浅析地球物理测井在煤田地质勘探中的应用
浅谈地球物理测井在煤田地质勘探中的应用
地球物理测井技术在煤矿地质勘探中的应用
地球物理测井技术在煤矿地质勘探中的应用摘要:众所周知,随着我国经济飞速的发展,对能源的消耗也随着快速的增加,尤其是传统能源之一的煤炭。
煤田地质勘探和煤矿开采的技术也因此大发展,其中煤田地球物理测井技术备受关注,因为其便捷性的操作,广泛性的运用范围及精准的测量数据。
关键词:煤矿;地球物理测井;地质勘探引言地球物理测井就是一种在钻孔中通过对热、声、电等物理性质的测量,进而区分岩石和流体性质的方法。
与其他的物探方式相比,地区物理测井技术具有很多的优势,当前已经成为最为重要的水文地质勘查手段之一。
地球物理测井技术在钻探工作中的使用,可以十分有效的配合地质钻探,精确的探测钻孔中的水文地质情况,可以提升钻探的可靠性和准确性,具有很好的研究价值。
1地球物理测井技术1.1地球物理测井技术的概述地球物理测井技术是煤矿地质勘查和探索中一种不可或缺的勘探的方法。
其是使用地下岩层的各种特性——导电性、放射性、电化学特性和声学特性等来测量地球相关的物理参数,显示地下岩层的构成情况的地质勘察的方法。
煤田测井技术通过使用各式各样的测井机器能够在地面以下很深的地方进行实地探查,地球物理测井技术是采用先进的电子及传感器、计算机信息论、层析成像和数据处理等技术,借助专门的探测仪器设备,沿钻井剖面观测岩层的物理性质,以研究和解决地质问题,进而发现油气、煤、放射性、地下水等矿产资源。
这样就突破了单一的地面勘探的不足,是测井技术最大的特点和优势所在,使得勘察和测试所得到的数据更具准确性和参考价值。
1.2地球物理测井技术的分类测井有三种基础的方式,分别是声、电、放射测井。
而根据相关的物理特性测井又可以可划分成地层倾角测井、井温测井及声波测井等等。
不管是哪一种测井的方法都是能够间接地反映地下岩层的某种物理数据,虽然利用测井技术的针对性很高,但是反映的范围有局限性,因此我们就需要综合的使用两种及以上的测井方法,这样才能够更加全方位地了解地下岩层的组成结构和评价煤层。
地球物理测井技术在煤矿地质勘探中的应用
地球物理测井技术在煤矿地质勘探中的应用发布时间:2022-11-30T07:02:51.250Z 来源:《新型城镇化》2022年22期作者:郭鹏[导读] 地球物理测井是指在钻孔内进行的一项地球物理测量工作,通过测井曲线,对各种煤层的电性、磁性、放射性等物性特征进行综合分析,从而将煤与岩层的接触面进行划分。
对有关岩性进行分析和计算。
同时,利用钻孔曲线对解勘探区的地质结构进行了全面的了解,在煤矿地质勘探中具有十分重要的地位。
文章概述了地球物理测井技术,并对其分类进行了介绍,并就其在实际中的应用进行了探讨。
郭鹏山东正元地球物理信息技术有限公司山东济南 250000摘要:地球物理测井是指在钻孔内进行的一项地球物理测量工作,通过测井曲线,对各种煤层的电性、磁性、放射性等物性特征进行综合分析,从而将煤与岩层的接触面进行划分。
对有关岩性进行分析和计算。
同时,利用钻孔曲线对解勘探区的地质结构进行了全面的了解,在煤矿地质勘探中具有十分重要的地位。
文章概述了地球物理测井技术,并对其分类进行了介绍,并就其在实际中的应用进行了探讨。
关键词:地球物理测井;技术;煤矿地质勘探引言在煤矿地质勘探中,测井技术是一种常用的地球物理测井技术。
该方法对确定煤层的位置、深度与厚度的确定有一定的实用价值。
随着科学技术的飞速发展,尤其是计算机、自动化控制、单片机科学等技术的飞速发展,测井技术也由原来的模拟测井技术发展到如今的地球物理测井技术。
测井技术在提高勘探效率、勘探质量、可靠性、适用性等方面起到了很大的作用。
地球物理测井技术是今后矿井测井技术发展的一个重要趋势。
1.地球物理测井技术1.1地球物理测井技术的概述地球物理测井技术是煤矿地质勘探和开发中不可或缺的技术。
该方法利用地下岩层的导电性、放射性、电化学、声学等多种特性,来勘探与地球相关的物理数据,从而揭示地下岩层组成。
采用各类测井仪器,对地表进行野外勘探。
通过电子、传感器、计算机信息论、层析成像、数据处理等现代科技手段,通过专业的测井仪器,对地层的物理特性进行观测,从而发现油气、煤炭、放射性、地下水等矿产资源。
地球物理勘探技术在煤炭勘探中的应用
地球物理勘探技术在煤炭勘探中的应用地球物理勘探技术是一种通过利用地球物理现象和相应的测量方法,对地下物质的性质和分布进行研究的技术手段。
在煤炭勘探中,地球物理勘探技术发挥着重要的作用。
本文将从地震勘探、电磁勘探和重力勘探三个方面,介绍地球物理勘探技术在煤炭勘探中的应用。
