2~(,)N ξμσ()²4f x x x ξ=-+12n S {}n a n 0n a >18a =212log log 1n n a a +-=-312k S =k =567823ln 2y x x =-21y x =-1361025A. B. C. D. 7. 已知函数所有极小值点从小到大排列成数列,则()A.B.C. D. 8. 已知,,,则,,的大小关系为( )A B. C. D. 二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图所示是的导数的图象,下列结论中正确的有( )A. 在区间上是增函数B. 在区间上是减函数,在区间上是增函数C. 是的极大值点D. 是的极小值点10. 公差为的等差数列的前项和为,若,则( )A. B. C. 中最大D. 11. 已知函数,则下列结论错误的是( )A. 函数存在两个不同的零点.324325326395()()2sin 0f x x x x =+>{}n a ()9sin a =1212-4ln 4a =1e b -=5ln 5c =a b c a b c>>c a b >>b c a >>b a c>>()y f x =()y f x '=()f x (3,1)-()f x (2,4)(1,2)-2x =()f x =1x -()f x d {}n a n n S 11120,0S S ><0d >70a >{}n S 6S 49a a <()21e xx x f x +-=()f xB. 函数只有极大值没有极小值C. 当时,方程有且只有两个实根D. 若时,,则t 的最小值为2第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12. 若函数在区间上单调递增,则实数的取值范围为______.13. 已知变量y 关于x 的回归方程为,若对两边取自然对数,可以发现与x 线性相关,现有一组数据如下表所示:x 12345y则当时,预测y 的值为____________.14. 已知,对于数列,有,若存在常数使得对于任意的,都有,则a 的取值范围是________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知公差不为0的等差数列首项,且成等比数列.(1)求数列的通项公式;(2)设,求数列的前项和.16. 已知函数.(1)求曲线过点处切线;(2)若曲线在点处切线与曲线在处的切线平行,求的值.17. 为提高居家养老服务质量,某机构组织调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区抽取了500位老年人,统计结果如下:性别需要志愿者不需要志愿者男40160的的()f x e 0k -<<()f x k =[),x t ∈+∞()2max 5ef x =()21e 2xf x ax a =++()0,∞+a 0.6e bx y -=0.6e bx y -=ln y e3e 4e 6e 7e 6x =()e ,0xf x a a =>{}n a ()110,n n a a f a +==0M >N n *∈n a M ≤{}n a 11a =125a a a ,,{}n a 2nn n b a =⋅{}n b n n S ()()3211,ex f x x x g x -+=-++=()y f x =()1,1()y f x =()1,1()y g x =()R x t t =∈t女30270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)中的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的比例?说明理由.附:,0.0500.0100.0013.8416.63510.82818. 已知函数.(1)讨论函数的单调性;(2)设,若存在零点,求实数的取值范围.19. 雪花是一种美丽的结晶体,放大任意一片雪花的局部,会发现雪花的局部和整体的形状竟是相似的,如图是瑞典科学家科赫在1904年构造的能够描述雪花形状的图案,其作法如下:将图①中正三角形每条边三等分,并以中间的那一条线段为一边向形外作正三角形,再去掉底边,得到图②;将图②的每条边三等分,重复上述的作图方法,得到图③;……按上述方法,所得到的曲线称为科赫雪花曲线(Koch snowflake ).的99%22()()()()()n ad bc a b c d a c b d χ-=++++αx α()()e 2,ln 1,xf xg x ax x a =-=+-∈R ()g x ()()()hx f x g x =-()h x a现将图①、图②、图③、…中的图形依次记为、、…、、….小明为了研究图形的面积,把图形的面积记为,假设a 1=1,并作了如下探究:P1P 2P 3P 4…Pn边数31248192…从P 2起,每一个比前一个图形多出的三角形的个数31248…从P 2起,每一个比前一个图形多出的每一个三角形的面积…根据小明的假设与思路,解答下列问题.(1)填写表格最后一列,并写出与的关系式;(2)根据(1)得到的递推公式,求的通项公式;(3)从第几个图形开始,雪花曲线所围成的面积大于.参考数据(,)1P 2P n P n P n P n a 19219319n a ()*1,2n a n n -∈≥N {}n a 797500lg 30.477≈lg 20.301≈东北师范大学连山实验高中2023-2024学年高二下学期期中考试数学试卷简要答案第I卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只蒋一项是符合题目要求的.【1题答案】【答案】A【2题答案】【答案】B【3题答案】【答案】D【4题答案】【答案】A【5题答案】【答案】A【6题答案】【答案】B【7题答案】【答案】D【8题答案】【答案】D二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BCD【10题答案】【答案】CD【11题答案】【答案】BD第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】【14题答案】【答案】四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1) (2)【16题答案】【答案】(1)或 (2)【17题答案】【答案】(1)14% (2)有关(3)答案略【18题答案】【答案】(1)答案略 (2)【19题答案】【答案】(1)填表略;(2)(3)第7个[)1,-+∞9e 1(0,e21n a n =-()12326n n S n +=-⋅+230x y +-=430x y -+=12t =[)e 1,∞-+()1*134,249n n n a a n n --⎛⎫=+⨯∈≥ ⎪⎝⎭N ()1*834559n n a n -⎛⎫=-⨯∈ ⎪⎝⎭N。
北京市中国人民大学附属中学2023-2024学年高二下学期期中考试数学试题(含简单答案)
