小学六年级奥数试题大全
六年级奥数题题目
六年级奥数题题目一、工程问题。
1. 一项工程,甲队单独做20天完成,乙队单独做30天完成。
现在两队合作,期间甲队休息了3天,乙队休息了若干天,从开始到完工共用了16天。
问乙队休息了几天?- 解析:- 甲队单独做20天完成,则甲队每天的工作效率为1÷20=(1)/(20)。
- 乙队单独做30天完成,则乙队每天的工作效率为1÷30=(1)/(30)。
- 甲队工作了16 - 3=13天,甲队完成的工作量为(1)/(20)×13=(13)/(20)。
- 那么乙队完成的工作量为1-(13)/(20)=(7)/(20)。
- 乙队完成这些工作量需要的时间为(7)/(20)÷(1)/(30)=10.5天。
- 所以乙队休息的天数为16 - 10.5 = 5.5天。
2. 有一项工程,甲、乙两队合作需要12天完成,乙、丙两队合作需要15天完成,甲、丙两队合作需要20天完成。
如果甲、乙、丙三队合作需要多少天完成?- 解析:- 设甲队每天的工作量为x,乙队每天的工作量为y,丙队每天的工作量为z。
- 根据题意可得x + y=(1)/(12) y+z=(1)/(15) x + z=(1)/(20)。
- 把这三个式子相加得2(x + y+z)=(1)/(12)+(1)/(15)+(1)/(20)。
- 先计算(1)/(12)+(1)/(15)+(1)/(20)=(5 + 4+3)/(60)=(12)/(60)=(1)/(5)。
- 所以x + y + z=(1)/(10)。
- 那么甲、乙、丙三队合作需要1÷(1)/(10)=10天完成。
二、分数应用题。
3. 一篓苹果分给甲、乙、丙三人,甲分得全部苹果的(1)/(5)加5个苹果,乙分得全部苹果的(1)/(4)加7个苹果,丙分得其余苹果的(1)/(2),最后剩下的苹果正好等于一篓苹果的(1)/(8)。
这篓苹果有多少个?- 解析:- 设这篓苹果有x个。
六年级奥数竞赛试题(通用20篇)
六年级奥数竞赛试题(通用20篇)六年级奥数竞赛试题(通用20篇)六年级的数学有着一定的难度,更别说是奥数了,以下是小编整理的六年级奥数竞赛试题,欢迎参考阅读!六年级奥数竞赛试题篇1一、填空(第8题4分,其他每小题均为2分共20分)1、75公顷= 平方千米 100分钟=( )天2、把一根3米长的钢材,从一头到另一头截成每段长米的小段要截( )次,每段占全( )3、1天的和( )小时的一样长。
4、六年(1)班女生占男生的,则男生占全班的( )。
5、甲比乙多,乙比丙少25%,则甲是丙的( )%。
6、一个半圆的直径是10厘米,它的周长是( )7、把360本书按4∶5∶6分给四、五、六、年级,分得最多的年级比分得最少的年级多( )本。
8、在一张长12厘米,宽8厘米的长方形纸上,剪下两个最大的圆,那么每个圆的周长是( ),剩下部分占这张纸面积的( )。
9、两个质数倒数相加,和的分子是25,分母是( )。
二、判断题:(10分)1、1米的25%是25%米。
( )2、一个数的倒数,有可能与这个数相等。
( )3、如果ab=1,则a是倒数。
( )4、直径是4分米的圆,它的周长和面积相等。
( )5、生产101个零件,101个合格,合格100%。
( )三、选择题。
(10分)1、如果a、b、c都为自然数,并都不为零,若a÷ >a,则b( )c。
A> B= C< D不能比较2、一个数和它的倒数之和一定( )1。
A> B= C< D无法比较3、两件衣服都按80元出售,其中一件赚了25%,另一件亏了25%,那么两件衣服合算在一起,结果是( )。
A赚了 B亏了 C不赚不亏 D无法比较4、一个三角形的三个内角度数比是4∶1∶1,这个三角形是( )三角形。
A直角 B等边 C等腰 D直角等腰5、甲乙两数的和是2 ,甲减去乙的差为1,则乙数是( )。
A1 B2 C8 D0四、计算:1、直接写出的得数:(8分)45÷4 = ( 256+14 )×12=152 ÷ 12=2、能简算的要简算。
六年级奥数试题及答案
六年级奥数试题及答案一、选择题(每题5分,共20分)1. 一个数的3倍加上5等于23,这个数是多少?A. 5B. 6C. 7D. 8答案:B2. 一个正方形的周长是24厘米,它的面积是多少平方厘米?A. 36B. 48C. 64D. 96答案:B3. 一个数的一半加上6等于11,这个数是多少?A. 10B. 8C. 9D. 12答案:A4. 一个数的3倍是48,这个数是多少?A. 16B. 12C. 15D. 18答案:A二、填空题(每题5分,共20分)1. 一个数的4倍是32,这个数是______。
答案:82. 一个数的5倍减去8等于37,这个数是______。
答案:93. 一个数的6倍加上10等于46,这个数是______。
答案:64. 一个数的7倍是49,这个数是______。
答案:7三、解答题(每题15分,共30分)1. 一个数的2倍加上3倍等于45,求这个数。
解:设这个数为x,根据题意得方程:2x + 3x = 45 合并同类项得:5x = 45解方程得:x = 9答:这个数是9。
2. 一个数的4倍减去10等于20,求这个数。
解:设这个数为y,根据题意得方程:4y - 10 = 20 移项得:4y = 30解方程得:y = 7.5答:这个数是7.5。
四、应用题(每题15分,共20分)1. 小明有一本书,他第一天看了全书的1/4,第二天看了全书的1/3,第三天看了全书的1/2,请问小明三天一共看了全书的几分之几?解:1/4 + 1/3 + 1/2 = 3/12 + 4/12 + 6/12 = 13/12答:小明三天一共看了全书的13/12。
2. 一个班级有40名学生,其中男生人数是女生人数的1.5倍,请问这个班级有多少名男生?解:设女生人数为x,则男生人数为1.5x,根据题意得方程:x + 1.5x = 40合并同类项得:2.5x = 40解方程得:x = 16答:这个班级有24名男生。
(完整)小学六年级奥数题100道带答案有解题过程
(完整)小学六年级奥数题100道带答案有解题过程姓名:__________班级:__________学号:__________1.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的工程由乙单独完成,还需要几天?解:设工程总量为单位“1”,甲的工作效率是1/10,乙的工作效率是1/15,两人合作4天完成的工作量是(1/10+1/15)×4=2/3,剩下的工作量是1-2/3=1/3,那么乙单独完成需要的时间是1/3÷1/15=5天。
思路:先求出合作完成的工作量,再求剩余工作量以及乙完成剩余工作所需时间。
2.一个数的20%比它的3/5少30,这个数是多少?解:设这个数为x,则3/5x-20%x=30,即0.6x-0.2x=30,0.4x=30,解得x=75。
思路:根据数量关系列方程求解。