一、地震勘探地震勘探是利用地震波在地下的传播特性对地下结构进行勘探的技术手段。
在煤炭勘探中,地震勘探可以用于寻找煤层和判断煤层的分布情况。
通过发送地震波,观测地震波传播的速度和路径,可以得到地下煤层的厚度、构造特征等信息。
例如,在煤炭勘探中,可以利用爆破或震源车辆产生人工地震波,通过地表上的地震仪观测地震波的到达时间和振幅,进而推断地下煤层的存在和分布。
此外,地震勘探还可以通过分析地震波的反射和折射特征,获取煤层的物理参数,如速度、密度等,从而进一步了解煤炭资源的质量和储量。
二、电磁勘探电磁勘探是利用地下物质对电磁场的作用,测量地表电磁场的变化,从而推断地下物质的分布和性质的技术手段。
在煤炭勘探中,电磁勘探可以用于寻找煤层和判断煤层的储量和质量。
例如,通过利用人工电磁场源或自然地磁场的变化,观测接收地表电磁场的变化,可以获得地下煤层的导电性信息。
根据地下煤层的导电性与煤层的含煤量和含水量之间的关系,可以推断煤层的厚度、深度和分布情况。
此外,电磁勘探技术还可以用于检测煤层下的瓦斯赋存情况。
由于瓦斯对电磁场的响应是具有特殊特征的,通过观测地下煤层向上的瓦斯流动对电磁场的干扰,可以推断煤层下的瓦斯赋存情况,为煤炭开采提供重要的依据和指导。
三、重力勘探重力勘探是利用地球重力场的变化来推断地下物质的分布和性质的技术手段。
在煤炭勘探中,重力勘探可以用于寻找煤层和判断煤层的分布情况。
例如,在煤炭勘探中,可以通过在地表上测量地球重力场的变化,推断地下煤层的厚度和分布情况。
由于地下煤层比岩石密度小,所以在地球重力场中会产生一定的异常。
通过测量这种重力异常,可以判断煤层的存在和分布状况。
浅谈地球物理测井在煤田中的应用
浅谈地球物理测井在煤田中的应用发表时间:2020-09-02T08:11:46.717Z 来源:《防护工程》2020年14期作者:王伟[导读] 煤田能源开采对于国家发展来说至关重要,其直接决定了工业发展的进程宿州学院资源与土木工程学院安徽宿州 234000摘要:煤田能源开采对于国家发展来说至关重要,其直接决定了工业发展的进程。
随着现今社会经济的飞速发展,对于能源的需求量也随之与日俱增。
因此对煤田能源开采提出了新的要求标准。
鉴于此,本文浅谈地球物理测并在煤田测井之中的应用,煤田测井技术主要应用电子技术及来对测井数据进行收集以及记录工作。
在测井应用方面,现代煤田测井技术具备的使用特点使其远远要比传统单个钻孔对于每层的分析以及定厚范围具备更大的优势。
关键词:地球物理测井;声波测井;数字测井;煤田1地球物理测井概述地球物理测井或简称测井,是在钻孔中进行地球物理测量、研究井中各种物理场的变化,进而达到研究基础地质、寻找矿产的目的的一门学科。
测井是一门边缘学科,它是将电磁学、声学核物理学、热学、光学等学科的基本理论和测量方法,用于油气井或其他矿钟,依靠获取的大量信息进行资源评价。
因此,测井的发展有赖于数学、物理学的发展和计算机、畅器件和新型材料等现代科学的进步。
测井作为石油勘探的一种手段,已经有80年的历史。
由于它在生产中的显著地质效果,一开始就受到人们的重视,到目前已成为石油勘探和开发过程中的一个不可缺少的工作环节。
于它的研究内容和解决地质任务的能力,以及工作方法和测量设备相对于其他地球物理勘探方法具有不同的特点,同时它还具有一些只适于在井内条件下使用的地球物理方法。
例如,密度测井、中子测井等核地球物理方法,因此,测井已发展成为应用地球物理学的一个独立分支[1]。
2地球物理测井发展从评价油气层的角度来看,测井方法的发展大致经历了以下几个阶段:第一阶段,只拥有普通电极系的电阻率法和自然电位法等少数几种方法,测量技术和设备都不完善,测结果受井眼条件影响很大,测得的是视参数,根据这些视参数只能做出定性估计。
试论地球物理测井在煤田测井中的应用分析
技术应用与研究一、前言在煤田勘探工作中进行煤田测井是一项核心的工作内容,利用煤田测井工作可以获取煤田的相关数据,从而为煤田勘探工作进行提供可靠的数据参考,能够进一步保证煤田勘探工作的顺利进行。
而在煤田测井工作中,对地球物理测井技术进行有效应用,能够提高煤田测井工作的效率以及质量,对提高测井结果的准确性有极其重要的意义。
二、煤田测井基本概述在煤田测井过程中,主要是对顶板层、中间层以及地板层进行测量。
这三部分时煤田的主要资源组成部分。
在这三部分中,煤炭资源含量比较高的为中间层以及地板层,因此,一般称中间层为含煤层。
而顶板层主要被分为4个部分,其中含煤量比较高的是第3层以及第4层。
在测井过程中,工作人员的主要任务是对煤层的厚度以及深度进行确定。
为了保证测量结果的准确性,工作人员必须充分了解和掌握煤岩层的性质。
