小升初奥数专题练习题:行程问题
上海市小升初口奥练习题 行程问题
上海市小升初口奥练习题行程问题上海市小升初口奥练习题-行程问题【基础】【2】从a到b有两条路可走,小王骑车从a过c到b比走另一条路少用3分钟,而从a出发到b,再经过c返回到a要53分钟,小王骑车速度为每小时36千米。
求:小王从a经过c到b所走过的路程。
【答案】15千米【基础】【2】从小明的家到长途汽车站有3千米。
现在从家往车站去,如果用每小时4千米的速度行走,在汽车发车前17分钟到达车站;如果想在汽车发车前2分钟到达车站,那么需用每小时多少千米的速度行走?【答案】每小时3千米【基础】【1】小明以一固定的速度从甲地跑到乙地,上午8时,他离乙地20千米,上午9时半他离乙地8千米,小明几点到达乙地?【答案】十点半【碰面赴援】【2】兄弟两人同时从家里启程至学校,路程就是1400米。
哥哥骑著自行车每分钟行200米,弟弟步行每分钟行80米,在前进中弟弟与刚至学校就立即回到去的哥哥碰面。
从启程至碰面,弟弟跑了多少分钟?【答案】10分钟【碰面赴援】【3】例如图,存有两只蜗牛同时一个等腰三角形的顶点a启程,分别沿着两腰跳跃。
一只蜗牛每分钟行2.5米,另一只蜗牛每分钟行2米,8分钟后在距c点6米处的p点碰面,则线段bp的长度就是多少?【答案】2米(2.5-2)×8=4米,6-4=2米。
则bp长是2米。
【碰面赴援】【2】甲、乙二人练走i,若甲使乙先走10米则甲走5秒钟可追上乙;若甲使乙先走2秒钟,则甲走4秒钟就能够甩开乙.问:甲、乙二人的速度各就是________、________。
【答案】6米/秒,4米/秒【相遇追及】【2】甲走一段路用40分钟,乙走同样一段路用30分钟。
从同一地点出发,甲先走5分钟,乙再开始追,乙________分钟才能追上甲。
【答案】20【多次碰面】【1】甲乙两车同时从a、b两地并肩而行,甲车每小时高速行驶36千米,乙车每小时高速行驶34千米,两车分别抵达目的地后立即回到,第二次碰面时共高速行驶了12小时,两地距离________米。
2024年人教版六年级下册数学小升初专题训练:行程问题(含答案)
2024年人教版六年级下册数学小升初专题训练:行程问题一、单选题1.甲乙两人各走一段路,他们走的时间比是4:5,速度比是5:3,他们走的路程比是( )。
A.12:25B.4:3C.3:4D.25:122.放学了,小明和小红同时从学校回家,小明每分钟行60米,小红每分钟行50米,经过10分钟两人都刚好回到家,小明和小红家的距离不可能是( )米。
A.100B.500C.1100D.12003.一个人从县城骑车去乡办厂。
他从县城骑车出发,用30分钟时间行完了一半路程,这时,他加快了速度,每分钟比原来多行50米。
又骑了20分钟后,他从路旁的里程标志牌上知道,必须再骑2千米才能赶到乡办厂,则县城到乡办厂之间的总路程为( )。
A.15千米B.18千米C.21千米D.50千米4.甲、乙两地相隔一座山岭,某人从甲地到乙地用6.5小时,从乙地回到甲地用7.5小时,他往返途中上山速度是3千米/时,下山速度是4千米/时,则甲、乙两地间的山岭路程有( )千米。
A.24.5B.24C.49D.485.小猫与小兔从相距1km的两地同时出发,若相向而行,a分钟相遇;若同向而行,b分钟后小猫追上小兔.则小猫与小兔的速度比是( )A.b+ab―a B.a+ba―bC.a―ba+bD.b―ab+a6.正方形ABCD(如图),边长80米,甲从A点,乙从B点,同时沿同方向运动,每分钟的速度甲为135米,乙为120米,每过一个顶点时要多用5秒,出发后,甲与乙相会需要( )A.A B.B C.C D.D二、填空题7.小杰用815小时走完了223千米的路程。
以此速度他1小时可以走 千米。
8.一列动车平均每小时行驶160千米,可以写作 ,这列动车从漳州到福州大约行驶了2小时,漳州到福州大约有 千米。
9.如图,电车从A站经过B站到达C站,然后返回.去时B站停车,而返回时不停,去时的车速为每小时48千米,返回时的车速是每小时 千米.10.在比例尺是1:3000000的地图上,量得甲、乙两地间的公路长是4.5cm。
2023-2024年人教版六年级下册数学小升初分班考专题:行程问题(含答案)
2023-2024年人教版六年级下册数学小升初分班考专题:行程问题一、单选题1.在比例尺是1:8000000的地图上量得A、B两地相距12厘米,若甲、乙两车同时从A、B两地相对开出,甲车与乙车的速度比是9:11,且两车6小时后在途中相遇,则甲车比乙车每小时慢( )千米。