3.甲乙两车分别从A、B两地同时出发,相向而行,甲车每小时行60千米,乙车每小时行80千米,3小时后两车相距40千米,A、B两地相距多少千米?解:两车3小时行驶的路程之和再加上相距的40千米就是A、B两地的距离,(60+80)×3+40=460千米。
思路:先求两车行驶的路程和,再加上相距距离。
4.一个圆柱的底面半径是2厘米,高是5厘米,求它的侧面积和体积。
解:侧面积=2πrh=2×3.14×2×5=62.8平方厘米,体积=πr²h=3.14×2²×5=62.8立方厘米。
思路:根据圆柱侧面积和体积公式计算。
5.有浓度为20%的盐水80克,要把它变成浓度为40%的盐水,需要加盐多少克?解:设需要加盐x克,根据盐的质量关系可列方程,(80×20%+x)÷(80+x)=40%,即(16+x)÷(80+x)=0.4,16+x=0.4×(80+x),16+x=32+0.4x,0.6x=16,解得x=80/3。
六年级奥数必考50道题
六年级奥数必考50道题1、停车场共停24辆车,其中汽车有4个轮子,摩托车有3个轮子,车轮共86个,求汽车和摩托车各几辆?2、一辆汽车共坐50人,其中部分人买A种票,每张0.80元,另一部分买B种票,每张0.30元,售票员统计买A种票比B种票多收18元,求买A种票和B种票各几个人买?3、十元币和五元币共45张,合计350元,求十元币和5元币各几张?4、数学考试共有5题,全班52人参加,共做对181道题,已知每人至少做对一题,对一题的有7人,5题全对有6人,做对二题和三题的人数一样多,求做对4题有几人?5、买4元8元10元的笔记本58本,用去468元,已知4元和8元笔记本数量一样多,三种笔记本各买了几本?6、数学测试原卷共15题,对一题得8分,做错倒扣4分,小英得了72分,她做对了几题?7、买故事书50本,连环画30本,一共花310元,每本故事书比连环画多3元,求故事书和连环画各几元?8、小明骑车晴天每天行35千米,雨天每天行22千米,13天共行403千米,求共有雨天几天?9、六年级数学竞赛共20题,做一题5分,不写或写错扣3分,小建得了60分,他做对了几道题?10、工人植树晴天每天栽20棵,雨天每天栽12棵,几天共栽112棵,平均每天栽14棵,求共有几个雨天?11、小明用40元买14张贺年卡和明信片,贺年卡每张3元5角,明信片每张2元5角,贺年卡和明信片各几张?12、小王用汽车运了500个花瓶,每个运费40元,损坏一个倒赔200元,小王共得了8000元,损坏了几个瓶子?13、有一桶油,用大瓶装要72个瓶子,用小瓶装要90个瓶子,已知每个小瓶比大瓶少装4kg,求这桶油多少kg?14、有大小鸡蛋共100个,大鸡蛋每个6角,小鸡蛋每个4角,已知大鸡蛋比小鸡蛋多卖12元,大小鸡蛋各几个?15、4轮车小车和6轮车小车共18辆96个轮子,两种小车各有几辆?16、鸡兔共40只,110只脚,鸡兔各几只?17、两轮自行车和三轮摩托车共32辆6个轮子,求自行车和摩托车各多少量?18、小红家有鸡和兔35只,100只脚,鸡兔各几只?19、动物园中养龟和鹤共84只,240条腿,求龟鹤各几只?20、小明养了鸡和兔共24只,60条腿,求鸡兔各几只?21、ABCDE参赛,AB平均95分,CDE平均85分,5个平均分是多少?22、小明9次考试成绩分别为:92,88,84,96,99,81,100,80,90问平均分是多少分?23、小红7次考试分别为:96,95,89,90,91,100,97问7次平均分?24、小明第一次考了82分,第二次85分,第三次84分,第四次89分,第五次分数比五次平均分多9.6分,问第五次考多少分?25、小明做题,第一周做了83道,第二周做了74道,第三周做了71道,第四周做64道,第五周做的比前四周平均多4道,问第五周做了几道?26、小华7次考试分别得98,87,94,100,95,96,93.6,求每次考试的平均分?27、小明5次考试竞赛的平均分是91分,第六次考了96分,求6次得考试平均成绩?28、小亮游泳第一次游325米,第二次游的比两次游的平均多8米,小亮第2次游了几米?29、5个学生平均考94分,其中3个学生平均为92分,求另2个人的平均成绩?30、农机站有960kg的柴油,用了6天还剩240kg,照这样算剩下的柴油还可以用几天?31、小梅做跳绳练习,第一次跳了67下,第二次跳了76下,她要想三次平均成绩达到80下,跳多少下?32、两人的身高是123cm,另外四人的身高平均132cm,求6人平均身高?33、小刚计划4天做15道题,结果4天多做了9道题,平均每天做了多少道?34、一班有40人,二班有42人,三班有45人,开学后,又转来11个学生,怎么分才能使每班人数相等?35、小华8次测验得:99,92,79,85,95,86,94,90求每次的平均分?36、小明6次数学测验分别得88,89,95,87,97,96分求每次测验得平均分?37、小明今年13岁,小聪9岁,当两人年龄和是40岁时,两人各是多少岁?38、林下小学购买的排球是篮球的3倍,排球比篮球多18只,购买的排球和篮球各有多少只?购买的排球和篮球共有多少只?39、有大小两个书架,大书架上书的本数是小书架上的4倍,如果从大书架上取出150本放到小书架上,这时,两书架上的书的本数相等。
小学六年级奥数题大全
工程问题1.甲乙两个水管单独开,注满一池水,分别需要 20 小时,16 小时. 丙水管单独开,排一池水要 10 小时,若水池没水,同时打开甲乙两水管, 5 小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80 表示甲乙的工作效率9/80×5=45/80 表示 5 小时后进水量1 -45/80=35/80 表示还要的进水量35/80÷ ( 9/80 -1/10) =35 表示还要 35 小时注满答:5 小时后还要 35 小时就能将水池注满。
2.修一条水渠,单独修,甲队需要 20 天完成,乙队需要 30 天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划 16 天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为 1/20,乙的工效为 1/30,甲乙的合作工效为 1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效> 乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16 天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少”。
设合作时间为x 天,则甲独做时间为 ( 16 -x) 天1/20* ( 16 -x) +7/100*x=1x=10答:甲乙最短合作 10 天3.一件工作,甲、乙合做需 4 小时完成,乙、丙合做需 5 小时完成。