中国人民大学附属中学2023-2024学年高二下学期期中考试数学说明:本试卷共六道大题,26道小题,共6页,满分150分,考试时间120分钟.第Ⅰ卷(共18题,满分100分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)1. 已知数列的通项公式是,则是该数列的()A. 第9项B. 第10项C. 第11项D. 第12项2. 若函数,则( )A. B. C. D. 3. 等差数列中,若,,则其公差等于( )A. 2B. 3C. 6D. 184. 如图是函数的导数的图象,则下面判断正确的是( )A. 是区间上的增函数B. 是区间上的减函数C. 1是的极大值点D. 4是的极小值点5. 若是等差数列的前项和,,则()A. B. C. D. 6. 若函数有极值,则实数的取值范围是( )A. B. C.D. {}n a 21n a n =+1222()f x x =0(1)(1)lim x f x f x∆→+∆-=∆1234{}n a 1233a a a ++=45621a a a ++=()y f x =()f x '()f x []3,1-()f x []1,2()f x ()f x n S {}n a n ()*88,N n S S n n >≠∈890,0a a ≥<890,0a a ><890,0=<a a 890,0a a >=()3213f x x x ax =-+a (],1-∞(),1-∞()1,+∞[)1,+∞7. 已知等差数列的公差为2,若成等比数列,则( )A. B. C. 4D. 8. 已知在处可导,在附近x 的函数值,可以用“以直代曲”的方法求其近似代替值:.对于函数的近似代替值( )A. 大于m B. 小于mC. 等于mD. 与m 的大小关系无法确定9. 设为无穷等比数列前n 项和,则“有最大值”是“有最大值”的( )A 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件10. 设函数定义域为D ,若函数满足:对任意,存在,使得成立,则称函数满足性质.下列函数不满足性质的是( )A. B. C. D. 二、填空题(本大题共5小题,每小题5分,共25分.请把结果填在答题纸上的相应位置.)11. 函数,则_____.12. 用数学归纳法证明命题“,时,假设时成立,证明时也成立,可在左边乘以一个代数式______.13. 已知函数,若在区间上是增函数,则实数a 的取值范围是 ________.14. 小杰想测量一个卷纸展开后的总长度,卷纸中的纸是单层的,且卷纸整体呈一个空心圆柱形,即大圆柱在其正中间挖去了一个小圆柱,测得小圆柱底面的直径为5厘米,大圆柱底而的直径为11厘米.由于单层纸的厚度不易测量,小杰利用游标卡尺测得10层纸的总厚度为0.3厘米.试估算这个卷纸的总长度(单位:米)为______.(结果精确到个位,取)15. 与曲线在某点处的切线垂直,且过该点的直线称为曲线在某点处的法线.关于曲线的法线有下列四种说法:①存在一类曲线,其法线恒过定点;的.{}n a 124,,a a a 2a =10-6-4-()f x 0x x =0x ()f x ()()()()000f x f x f x x x '≈+-()f x =()4.001m f =n S {}n a {}n a {}n S ()f x ()f x c D ∈,a b D ∈()()()f a f b f c a b-'=-()f x ΓΓ2()f x x =3()f x x =()xf x e =()ln f x x=()sin 2f x x =()f x '=*n ∀∈N ()()()()1221321nn n n n n ++⋅⋅⋅+=⨯⨯⨯⋅⋅⋅⨯-n k =1n k =+21()2ln 2f x x ax x =+-()f x 1,12⎡⎤⎢⎥⎣⎦π 3.14=②若曲线的法线的纵截距存在,则其最小值为;③存在两条直线既是曲线的法线,也是曲线的法线;④曲线的任意法线与该曲线的公共点个数均为1.其中所有说法正确的序号是______.三、解答题(本大题共3小题,共35分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)16. 已知函数,在处取得极值.(1)求在区间上的平均变化率;(2)求曲线在点处的切线方程;(3)求曲线过点的切线方程.17. 设等差数列的前项和为,,.(1)求的通项公式;(2)设数列的前项和为,求.18. 已知函数,其中.(1)当时,求的极值;(2)讨论当时函数的单调性;(3)若函数有两个不同的零点、,求实数a 的取值范围.第Ⅱ卷(共8道题,满分50分)一、选择题(共4小题,每小题5分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)19. 已知函数满足:对任意,由递推关系得到的数列是单调递增的,则该函数的图象可以是( )A. B.4y x =34e x y =ln y x =sin y x =()2f x x ax =-()f x 0x =()f x []2023,2024()y f x =()()22f ,()y f x =()2,0{}n a n n S 53a =535S ={}n a {}n a n n T 10T ()()22ln f x ax a x x =-++R a ∈1a =-()f x 0a >()y f x =2()()g x f x ax =-1x 2x ()y f x =()10,1a ∈()1n n a f a +={}n aC. D.20. 设数列的前n 项和,若,则( )A. 数列满足B. 数列为递增数列C.的最小值为D. ,,不成等差数列21. 已知正项数列满足为前项和,则“是等差数列”是”的( )A 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件22. 已知无穷数列,.性质,,,性质,,,,给出下列四个结论:①若,则具有性质;②若,则具有性质;③若具有性质,则;④若等比数列既满足性质又满足性质,则其公比的取值范围为.则所有正确结论的个数为( )A. 1B. 2C. 3D. 4二、填空题(共3小题,每小题5分,共15分,把答案填在答题纸上的相应位置.)23. 写出一个满足的函数______.24. 已知函数,设曲线在点处切线的斜率为,若,,均不相等,且,则___.25. 若曲线上两个不同点处的切线重合,则称这条切线为曲线的“自公切线”,则下列曲的.{}n a n S 23n S n n =++{}n a ()1122n n n a a a n -+=+≥{}n a nn S a n+17242S S -64S S -86S S -{}n a 213,n a a S ={}n a n {}n a {}n a 11a =:s m ∀*n ∈N m n m n a a a +>+:t m ∀*n ∈N 2m n ≤<11m n m n a a a a -++>+32n a n =-{}n a s 2n a n ={}n a t {}n a s n a n ≥{}n a s t ()2,+∞()221f x x '=+()f x =()()()()()1230f x a x x x x x x a =--->()y f x =()(),i i x f x ()1,2,3i k i =1x 2x 3x 22k =-1311k k +=()y f x =()y f x =线中,所有存在“自公切线”的序号为______.①;②;③;④.三、解答题(本小题15分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)26. 已知无穷数列满足:①;②.设为所能取到的最大值,并记数列.(1)若数列为等差数列且,直接写出其公差的值;(2)若,求值;(3)若,,求数列的前100项和.的()y f x =22y x x =-3sin 4cos y x x =+13y x x=+y ={}n a ()*1,2,i a i ∈=⋅⋅⋅N ()11,2,,1,2,,3i j i j i j a a a a a i j i j ++≤≤++=⋅⋅⋅=⋅⋅⋅+≥*i a ()1,2,i a i =⋅⋅⋅{}*n a {}n a 11a =d 121a a ==*4a 11a =22a ={}*n a中国人民大学附属中学2023-2024学年高二下学期期中考试数学 简要答案第Ⅰ卷(共18题,满分100分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)【1题答案】【答案】C 【2题答案】【答案】B 【3题答案】【答案】A 【4题答案】【答案】D 【5题答案】【答案】B 【6题答案】【答案】B 【7题答案】【答案】C 【8题答案】【答案】A 【9题答案】【答案】D 【10题答案】【答案】B二、填空题(本大题共5小题,每小题5分,共25分.