A.72B.88C.16D.322.小军和小航住在同一个小区,他们为了锻炼身体每天都骑自行车去同一学校。
小军要8分钟,小航要6分钟。
小军和小航的速度比是( )A.3:4B.4:3C.8:6D.6:83.甲、乙二人同时从A地去B地,甲每分钟走60米,乙每分钟走90米,乙到达B地后立即返回,在离B地180米处与甲相遇,AB两地相距( )米。
A.900B.720C.540D.10804.一辆汽车前2小时行了75千米,后2.5小时平均每小时行42千米,这辆汽车平均每小时行多少千米?下面算式中正确的是( )。
A.(75÷2+42)÷2B.(75+42×2.5)÷(2+2.5)C.(75+42)÷(2+2.5)D.(75×2+42×2.5)÷(2+2.5)5.有甲、乙、丙三人同时同地出发,绕个花圃行走,乙、丙二人同方向行走,甲与乙相背而行,甲每分钟走40米,乙每分钟走38米,丙每分钟走35米,在途中,甲和乙相遇后3分钟和丙相遇。
问:这个花圃的周长是多少米?( )A.1000米B.1147米C.5850米D.10000米6.甲、乙两地相隔一座山岭,某人从甲地到乙地用6.5小时,从乙地回到甲地用7.5小时,他往返途中上山速度是3千米/时,下山速度是4千米/时,则甲、乙两地间的山岭路程有( )千米。
A.24.5B.24C.49D.48二、填空题7.两地相距600千米,甲、乙两车同时从两地相对出发,甲车每小时行驶70千米,乙车每小时行驶50千米, 小时后两车在途中相遇。
8.一列特快列车30分钟行驶60千米,它的速度是 ,李叔叔从嘉兴坐特快列车到北京需要14小时,嘉兴到北京的铁路线长 千米。
六年级奥数小升初行程问题
1、某运动员要跑24公里。
他先以平均每小时8里的速度跑完这段距离的三分之二,而后他加大速度,问:能否在跑完剩下路程时,使全程的平均速度提高到每小时12里?2、有一只蚂蚁在一根弹性充分好的橡皮筋上的A 点,以每秒1厘米的速度向前爬行。
从小蚂蚁开始爬行的时候算起,橡皮筋在第二秒、第四秒、第六秒、第八秒、第十秒………时均匀的伸长为原来的2倍。
那么,在第9秒时,这时小蚂蚁离A点厘米。
3、狗追狐狸,狗跳一次前进1.8米,狐狸跳一次前进1.1米。
狗每秒跳两次时狐狸恰好跳3次。
如果开始时狗离狐狸有30米,那么狗跑多少米才能追上狐狸?4、冯老师每天早上做户外晨练,他第一天跑步2000米,散步1600米,共用25分钟;第二天跑步3000米,散步500米,共用22分钟。
冯老师跑步时的速度总是一样的,散步时的速度也总是一样的。
求冯老师跑步的速度?5、王老师每天早上晨练,他第一天跑步1000米,散步1600米,共用25分钟;第二天跑步2000米,散步800米,共用20分钟。
假设王老师跑步的速度和散步的速度均保持不变。
求王老师跑步的速度?王老师散步800米所用的时间?6、兄弟两人骑自行车同时从甲地到乙地,弟弟在前一半路程每小时行5千米,后一半路程每小时行7千米,哥哥按时间分段行驶,前31时间每小时行4千米,中间31每小时行6千米,后31每小时行8千米。
结果哥哥比弟弟早到20分钟,甲乙两地的路程是千米。
7、甲、乙两人从A地到B地,甲前31路程的行走速度是5千米/小时,中间31的路程行走时4.5千米/小时,最后31的路程的行走速度是4千米/小时;乙前21路程的行走速度是5千米/小时,后21路程的行走速度是4千米/小时。
已知甲比乙早到30秒,A地到B地的路程是千米。
8、张、王二人骑摩托车同时从甲地出发,沿着同一条公路前进,张的速度比王的速度每小时快6千米。
张比王早20分钟到乙地,又继续前进。
当王到达乙地时,张比王多走了20千米。
(完整版)小升初行程问题
行程问题考点一:一般行程问题公式,速度×时间=路程 路程÷时间=速度 路程÷速度=时间 考点二:相遇问题公式,速度和×相遇时间=相遇路程 相遇路程÷相遇时间=速度和 相遇路程÷速度和=相遇时间考点三:追及问题公式,速度差×追及时间=追及距离 追及距离÷追及时间=速度差 追及距离÷速度差=追及时间考点四:火车过桥公式:火车速度×过桥时间=车长+桥长考点五:流水行船公式,顺水速度=船速+水速 逆水速度=船速-水速 船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2 顺水速度=逆水速度+水速×2 逆水速度=顺水速-水速×2考点六:环形行程问题公式,封闭环形上的相遇问题,利用关系式:环形周长÷速度和=相遇时间 封闭环形上的追及问题,利用关系:环形周长÷速度差=追及时间【例1】甲乙二人同时从两地出发,相向而行。