现在先请甲、丙合做 2 小时后,余下的乙还需做 6 小时完成。
乙单独做完这件工作要多少小时?解:由题意知,1/4 表示甲乙合作 1 小时的工作量,1/5 表示乙丙合作 1 小时的工作量( 1/4+1/5) ×2=9/10 表示甲做了 2 小时、乙做了 4 小时、丙做了2 小时的工作量。
根据“甲、丙合做 2 小时后,余下的乙还需做 6 小时完成”可知甲做 2 小时、乙做 6 小时、丙做 2 小时一共的工作量为 1。
2024年六年级奥数题
2024年六年级奥数题一、工程问题。
1. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成。
两人合作4天后,剩下的工程由乙单独做,还需要几天完成?解析:把这项工程的工作量看作单位“1”。
甲的工作效率为1÷10=(1)/(10),乙的工作效率为1÷15=(1)/(15)。
两人合作4天完成的工作量为((1)/(10)+(1)/(15))×4先计算括号内(1)/(10)+(1)/(15)=(3 + 2)/(30)=(1)/(6)。
那么((1)/(10)+(1)/(15))×4=(1)/(6)×4=(2)/(3)。
剩下的工作量为1-(2)/(3)=(1)/(3)。
乙单独做剩下工程需要的时间为(1)/(3)÷(1)/(15)=(1)/(3)×15 = 5天。
2. 有一个水池,装有甲、乙、丙三根水管,单开甲管6小时可将空池注满,单开乙管8小时可将空池注满,单开丙管12小时可将满池水放完。
如果三管齐开,多少小时可将空池注满?解析:把水池的容积看作单位“1”。
甲管的注水效率为1÷6=(1)/(6),乙管的注水效率为1÷8=(1)/(8),丙管的放水效率为1÷12=(1)/(12)。
三管齐开的注水效率为(1)/(6)+(1)/(8)-(1)/(12)先通分,(4 + 3-2)/(24)=(5)/(24)。
注满空池需要的时间为1÷(5)/(24)=1×(24)/(5)=4.8小时。
二、分数应用题。
3. 某班有学生50人,男生占全班人数的(3)/(5),后来又转来几名男生,这时男生占全班人数的(5)/(7),转来几名男生?解析:原来男生人数为50×(3)/(5)=30人,女生人数为50 30=20人。
转来男生后,女生人数不变,此时女生占全班人数的1-(5)/(7)=(2)/(7)。
六年级奥数题及答案(五篇)
六年级奥数题及答案(五篇)六年级奥数题及答案 1某造纸厂在100天里共生产2024吨纸,开始阶段,每天只能生产10吨纸.中间阶段由于改进了技术,每天的产量提高了一倍.最后阶段由于购置了新设备,每天的产量又比中间阶段提高了一倍半.已知中间阶段生产天数的2倍比开始阶段多13天,那么最后阶段有几天?中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天六年级奥数题及答案 2从花城到太阳城的公路长12公里.在该路的2千米处有个铁道路口,是每关闭3分钟又开放3分钟的.还有在第4千米及第6千米有交通灯,每亮2分钟红灯后就亮3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟?答案与解析:画出反映交通灯红绿情况的s-t图,可得出小糊涂的行车图像不与实线相交情况下速度最大可以是0.5千米/分钟,此时恰好经过第6千米的红绿灯由红转绿的点,所以他到达太阳城最快需要24分钟.六年级奥数题及答案 3分母不大于60,分子小于6的'最简真分数有____个?答案与解析:分类讨论:(1)分子是1,分母是2~60的最简真分数有59个:(2)分子是2,分母是3~60,其中非2、的倍数有58-58÷2=29(个);(3)分子是3,分母是4~60,其中非3的倍数有57-57÷3-38(个);(4)分子是4,分母是5~60,其中非2的倍数有56-56÷2-28c个);(5)分子是5,分母是6~60,其中非5的倍数有55-55÷5―44(个).这样,分子小于6,分母不大于60的最简真分数一共有59+29+38+28+44=198(个).六年级奥数题及答案 4甲、乙、丙三人依次相距280米,甲、乙、丙每分钟依次走90米、80米、72米.如果甲、乙、丙同时出发,那么经过几分钟,甲第一次与乙、丙的距离相等?答案与解析:甲与乙、丙的距离相等有两种情况:一种是乙追上丙时;另一种是甲位于乙、丙之间.⑴乙追上丙需:280(80-72)=35(分钟).⑵甲位于乙、丙之间且与乙、丙等距离,我们可以假设有一个丁,他的速度为乙、丙的速度的*均值,即(80+72)2=76(米/分),且开始时丁在乙、丙之间的中点的位置,这样开始时丁与乙、丙的距离相等,而且无论经过多长时间,乙比丁多走的路程与丁比丙多走的路程相等,所以丁与乙、丙的距离也还相等,也就是说丁始终在乙、丙的中点.所以当甲遇上丁时甲与乙、丙的距离相等,而甲与丁相遇时间为:(280+2802)(90-76)=30(分钟).经比较,甲第一次与乙、丙的距离相等需经过30分钟.六年级奥数题及答案 5王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?答案与解析:本题相当于去的时候速度为每小时50千米,而整个行程的*均速度为每小时60千米,求回来的时候的速度.根据例题中的分析,可以假设甲地到乙地的路程为300千米,那么往返一次需时间__*2=10(小时),现在从甲地到乙地花费了时间__=6(小时),所以从乙地返回到甲地时所用的时间是10-6=4(小时).如果他想按时返回甲地,他应以3004=75(千米/时)的速度往回开.。
(完整)小学六年级数学奥数题
六年级数学奥赛题(一)一、计算。
1、1.25×17.6+36.1÷0.8+2.63×12.52、7.5×2.3+1.9×2. 53、1999+999×9994、8+98+998+9998+99998=5、(78.6—0.786×25十75%×21.4)÷15×1997二、填空题1、六(1)班男、女生人数的比是8:7。
(1)女生人数是男生人数的()(2)男生人数占全班人数的()(3)女生人数占全班人数的()(4)全班有45人,男生有()人。
2、甲数和乙数的比是2:5,乙数和丙数的比是4:7,已知甲数是16,求甲、乙、丙三个数的和是()。
3、甲数和乙数的比7:3,乙数和丙数的比是6:5,丙数是甲数的(),甲数和丙数的比是():()。
4、0.08的倒数是(),2.25的倒数是()。
5、一根铁丝长3米,剪去1/3 后还剩()米;一根铁丝长3米,剪去 1/3米后还剩()米。
6、甲、乙合做一件工作,甲做的部分占乙的 2/5,乙做的占全部工作的()。
7、周长相等的正方形和圆形,()的面积大。
8、()÷40=15:()= =0.625=()%9、把0.38、、37%、0.373按从大到小的顺序排列是()。