请把结果填在答题纸上的相应位置.)【11题答案】【答案】【12题答案】【答案】2cos 2x 42k【答案】【14题答案】【答案】【15题答案】【答案】①②④三、解答题(本大题共3小题,共35分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)【16题答案】【答案】(1)4047 (2) (3)或【17题答案】【答案】(1) (2)【18题答案】【答案】(1)的极大值为,无极小值. (2)答案略(3).第Ⅱ卷(共8道题,满分50分)一、选择题(共4小题,每小题5分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)【19题答案】【答案】C 【20题答案】【答案】C 【21题答案】【答案】C3,4⎡⎫+∞⎪⎢⎣⎭2544y x =-0y =816y x =-132n a n =-52()f x 3ln24--12,2e⎛⎫-- ⎪⎝⎭【答案】C二、填空题(共3小题,每小题5分,共15分,把答案填在答题纸上的相应位置.)【23题答案】【答案】(答案不唯一)【24题答案】【答案】##【25题答案】【答案】①②④三、解答题(本小题15分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)【26题答案】【答案】(1)或 (2) (3)()ln 21x +120.51237500。
陕西省西安市第八十三中学2023-2024学年高二下学期期中考试数学试题(含简单答案)
西安市第八十三中学2023-2024学年高二下学期期中考试数学试题一、选择题(共8小题,每小题5分,共40分.每小题给出的四个选项中只有一项符合要求)1. 已知是实数集,集合,,则( )A. B. C. D. 2. 为虚数单位,则( )A B. C. D. 3. 已知向量,,则与向量共线的向量的坐标可以是( )A. B. C. D. 4. 奇函数对任意都有,且,则( )A. B. 0 C. 1 D. 25. 为了解某块田地小麦的株高情况,随机抽取了10株,测量数据如下(单位cm ):60,61,62,63,65,65,66,67,69,70,则第40百分位数是( )A. 62B. 63C. 64D. 656. 已知,则( )A. B. C. 1 D. 7. 函数的部分图像大致是( )A. B.C. D..R {}1,0,1A =-{}210B x x =-≥A B = {}1,0-{}11,12⎡⎤⎢⎥⎣⎦1,2⎛⎫-∞ ⎪⎝⎭i ()i 12i ⋅-=2i +2i -2i -+2i--1,12a ⎛⎫=- ⎪⎝⎭()2,1b =r 2a b + ()3,1-()8,3-()9,4-()3,2-()f x x ∈R ()()12f x f x =+()81f -=-()2024f =1-2936m n ==112m n +=6log 18126log 5()22411x x f x x ++=+8. 设的内角A ,B ,C 的对边分别为a ,b ,c ,且,则( )A B. C. D. 二、多选题(本小题4小题,每小题5分,共20分.每小题有多项符合题目要求,全部选对得5分,部分选对得部分分,有选错的得0分)9. 学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为且支出在元的样本,其频率分布直方图如图所示,则下列说法正确的是( )A. 估计众数为B.估计中位数是C. 估计平均数D. 支出在的频率为10. (多选)已知函数(),下列结论正确的是( )A. 函数的最小正周期为B. 函数是偶函数C. 函数的图象关于直线对称D. 函数在区间上是增函数11. 如图,在直三棱柱中,底面为等边三角形,,,分别为,的中点,记过,,三点的平面与的交点为,则下列说法正确的是( ).为ABC V 35cos ,cos ,3513A B b ===c =1451351252n [)20,6043400943[)50,600.253π()sin 22f x x ⎛⎫=+⎪⎝⎭x ∈R ()f x π()f x ()f x π4x =()f x π0,2⎡⎤⎢⎥⎣⎦111ABC A B C -ABC 16AA AB ==E F 1BB 11A C A E F 11B C DA. 为的中点B. 三棱锥C. 截面的周长为D. 截面的面积为2412.设,,,则下列结论中正确的是()A. B. 当时,C. 若,,则D. 当,时,三、填空题(本小题4小题,每小题5分,共20分)13. 函数的零点所在的区间是,则__________.14. 若实数满足,则的最小值为_________.15. 设函数的部分图象如图所示,直线是它的一条对称轴,则函数的解析式为__________.16. 已知甲、乙、丙三名同学同时独立地解答一道导数试题,每人均有的概率解答正确,且三个人解答正确与否相互独立,在三人中至少有两人解答正确的条件下,甲解答不正确的概率_______D 11B C 1B DEF -AEDF +AEDF ()23012312n n n x a a x a x a x a x -=++++⋅⋅⋅+x ∈R *N n ∈()121231212222n n n n a a a a -+-+⋅⋅⋅+-=-3n ≥()()2326141n a a n n a n n ++⋅⋅⋅+-=-87a a >89a a >12n =12000x =-2024n =()125n x ->()ln 23f x x x =+-()(),1N n n n +∈n =,a b 221a b +=22141a b ++()()sin f x x ωϕ=+π(0,0)2ωϕ><<π6x =()f x 23四、解答题(本题共70分.解答应写出文字说明,证明过程或演算步骤)17. 已知函数在时取得极值.(1)求函数的单调区间;(2)求函数在区间上的最小值.18. 的内角A ,B ,C 所对的边分别为,已知.(1)求角C .(2)设D 为边AB 的中点,的面积为2,求的最小值.19. 一个不透明的盒子中有质地、大小均相同的7个小球,其中4个白球,3个黑球,现采取不放回的方式每次从盒中随机抽取一个小球,当盒中只剩一种颜色时,停止取球.(1)求停止取球时盒中恰好剩3个白球的概率;(2)停止取球时,记总的抽取次数为X ,求X 的分布列与数学期望.20. 如图,长方体中,为线段的中点,.(Ⅰ)证明:⊥平面;(Ⅱ)求点到平面距离.21. 据调查,目前对于已经近视的小学生,有两种配戴眼镜的选择,一种是佩戴传统的框架眼镜;另一种是佩戴角膜塑形镜,这种眼镜是晚上睡觉时佩戴的一种特殊的隐形眼镜(因其在一定程度上可以减缓近视的发展速度,所以越来越多的小学生家长选择角膜塑形镜控制孩子的近视发展),A 市从该地区小学生中随机抽取容量为100的样本,其中因近视佩戴眼镜的有24人(其中佩戴角膜塑形镜的有8人,其中2名是男生,6名是女生)(1)若从样本中选一位学生,已知这位小学生戴眼镜,那么,他戴的是角膜塑形镜的概率悬多大?(2)从这8名跟角膜塑形镜的学生中,选出3个人,求其中男生人数的期望与方差;(3)若将样本的频率当做估计总体的概率,请问,从市的小学生中,随机选出20位小学生,记其中佩戴角膜塑形镜的人数为Y ,求恰好时的概率(不用化简)及Y 的方差.的32()2f x x x ax =--+1x =()f x ()f x []22-,ABC ∆,,a b c cos 2cos 22sin sin 1A B A B ++=+cos 2C ABC ∆2CD 1111ABCD A B C D -EBC 11,2,AB AD AA ===X A 5Y =22. 