走完全程,甲需要60分钟,乙需要40分钟。
出发后5分钟,甲因忘带东西而返回出发点,取东西又耽误了5分钟。
甲再次出发,多长时间后两人相遇?【例2】两列火车从甲、乙两地相向而行,慢车从甲地到乙地需要8小时,比快车从乙地到甲地多用31的时间。
如果两车同时开出,那么相遇时快车比慢车多行40千米。
求甲、乙两地的距离。
【例3】一艘轮船顺流航行120千米,逆流航行80千米共用了16小时,逆流航行120千米也用了16小时。
求水流速度。
【例4】已知某铁路长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用了120秒,整列火车完全在桥上的时间为80秒,求火车的速度和长度。
【例5】甲乙二人在操场的400米跑到上练习竞走,两人同时出发,出发时甲在乙的后面,出发后6分钟甲第一次追上乙,22分钟时甲第二次追上乙。
假设两人的速度都保持不变,问:出发时甲在乙身后多少米?【例6】甲乙两车分别从A 、B 两地同时出发,在A 、B 之间不断往返行驶。
小升初复习行程问题练习(含答案)
行程问题练习知识点梳理一、基础公式①路程=速度×时间②时间=路程÷速度③速度=路程÷时间二、常见题型①一般相遇:路程和=时间×速度和②中点相遇:四步曲(1)找出快走者多走的路程:中点路程×2 (2)算出速度差:快者速度-慢者速度 (3)时间:(1)的路程÷(2)的速度=时间(4)套用公式:路程和=时间×速度和③往返相遇:两者相对行驶,第三人在中间往返。
同时出发、同时停止就是相遇时间。
④环形相遇:背向行驶,相遇几次就共走了几个全长。
三、解题思路①画行程图理解题意。
②分析题型。
③套用公式。
例题1红红和聪聪分别从相距 1026 米的两地同时出发,相向而行。
红红家的小狗也跟来了,而且跑在了红红的前面。
当小狗和聪聪相遇后,立即返回跑向红红,遇到红红后,又立即返回跑向聪聪,这样跑来跑去,一直到两人相遇。
这只小狗一共跑了__________米。
(已知红红每分钟走54 米,聪聪每分钟走60 米,小狗每分钟跑70米)例题2一辆客车从 A 地出发开往 B 地,同时一辆货车从 B 地出发开往 A 地。
3 小时后两车在离 A 地 180 千米的 C 地相遇。
相遇后两车继续向前行驶,2 小时后,客车到达 B 地。
此刻,货车还要行驶多少小时才能到达A地?例题3星期天,小英从家里出发去少年宫学画画。
她刚走不久,妈妈发现小英忘了带画笔,于是就去追小英。
如图象表示两人行走的时间和路程。
①妈妈每分钟走__________米;②照这样的速度,妈妈出发后__________分钟可以追上小英。
例题4某日上午,甲、乙两车先后从 A 地出发沿一条公路匀速前往 B 地。
甲车 7 点出发,如图是甲行驶路程 s(千米)随行驶时间 t(小时)变化的图像。
乙车 8 点出发,若要在 9 点至 10 点之间(含 9 点和 10 点)追上甲车,则乙车的速度 v (单位:千米/时)的范围是__________。
小升初数学行程问题50题
半小时后,营地老师闻讯前往迎接,每小时比李华多走
1.2 千米。又过了 1.5 小时,张明从学校骑车去营地报到,
结果三人同时在途中某地相遇。问骑车人每小时行驶多少千米
【分析】
李华与老师形成二者相遇问题,起始的距离为
20.4 - 4× 0.5=18.4 千米 相遇所需要花的
时间 18.4 ÷( 4+ 5.2 ) =2 小时 骑车人的速度为 4× 2.5 ÷ 0.5=20 千米。
page 2
时多行 5 千米,且两车还从 A , B 两地同时出发相向而行,则相遇地点距 C 点 12 千米;如果乙车速度不变,甲车
速度每小时多行 5 千米,则相遇地点距 C 点 16 千米。甲车原来每小时行多少千米? ( 第 13 届迎春杯决赛试题 )
பைடு நூலகம்
【分析】
设甲、乙的速度分别为 v1 , v2 , A , B 两地距离为 S ,分析得下表:
快两车所行驶里程与时速为 50 千米的汽车一样,因此 24 分钟可实现 4 车相遇。
9. 甲、乙二人步行的速度之比是 3:2,甲、乙分别从 A , B 两地同时出发,若相向而行,则
同向而行,则甲需要多少时间才能追上乙?