10、4米是5米的()%,5米比4米多()%,4米比5米少()%11、用一张长5厘米,宽4厘米的长方形纸剪一个最大的圆,这个圆的面积占这张纸面积的()%。
12. 甲、乙、丙三种糖果每千克的价格分别是9元,7.5元,7元.现把甲种糖果5千克,乙种糖果4千克,丙种糖果3千克混合在一起,那么用10元可买____ _千克这种混合糖果。
13、一个月最多有5个星期日,在一年的12个月中,有5个星期日的月份最多有_____个月。
14、奶奶告诉小明:“2006年共有53个星期日”.聪敏的小明立刻告诉奶奶:2007年的元旦一定是星期( )。
小学六年级奥数100题
小学六年级奥数100题1. 5 * 7 = ____2. 36 ÷ 6 = ____3. 2² = ____4. 8 + 9 ÷ 3 = ____5. 64 ÷ 8 × 2 = ____6. 9 - 3 × 2 + 4 = ____7. 15 ÷ 5 + 7 - 1 = ____8. 16 ÷ 4 × 5 + 3 - 2 = ____9. (3² - 2²) ÷ (3 - 2) = ____10. 3⁴ = ____11. 45 ÷ 9 + 2² = ____12. 5³ - 3³ = ____13. (7 - 4)² - 4² = ____14. 60 ÷ (5 × 2) = ____15. (9 + 3)² ÷ 4² = ____16. 3 × (9 + 3) - 5 × 2 = ____17. 8³ = ____18. 30 ÷ (5 × 3) = ____19. 9 + (4 × 5 - 10) = ____20. (8 + 5)² ÷ 6² = ____21. 4 × (7 + 3 - 2) = ____22. 16 × 3 ÷ 12 = ____23. 12 + 5 × 2 - 8 ÷ 4 = ____24. 2⁵ = ____25. 18 ÷ (6 - 2) + 3 × 2 = ____26. (5² + 2²) ÷ (5 + 2) = ____27. 4 × 3³ = ____28. 7 × 5 - 8 × 3 = ____29. 81 ÷ 27 + 1² = ____30. (3 × 2)² ÷ 6² = ____31. 2⁴ = ____32. 8 ÷ 4 × 3 + 2 = ____33. 7 × (4 - 6 ÷ 2) = ____34. 20 ÷ 5 × 2 + 3 - 1 = ____35. 12 × 6 ÷ 2 + 4 = ____36. 7 × 4 + 9 ÷ (3 + 3) = ____37. 6 × 8 ÷ (3 - 1) = ____38. (9 - 1) ÷ (4 - 2) + 5 = ____39. (6 - 1) × (6 + 3) = ____40. (9 × 7 - 6³) ÷ (3 × 4) = ____41. 5 × (8 + 2) ÷ 10 = ____42. 7 × 6 - 5 + 4³ = ____43. 3⁴ - 2⁴ = ____44. 3² + 2 × 4 - 6 ÷ 3 = ____45. 72 ÷ (4 × 3) + 5 × 2 = ____46. 9 × 5 + 8 ÷ (4 - 1) = ____47. 62 ÷ 15 + 3² = ____48. 5⁴ ÷ 5² = ____49. (7 + 4 - 3) × (9 - 6 + 1) = ____50. 100 ÷ 4 + 3 - 6² = ____51. 8⁴ = ____52. 6 × 4 - 2 × 3 + 1 = ____53. 5 × (6 + 8 - 5) = ____54. 40 ÷ (10 + 5) + 2 × 3 = ____55. 7⁵ = ____56. 6² - 4 + 3 × 2 = ____57. (16 + 5 × 2) ÷ (6 - 2 × 1) = ____58. 2³ + 3 × 7 - 9 ÷ 3 = ____59. 96 ÷ (8 - 4) + 7 × 2 = ____60. 4 × (6 + 2) ÷ 8 = ____61. 81 ÷ (3 × 3) = ____62. 9 × 7 - 8 × 2 = ____63. 5⁶ = ____64. (6 - 2)² - 2 = ____65. 64 ÷ (8 × 2) = ____66. (7 × 4 - 6) ÷ 3 = ____67. 50 ÷ (10 - 2) + 1 = ____68. 8² ÷ 2³ = ____69. 9 × (6 - 2) + 3 = ____70. 100 ÷ 25 × 4 - 1 = ____71. 3⁵ = ____72. 7 + 8 × 4 - 2² = ____73. 49 ÷ 7 + 6 - (1 + 2) = ____74. 2⁷ ÷ 2³ = ____75. 6 × (4 + 5) - 6 × 3 = ____76. 6⁴ = ____77. 80 ÷ (10 ÷ 5) × 2 = ____78. 5 × 4 - 3² + 1 = ____79. 36 ÷ 9 + (5 - 4)² = ____80. 9 × (8 ÷ 4) - 6³ = ____81. (9 + 6) × (7 - 5²) = ____82. 48 ÷ (3 × 4) + 5 × 2 = ____83. 2⁸ = ____84. 7 × 2 + 4 × 9 - 5 = ____85. 51 ÷ (17 ÷ 17) + 5 = ____86. 4⁵ = ____87. 56 ÷ (7 × 2) + 3 × 1 = ____88. 3 × (9 - 7 + 4) = ____89. 2² + (7 - 3) × (6 + 3) = ____90. 8 × 4 - 6 × 2 + 3 = ____91. 6³ = ____92. 5 × 3 + 16 ÷ (2 + 2) = ____93. 4⁶ = ____94. 48 ÷ (3 × 2) + 5 × 4 = ____95. 5 + 2 × (6 - 3)² = ____96. 2⁹ ÷ 2⁶ = ____97. 9 × (7 - 3 + 2) = ____98. 6 × 5 + 12 ÷ 6 - 3² = ____99. 72 ÷ 9 + (3 × 2 - 5) = ____100. 10 × 4 - 3 × (5 + 2) = ____在这100道奥数题中,包含了加减乘除、幂运算和括号等基础数学运算。
小学六年级奥数题100道及答案
小学六年级奥数题100道及答案Part 1 warm up1.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。
2. 小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。