已知椭圆C :过点,过其右焦点且垂直于x 轴的直线交椭圆C 于A ,B两点,且(1)求椭圆C 的方程;(2)若直线l :与椭圆C 交于E ,F 两点,线段EF 的中点为Q ,在y 轴上是否存在定点P ,使得∠EQP =2∠EFP 恒成立?若存在,求出点P 的坐标;若不存在,请说明理由.()222210x y a b a b +=>>⎛ ⎝2F AB =12y kx =-西安市第八十三中学2023-2024学年高二下学期期中考试数学试题简要答案一、选择题(共8小题,每小题5分,共40分.每小题给出的四个选项中只有一项符合要求)【1题答案】【答案】B【2题答案】【答案】A【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】C【6题答案】【答案】B【7题答案】【答案】A【8题答案】【答案】A二、多选题(本小题4小题,每小题5分,共20分.每小题有多项符合题目要求,全部选对得5分,部分选对得部分分,有选错的得0分)【9题答案】【答案】B【10题答案】【答案】ABD【11题答案】【答案】BCD【12题答案】【答案】ACD三、填空题(本小题4小题,每小题5分,共20分)【13题答案】【答案】【14题答案】【答案】##45【15题答案】【答案】【16题答案】【答案】四、解答题(本题共70分.解答应写出文字说明,证明过程或演算步骤)【17题答案】【答案】(1)递增区间是,递减区间是;(2).【18题答案】【答案】(1)(2)【19题答案】【答案】(1) (2)分布列略,【20题答案】【答案】(Ⅰ)略;(Ⅱ) 1【21题答案】【答案】(1)(2), (3),【22题答案】.192()πsin 26f x x ⎛⎫=+⎪⎝⎭151(,)3-∞-+∞1(,1)3-8-3π335()275E X =13()34E X =()45112D X =()155520(5)C 0.0810.08P Y ==⨯⨯-() 1.472D Y =【答案】(1) (2)存在定点,2213x y +=()0,1P。
广东省广州市第二中学2023-2024学年高二下学期期中考试数学试题(含简单答案)
广州市第二中学2023-2024学年高二下学期期中考试数学本试卷共4页,19小题.满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必要填涂答题卷上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卷相应的位置上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知数列为等比数列,,为函数的两个零点,则( )A 10B. 12C. 32D. 332. 已知函数,则曲线在处的切线方程为( )A. B. C. D.3. 已知二项展开式,则( )A.B. 3C.D. 54. 一个袋中有m 个红球,n 个白球,p 个黑球(,),从中任取1个球(每球取到的机会均等),设表示取出的红球个数,表示取出的白球个数,则A. B. C. D.5. 现有一组数据0,l ,2,3,4,5,6,7,若将这组数据随机删去两个数,则剩下数据的平均数大于4的概率为( ).{}n a 1a 6a ()23332f x x x =-+34a a =()11ex f x x =-+()y f x =0x =20x y +-=210x y +-=220x y +-=10x y +-=523450123451322x a a x a x a x a x a x ⎛⎫-=+++++ ⎪⎝⎭123452345a a a a a ++++=325215m n ≤<≤4p ≥1ξ2ξ()()()()1212,E E D D ξξξξ>>()()()()1212,E E D D ξξξξ><()()()()1212,E E D D ξξξξ<>()()()()1212,E E D D ξξξξ<<A.B.C.D.6. 根据贝叶斯统计理论,事件,,(的对立事件)存在如下关系:.若某地区一种疾病的患病率是,现有一种试剂可以检验被检者是否患病,已知该试剂的准确率为,即在被检验者患病的前提下用该试剂检测,有的可能呈现阳性,该试剂的误报率为,即在被检验者未患病的情况下用该试剂检测,有的可能会误报阳性.现随机抽取该地区的一个被检验者,用该试剂来检验,结果呈现阳性的概率为( )A. 0.0688B. 0.0198C. 0.049D. 0.057. 等比数列的首项,公比为,数列满足(是正整数),若当且仅当时,的前项和取得最大值,则取值范围是( )A. B. C. D. 8. 已知函数的导函数为,,且在R 上为严格增函数,关于下列两个命题的判断,说法正确的是( )①“”是“”的充要条件;②“对任意都有”是“在R 上为严格增函数”的充要条件.A ①真命题;②假命题B. ①假命题;②真命题C. ①真命题;②真命题D. ①假命题;②假命题二、选择题:本题共3小题,每小题6分.共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 事件与互斥,若,则( )A. B. C. D. 10. 已知函数(),则函数的图像不可能是().5143142717A B A A ()()()()()||P B P A P B A P A P B A =⋅+⋅0.0299%99%5%5%{}n a 1164a =q {}n b 0.5log n n b a =n 4n ={}n b n n Bq (3,()3,4()4(()y f x =()y f x '=x ∈R ()y f x '=12x x >()()()()121211f x f x f x f x ++>++0x <()()0f x f <()y f x =A B ()()0.2,0.6P A P B ==()1P A B +=()0.56P AB AB +=()()0.6P A P BA =∣()0.8P AB =∣()3f x ax bx c =++0ac <()y f x =A. B.C. D.11. 已知等差数列,公差为,,则下列命题错误是( )A. 函数可能是奇函数B. 若函数是偶函数,则C. 若,则函数是偶函数D. 若,则函数的图象是轴对称图形三、填空题:本题共3小题,每小题5分.共15分.其中第14题第一空2分.第二空3分.12.的展开式中,常数项为__________.(用数字作答)13. 已知函数,若,则最小值为__________.14. 设为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时,为两条棱上两点(不在同一条棱上)间距离的最小值,则随机变量的所有可能取值有__________,的数学期望为__________.四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15. 已知等差数列前项和为,公差.(1)若,求的通项公式;的的的{}n a d ()12f x x a x a =-+-()()y f x x =∈R ()()y f x x =∈R 0d =0d =()()y f x x =∈R 0d ≠()()y f x x =∈R ()4113x x-()ln bf x a x x=-()11f '=22a b +ξ0ξ=ξξξξ{}n a n n S 2d =10100S ={}n a(2)从集合中任取3个元素,记这3个元素能成等差数列为事件,求事件发生的概率.16. 在四棱锥中,底面是正方形,若.(1)证明:平面平面;(2)求二面角的平面角的余弦值.17. 甲乙两人进行乒乓球比赛,现采用三局两胜的比赛制度,规定每一局比赛都没有平局(必须分出胜负),且每一局甲赢的概率都是,随机变量表示最终的比赛局数.