1 小时后相遇,若
【分析】
不妨设甲、乙速度分别为
v甲 3 , v乙 2 ,则根据公式可知, A , B 两地间距离为
20%,可以比原定时间
提前一小时到达;如果以原速行驶 120 千米后,再将车速提高 25%,则可以提前 40 分钟到达。那么甲乙两地相距
多少千米?
【分析】
车速提高 20%,速度比为 5: 6,路程一定的情况下,时间比应为 6: 5,所以以原始速度行
完全程的时间为 1÷( 6- 5)× 6=6 小时。以后一段路程为参考对象,车速提高
小升初奥数行程问题【典型例题】
小升初奥数行程问题【典型例题】1.行程问题基本公式1.1 根据基本公式,路程(和、差)等于速度(和、差)乘以时间。
对于火车过桥(隧道),长度也算在路程中。
1.2 时间等于路程(和、差)除以速度(和、差),速度(和、差)等于路程(和、差)除以时间。
1.3 速度差等于快速速度减去慢速速度,速度和等于慢速速度加上快速速度。
快速速度等于(速度和加上速度差)除以21.4,慢速速度等于(速度和减去速度差)除以2.2.三类基本行程问题:相遇、追及、环形跑道。
2.1 相遇的含义是如果出发时间相同,则所走的时间相同;相遇时,两方都处于同一个位置。
在超过2人的行程问题中,相遇就是时间和距离的等量代换点;如果一方先出发或者有一方中间停止,则这一方还要算上先出发的时间或去掉停止的时间。
2.2 相遇时,速度和等于对应的路程和,有公式:路程和等于速度和乘以时间,时间等于路程和除以速度和,速度和等于路程和除以时间。
2.3 追及时,速度差等于对应的路程差,有公式:路程差等于速度差乘以时间,时间等于路程差除以速度差,速度差等于路程差除以时间。
2.4 在环形跑道的同向追及问题中,速度差等于每相遇一次的路程差为1圈。
距离差等于圈数乘以跑道长,时间等于距离差除以速度差,速度差等于距离差除以时间。
2.5 在环形跑道反向碰头问题中,速度和等于每相遇一次的路程和等于1圈。
距离和等于圈数乘以跑道长,时间等于距离和除以速度和,速度和等于距离和除以时间。
2.6 再次相遇问题相当于环形跑道,跑道距离相当于2倍总路程。
如果到对方出发点都又返回,再次相遇,与第一次相遇相比,二次相遇所走的总路程相当于环形跑道的总路程,即2倍总路程和2倍时间。
再次相遇与第一次相遇相比,共走3倍的总路程,花费3倍的总时间。
以后每次相遇,总路程等于环形跑道的距离,即2倍总路程。
规律就是1、3、5、7倍的总路程(时间)时相遇。
2.7 在顺水(风)或逆水(风)行程问题中,顺水速度加上逆水速度除以2等于船速,顺水速度减去逆水速度除以2等于水速,即速度和加上速度差除以2等于船速,速度和减去速度差除以2等于水速。
2024年人教版六年级下册数学小升初分班考专题训练:行程问题(含答案)
2024年人教版六年级下册数学小升初分班考专题:行程问题一、单选题1. 一个车队以5米秒的速度缓通过一座长200米的大桥共用145秒.已知每辆车长5米,两车间隔8米,那么这个车队共有车( )。
A .39辆B .40辆C .41辆D .42辆2.甲乙两人同时从相距30千米的两地出发,相向而行。
甲每小时走3.5千米,乙每小时走2.5千米。
与甲同时同地同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,···这只狗就这样往返于甲乙之间,直到两人相遇为止,则相遇时这只狗跑了( )千米。
A .20B .18C .24D .253.从家到学校,小明要走8分钟,小红要走12分钟,则小明与小红的速度比为( ) A .8:12B .2:3C .3:2D .12:84.电子猫在周长240米的环形跑道上跑了一圈,前一半时间每秒是跑5米,后一半的时间每秒跑3米,电子猫后120米用了( )秒.A .40B .25C .30D .365.甲、乙、丙三位长跑运动员同时同地出发跑步,甲平均每秒钟跑5米,乙平均每分钟跑288米,丙一小时跑了18.3千米.他们三人按平均速度由大到小的顺序排列是( )A .丙甲乙B .乙甲丙C .甲乙丙D .甲丙乙6.甲、乙、丙三人跑一段相同的路,甲用了0.4分钟,乙用了14分钟,丙用了29分钟,他们三人相比( )A .甲最快B .乙最快C .丙最快D .一样快二、填空题7.小凤家到学校的距离是s 米,她从家出发,平均每分走v 米,8分可到学校。