问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。
这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。
总路程就是=100×30=3000米。
3. 小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5×3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2=8.5(千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了3.5×7=24.5(千米),24.5=8.5+8.5+7.5(千米).就知道第四次相遇处,离乙村8.5-7.5=1(千米).答:第四次相遇地点离乙村1千米.4. 哥哥有12枚5分硬币,妹妹有10枚2分硬币,哥哥给妹妹几枚5分硬币,两人的钱数相等?解答:5×12=60(分) 2×10=20(分) (60-20)÷2=20(分) 20÷5=4(枚)5.阿香去吃午饭,发现附近的中餐厅有9个,西餐厅有3个,日式餐厅有2个,他准备找一家餐厅吃饭,一共有多少种不同的选择?解答:9+3+2=14(种)6.用400个棋子摆放了5层空心方阵,最内层每边有几个棋子?解答:400÷5=80(个) 80-8-8=64(个) 64÷4+1=17(个)7.用棋子摆方阵恰好摆成每边为20的实心方阵,若改为4层空心方阵,最外层每边应放几枚?解答:20×20=400(个) 400+8×(1+2+3)=448(个)448÷4=112(个) 112÷4+1=29(个)8.一把钥匙只能开一把锁,现有10把钥匙和10把锁,最少要试验多少次就一定能使全部的钥匙和锁相匹配?解答:从最不利的情形考虑。
6年级奥数题20道题
20 道六年级奥数题一、分数应用题1. 一桶油,第一次用去这桶油的1/4,第二次用去余下的2/3,还剩10 千克,这桶油原来有多少千克?解:把这桶油原来的重量看作单位“1”。
第一次用后剩下 1 - 1/4 = 3/4,第二次用去余下的2/3,即用去了3/4×2/3 = 1/2,此时还剩 1 - 1/4 - 1/2 = 1/4,对应10 千克,所以这桶油原来有10÷1/4 = 40 千克。
二、比例问题2. 甲、乙两数的比是3:4,乙、丙两数的比是5:6,求甲、丙两数的比。
解:甲:乙= 3:4 = 15:20,乙:丙= 5:6 = 20:24,所以甲:丙= 15:24 = 5:8。
三、工程问题3. 一项工程,甲单独做12 天完成,乙单独做18 天完成,现在甲、乙合作,中途甲休息了几天,结果共用了9 天完成,甲休息了几天?解:设甲休息了x 天。
乙工作了9 天,完成的工作量是1/18×9 = 1/2。
甲工作了(9 - x)天,完成的工作量是1/12×(9 - x)。
两人完成的工作量之和为单位“1”,可列方程1/12×(9 - x)+1/2 = 1,解得x = 3。
四、行程问题4. 甲、乙两车同时从A、B 两地相对开出,相遇时甲、乙两车所行路程的比是5:4,已知甲每小时行45 千米,乙行完全程要8 小时,A、B 两地相距多少千米?解:相遇时时间相同,路程比等于速度比,所以乙的速度是45×4/5 = 36 千米/小时。
两地距离为36×8 = 288 千米。
五、浓度问题5. 在浓度为10%的盐水中加入20 克盐,浓度变为12%,原来盐水有多少克?解:设原来盐水有x 克。
可列方程(x×10% + 20)÷(x + 20)= 12%,解得x = 800。
六、图形问题6. 一个圆形花坛的周长是25.12 米,在花坛周围修一条宽1 米的小路,求小路的面积。
六年级奥数试题及解析(精选12篇)
六年级奥数试题及解析〔精选12篇〕假设干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去.再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子?分析^p :设原来小球数最少的盒子里装有a只小球,如今增加了b只,由于小聪没有发现有人动过小球和盒子,这说明如今又有了一只装有a个小球的'盒子,而这只盒子里原来装有(a+1)个小球.同样,如今另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.所以将42分拆成假设干个连续整数的和,一共有多少种分法,每一种分法有多少个加数,据此解答.解:设原来小球数最少的盒子里装有a只小球,如今增加了b只,由于小聪没有发现有人动过小球和盒子,这说明如今又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.同样,如今另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.将42分拆成假设干个连续整数的和,因为42=6×7,故可以看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数;又因为42=14×3,故可将42:13+14+15,一共有3个加数;又因为42=21×2,故可将42=9+10+11+12,一共有4个加数.所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子.答:一共有7只、4只或3只盒子.点评:解答此题的关键是将问题归结为把42分拆成假设干个连续整数的和.篇8:六年级奥数模拟试题六年级奥数模拟试题一、填空题。
奥数比赛六年级试题及答案
奥数比赛六年级试题及答案1. 计算题问题:计算 \((2^3 + 3^2) \times 5\) 的值。
答案:首先计算括号内的值,\(2^3 = 8\),\(3^2 = 9\),然后将它们相加得到 \(8 + 9 = 17\)。
最后,将结果乘以5,即 \(17\times 5 = 85\)。
2. 应用题问题:一个班级有48名学生,其中男生人数是女生人数的两倍。
问这个班级有多少男生和女生?答案:设女生人数为 \(x\),则男生人数为 \(2x\)。
根据题意,\(x + 2x = 48\),解得 \(3x = 48\),所以 \(x = 16\)。
因此,女生有16人,男生有 \(2 \times 16 = 32\) 人。
3. 几何题问题:一个直角三角形,两条直角边分别为3厘米和4厘米,求斜边的长度。
答案:根据勾股定理,斜边的长度 \(c\) 可以通过公式 \(c =\sqrt{a^2 + b^2}\) 计算,其中 \(a\) 和 \(b\) 分别是两条直角边的长度。
将3厘米和4厘米代入公式,得到 \(c = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5\) 厘米。