(1)求随机变量的分布列和期望;(2)若,设随机变量的方差为,求证:.18. 设函数的定义域为,给定区间,若存在,使得,则称函数为区间上的“均值函数”,为函数的“均值点”.(1)试判断函数是否为区间上的“均值函数”,如果是,请求出其“均值点”;如果不是,请说明理由;(2)已知函数是区间上的“均值函数”,求实数的取值范围;(3)若函数(常数)是区间上的“均值函数”,且为其“均值点”.将区间任意划分成()份,设分点的横坐标从小到大依次为,记,,.再将区间等分成()份,设等分点的横坐标从小到大依次为,记.求使得的最小整数的值.{}123456,,,,,a a a a a a A A ()P A Q ABCD -ABCD 2,3AD QD QA QC ====QAD ⊥ABCD B QD A --p X X ()E X 103p <<X ()D X ()2081D X <()y f x =D [,]a b D ⊆0(,)x a b ∈0()()()f b f a f x b a-=-()y f x =[,]a b 0x ()y f x =2y x =[1,2]2112212x x y m --=-+⋅-[1,3]m 222(22)x a y x x +=-+a ∈R[2,2]-23[2,0]-1m +N m ∈12,,,m t t t 02t =-10m t +=10|()()|mi i i G f t f t +==-∑[0,2]21n +n ∈N 122,,,n x x x 21()nii H f x ==∑2023H G ⋅>n19. 已知.(1)求函数的单调区间和极值;(2)请严格证明曲线有唯一交点;(3)对于常数,若直线和曲线共有三个不同交点,其中,求证:成等比数列.ln (),()e x x x f x g x x==()()y f x y g x ==、()()y f x y g x ==、10,e a ⎛⎫∈ ⎪⎝⎭y a =()()y f x y g x ==、()()()123,,,x a x a x a 、、123x x x <<123x x x 、、广州市第二中学2023-2024学年高二下学期期中考试数学简要答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】C【2题答案】【答案】C【3题答案】【答案】C【4题答案】【答案】D【5题答案】【答案】D【6题答案】【答案】A【7题答案】【答案】C【8题答案】【答案】C二、选择题:本题共3小题,每小题6分.共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AC【10题答案】【答案】ACD【11题答案】【答案】ABC三、填空题:本题共3小题,每小题5分.共15分.其中第14题第一空2分.第二空3分.【12题答案】【答案】【13题答案】【答案】##【14题答案】【答案】①. 、②.四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)(2)【16题答案】【答案】(1)证明略;(2).【17题答案】【答案】(1)分布列略,(2)证明略【18题答案】【答案】(1)为区间上的“均值函数”“均值点” (2)(3)【19题答案】【答案】(1)答案略(2)证明过程略(3)证明过程略12-120.50121na n=-310232()222E X p p=-++2y x=[1,2](,2)6,)-∞++∞15。
广东省广东外语外贸大学附属外国语学校2023-2024学年高二下学期期中考试数学试卷(含简单答案)
广东外语外贸大学附属外国语学校2023-2024学年高二下学期期中考试数学试题考试范围:第五六七章;考试时间:120分钟;满分:150分注意事项:1.选择题作答请用2B 铅笔写在答题卡上,修改时用橡皮擦干净.笔答题作答必须用黑色墨迹签字笔或钢笔填写在相对应的答题框内,不得超出答题框.2.保持答题卡卡面清洁,不要折叠,不要弄破.3.在每页考生信息框中填写姓名及考生号.第I 卷(选择题)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1. 已知函数f (x )的图象如图所示,下列数值的排序正确的是()A. B. C. D. 2. 2023年杭州亚运会吉祥物组合为“江南忆”,出自白居易的“江南忆,最忆是杭州”,名为“琮琮”、“莲莲”、“宸宸”的三个吉祥物,是一组承载深厚文化底蕴的机器人为了宣传杭州亚运会,某校决定派4名志愿者将这三个吉祥物安装在学校科技广场,每名志愿者只安装一个吉祥物,且每个吉祥物至少有一名志愿者安装,若志愿者甲只能安装吉祥物“宸宸”,志愿者乙不能安装吉祥物“宸宸”则不同的安装方案种数为( )A. 6B. 12C. 10D. 143. 函数的最小值为( )A. B. C.D. (2)(3)(3)(2)f f f f <'<-'(3)(3)(2)(2)f f f f <-'<'(3)(2)(3)(2)f f f f <'<-'(3)(2)(2)(3)f f f f ''-<<()[]11e ,3,4x y x x +=+∈-22e -55e 54e 1e --4. 已知某地市场上供应的灯泡中,甲厂产品占,乙厂产品占,甲厂产品的合格率是,乙厂产品的合格率是,则从该地市场上买到一个合格灯泡的概率是( )A. B. C. D.5. 从1,2,3,4,5中任取2个不同的数,记事件为“取到的2个数之积为偶数”,事件为“取到的2个数之和为偶数”,则( )A.B.C.D.6. 某三甲医院组织安排4名男主任医师和3名女主任医师到3家不同的区级医院支援,要求每家区级医院至少安排2人且必须有1名女主任医师,则不同的安排方法有( )A. 216种B. 108种C. 72种D. 36种7. 设函数与是定义在同一区间上的两个函数,若对任意的,都有,则称与在上是“密切函数”,区间称为“密切区间”,设函数与在上是“密切函数”,则实数m 的取值范围是( )A. B. C. D. 8. 若对一切正实数恒成立,则实数的取值范围是( )A B. C. D. 二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.9. 下列说法中不正确的有( )A. B. 函数的切线与函数可以有两个公共点C. 若,则是函数的极值点D. 函数的减区间为10. 下列各式中,不等于是( )A. B. C.D. 11. 下列说法正确的是( ).的60%40%90%80%0.540.320.840.86A B ()|P B A =18171625()f x ()g x [],a b [],x a b ∈()()1f x g x -≤()f x ()g x [],a b [],a b ()ln f x x =()1mx g x x -=1,e e ⎡⎤⎢⎥⎣⎦[]2,2e -1,2e ⎡⎤⎢⎥⎣⎦1,1e e e ⎡⎤-+⎢⎥⎣⎦[]1,1e e -+2ln 2x t e x t +≥-x t 1(,e-∞1(,]2-∞1+2⎡⎫-∞⎪⎢⎣⎭,(,]e -∞ππsin cos44'⎛⎫= ⎪⎝⎭()y f x =()00f x '=0x ()f x ()ln2f x x x =-(),1-∞!n 11n n n A --⋅m mn nA C ⋅11n n A ++m n mn n mA A --⋅A. 已知随机变量X ,Y ,满足,且X 服从正态分布,则B 已知随机变量X 服从二项分布,则C. 已知随机变量X 服从正态分布,且,则D. 已知随机变量X 服从两点分布,且,令,则第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12. 在的展开式中,的系数为15,则________.13. 