现阶段,我国在对煤层进行定性时,主要采用的是天然伽玛、长源距伽玛、电阻率以及双收时差等曲线参数方法。
通过对这些曲线参数进行综合分析可以对煤层进行准确的定性工作,在定性工作中,主要采用的是具有良好物物性反应的NR以及GR等参数。
三、地球物理测井技术类型1.密度测井技术密度测井技术所采用的横向比例尺单位为g/cm3。
在下井之前需要对起伏进行统计,必须保证起伏能够达到煤田测井的相关要求。
此外,在同一个勘探区域内必须使用相同的横向比例尺。
2.自然伽玛测井技术在煤田测井过程中运用的自然伽玛测井技术采用的横向比例尺单位为Pa/kg,在自然伽玛测井技术的应用过程中,仪器下井之前需要使用标准源或者刻度环对其进行检查,然后将基地读数与响应值进行准确比较,必须对误差进行控制,一般误差要控制在5%以内。
与此同时,在照射率满足相关要求的基础上,对涨落引起的相对标准误差要进行准确计算,误差也要控制在5%以内。
在实际测井过程中,仪器必须在线性区域内工作。
3.声波测井技术声波测井技术采用的横向比例尺单位中时差单位为μs/m,速度单位采用的是m/s。
地球物理勘探技术在煤炭勘探领域中的应用
地球物理勘探技术在煤炭勘探领域中的应用
地球物理勘探技术是一种通过测量地球物理现象,来发现地下资源分布的技术。
在煤炭勘探领域中,地球物理勘探技术被广泛应用,可以用于确定煤炭矿体的位置、分布、储量和质量等方面。
在煤炭勘探中,最常用的地球物理勘探技术包括重力勘探、磁力勘探、地震勘探和电磁勘探等。
下面将针对这些技术分别进行介绍。
1. 重力勘探:重力勘探是通过测量地球重力场的变化来确定地下物质分布的一种方法。
在煤炭勘探中,煤层与周围的岩石密度差异较大,因此可以用重力勘探来检测煤层的存在。
此外,重力勘探还可以用于确定煤矿地下空洞的位置和大小。
总的来说,地球物理勘探技术在煤炭勘探领域中的应用非常广泛,可以提高勘探效率和准确性,降低勘探成本和风险。
在进行煤炭勘探时,需要根据具体情况选择适合的地球物理勘探技术,并结合其他勘探方法进行综合分析,从而得出准确可靠的勘探结果。
地球物理测井在煤矿勘查中的应用
地球物理测井在煤矿勘查中的应用摘要:地球物理测井因其可靠性较高且成本较低,可以在勘探开发中后期综合解释时发挥重要作用。
为确定煤层的深度、厚度及结构,对钻探所提供的地质资料进行验证等提供判定依据。
通过测井曲线对比,能较为准确地对各煤层进行确定和划分,根据曲线形态变化,找出煤层变化规律,为下一步找矿提供可靠的分析依据。
关键词:岩性特征;煤层定厚;变化规律引言岩性特征的识别对勘探开发、煤层评价、研究沉积相等工作意义重大。
众所周知地质条件复杂多变,井下岩石组成分布更是难以掌握。
而测井技术依据电、声、核、磁等各种物理原理,采集地下信息进行处理解释对井下岩性进行划分,准确性高且成本较低。
本文通过测井曲线定性识别岩性,为快速确定各种地层的岩性划分提供物性依据,从而达到对煤层进行定厚、发现其变化规律的目的。
1测井曲线识别岩性的基本原理测井曲线识别岩性是利用测井曲线形态特征和曲线值相对大小,从长期生产实践中积累起来的规律性认识。
测井曲线识别岩性是以岩性的物理特征来识别岩层岩性的。
不同岩石其密度、硬度、电阻率、声速等各方面的物理特征必然不同,综合分析这些物理特征、各条曲线形态和曲线值,就可判断出不同岩性。
本文通过对密度、电阻率、伽马强度、自然电位、声波、井径等曲线的分析对岩性进行识别来达到划分岩性的目的。
2.勘查区地球物理特征为了比较准确的测定本勘查区各种地层物性代表参数,通过对勘查区的M2煤层分布地段,选择分布均匀的钻孔、岩心采取率比较高的钻孔,测井条件比较一致即孔径相近、使用泥浆材料相同的钻孔,获取测井资料,与钻探岩芯比较,确定岩层性质、厚度、名称,分岩层进行统计计算,得到代表勘查区各地层的主要物性参数。
为了评价岩体完整性,通过声波测井,对该勘查区的各种地层的声速参数进行了汇总,使得能更方便的研究该地区的地层完整性。
1.1 勘查区岩石物性参数特征依据测井资料统计的岩石物性参数可见:1.砾岩、粗砂岩、中砂岩、细砂岩具有较高的电阻率,且随着粒级由大变小,电阻率值也相应有所下降;其自然伽玛、密度差异不明显。
地球物理测井在煤矿勘测中的应用
地球物理测井在煤矿勘测中的应用地球物理测井在煤矿勘测中的应用煤炭测井技术在历史发展的过程中得到了长远的进步。
在1931年法国第一次使用电阻率测井来测量煤层,取得的成果是十分好的。
我国煤炭开采历史比较久,但测井技术发展的速度并不快,不过自从1954年建立了我国第一只煤炭测井队,这为我国测井技术的发展带来了巨大的推进作用。