4. 逻辑推理题问题:如果一个数的个位数是6,那么这个数的两倍的个位数是什么?答案:设这个数为 \(10a + 6\),其中 \(a\) 是十位数。
那么这个数的两倍就是 \(2(10a + 6) = 20a + 12\)。
个位数是2,因为\(20a\) 是10的倍数,不影响个位数。
5. 组合计数题问题:有5个不同的球和3个不同的盒子,将球放入盒子中,每个盒子至少有一个球,有多少种不同的放法?答案:首先,从5个球中选择2个球放入一个盒子,有 \(C_5^2 = 10\) 种选择方式。
剩下的3个球分别放入另外两个盒子,有 \(3! = 6\) 种排列方式。
但是,由于盒子是不同的,所以需要考虑盒子的排列,因此总的放法是 \(10 \times 6 = 60\) 种。
小学六年级奥数题100道及答案解析(完整版)
小学六年级奥数题100道及答案解析(完整版)1. 一种商品先提价10%,再降价10%,现价与原价相比()A. 提高了B. 降低了C. 不变D. 无法确定答案:B解析:假设原价为100 元,提价10%后价格为100×(1 + 10%) = 110 元,再降价10%,价格为110×(1 - 10%) = 99 元,所以现价比原价降低了。
2. 一个圆的半径扩大3 倍,它的面积扩大()倍。
A. 3B. 6C. 9D. 27答案:C解析:圆的面积= π×半径²,半径扩大3 倍,面积扩大3²= 9 倍。
3. 甲数的2/3 等于乙数的3/4,甲数()乙数。
A. 大于B. 小于C. 等于D. 无法比较答案:A解析:设甲数×2/3 = 乙数×3/4 = 1,可得甲数= 3/2,乙数= 4/3,3/2 > 4/3,所以甲数大于乙数。
4. 把20 克盐放入200 克水中,盐和盐水的比是()A. 1:10B. 1:11C. 10:1D. 11:1答案:B解析:盐20 克,盐水= 20 + 200 = 220 克,盐和盐水的比是20:220 = 1:115. 一个三角形三个内角的度数比是1:2:3,这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定答案:B解析:三个内角分别为180×1/(1 + 2 + 3) = 30°,180×2/(1 + 2 + 3) = 60°,180×3/(1 + 2 + 3) = 90°,是直角三角形。
6. 要反映某地气温变化情况,应绘制()统计图。
A. 条形B. 折线C. 扇形D. 以上都可以答案:B解析:折线统计图能清晰反映数据的变化情况。
7. 一个圆柱和一个圆锥等底等高,它们的体积相差18 立方厘米,圆锥的体积是()立方厘米。
小学六年级奥数试卷及答案
小学六年级奥数试卷及答案一、选择题(每题2分,共10分)1. 一个数的5倍加上8等于这个数的7倍减去6,这个数是多少?A. 2B. 4C. 6D. 82. 一个长方体的长、宽、高分别是a、b、c,如果长方体的体积是底面积的2倍,那么a、b、c之间满足什么关系?A. a=b=cB. a+b=cC. a=2bD. b=2c3. 一个自然数n,如果它的平方的末尾数字是7,那么n的末尾数字可能是?A. 2B. 3C. 4D. 54. 一个圆的直径是14厘米,它的周长是多少厘米?A. 28B. 31.4C. 43.96D. 475. 一个数列1,3,5,7,9,...,2n-1,这个数列的第20项是多少?A. 39B. 41C. 43D. 45二、填空题(每题2分,共10分)6. 一个数的平方比它本身大99,这个数是_________。
7. 一个直角三角形的两条直角边分别是3厘米和4厘米,它的面积是_________平方厘米。
8. 一个数的3倍与这个数的一半的和是10,这个数是_________。
9. 一个数的5%比这个数的一半少2.4,这个数是_________。
10. 一个数的倒数是1/7,这个数是_________。
三、解答题(每题10分,共30分)11. 一个长方形的长是宽的2倍,如果长和宽都增加5厘米,那么面积增加了多少平方厘米?12. 一个数的3/4加上这个数的1/5等于26,求这个数。
13. 一个水池有一个进水管和一个出水管,单开进水管5小时可注满水池,单开出水管8小时可放完一池水。
如果两个管子同时打开,多少小时可以注满水池?四、应用题(每题15分,共30分)14. 小华和小刚进行百米赛跑,小华每秒跑5米,小刚每秒跑4米。
如果小华让小刚先跑10米,那么小华追上小刚需要多少时间?15. 一个水果店有苹果和梨两种水果,苹果每斤5元,梨每斤4元。
水果店今天卖出了50斤水果,收入了300元。
请问,水果店今天卖出了多少斤苹果?五、附加题(每题20分,共20分)16. 一个数列的前几项是1,1,2,3,5,8,13,...,这个数列的第10项是多少?答案:1. B2. C3. B4. C5. D6. 107. 128. 49. 24 10. 711. 增加45平方厘米 12. 40 13. 40小时14. 5秒 15. 30斤苹果16. 55【注:本试卷为模拟题,仅供参考。
(完整word版)小学六年级奥数题50道题及解答(可直接打印)
练习(一)姓名1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?得分5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?答案:奥数题解答参考1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
小学六年级 奥数题及答案100道
小学六年级奥数竞赛100道测试题!附答案解析1、有28位小朋友排成一行.从左边开始数第10位是学豆,从右边开始数他是第几位?2、纽约时间是香港时间减13小时.你与一位在纽约的朋友约定,纽约时间4月1日晚上8时与他通电话,那么在香港你应几月几日几时给他打电话?3、鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?4、请找出下面哪个图形与其他图形不一样.5、四个房间,每个房间里不少于2人,任何三个房间里的人数不少8人,这四个房间至少有多少人?6、在1998的约数(或因数)中有两位数,其中最大的是哪个数?7、英文测验,小明前三次平均分是88分,要想平均分达到90分,他第四次最少要得几分?8、相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗?9、将0, 1, 2, 3, 4, 5, 6, 7, 8, 9这十个数字中,选出六个填在下面方框中,使算式成立,一个方框填一个数字,各个方框数字不相同.