丝瓜的主要用途是作为蔬菜被人们食用,除此之外,丝瓜成熟后里面的网状纤维(丝瓜络)可代替海绵用于洗刷灶具及家具,其肉、籽、花、藤、叶等也具有一定的药用作用.已知一种白玉香丝瓜成熟后的长度近似服从正态分布,某蔬菜种植基地新摘下一批成熟白玉香丝瓜,整理后发现长度在23cm 以上(含23 cm )的白玉香丝瓜有320根,则此次摘下的白玉香丝瓜约有______根.(结果保留整数,若,则,,)14. 对于函数,若其定义域内恰好存在两个不同非零实数,使得成立,则称函数为M 函数.若函数为M 函数,则实数a 的取值范围是____________.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15. 已知函数.(1)求曲线在点处的切线的方程;(2)求函数的极值.16. 某外语学校的一个社团中有7名同学,其中2人只会法语;2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问.(1)在选派的3人中恰有2人会法语的概率;.的24X Y +=(3,1)N 1()2E Y =15,3B ⎛⎫ ⎪⎝⎭80(3)243P X ==(4,1)N (5)0.1587P X ≥=(35)0.6826P X <<=(0)0.6,(1)0.4P X P X ====32Y X =-(2)0.6P Y =-=5(1)(1)x ax ++2x =a ()20,9N ()2,X N μσ:()0.6827P X μσμσ-<<+≈()220.9545P X μσμσ-<<+≈()330.9973P X μσμσ-<<+≈()y f x =12,x x ()()121211,f x f x x x ==()f x ()xef x a=()21xx x f x e +-=()y f x =()()0,0f ()y f x =(2)在选派的3人中既会法语又会英语的人数X 的分布列和数学期望.17. (1)求的展开式中的常数项;(2)若,求:①②.18. 某校有一个露天的篮球场和一个室内乒乓球馆为学生提供锻炼场所,甲、乙两位学生每天上下午都各花半小时进行体育锻炼,近50天天气不下雨的情况下,选择体育锻炼情况统计如下:上下午体育锻炼项目的情况(上午,下午)(篮球,篮球)(篮球,乒乓球)(乒乓球,篮球)(乒乓球,乒乓球)甲20天15天5天10天乙10天10天5天25天假设甲、乙选择上下午锻炼的项目相互独立,用频率估计概率.(1)分别估计一天中甲上午和下午都选择篮球的概率,以及甲上午选择篮球的条件下,下午仍旧选择篮球的概率;(2)记为甲、乙在一天中选择体育锻炼项目的个数,求的分布列和数学期望;(3)假设A 表示事件“室外温度低于10度”,表示事件“某学生去打乒乓球”,,一般来说在室外温度低于10度的情况下学生去打乒乓球的概率会比室外温度不低于10度的情况下去打乒乓球的概率要大,证明:.19. 设函数,其中为常数,且.(1)讨论函数的单调性;(2)设函数,是函数的两个极值点,证明:.6212x x ⎛⎫- ⎪⎝⎭()62212012121x x a a x a x a x ++=++++ 02412a a a a ++++ 123122312a a a a ++++ X X ()E X B ()0P A >(|)(|)P A B P A B >1()ln 1f x a x x =++a 0a >()f x ()()ln F x f x x a =+12,x x ()f x ()()1214ln 2F x F x +<-广东外语外贸大学附属外国语学校2023-2024学年高二下学期期中考试数学试题简要答案第I卷(选择题)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】C【3题答案】【答案】D【4题答案】【答案】D【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】A【8题答案】【答案】C二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.【9题答案】【答案】ACD【10题答案】【答案】BC【11题答案】【答案】ACD第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】或1【13题答案】【答案】2017【14题答案】【答案】四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.【15题答案】【答案】(1);(2)极小值为,极大值为.【16题答案】【答案】(1)(2)分布列略;【17题答案】【答案】(1)(2)①;②【18题答案】【答案】(1)0.4;(2)分布列略,182(3)证明略【19题答案】【答案】(1)答案略;(2)证明略..32-1,0e⎛⎫- ⎪⎝⎭210x y --=e -25e47()97E X =240365437447。
四川省成都市树德中学2023-2024学年高二下学期期中考试数学试题(含简单答案)
成都市树德中学2023-2024学年高二下学期期中考试数学试题(考试时间:120分钟 试卷满分:150分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1. 4名同学分别报名参加足球队、篮球队、乒乓球队,每人限报一个运动队,不同的报名方法有( )A. 81种B. 64种C. 24种D. 12种2. 下列结论正确的是( )A. B. C. 若,则 D. 若,则3. 已知数列满足,,则数列前2025项的积为( )A. 2B. 3C.D. 64. 如图,射线和圆,当从开始在平面上绕端点按逆时针方向匀速转动(转动角度不超过)时,它扫过的圆内阴影部分的面积是时间的函数,这个函数的图象大致是( )AB. C. D.5. 已知等比数列的前3项和为168,,则( )A. 14B. 12C. 6D. 36. 已知数列满足,,则等于( ).[]1ln(21)21x x '-=-0(1)(1)lim(1)x f x f f x∆→-∆-'=∆πcos4y =πsin 4y '=-2()(1)f x f x x '=-(1)1f '={}n a 12a =111nn na a a ++=-{}n a 12-{}n a 2542a a -=6a ={}n a 11a =()11N+*+-=∈n n n n a a na a n naAB.C.D.7. 已知函数,则不等式的解集为( )A. B. C. D. 8. 已知函数的定义域为为的导函数.若,且在上恒成立,则不等式的解集为( )A. B. C. D. 二、多选题(本大题共3小题,每小题6分,选对部分得部分分,多选、错选或不选得0分,共18分)9. 等差数列的前n 项和为,若,则下列结论正确的是( )AB. C. D.10. 设是三次函数的导数,是的导数,若方程有实数解,则称点为三次函数的“拐点”.经过探究发现:任何一个三次函数都有“拐点”且“拐点”就是三次函数图象的对称中心.设函数,则以下说法正确的是( )A. 拐点为 B. 有极值点,则C. 过的拐点有三条切线D. 若,,则11. 已知,.若存在,,使得成立,则下列结论中正确的是( )A. 当时, B. 当时,C. 不存在,使得成立D. 恒成立,则第Ⅱ卷三、填空题(本大题共3小题,每小题5分,共15分)..