根据题意得出, s= ,v= 8.一段公路与铁路平行,公路上有甲、乙两个人同向而行.甲步行,每小时走5公里;乙骑自行车,每小时走15公里,后面开过一列火车,火车追过甲所用时间是36秒,追过乙所用的时间是45秒,则火车的总长为 米。
9.一辆汽车从A 地开往B 地,共行驶10时,前6时平均每时行驶60km ,后4时平均每时行驶56km ,这辆汽车平均每时行 千米10.一辆汽车从甲地开往乙地,1.5小时,行了全程的.13,照这样的速度,这辆汽车每小时行全程的 ,行完全程的12需要 小时。
小升初数学行程问题专项训练题及答案
小升初数学行程问题专项训练题及答案一、甲、乙两车分别从A、B两地同时出发,相向而行,甲车每小时行40千米,乙车每小时行60千米,两车相遇后,甲车还需要再行多少小时才能到达B地?二、A、B两地相距1000千米,甲车从A地出发,乙车从B地出发,两车同时出发相向而行。
甲车每小时行50千米,乙车每小时行70千米。
两车相遇后,甲车还需要再行多少小时才能到达B地?三、甲、乙两车分别从A、B两地同时出发,相向而行。
甲车每小时行60千米,乙车每小时行45千米。
两车相遇后,甲车还需要再行多少小时才能到达B地?答案:一、甲、乙两车分别从A、B两地同时出发,相向而行,甲车每小时行40千米,乙车每小时行60千米,两车相遇后,甲车还需要再行多少小时才能到达B地?解题思路:1、设两车相遇后甲车还需要再行x小时才能到达B地。
2、根据题意,甲车每小时行40千米,乙车每小时行60千米。
两车相遇后,甲车还需要再行x小时才能到达B地。
3、根据速度和时间的关系,可以得到方程:40x + 60x = 1000。
4、解方程得到:x = 10小时。
二、A、B两地相距1000千米,甲车从A地出发,乙车从B地出发,两车同时出发相向而行。
甲车每小时行50千米,乙车每小时行70千米。
两车相遇后,甲车还需要再行多少小时才能到达B地?解题思路:1、设两车相遇后甲车还需要再行x小时才能到达B地。
2、根据题意,甲车每小时行50千米,乙车每小时行70千米。
两车相遇后,甲车还需要再行x小时才能到达B地。
3、根据速度和时间的关系,可以得到方程:50x + 70x = 1000。
4、解方程得到:x = 8.33小时。
三、甲、乙两车分别从A、B两地同时出发,相向而行。
甲车每小时行60千米,乙车每小时行45千米。
两车相遇后,甲车还需要再行多少小时才能到达B地?解题思路:1、设两车相遇后甲车还需要再行x小时才能到达B地。
2、根据题意,甲车每小时行60千米,乙车每小时行45千米。
小升初真题专练:行程问题-小学数学六年级下册人教版(有答案 有解析)
小升初真题特训:行程问题-小学数学六年级下册人教版学校:___________姓名:___________班级:___________考号:___________小升初真题)甲、乙两人进行骑车比赛,同时出发,当甲骑到全程的,乙骑到全程的时,这时两人相距二、填空题三、判断题19.(2021·云南昭通·统考小升初真题)小春家距离学校1.2km,他每天上学行走的速度与相应的时间成反比例关系。
()20.(2020春·全国·六年级小升初模拟)汽车的速度是每小时75米。
() 21.(2021·全国·小升初真题)从甲地到乙地,小明要用10分钟,小红要用12分钟,则小明和小红平均每分钟走的路程比是6:5.()22.(2021·安徽安庆·统考小升初真题)行同一段路程,甲用4小时,乙用3小时,甲乙速度比是4∶3。
()四、解答题23.(2020·贵州铜仁·小升初真题)甲乙两辆汽车同时从两地相向而行,甲车每小时行45千米,乙车每小时行42千米.两车在距离中点12千米处相遇.两车同时开出后经过多少小时相遇?24.(2021春·全国·六年级校考小升初模拟)等边三角形的跑道的三个端点A、B、C上分别站着甲、乙、丙三人.其中,甲的速度是丙的5倍.若三人同时顺时针出发,20分钟后甲追上丙,同时乙也追上了丙。
(1)三人的速度比是多少?(2)若三人同时逆时针出发,甲追上丙后再过多长时间,甲能追上乙?25.(2020·山东·校联考小升初真题)一列火车从A城开往B城.如果速度是120千米/时,则4小时可以到达;如果速度是160千米/时,几小时可以到达?26.(2022·河南驻马店·校考小升初真题)甲、乙两车同时从A,B两地相向而行,当甲车到达B地时,乙车距A地30千米;当乙车到达A地时,甲车超过B地50千米。