□+□□=□□□问算式中的三位数最大是什么数?10、有一个号码是六位数,前四位是2857,后两位记不清,即2857□□但是我记得,它能被11和13整除,请你算出后两位数.11、观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?12、一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.13、一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.14、幼儿园的老师把一些画片分给A, B, C三个班,每人都能分到6张.如果只分给B班,每人能得15张,如果只分给C班,每人能得14张,问只分给A班,每人能得几张?15、两人做一种游戏:轮流报数,报出的数只能是1, 2, 3, 4, 5, 6, 7, 8.把两人报出的数连加起来,谁报数后,加起来的数是123,谁就获胜,让你先报,就一定会赢,那么你第一个数报几?16、四个小动物排座位,一开始,小鼠坐在第1号位子上,小猴坐在第2号,小兔坐在第3号,小猫坐在第4号.以后它们不停地交换位子,第一次上下两排交换.第二次是在第一次交换后左右两列交换,第三次再上下两排交换,第四次再左右两列交换…这样一直换下去.问:第五次交换位子后,小兔坐在第几号位子上?17、狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
小学六年级奥数题及答案[6篇]
小学六年级奥数题及答案[6篇]1.小学六年级奥数题及答案篇一1、有一份稿件,原计划是5小时打出来,实际上只用了4个小时,工作效率提高了百分之几?答案:25%解析:原计划的工作效率是1/5,实际上的工作效率是1/4,提高了(1/4-1/ 5)÷1/5=25%需要多少分钟?2、甲乙两车分别从A、B两地同时出发,相向而行,3小时相遇后,甲掉头返回A地,乙继续前行。
甲到达A地后掉头往B行驶,半小时后和乙相遇,那么从A到B需要多少分钟?答案:432分钟解析:甲行驶2.5小时的路程,乙用了3.5小时。
所以甲乙的速度比为7:5,走相同路程的时间比是5:7。
那么乙从A到B的时间为3×7/5+3=7.2小时,即432分钟。
2.小学六年级奥数题及答案篇二1、据说人的头发不超过20万跟,如果陕西省有3645万人,根据这些数据,你知道陕西省至少有多少人头发根数一样多吗?答案与解析:人的头发不超过20万根,可看作20万个“抽屉”,3645万人可看作3645万个“元素”,把3645万个“元素”放到20万个“抽屉”中,得到3645÷20=182……5根据抽屉原则的推广规律,可知k+1=183答:陕西省至少有183人的头发根数一样多。
2、已知一个正方形的对角线长8米,求这个正方形的面积是多少?答案与解析:①做正方形的另一条对角线。
得到四个完全相同的等腰直角三角形。
②一个等腰直角三角形的面积是:8÷2=4(直角边)4×4÷2=8(平方米)③四个等腰直角三角形的面积,即正方形的面积。
8×4=32(平方米)3.小学六年级奥数题及答案篇三1、125×(17×8)×4=125×8×4×17=1000×68=680002、375×480+6250×48=480×(375+625)=4800003、25×16×125=25×2×8×125=500004、13×99=13×(100-1)=1300-13=12875、75000÷125÷15=75×1000÷125÷15=75÷15×1000÷125=5×8=406、7900÷4÷25=7900÷(4×25)=797、150×40÷50=150÷50×40=3×40=1208、5600÷(25×7)=56×100÷25÷7=56÷7×100÷25=329、210÷42×6=210÷7÷6×6=3010、39600÷25=396×100÷25=396×4=15844.小学六年级奥数题及答案篇四有三块草地,面积分别是5,15,24亩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级奥数试题大全在现实的学习、工作中,我们总免不了要接触或使用试题,试题有助于被考核者了解自己的真实水平。
你知道什么样的试题才是规范的吗?下面是小编为大家收集的小学六年级奥数试题,欢迎阅读,希望大家能够喜欢。
小学六年级奥数试题 11、(归一问题)工程队计划用60人5天修好一条长4800米的公路,实际上增加了20人,每人每天比计划多修了4米,实际修完这条路少用了几天?2、(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车距中点40千米处相遇。
东西两地相距多少千米?3、(追及问题)大客车和小轿车同地、同方向开出,大客车每小时行60千米,小轿车每小时行84千米,大客车出发2小时后小轿车才出发,几小时后小轿车追上大客车?4、(过桥问题)列车通过一座长2700米的大桥,从车头上桥到车尾离桥共用了3分钟。
已知列车的速度是每分钟1000米,列车车身长多少米?5、(错车问题)一列客车车长280米,一列货车车长200米,在平行的轨道上相向而行,从两个车头相遇到车尾相离经过20秒。
如果两车同向而行,货车在前,客车在后,从客车头遇到货车尾再到客车尾离开货车头经过120秒。
客车的速度和货车的速度分别是多少?6、(行船问题)客轮和货轮从甲、乙两港同时相向开出,6小时后客轮与货轮相遇,但离两港中点还有6千米。
已知客轮在静水中的速度是每小时30千米,货轮在静水中的速度是每小时24千米。
求水流速度是多少?7、(和倍问题)小李有邮票30枚,小刘有邮票15枚,小刘把邮票给小李多少枚后,小李的邮票枚数是小刘的8倍?8、(差倍问题)同学们为希望工程捐款,六年级捐款数是二年级的3倍,如果从六年级捐款钱数中取出160元放入二年级,那么六年级的捐款钱数比二年级多40元,两个年级分别捐款多少元?9、(和差问题)一只两层书架共放书72本,若从上层中拿出9本给下层,上层还比下层多4本,上下层各放书多少本?10、(周期问题)2021年7月1日是星期六,求10月1日是星期几?小学六年级奥数试题 2标有A、B、C、D、E、F、G记号的七盏灯顺次排成一行,每盏灯安装着一个开关,现在A、C、D、G四盏灯亮着,其余三盏灯是灭的。
小方先拉一下A的开关,然后拉B、C……直到G的开关各一次,接下去再按A到G的顺序拉动开关,并依此循环下去。
他拉动了1990次后,亮着的灯是哪几盏?答案:B、C、D、G解析:小方循环地从A到G拉动开关,一共拉了1990次。
由于每一个循环拉动了7次开关,1990÷7=284……2,故一共循环284次。
然后又拉了A和B的开关一次。
每次循环中A到G的开关各被拉动一次,因此A和B的开关被拉动248+1=285次,C到G的开关被拉动284次。
A和B的状态会改变,而C到G的状态不变,开始时亮着的灯为A、C、D、G,故最后A变灭而B变亮,C到G的状态不变,亮着的灯为B、C、D、G。