从简单地使用钻探进行划分煤层,很好地确定了煤层的具体深度,对于后来各项技术的发展起到了有效作用。
测井技术和测井仪器的产生最早是在1954年-1985年之间,自从1985年以后测井技术和设备都进入了一个新时代。
当前使用的煤炭测井技术不仅实现了刻度化、精确化、轻便化等,而且还把计算机技术和数字技术都应用其中,除了能够收录相关数据之外,还能够对测井数值进行分析。
此外还能够通过对单个孔的检测就能够知道煤层具体范围和分层情况。
当前测井技术在煤炭开采的过程中被广泛应用,确定煤层区域和范围也是这项技术应用的主要任务。
1 鉴定沉积环境煤的形成主要受到古时期地理环境和气候变化的影响。
能够聚集煤的盆地其古时期的环境不仅决定了煤的特性、周围岩层的变化规律,而且还对煤层的发育地段位置加以确定。
所以,所以说研究煤的形成条件对于确定煤层的情况具有十分重要的意义,也能够帮助测量人员进行预测。
在煤形成环境中,砂体的粒度以及泥质情况等情况都是我们测量煤层的重要指标。
在使用测井技术的过程中测井的曲线会对这方面进行反应,而且还能够区分出不同岩层的分布,这也就是我们利用曲线配合测井使用的原因。
在对煤炭底层鉴定中起到了不可忽视的作用。
通过对测井数据进行分析还能够画出含砂率的情况,使得人们能够更加清晰的看到砂体的刑天以及煤层之间的关系。
我们通过掌握这些数据的相关性,就能够通过对他们的分析来预测煤层区域的具体位置,进而让人员进行钻孔,方便后面的勘探设计,我们应该对这方面内容加以掌握。
2 煤质分析和岩性分析利用数字测井技术和计算机对密度测井、声波测井、中子测井等测井曲线进行数字处理,可以获得有关煤质指标(如含碳量、挥发分、灰分、水分、发热量等)和岩石组分(如砂、泥的体积百分含量和孔隙度)的定量分析结果。
地球物理测井在煤层气勘探开发中的应用探析
地球物理测井在煤层气勘探开发中的应用探析摘要:地球物理测井是进行煤层气勘探开发的一项重要技术,主要是用来获取煤层气储层测井的地质信息的,对这项技术进行研究与发展也是非常有意义的。
下面我们就对此进行了深入的探讨,希望能够为有关人员提供一些参考。
关键词:煤田地球物理测井;煤层气勘探开发;地球物理测井类型及应用导言:煤气层其实是植物在地质时期煤化过程中的伴生产物,这种矿产资源是比较清洁与高效的。
相关数据显示,我国有31.46×1012m3的埋深在两千米以下的煤层气资源,其开发应用的价值是非常大的。
对于煤层气的勘探开发来说地球物理测井技术是一项非常重要的技术,不过,如今,对于怎样对这一技术进行有效的应用还缺少系统、全面的总结。
1煤层气地球物理测井技术发展现状、存在的问题及面临的挑战1.1发展现状与常规的油气储层不同的是煤层气储层的结构是双孔隙类型的,要更加的复杂,而且这些煤层气储层大多都按照单分子层的形式在煤层表面进行附着的,很少有形成游离状态的,这样吸附气对于测井曲线的影响也不再是传统的气体的形式,而是还要考虑煤的四种工业分析,要对其进行科学的组分。
煤层气测井技术是在煤田测井和石油测井等技术的基础上发展起来的。
对于油气勘探和开发来说石油井是有着至关重要的作用的,且因为沉井技术的发展,精度越来越高,应用范围变得更广,这也大大的提升了煤层气测井技术的勘测精度,能够更准确的提供地质信息;然而煤田测井只能是用来标定煤层,它的应用方法还是很单一的。
各界对于煤层气测井采集技术的应用都是为了对煤层气进行勘探、开发收集地质条件信息,或者是为了研究,需要分析各种因素才能确定是否这一技术进行应用。
目前来说煤层气在勘探以及开发阶段的评价目的并不是完全一直的,国内外对于煤系地层在进行沉井采集方法的选用时也不一样。
总体上来将,可以将煤层气测井的评价方法有下面几种,一是定性识别法,其思想基础就是常规的天然气储层评价思想,二是储层评价法,有两种基础,分别是概率统计模型和神经网络模型,三是储层解释法,它的基础是体积模型。
地球物理测井在煤田地质勘探中的应用
系的岩性组合、 岩相的类型及其变化规律 , 而且也决 定 了煤 层 发 育 的一 般 地 段 和 富 集 地 段 的 位 置 。 因
此 , 究 沉积 环境 对 于开 展 战 略 性 的煤 田普 查 和 预 研
要 手 段 , 别是 无 芯钻进 时 , 特 测井 成 为取得 钻 孔测 资
料的 必然 手段 。通 过 国内外 煤 田测井 的进 程 可 以看
测井等测井资料进行数据处理 , 可以获得煤质指标 ( 如含炭量 、 灰份 、 水份等) 和岩石成分( 如砂、 水 泥、
8 8
陕
西
煤
炭
2 0 拄 08
的含 量 ) 和体 积 百 分 比及 孔 隙度 的定 量 分 析 结果 。
2 3 为 勘探 区提供 相应 的水 文地质 资料 .