的22n n -222n n -+22n n-222n n -+2()sin cos f x x x x x =++1(ln )ln2(1)f x f f x ⎛⎫+< ⎪⎝⎭(,)e +∞(0,)e 10,(1,)e e ⎛⎫⋃ ⎪⎝⎭1e e⎛⎫ ⎪⎝⎭,()f x (),f x 'R ()f x ()1e f =()()e xf x f x +<'R ()()2e xf x x <-(),2-∞()2,+∞(),1-∞()1,+∞{}n a n S 9100,0a a <>109S S >170S <1819S S >190S >()f x '()y f x =()f x ''()f x '()0f x ''=0x 00(,())x f x ()y f x =32()f x x bx cx =++()f x ,33bb f ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭()f x 230b c ->()f x 3b =-1c =(2)()2f x f x -+=-()e xf x x =()lng x x x =1x ∈R ()20,x ∈+∞()()12f x g x t ==0t >12x x t=0t >12eln t x x ≤t ()()12f x g x =''()()f x g x mx >+2m ≤12. 已知等比数列前项和为,若,,则________.13. 将5个人排成一排,若甲和乙须排在一起,则有__________种不同的排法.(用数字作答)14. 已知对任意,且当时,都有:,则的取值范围是__________.四、解答题(本大题共5题,15题13分,16-17题每题15分,18-19题每题17分共77分)15. 在数列中,,点在直线上.(1)求数列的通项公式;(2)若,求数列的前n 项和.16. 已知函数.(1)当时,求的单调区间,并求的极值;(2)若函数在区间上的最大值为,求的值.17. 某企业为一个高科技项目注入了启动资金1000万元,已知每年可获利25%,但由于竞争激烈,每年年底需从利润中抽取200万元资金进行科研、技术改造与广告投入,方能保持原有的利润增长率,设经过年后,该项目的资金为万元.(1)求数列的通项公式.(2)求至少需经过多少年,该项目的资金才可以达到或超过翻两番(即为原来的4倍)的目标(取);(3)若,,求数列的前项和.18. 已知函数.(1)若时,求曲线在点处的切线方程;(2)若时,(i )方程在上有唯一的实根,求的取值范围;(ii )函数.若,是方程的两个实根,求证:.的{}n b n n T 31T =67T =9T =()12,0,x x ∈+∞12x x <()212112ln ln 11a x x x x x x -<+-a {}n a 616a =()()1,n n a a n *+∈N 30x y -+={}n a 2nn n b a ={}n b n T ()ln f x ax x =+1a =-()f x ()f x ()f x (0,e)3-a n n a {}n a lg 20.3=1(1049)n b n a =-21n n n c b b +={}n c n n S ()e 1x f x ax =+-2a =()y f x =(0,0)1a =-()f x m =[1,2]-m ()()1)e 2(x f x b x F x +-+=1x 2x ()1F x =12123e e 2e x x x x +-+>19. 意大利画家达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,那么项链所形成的曲线是悬链线.1691年,莱布尼茨等得出悬链线可为双曲余弦函数的图象,类似的可定义双曲正弦函数.它们与正、余弦函数有许多类似的性质.(1)类比正弦函数的二倍角公式,请写出(不证明)双曲正弦函数的一个正确的结论:________;(2)当时,比较与的大小,并说明理由;(3)证明:e e ch()2x xx -+=e e sh()2x xx --=sh(2)x =0x >sh()x x *22sh sh sh(2)sh(1)432(N )111tan121tan tan tan23n nn n n n⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭++++>∈+成都市树德中学2023-2024学年高二下学期期中考试数学试题简要答案一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.【1题答案】【答案】A【2题答案】【答案】D【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】D【7题答案】【答案】D【8题答案】【答案】D二、多选题(本大题共3小题,每小题6分,选对部分得部分分,多选、错选或不选得0分,共18分)【9题答案】【答案】ABD【10题答案】【答案】ABD【11题答案】【答案】AB第Ⅱ卷三、填空题(本大题共3小题,每小题5分,共15分)【12题答案】【答案】【13题答案】【答案】【14题答案】【答案】四、解答题(本大题共5题,15题13分,16-17题每题15分,18-19题每题17分共77分)【15题答案】【答案】(1); (2).【16题答案】【答案】(1)单调递增区间为,单调递减区间为;极大值为,无极小值; (2).【17题答案】【答案】(1)(2)12年 (3)【18题答案】【答案】(1) (2)(i )或;(ii )证明略【19题答案】【答案】(1) (2),理由略 (3)证明略4348(],2-∞32n a n =-1(35)210n n T n +=-⋅+(0,1)(1,)+∞(1)1f =-2e a =-158002504n n a -⎛⎫=+⨯ ⎪⎝⎭31142224n S n n =--++3y x =0m =21e 3em <≤-sh(2)2sh()ch()x x x =⋅sh()x x >。
2010-2023历年北京市第六十六中学高二下学期期中考试生物试卷(带解析)
2010-2023历年北京市第六十六中学高二下学期期中考试生物试卷(带解析)第1卷一.参考题库(共20题)1.下列关于人体体温调节的叙述,正确的是A.人体的温觉感受器只分布在皮肤中B.处于寒冷环境中时,皮肤毛细血管收缩,血液中肾上腺素含量增加C.调节体温的主要中枢位于大脑皮层D.人在炎热环境中,散热主要方式是皮肤立毛肌收缩,降低新陈代谢2.天然林区内的马尾松一般不容易发生虫害,但在一些人工马尾松林中却常会发生严重的松毛虫危害,其主要原因是A.松毛虫繁殖力强B.马尾松抗虫能力差C.人工林营养结构简单D.当地气候适宜松毛虫生长3.下列对植物激素的叙述中,错误的是:A.在植物体内含量极少B.对植物生命活动具有调节作用C.在植物体一定部位产生D.各种激素在植物体内独立起作用4.能分泌促甲状腺激素的部位是A.垂体B.甲状腺C.性腺D.下丘脑5.给正常生活的小白鼠注射一定量的胰岛素后,小白鼠出现休克现象,要使其及时复苏可适量注射A.甲状腺激素B.葡萄糖液C.生理盐水D.生长激素6.目前大气中CO2浓度增加的主要原因是A.日益增长的人口的呼吸作用B.化石燃料和木材的燃烧C.火山爆发D.臭氧层被破坏7.免疫系统功能过强或过弱,都会引起机体功能的紊乱。
下列关于免疫系统功能异常引起的疾病,描述正确的是A.艾滋病人群患恶性肿瘤的比率与健康人相比没有差异B.风湿性心脏病的病因是抗体与自身组织发生反应引起自身免疫疾病C.过敏反应中没有淋巴细胞的参与D.HIV主要通过感染人体B淋巴细胞,从而影响体液免疫8.右图是某种群各年龄段个体数量示意图,该种群的发展趋势是A.越来越大B.越来越小C.相对稳定D.先增大后减小9.某医生接待了因手被割伤前来就医的甲、乙两位病人,在详细询问后,决定给接种过破伤风疫苗的甲注射破伤风类毒素;给未接种过破伤风疫苗的乙注射破伤风抗毒素。
请回答下列问题:(1)破伤风杆菌从结构上说它与酵母菌最主要的区别是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、已知全集{1,2,3,4,5}U =,集合{1,2}A =,{2,3,4}B =,则U B A =ð
( )
A .{2}
B .{3,4}
C .{1,4,5}
D .{2,3,4,5}
15、复数的1
1
Z i =
-模为( )
A .