小学六年级奥数试题 3甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差,所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。
小学六年级奥数试题 41、一个整数乘以13后,乘积的最后三位数是123,那么这样的整数中最小的是多少?2、将37拆成若干个不同的质数之和,使得这些质数的乘积尽可能大,那么,这个乘积等于多少?3、一个五位数,五个数字各不同,且是13的倍数,则符合以上条件的最小的数是多少?4、一把钥匙只能开一把锁,现在有4把锁,但不知道哪把钥匙开哪把锁,最多要试几次能配好全部的钥匙和锁?5、用长和宽是4公分和3公分的长方形小木块,拼成一个正方形,最少要用这样的木块多少块?6、100个自然数,他们的总和是10000,在这些数里,奇数的个数比偶数是个数多,那么这些数里至多有多少个偶数?7、975×935×972×(),要使这个连乘积的最后四个数字都是零,在括号内最小应填多少?8、有三个连续自然数,他们依次是12、13、14的倍数,这三个连续自然数中(除13外)是13倍数的那个数最小是多少?9、将进货的单价为40块的商品按50块售出时,每个的利润是10块,但只能卖出500个,已知这种商品每个涨价1块,其销售量就减少10个,为了赚得最多的利润,售价应定为多少?10、一个三角形的三条边长是三个两位的连续偶数,他们的末位数字和能被7整除,这个三角形的周长等于多少?小学六年级奥数试题 5现在的奥数,其难度和深度远远超过了同级的义务教育教学大纲。
而相对于这门课程,一般学校的数学课应该称为“普通基础数学”。
特此为大家准备了关于某工厂的六年级奥数专题强化。
某工厂11月份工作忙,星期日不休息,而且从第一天开始,每天都从总厂陆续派相同人数的工人到分厂工作,直到月底,总厂还剩工人240人。
如果月底统计总厂工人的工作量是8070个工作日(一人工作一天为1个工作日),且无人缺勤,那么,这月由总厂派到分厂工作的工人共多少人?答案与解析:11月份有30天。
由题意可知,总厂人数每天在减少,最后为240人,且每天人数构成等差数列,由等差数列的性质可知,第一天和最后一天人数的总和相当于8070÷15=538也就是说第一天有工人538-240=298人,每天派出(298-240)÷(30-1)=2人,所以全月共派出2x30=60人。
小学六年级奥数试题 61、(鸡兔同笼问题)小丽买回0.8元一本和0.4元一本的练习本共50本,付出人民币32元。
0.8元一本的练习本有多少本?2、(年龄问题)5年前父亲的年龄是儿子的`7倍。
15年后父亲的年龄是儿子的二倍,父亲和儿子今年各是多少岁?3、(盈亏问题)王老师发笔记本给学生们,每人6本则剩下41本,每人8本则差29本。
求有多少个学生?有多少个笔记本?4、(还原问题)便民水果店卖芒果,第一次卖掉总数的一半多2个,第二次卖掉剩下的一半多1个,第三次卖掉第二次卖后剩下的一半少1个,这时只剩下11个芒果。
求水果店里原来一共有多少个芒果?5、(置换问题)学校买回6张桌子和6把椅子共用去192元。
已知3张桌子的价钱和5把椅子的价钱相等,每张桌子和每把椅子各是多少元?6、(安排)烤面包的架子上一次最多只能烤两个面包,烤一个面包每面需要2分钟,那么烤三个面包最少需要多少分钟?7、(油和桶问题)一桶油连桶共重18千克,用去油的一半后,连桶还重9.75千克,原有油多少千克?桶重多少千克?8、(和倍)青青农场一共养鸡、鸭、鹅共12100只,鸭的只数是鸡的2倍,鹅的只数是鸭的4倍,问鸡、鸭、鹅各有多少只?9、(鸡兔同笼)实验小学举行数学竞赛,每做对一题得9分,做错一题倒扣3分,共有12道题,小旺得了84分,小旺做错了几道题?10、(相遇问题)甲、乙两人同时从相距20xx米的两地相向而行,甲每分钟行55米,乙每分钟行45米,如果一只狗与甲同时同向而行,每分钟行120米,遇到乙后,立即回头向甲跑去,遇到甲再向乙跑去。
这样不断来回,直到甲和乙相遇为止,狗共行了多少米?小学六年级奥数试题 71.甲乙两地相距6千米。
陈宇从甲地步行去乙地,前一半时间每分钟走80米,后一半的时间每分钟走70米。
这样他在前一半的时间比后一半的时间多走()米。
考点:简单的行程问题.分析:解:设陈宇从甲地步行去乙地所用时间为2X分钟,根据题意,前一半时间和后一半的时间共走(0.07+0.08)X千米,已知甲乙两地相距6千米,由此列出方程(0.07+0.08)X=6,解方程求出一半的时间,因此前一半比后一半时间多走:(80-70)×40米,解决问题。
解答:解:设陈宇从甲地步行去乙地所用时间为X分钟,根据题意得:(0.07+0.08)X=6,0.15X=6,X=40;前一半比后一半时间多走:(80-70)×40=10×40=400(米)答:前一半比后一半的时间多走400米。
故答案为:400。
点评:根据题目特点,巧妙灵活地设出未知数,是解题的关键。
小学六年级奥数试题 81、某校女同学占全校学生总人数的51%。
若该校有男生735人,那么该校有女同学多少人?2、若3a=4b,5b=6c,那么a是c的多少倍?3、某超市开展促销活动,将原来九折销售的鸡蛋降为八折销售。
这样,一次买5斤鸡蛋可以少花1.75元。
那么鸡蛋的原价是每斤多少元?4、某商品价格为25元/件,求打八折再降价2元后的价格。
5、某商品进价为a元/件,在销售旺季,该商品售价较进价高50%;销售旺季过后,又以7折的价格对该商品开展促销活动,这时,一件商品的售价为()(A)1.5a元(B)0.7a元(C)1.2a元(D)1.05a元6、用一根长24厘米的铁丝弯成一个长:宽=5:1的长方形,求这个长方形的面积。
7、某种中药含有甲、乙、丙、丁四种草药成分。
这四种成分的重量之比是0.7:1:2:4.7,现要配制这种中药2100克,这四种草药分别需要多少克?8、在直角∠AOB内引射线OC,若∠AOC: ∠BOC=3:2,求∠BOC 的度数。
9、甲、乙、丙三人的年龄有下列关系:甲的年龄是乙的年龄的2倍,且是丙的年龄的10倍,而去年乙的年龄是丙的年龄的6倍。
求三人各自的年龄?10、班委会决定,由大宝、二宝两人负责选购圆珠笔、钢笔共22支,送给结对的山区学校的学生。
他们去了商场,看到圆珠笔每支2元,钢笔每支6元。
若购买圆珠笔9折优惠,购买钢笔8折优惠,在所需费用不超过60元的前提下,请你写出一种选购方案。
小学六年级奥数试题 9在甲、乙、丙三个酒精溶液中,纯酒精的含量分别占48%、62.5%和2/3。
已知三个酒精溶液中总量是100千克,其中甲酒精溶液量等于乙、丙两个酒精溶液的总量。
三个溶液混合后所含纯酒精的百分数将达56%。
那么,丙中纯酒精的量是几千克?解:设丙缸酒精溶液的重量为x千克,则乙缸为(50-x)千克。
50×48%+(50-x)×62.5%+x×(2/3)=100×56%,解得:x=18,所以丙缸中纯酒精含量是18×(2/3)=12(千克)答:丙缸中纯酒精的量是12千克。