一
能够进行煤质分析 和岩性分析 , 这是现代煤 田测井
条 曲线 。
1 3 煤质 分 析和 岩性 分 析 . 利用 数 字 测 井 技术 和 计 算 机 对 密度 测 井 、 波 声
收稿 日期 :0 7—1 —1 20 1 5
作者简介 : 李效益 (9 7一) 男 , 西蓝 田人 ,9 0年毕业 于陕 西煤 16 , 陕 19 校物探专业 , 助理工程师 , 现在陕西省煤 田地质局一三一 队从事测井 技术工作 。
这种 相关ห้องสมุดไป่ตู้性 , 可 以根 据 它 们 来 预 测 富煤 区 域 的位 便
年最丰富 、 最可靠的能源; 加之又有先进的石油测井 技术可 以作为借鉴 , 因此煤 田测井得到 了前所未有 的发展。现代煤 田测井除了已实现测井仪器的刻度 化、 组合化 、 轻便化 , 采用数字技术 和电子计算机进 行测井数据的采集 和处理外 , 在测井 资料 的应用方 面特点突出。现在 , 预测井资料从煤 田的普查 、 预测 到勘 探至 开采 设计 , 都有 着广 泛 而有 效 的应用 。
浅谈地球物理测井曲线对比法在煤田地质勘探工程中的应用
前 言
地球物理测井。所依据 的是不 同岩层具有 各种不 同的物 理
性质特征 。其 具体表现在 电位 电阻率 (R 、 N ) 密度 ( G ) 自然放 G L、 射性 ( R 和 自然 电位 (P 之 间存在差异 。 G ) S) 例如: 煤层具有中 高 电阻率、 高密度伽码值 、 自然伽码的物理特征 ; 低 同时, 由于煤层 的顶 底板 多 为泥岩 和泥 质粉 砂岩 .煤层 与泥质 粉砂 岩在 N R、
建材 发展 导向 2 1 0 00年 7月
地质・ 勘察 ・ 测绘
浅 谈地球 物 理测 井 曲线对 比法 在 煤 田地质 勘探 工程 中的应 用
罗来 东
摘 要 : 本文通过对煤 田地质勘探 中地球物理测井 曲线对比法 的分析 , 阐述 了该种勘探手段在工程中的必要性 、 实用性及广泛性。 关键词 : 地球物理测井 ; 田地质勘探: 煤 对比法
() 1标志层作依据进行全孔对 比 确定煤层层位 简称标志层 对 比法 。测井标志层是岩层的某种物性特征在 曲线上 的反映 具
有异常形态 明显 易识别. 而且稳定存在等特点 。在生产 实践中 为 了便于识别标志。 往将 煤、 往 岩层物性在测 井 曲线上所显示 的 异常形态加 以形象化。 予以命名。 例如:锯齿形 ’ 山字形 ,‘ “ “ ,馒头 . ‘ 形” 平头形 ’ 燕尾形 ’ ’ 。 等等
勘探 区部分钻孔 都经邻近钻孔作为标准’ 进行对 比后, 发现煤层 层位重复 出现 或者层间距增 大而确定有逆断层通过 。
又如该 区另外部分钻孔 与邻孔 曲线作 了全孔对 比后 发现
1 测井 曲线全 孔对 比法
测 井 曲线对 比法。 重针对煤层 结构、 着 厚度 及底板标 高的对
地球物理测井在煤层气勘探开发中的应用
地球物理测井在煤层气勘探开发中的应用摘要:煤层气是一种煤层在经过漫长的煤化作用和热解作用所形成的煤-气共存体,主要成分是甲烷,大多以吸附状态存在于煤层中,是一种地面可采的天然气。
其中,地球物理测井作为一种开发煤层气的关键技术工艺之一,能够实现对煤层气存储层的地质信息的高精度检测和提取,因此,开展对地球物理测井的相关技术研究对整个煤层气的开发具有重要的意义和前景。
特别的,我国在煤层气地球物理测井技术方面的研究虽然取得了长足的进步,但仍处于初始阶段,起点较低、数据积累较小,没有形成系统。
本文正是结国内外当前的煤层气地球物理测井技术的发展现状,对未来的发展趋势进行了相应的研究和探讨。
关键词:地球物理测井;煤田勘探;应用技术1关于煤田测井的概述我国煤田的资源在地下的沉积主要是由三个部分组成的,分别是顶板层、中间层和地板层。
其中含煤量比较突出的是中间层的底层位置,也称中间层是含没地层。
其中,在顶板层也可以分为四个部分,主要的煤量集中在第四层和第三层,在中间层比较突出的炭质泥岩是砂砾,地板层也有这些砂砾。
另外,测井的基本任务是对煤层的深度和厚度進行确定,而要完成这个工作首先是对煤岩层的性质进行完善的分析,在沿煤层的定性方面常用天然伽玛、长源距伽玛、电阻率和双收时差等曲线参数的综合应用。
同时,在进行煤层方面的定厚处理中,需要采用物性反应比较好的GR、NR等测井参数,并利用这些参数在曲线放大的基础上进行操作解释。
2地球物理测井技术的应用2.1自然电位测井岩石的自然电位由以下几种物理、化学现象引起:第一,地层水中的离子向钻井液中扩散或钻井液中的离子向地层水中扩散,即扩散电位;第二,岩石颗粒对离子的吸附作用,即吸附电位;第三,在岩石与其周围的介质接触而产生氧化还原反应,即氧化还原电位;第四,地层水向井内及钻井滤液向孔隙岩石中过滤,即过滤电位。
这几种现象引起的自然电位取决于岩石的岩性、矿物成分、物理性质以及地层水和钻井液的物理、化学性质。
地球物理测井在煤田测井中的应用
地球物理测井在煤田测井中的应用【摘要】新疆作为我国的重要煤炭资源来源地,如何通过煤田测井技术的应用来提高煤田的生产效率,具有非常重要的意义。