(奥数典型题)行程问题-2023-2024学年六年级下册小升初数学思维拓展含答案
(奥数典型题)行程问题-2023-2024学年六年级下册小升初数学思维拓展第8讲行程问题【知识点归纳】1.、速度:指单位时间内所行的路程。
因为速度=路程÷时间,所以速度的单位名称是路程单位/时间单位,即千米/时,米/分,米/秒,千米/分……2、路程、时间与速度的关系:(1)已知路程和时间,求速度:速度=路程÷时间;(2)已知路程和速度,求时间:时间=路程÷速度;(3)已知速度和时间,求路程:路程=速度×时间。
在路程、时间和速度三个量中,知道其中的任何两个量,都能求出第三个量。
【方法总结】1、路程、时间和速度之间的关系:路程=速度×时间时间=路程÷速度速度=路程÷时间1.客车和货车分别从甲、乙两地同时出发,相向而行,3h相遇,相遇后客车又行驶2h到达乙地,已知货车每时行驶50km,问甲、乙两地相距多少千米?2.甲乙两列火车分别从南、北两地同时相对开出,6小时后相遇。
甲车的速度是120千米/时,乙车的速度是130千米/时。
求南、北两地的路程。
(先画图整理条件和问题,再解答。
)3.客、货两车同时从甲乙两地相对开出在离乙地80千米的地方第一次相遇,相遇后继续行驶,到达对方出发点后立即返回,第二次在距离甲地50千米的地方相遇。
求甲、乙两地间相距多少千米?(画图可以帮助理解!)4.甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。
求甲原来的速度。
5.从电车总站每隔一定时间开出一辆电车。
甲和乙两人在一条街上沿着同一方向步行,甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车。
则电车总站每隔多少分钟开出一辆电车?6.甲乙两地相距1200千米。
一辆大客车和一辆小客车分别从两地同时出发,相向而行,6小时相遇。
小升初奥数行程问题【典型例题】
16行程问题1基本公式1.1路程(和、差) = 速度(和、差)×时间火车过桥(隧道)是长度和1.2时间 = 路程(和、差)÷速度(和、差)速度(和、差)= 路程(和、差)÷时间1.3速度差 = 快速–慢速速度和 = 慢速 + 快速1.4慢速 = (速度和–速度差)÷ 2 快速 = (速度和 + 速度差)÷22三类基本行程问题:相遇、追及、环形跑道。
2.1相遇的含义:如果出发时间相同,则所走的时间相同;相遇时,两方都处于同一个位置。
在超过2人的行程问题中,相遇就是时间和距离的等量代换点;如果一方先出发或者有一方中间停止,则这一方还要算上先出发的时间或去掉停止的时间。
2.2相遇:速度和,对应路程和,相遇时,有公式:路程和 = 速度和×时间时间 = 路程和÷速度和速度和 = 路程和÷时间。
2.3追及:速度差,对应路程差,相遇时,有公式:路程差 = 速度差×时间时间=路程差÷速度差速度差 = 路程差÷时间。
2.4环形跑道的同向追及,速度差,每相遇一次,路程差1圈。
距离差= 圈数×跑道长=速度差×时间时间 =(圈数×跑道长)÷速度差速度差=(圈数×跑道长)÷时间2.5环形跑道反向碰头,速度和,每相遇一次,路程和等于1圈。
距离和=圈数×跑道长=速度和×时间时间=(圈数×跑道长)÷速度和速度和= (圈数×跑道长)÷时间2.6再次相遇问题相当于环形跑道,跑道距离相当于2倍总路程如果到对方出发点都又返回,再次相遇,与第一次相遇相比,二次相遇所走的总路程相当于环形跑道的总路程,即2倍总路程和2倍时间。
再次相遇与第一次相遇相比,共走3倍的总路程,花费3倍的总时间。
以后每次相遇,总路程等于环形跑道的距离即2倍总路程。
小升初冲刺名校----行程问题提高题(大全)
1.反向运动问题例1:甲、乙两车分别从A 、B 两地同时相对开出,甲车每小时行A 、B 两站距离的51,乙车每小时行36千米,经过3小时两车相遇。
甲车每小时行多少千米?【分析与解答】相遇时甲车行了全程的51×3=53,乙车行了1-53=52,即36×3=108(千米),所以全程为108÷52=270(千米),则甲车速度为每小时270×51=54(千米)36×3÷(1-51×3)×51=54(千米)练习11.甲、乙两车分别从A 、B 两地同时相向开出,甲车每小时行40千米,乙车每小时行A 、B 两站距离的61,经过3小时两车相遇。