12 B .
2
C D .2
2.(2013•浙江)设集合S={x|x >-2},T={x|x2+3x-4≤0},则(∁RS )∪T=( ) A .(-2,1] B .(-∞,-4] C .(-∞,1] D .[1,+∞)
3、极坐标方程 cos 1ρθ= 表示的曲线为( )
A 、圆
B 、椭圆
C 、一条直线
D 、两条相交直线
4、已知命题p :∃x 0∈R ,x 02
+2x 0+2≤0,那么下列结论正确的是_____________
A .¬p :∃x 0∈R ,x 02
+2x 0+2>0 B .¬p :∀x ∈R ,x 2+2x +2>0 C .¬p :∃x 0∈R ,x 02+2x 0+2≥0 D .¬p :∀x ∈R ,x 2+2x +2≥0
5.
A.94、96 B.52、50 C.52、54 D.54、52 6、函数f(x)=3x 2
1-x
+lg(3x+1)的定义域是( )
A.(-∞,- 13) B.(- 13,13) C.(- 13,1) D.(- 1
3,+∞)
7、下列函数中,值域为(0+∞)的是( )
A 、y=x 2-x+1
B 、y=x+x 1
(x >0) C 、y=e sicx D 、y=(x+1)
8、如果函数f(x)= x 2
+2(a-1)x+2在区间(—∞,4]上是减函数,则实数a 的取值范围是( ) A 、[—3+∞) B 、(—∞,—3] C 、(—∞,5] D 、[3,+∞)
16、设,a b ∈R , 则 “2()0a b a -<”是“a b <”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .既不充分也不必要条件
9、函数21
log (2)
y
x =
-的定义域为( )
A .(,2)-∞
B .(2,)+∞
C .(2,3)
(3,)+∞ D .(2,4)(4,)+∞
【答案】C
10、下列函数中,既是偶函数又在区间(0,+ ∞)上单调递减的是( )
A .1y x
=
B .x y e
-=
C .
2
1y x =-+
D .lg ||y x =
【答案】C
11、已知函数)(x f 为奇函数,且当0>x
时,x
x x f 1
)(2+
=,则=-)1(f ( ) A .2
B .1
C .0
D .-2
【答案】D 12、函数lg(1)
()1
x f x x +=
-的定义域是( ) A .(1,)-+∞
B .[1,)-+∞
C .(1,1)
(1,)-+∞ D .[1,1)(1,)-+∞
【答案】C
13
、函数()f x =的定义域为( ) A .(-3,0] B .(-3,1]
C .(,3)
(3,0]-∞-- D .(,3)(3,1]-∞--
14、在独立性检验中,统计量2χ有两个临界值:3.841和6.635;当2χ>3.841时,有95%的把握说明两个事件有关,当2χ>6.635时,有99%的把握说明两个事件有关,当2χ≤3.841时,认为两个事件无关.
调查者通过询问50名男女大学生在选修课程时是否选择“统计学”课程,得到数据如下表:
根据表中的数据,得到
2
2
50(1320107) 4.84423272030
χ⨯⨯-⨯=
≈⨯⨯⨯ . 根据这一数据分析,认为大学生的性别和是否选修“统计学”课程之间 ( ) A.有95%的把握认为两者有关 B. 约有95%的选修“统计学”课程的学生是女性 C.有99%的把握认为两者有关 D. 约有99%的选修“统计学”课程的学生是女性
9.在复平面内,复数i i (1-)对应的点的坐标是 . 10.观察下列等式
1i=cos isin 233ππ+,
2122i)=cos isin 233ππ+,
3
1i)=cos isin 2
ππ+
4144
(
+i )=c o s i s i n 223
3
ππ+, ……
照此规律,可以推测对于任意的n N *
∈,1i)=2
n
.
13
则f[g(1)]的值为 ,当,x=
15.函数y=1
22
+x x (x ∈R)的值域是
13.若 753()8,(5)15f x ax bx cx dx f =++++-=- 则 (5)f =
14.如图,⊙O 的弦ED ,CB 的延长线交于点A ,若BD ⊥AE ,
AB =4,BC =2,AD =3,则DE =______
13.某产品的广告费用与销售额y 的添加数据如下表
根据上表可得回归方程ˆˆˆy
bx a =+中的ˆb 为9.6,据此模型预报广告费用为6万元时销售额为 万元.
(2013年高考安徽(文))定义在R 上的函数()f x 满足(1)2()f x f x +=.若当01
x ≤
≤时.()(1)f x x x =-,则当10x -≤≤时,()f x =________________.
19.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相)的几组对照数据.
;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y^=b^x+a
^;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出线性回
归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)]
17.(本小题满分10分)
如图,设△ABC的外接圆的切线AE与BC的延长线交于
点E,∠BAC的平分线与BC交于点D.
求证:(1)∠ADE=∠DAE
(2)ED2=EC·EB.。