本文从对新疆煤田的介绍谈起,然后就煤田测井的设计进行说明,最后对新疆煤田中煤田测井的技术进行介绍。
【关键词】新疆煤田;煤田测井;设计;测量技术前言煤田测井是煤田勘探中的一项核心工作,通过煤田测井所得到的相关数据对煤田勘探工作的顺利开展可以提供重要的数据支撑,显然,做好煤田测井工作,意义重大。
1 新疆煤田概述根据新疆煤田的地层的沉积顺序可以划分为顶板层、中间层(含煤地层)和底板层三个地层组。
顶板层主要有第四系,第三系等组成;中间层(含煤地层)主要有煤层和炭质泥岩、泥岩及不同粗度的砂岩、砂砾等各种岩性组成;底板层地层主要由不同粗度的砂岩、砂质泥岩等组成。
2 煤田测井的设计说明2.1 煤田测井设计的基本要求第一、为了有效确保煤田地质勘查工作的顺利开展,必须制定相关的煤田测井设计方案。
第二、为了确保设计方案的科学性和合理性,在制定设计方案前,应广泛搜集、研究有关的工程地质信息和资料,并要建立相应的信息数据库。
第三、煤田测井设计方案的制定还应充分考虑地质的实际情况,尽量采用新技术和新方法,提高煤田的经济效益。
2.2 测井设计内容就煤田的测井实际情况来看,测井设计内容如下:第一、要进行地质任务和质量要求的设计。
第二、要做好之前测井工作的记录和评价工作。
第三、确定测井试验孔的位置和数量,明确相应的试验目的,做好相关的试验。
第四、要对测井的资料进行科学合理的保管。
第五、要对仪器设备的配备以及作业人员的组织进行合理的安排和规划。
2.3 试验工作第一、在未充分掌握煤田所处地理位置的地质物理特征的地区,应选择有代表性的钻孔在基准孔的位置进行相应的试验。
第二、在试验时要求所用的试验孔要满足如下两个方面的要求:一是要保证岩心采取率在75%以上,煤心采取率在90%以上;二是要对煤层的厚度、结构、岩性以及地质构造等情况进行详细的研究,在确保相关参数满足相关要求的条件下进行试验孔的试验。
地球物理测井在煤田测井中的应用
地球物理测井在煤田测井中的应用摘要:随着我国煤田资源的不断利用,我国煤田资源出现紧缺的现象,为了能够加强我国煤田资源的不断开发和利用,需要持续通过加强对技术的研究,进而使我国煤田资源得到有效的开发和利用。
在对煤田测定管理工作开展过程当中,通常情况下都会选择使用物理测井技术对煤田的具体情况进行检测,但是随着资源的不断开发,测量难度越来越高。
本文提出选择使用地球物理测定的方法,对煤田测井工作的开展提供保障。
本文主要通过对地球物理测井在煤田测评中的具体应用进行详细的分析,并提出相应的技术管理措施,希望可以提高我国煤田测井质量,为后期我国煤炭资源的合理开发提供保障。
关键词:地球物理测井;煤田测井;应用引言地球物理测井方法的发展历史相对较长,在很久以前主要有法国人提出并且使用的。
随着我国煤田资源的不断开发,在1939年,我国也开始选择使用地球物理检测技术,在具体使用过程当中,需要选择使用测定仪器对整个工程建设进行全过程监控。
在具体分析和管理过程当中需要通过鉴别岩层、划分油层、水层、煤层、寻找金属矿层等步骤进行详细的管理,按照不同矿石的特性,对各种资源的性质进行分析。
在现阶段地球物理测井检测工作开展过程当中,已经研发出电法测井、声波测井、放射性测井和气测井等多种技术方式。
1我国煤田测井的介绍在对煤田勘探工作开展过程当中,最主要的工作就是煤田测井工作的开展,只有通过煤田测井数据,才能够确定后期工作是否能够正常进行,煤田测定工作也是各项工作能够稳定开展的基础,可以为后续工作开展提供数据支持和保障,因此必须要加强我国煤田测定工作的开展力度,使各项技术能够得到合理的利用。
地球物理测试技术是对煤田检测的主要技术方式之一,为了能够有效推动地球物理测井技术的发展,我国在部分校区也开设了相应的课程,通过对地球物理测井技术的详细分析,有利于对后期资源的有效勘查和研究。
在对煤田测定工作开展过程当中,可分为顶板层,中间层和底板层三个层次,其中在所有的层次当中,中间层含有大量的煤炭资源,因此需要对中间层的煤炭资源进行详细的性质分析,确定中间层的勘测方式和开采方式。
地球物理测井技术在煤矿岩体工程勘察中的应用
地球物理测井技术在煤矿岩体工程勘察中的应用摘要:煤矿岩体工程勘察工作专业性较强,实际工作中需要选择合理可靠的技术手段辅助工作开展,而地球物理测井技术作为一项代表性技术,实际应用中能够有效提升勘察效率和质量。
基于此,文章主要就煤矿岩体工程勘察中地球物理测井技术应用情况进行探究,以求为实际工作展开带来一定借鉴与参考。
关键词:煤矿岩体;地球物理测井技术;工程勘察;数据处理;岩层识别煤矿岩体工程勘察作为煤矿开采前不可或缺的阶段,对于确保矿山的安全高效运营具有重要意义。
在这个过程中,准确了解地下岩层的性质、构造特征以及岩体稳定性,是实现可持续矿山开发的关键因素之一。
但由于煤矿地质复杂性和工程环境的限制,传统的岩体勘察方法往往难以提供足够精准的信息。
为了克服这些挑战,地球物理测井技术作为一种非侵入性、高效且精确的方法,逐渐成为煤矿岩体工程勘察中的重要工具之一。