乙车每小时行多少千米?2.客车、轿车分别从甲、乙两地同时相向开出,客车每小时行60千米,轿车每小时行甲、乙两地距离的81,经过5小时相遇。
轿车每小时行多少千米?3.甲、乙两人分别从A 、B 两地同时出发,相对而行,甲每分钟走90米,乙每分钟走A 、B 两地距离的201,经过8分钟相遇。
求乙的速度。
例2:客车从甲地开往乙地,货车同时从乙地开往甲地。
客车行到全程137的地方,与货车相遇。
如果客车每小时行56千米,货车9小时可行完全程,那么,甲、乙两地相距多少千米? 【分析与解答】客、货车相遇时,客车行全程的137,则货车行全程的1-137=136,货车速度是客车速度的136÷137=76,货车速度为56×76=48(千米),全程就是48×9=432(千米) 56×91371371⨯⎥⎦⎤⎢⎣⎡÷⎪⎭⎫ ⎝⎛-=432(千米)练习21.客车从甲地开往乙地,货车同时从乙地开往甲地。
客车行到全程95的地方,与货车相遇。
如果客车每小时行75千米,货车6小时可行完全程,甲、乙两地相距多少千米?2.客车和货车分别从甲、乙两站同时出发,相向而行。
客车每小时行35千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初奥数专题练习题:行程问题
1、东西两地长217.5千米,甲车以每小时25千米的速度从东地到西地;1.5小时后,乙车从西地出发到东地,再过3小时两车还相距15千米。
乙车每小时行多少千米?
2、甲、乙两辆汽车同时从A、B两地相向开出,甲车每小时行6千米,乙车每小时行8千米,两车在离中点32千米处相遇。
求A、B两地间的距离是多少千米?
3、甲、乙两辆旅游车同时从A、B两地出发,相向而行,4小时相遇。
相遇后甲车继续行驶了3小时到达B 地,乙车每小时行24千米。
问:A、B两地相距多少千米?
4、两名运动员在湖的周围环形道上练习长跑,甲每分跑250米,乙每分跑200米,两人同时同地同向出发,经过45分甲追上乙,如果两人同时同地反向出发,经过多少分两人相遇?
5、两名运动员在湖的周围环形跑道上练习长跑。
甲每分比乙多跑50米。
如果两人同时同地同向出发,则经过45分甲追上乙。
如果两人同时同地反向出发,则经过5分可以相遇。
求甲乙两人的速度。
6、甲、乙两人以每分60米的速度同时、同地、同向步行出发,走15分后,甲返回原地取东西,而乙继续前进。
甲取东西用去5分时间,然后改骑自行车以每分360米的速度去追乙,骑车多少分才能追上乙?
7、一艘轮船在河流的两个码头间航行,顺流需要6小时,逆流需要8小时,水流速度每小时为2.5千米。
求轮船在静水中的速度是多少?
8、某人步行的速度为每秒2米,一列火车从后面开来,超过他用了10秒。
已知火车长90米。
求火车的速度?
9、一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒。
这列火车的速度和车身长各是多少?
10、一列货车共50节,每节车身长30米,两节车间隔长1.5米,这列货车平均每分钟前进1000米,要穿过1426.5米山洞,需要多少分
11、
11、一列火车长640米,从路旁的一棵大树旁通过,需40秒。
如果以同样的速度通过一座长800米的大桥,需要多少秒?
12、有两列火车,一列长102米,每秒行20米,一列长120米,每秒行17米。
两列火车同向而行,从第一列车追上第二列车到两车离开需要几秒?
13、甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为每小时60千米和48千米。
有一辆迎面开来的卡车分别在他们出发后6小时、7小时、8小时先后与甲、乙、丙三辆车相遇。
求丙车的速度。
14、快、中、慢三辆车同时从同一地点出发,沿同一公路追赶前面的一个骑车人。
这三辆车分别用6分、10分、12分追上骑车人。
现知道快车每小时行24千米,中车每小时行20千米。
慢车每小时行多少千米?
15、A、B两地相距21千米,上午8时甲、乙分别从A、B两地出发,相向而行。
甲到达B地后立即返回,乙
到达A地后立即返回,上午11时他们第二次相遇。
此时,甲走的路程比乙走的路程多9千米。
甲每小时走多少千米?