1 地球物理测井技术概述地球物理测井技术是一组用于获取地下岩层和地质特征信息的方法,通过将各种测量工具和传感器安装在测井仪器中,下放到井孔中进行测量,从而获取有关地下岩石和流体性质的数据。
这些数据对于煤矿岩体工程勘察至关重要,因为它们可以为地下岩层的识别、特性分析以及岩体稳定性评估提供关键信息。
2 地球物理测井技术的应用要点2.1合理选择测井参数地球物理测井技术涉及多种参数和测量指标,选择合适的测井参数对于获取准确的地下信息至关重要。
不同的地质特征和勘测目标需要不同的测井参数,因此在进行测井前,必须深入了解地质背景和目标,以确定最适合的测井工具和参数[1]。
例如,如果关注地下水分布,电阻率测井和中子测井可能是合适的选择;如果进行岩石力学参数估算,声波测井和密度测井可能更合适。
2.2勘察数据处理分析获得测井数据后,对数据进行处理和分析是获取有价值信息的关键步骤。
数据处理可以包括校正、滤波和去噪等,以确保数据的准确性和可靠性。
随后,数据分析需要应用适当的数学和地质方法,以从测井曲线中提取有关地下特征的信息[2]。
地球物理测井技术在煤矿岩体工程勘察中的应用
地球物理测井技术在煤矿岩体工程勘察中的应用在煤矿岩体工程勘察中,地球物理测井技术可以具有广泛的应用,地球物理测井技术包含很多测井技术,其中,较为常用的声波测井技术,本文首先介绍了地球物理测井技术与声波测井技术,然后探讨了地球物理测井技术在煤矿岩体工程勘察中的应用,勘察工程的不同情况,需要不同的地球物理测井技术,并探讨了在使用测井技术过程中需要注意的问题,最后本文介绍了一个地球物理测井技术在煤矿岩体工程勘察中的应用实例。
标签:地球物理测井技术;煤矿岩体工程勘测;应用近年来,在隧道工程、土木工程、水资源勘测以及煤矿岩体工程勘测等领域中,地球物理测井技术应用较为广泛。
尤其是在煤矿岩体工程勘测领域,一些国家勘察技术标准中规定,将测井技术作为衡量煤层是否优质或者合格的标准。
此外,地球物理测井技术还可以用来计算煤层底板的坐标,测量矿井温度场变化情况,确定煤层稳定可靠性以及定位煤矿井中出现漏水等安全隐患问题发生的地点等。
地球物理测井技术在我国的使用时间较早,但是勘察深度相对较浅,主要用于勘察地下是否有煤。
而事实上,地球物理测井技术在煤矿岩体工程勘测中还有很多其他应用,这是我们应该进一步探索谈论应用的方向。
本文主要结合应用理論以及实例探讨地球物理测井技术在煤矿岩体工程勘察中的应用。
1 地球物理测井技术与声波测井技术在实际应用中中,经常使用到的地球物理测井技术主要有:地层产状测井技术、核磁共振测井技术、磁定位测井技术、深幅测井技术、全波列测井技术伽马测井技术、中子测井技术、电极测井技术、测温测井技术、电阻法测井技术、密度测井技术以及声波测井技术等。
其中,声波测井技术(包括超声成像测井技术、声波时差测井技术等)应用最为广泛。
声波测井技术主要是利用声波对岩体质量进行评价,在实际勘察中,煤矿岩体中的固体介质一般都是非均匀各向异性的,所以在对声波测井数据进行分析的时候,需要使用一定公式对数据进行修正。
在大多数情况下,声波速度与黏土含量是成反比(但在一些异常区域,也会存在声波速度与黏土含量成正比的情况)。
地球物理测井技术在煤田勘探中的应用 张友胜
地球物理测井技术在煤田勘探中的应用张友胜发表时间:2017-10-18T19:15:00.433Z 来源:《建筑科技》2017年9期作者:张友胜[导读] 为满足煤田地质勘探的需要,主要以自然电位测井、三侧向电阻率测井、自然伽马测井、密度测井和声波测井这几种常规的测井方法解决相关的地质问题。
安徽省煤田地质局第一勘探队安徽淮南 232052摘要:煤田地球物理测井是在钻孔内进行的地球物理测量工作,通过研究钻孔内各煤岩层的各项地球物理特征(如电性、磁性、放射性等)在测井曲线上的反映,进而划分煤、岩层界面并确定岩性;进行相关的岩性分析与计算;以及通过钻孔曲线综合对比了解勘探区地质构造等,在煤田地质勘探中起着相当重要的作用。
在煤田测井中,根据煤岩层的物性特征,采用了不同的测井方法、探测仪器和解释手段。
为满足煤田地质勘探的需要,主要以自然电位测井、三侧向电阻率测井、自然伽马测井、密度测井和声波测井这几种常规的测井方法解决相关的地质问题。
关键词:地球物理;测井技术;煤田勘探;应用导言:20世纪70年代之后,煤炭作为地球中的重要能源引发世界各国的重视,在我国,煤炭被封为今后社会发展中最丰富、最可靠的能源。
同时石油测井技术也在不断的完善,煤田测井以此作为借鉴,得到快速发展。
目前煤田测井技术的测井仪器逐步刻度化、组合化、便捷化,这为煤田地质勘测过程提供便利。
采用的数字化技术和电子计算机技术在测井资料的应用方面特点明显。
现在,地球物理测井在煤田地质勘探中得到更多的应用。
1煤田普查与预测1.1鉴定沉积环境聚煤盆地的古地理沉积环境不仅决定了含煤岩系的岩性组合、岩相的类型及其变化规律,而且也决定了煤层发育的一般地段和富集地段的位置。
因此,研究沉积环境对于开展战略性的煤田普查和预测具有重要的意义。
1.2划分岩性确定煤层的深度和厚度在常规测井的工作中必须要将每个含煤岩系具备的岩性分类出来、测量出煤层的高度值和深度值,在一般测井中每次测井任务都必须完成以上两点,在煤田测井工作中占据重要位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅析地球物理测井在煤田地质勘探中的
应用
摘要:我国的煤炭资源在世界位居前列,并且煤炭是我国主要的消耗能源,因此煤田地质勘探对我国能源开采的极其重要。
地球物理测井简称测井,是通过在钻孔中提拉探管来测量地下岩层的导电特性、声学特性、放射性等物理参数,从而达到识别地下岩层的目的。
本文主要简单地介绍几种地球物理测井方法及其在煤田地质勘探中的应用。
关键词:地球物理测井;测井方法;煤田勘探
1 引言
地球物理测井技术经过长达几十年的发展,形成了以核、声、电三种测井系列为主的诸多测井方法,在煤田地质勘探中通过利用这些技术方法,我们可以确定煤层的埋深、厚度及结构;划分地层岩性剖面,推算解释地层时代;确定地下断层性质、层位及断距;测算地层地温梯度;计算地层孔隙度,地层含水饱和度及含水层位置;测量钻孔的顶角和方位角等。
2 测井技术方法介绍
2.1自然伽马测井
自然伽马测井是煤田地质勘探测井中最常用的测井方法,它主要通过探管测量岩层的天然伽马射线强度。
在沉积岩地层中,因为放射性元素主要存在于黏土矿物中,因此地层泥质含量越多,其放射性越强。
通过这种规律,我们就可利用自然伽马测井来划分钻孔的岩性剖面、确定砂泥岩沉积地层中的泥质含量以及确定地层的渗透性。
通过自然伽马测井,我们也可以根据地层放射性来勘探地层中的其他具有放射性的矿产(如钾盐、钍、铀等)。
2.2密度测井
自然伽马测井是测量岩石中的放射性元素发射的伽马射线强度,是被动的测量方式。
而密度测井是采用主动测量的方式:通过探管携带的人工放射源在地下产生射线,测量射线在与地下岩石经过相互作用后的射线强度,进而计算出地下岩层的体积密度,达到识别地下岩性的目的。
由于煤的密度与其他岩石的密度有着十分明显的差异,所以密度测井能让我们简单快速的识别到煤层,确定其埋藏深度及其厚度。
2.3电阻率测井
电阻率测井是以地下岩层的导电性(电阻率或电导率)为基础,在钻孔中通过电极系来测量地层电阻率的一种方法。
通常所用的电阻率测井系列是:侧向电阻率测井、双侧向电阻率测井和微侧向电阻率测井。
电阻率测井主要用来划分地层岩性、识别裂缝和计算地层的含水饱和度等。
2.4井径测井
井径测井,顾名思义,就是通过仪器测量钻孔的孔径,直观的显示钻孔的结构变化。
虽然井径测井在常规煤田测井中很少使用,但在煤层气测井中,井径测井是我们必测的曲线之一。
在测井过程中,井径的变化会对我们测井曲线产生一定的影响,例如由于井径的扩大,密度测井曲线会出现假异常反应,因此有些经验不足的测井工作者会将此类异常反应判为煤层反应,对煤层的对比工作带来一定的干扰,因此我们在解释煤层的时候一定要考虑井径,这样解释出来的结果才准确可靠。
3 地球物理测井在煤田地质勘探中的应用
3.1划分岩性以及进行煤岩层对比
测井在煤田地质勘探中最基本的任务就是划分钻孔的岩性剖面,识别出地下煤层的深度和厚度。
同一勘探区域内,其地下岩层的发育一般较为稳定,相同层位的岩层其物理特性应该是相同的,所以反应在测井曲线上,就是曲线的数值、形态特征应该有一定的相似性,通过对测井曲线的形态特征进行对比,我们可以确认地下煤岩层的分布特征、识别地下的断层及其性质。
3.2鉴定沉积环境
煤的形成发育与其沉积环境有直接关系,在不同的沉积环境中其水动力条件
不一样,因此在不同沉积环境中所形成的砂岩层或沉积层序在岩石粒度、分选性
和泥质含量等方面有不同的特征,测井曲线对钻孔剖面中的这些不同的特征有不
同的响应,因此测井曲线的响应特征就可以推断出沉积环境方面的信息。
例如,
粗粒沉积物是在高能环境(水流作用强)中沉积的,其视电阻率一般为高值,自
然伽马能谱值为低值;细粒沉积物是在低能环境(水流作用弱)中沉积的,其视
电阻率一般为低值,自然伽马能谱值为高值,因此可以根据视电阻率和自然伽马
的幅值高低来推断沉积环境。
3.3工程测井应用
井斜测井在煤矿勘探中是必不可少的一项测井任务,其他测井划出的煤层厚
度都只是一个伪厚,我们还必须结合钻孔井斜、地层倾角对厚度进行校正才能精
准计算出煤层真厚;此外一个勘探区还必须要有钻孔进行井温测井,通过井温测
井计算出勘探区的地温梯度,确定地下是否有热害区域;对于有涌水的钻孔,还
要进行水文测井,以此来确定地下涌水的层位以及计算出水量。
可见井温测井和
水文测井对后期煤矿安全生产有相当重要的意义。
4 结束语
随着我国科学技术的不断发展,地球物理测井技术也在不断的进步和
完善,在煤田地质勘探中的作用越来越大,到现已经是一种非常重要的勘探手段。
测井工作者也应当对不同的测井技术在实践中加强学习,以便用地球物理测井技
术为煤田地质勘探解决更多的问题。
参考文献:
[1]黄作华,叶庆生.煤田测井综合解释[J].西安矿业学院,2011.应用科技
[2]苏淑荣.自然伽马曲线对煤层的反应[J].煤矿现代化,2000,(04):23-25。