16、上午8时8分,小明骑自行车从家里出发。
8分后,爸爸骑摩托车去追他,在离家4千米的地方追上了他,然后爸爸立即回家。
到家后又立刻回头去追小明。
再追上他的时候,离家恰是8千米。
这时是几时几分?
17、两辆汽车同时从A、B两城相向而行,在离A城52千米处相遇,到达对方城市后立即以原速返回,又在离A城44千米处相遇。
两城相距多少千米?
18、甲、乙两地相距100千米,一辆汽车和一台拖拉机都从甲地开往乙地,汽车出发时,拖拉机已开出15千米;当汽车到达乙地时,拖拉机距乙地还有10千米。
那么,汽车是在距乙地多少千米处追上拖拉机的?
19、当甲在60米赛跑中冲过终点线时,比乙领先10米,比丙领先20米。
如果乙和丙按原来的速度继续冲向终点,那么当乙到达终点时将比丙领先多少米?
20、两辆汽车同时从A、B两站相对开出,在B侧距中点20千米处两车相遇。
继续以原速前进,到达对方出发站后又立即返回。
两车再在距A站160千米处第二次相遇。
求A、B两站距离?
21、兄弟骑车旅游,弟弟先出发,速度是每分200米,5分后,哥哥带一只狗出发,以每分250米的速度去追弟弟。
而狗则以每分300米的速度向弟弟跑去,追上弟弟后立即返回,遇到哥哥后又立即向弟弟追去,直到哥哥追上弟弟后为止。
这时狗跑了多少千米?
22、一个圆周长70厘米,甲、乙两只爬虫从同一点同时出发同向爬行,甲以每秒4厘米的速度不停地爬行,乙爬行15厘米后,立即反向爬行,并且速度增加1倍,在离开出发点30厘米处与甲相遇。
问:爬虫乙原来的速度是多少?
23、一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行。
这两只蚂蚁每秒分别爬行5.5厘米和3.5厘米。
它们每爬行1秒,3秒,5秒……(连续的奇数),就调头爬行。
那么,它们相遇时已经爬行的时间是多少秒?
24、一支摩托车小分队奉命把一份重要的文件送到距小分队驻地300千米以外的指挥部。
每辆摩托车装满油最多能行驶300千米,途中无加油站。
为保证顺利完成任务,队长想出一个巧妙的方法:用三辆摩托车执行此项任务,恰好有辆摩托车可以把文件送到指挥部,另外两辆安全返回驻地(三辆摩托车所带的油全部用完)。
指挥部距小分队驻地多少千米?
25、甲、乙两车分别从A、B两地同时出发相向而行,6小时后在C地相遇;如果甲速不变,乙车每小时多行5千米,则相遇点距C地12千米;如果乙速不变,甲车每小时多行5千米,则相遇点距C地16千米,甲车原来每小时行多少千米?
26、唐老鸭与米老鼠进行10000米赛跑,米老鼠的速度是每分钟125米,唐老鸭的速度是每分钟行100米。
唐老鸭手中掌握着一种迫使米老鼠倒退的电子遥控器,通过这种遥控器发出第n次指令,米老鼠就以原速度的n×10%倒退1分钟,然后再按原来的速度继续前进,如果唐老鸭想在比赛中获胜,那么它通过遥控器发出指令的次数至少是多少次?
27、三个人从A地到B,两地相距36千米,三个人只有一辆自行车,这辆车只能坐两人,自行车的速度比步行速度快两倍。
他们三人决定:第一个人和第二个人同乘自行车,第三个人步行。
这三个人同时出发,当骑车的二人到达某点C时,骑车人放下第二个人,立即沿原路返回去接第三个人,到某处D与第三个人相遇,两人同乘自行车前往B;第二个人在C 处下车后继续步行前往B地。
结果三个人同时到达B地。
那么C距A处多少千米?D距A 多少千米?
28、一辆奥迪轿车和一辆桑塔纳轿车分别从A、B两地出发,相向而行,奥迪车每分行1400米。
如果两车同时出发,则恰好在途中的加油站相遇;如果桑塔纳轿车先出发了1分钟,则两车在距加油站600米处相遇;如果奥迪轿车先出发1分钟,则两车在距加油站多少米的地方相遇?
以26为列子讲评
. 解:唐老鸭跑完1万米需要100分钟。
设唐老鸭在100分钟内共发出n次迫使米老鼠倒退的指令,则在100分钟内米老鼠有n分钟的时间在倒退,有(100-n)分钟的时间在前进,依题意有
125×(100-n)-125×(0.1+0.1×2+0.1×3+…+0.1×n)<10000,整理得 n(n+21)>400。
当n=12时, n+21=33,12×33=396<400。
当n=13时,n+21=34,13×34=442>400。
所以n至少等于13,即遥控器发出指令的次数至少是13次。