abaqus有限元分析(齿轮轴)

合集下载

采用ABAQUS进行齿轮接触应力分析

采用ABAQUS进行齿轮接触应力分析

采用ABAQUS进行齿轮接触应力分析采用ABAQUS进行齿轮接触应力分析 1 接触理论介绍及其在航空领域中的应用接触问题是土木、建筑、水利工程、石油化工、机械工程等领域中普遍存在的力学问题。

不管在接触边界之间是否有间隙存在,接触作用的出现对结构受载之后的接触状态和应力分布都有直接的影响,一方面通过接触可以提高整个结构的承载力和刚度或者可以起到减震作用;而另一方面也正是因为由于接触的存在,伴随着局部高应力,很容易使材料屈服或发生裂缝,如果再受到循环载荷的影响,还可能产生疲劳失效。

所以了解结构的接触状态和应力状态,对结构设计、施工及其补强措施,都有重要的意义。

两个物体在接触面上的相互作用是复杂的高度非线性力学现象,也是发生损伤失效和破坏的主要原因。

接触问题存在两个较大的难点:其一,在用户求解问题之前,不知道接触区域;其二,大多数的接触问题需要计算摩擦,可供挑选的几种摩擦定律和模型都是非线性的,使问题的收敛变得困难。

在飞机结构中,缝翼的运动是通过相互啮合的齿轮的旋转带动的,发动机带动齿轮的旋转是缝翼机构运动的动力来源。

齿轮是机械中广泛应用的传动零件之一,它具有功率范围大,传动效率高、传动比准确、使用寿命长等特点。

但从零件的失效情况来看,齿轮也是最容易出现故障的零件之一。

据统计,在各种机械故障中,齿轮失效就占总数的60%以上,其中齿面损坏又是齿轮失效的主要原因之一。

传动齿轮复杂的应力分布情况和变形机理又是造成齿轮设计困难的主要原因。

为此,人们对齿面接触及其应力分布进行了大量的研究。

有限元理论和各种有限元分析软件的出现,让普通设计人员无需对齿轮受力作大量的计算和研究就可以基本掌握齿轮的受力和变形情况,并可利用有限元软件进行结果分析,找出设计中的薄弱环节,进而达到对齿轮进行改进设计的目的。

2 采用ABAQUS进行齿轮接触分析的合理性齿轮结构对缝翼的运动起着决定性的作用,如果齿轮的接触不能满足强度要求,缝翼机构的运动将会受到严重影响。

半轴齿轮的ABAQUS有限元模拟实验

半轴齿轮的ABAQUS有限元模拟实验

Vol. 33,No. 1Mar. 2021第33卷第1期2021年3月河南工程学院学报(自然科学版)JOURNAL OF HENAN UNIVERSITY OF ENGINEERING 半轴齿轮的ABAQUS 有限元模拟实验徐滨(合肥职业技术学院机电工程学院,安徽合肥238000 )摘要:车桥半轴齿轮是差速器的重要组成部分,在差速器工作中扮演着十分重要的角色。

针对断裂的半轴齿轮进行断 口形貌、成分及硬度分析,并结合有限元模拟分析齿轮失效的原因。

结果表明:齿轮渗碳层厚度约0.8 mm,渗碳层显微组织主 要为硬度较高的针状马氏体和部分残留奥氏体,硬度达785. 1 N/mm 2 ,表面硬化处理与渗碳处理基本符合工况要求。

通过 ABAQUS 模拟发现半轴齿轮最易断裂处位于齿根最靠近边角的部位,与实际工况吻合。

关键词:半轴齿轮;模拟分析;失效分析;ABAQUS中图分类号:TB115 文献标志码:A 文章编号= 1674 - 330X (2021 )01 -0059 - 03ABAQUS finite element simulation analysis of half shaft gearXU Bin(School of Mechanical and Electrical Engineering , Hefei Polytechnic University, Hefei 238000, China )Abstract : Axle gears are an important part of the differential mechanism , and play a very important role in the work of the differ ­ential mechanism. In this paper, the morphology analysis , composition analysis and hardness analysis of the fractured half-shaft gear are earned out, and the cause of the gear failure is analyzed in conjunction with the finite element simulation analysis. The results show that the thickness of the carburized layer of the gear is about 0. 8 mm. The microstmcture of the carburized layer is mainly needle- shaped martensite with higher hardness and part of retained austenite. The hardness reaches 785. 1 N/mm 2. The surface hardening treatment and carburization treatment are basically meet the requirements of working conditions. Through ABAQUS simulation , it is f ()uncl that the most easily broken part of the half-shaft gear is located at the lowermost comer of the tooth root , which is consistent with the actual working condition where the fracture occurs.Keywords :half-shaft gear ; simulation analysis ; failure analysis ; ABAQUS差速器的精度和可靠性是国内研究的难点。

基于abaqus的齿轮模态分析

基于abaqus的齿轮模态分析

基于ABAQUS 的直齿圆柱齿轮模态分析余西伟(上海大学 机电工程与自动化学院,上海 200072)摘要:齿轮是最常用的零部件之一,起到了传递扭矩的作用。

为了研究齿轮固有频率和振型的影响因素,改善齿轮的动态特性,本文运用SolidWorks 三维建模软件建立齿轮建模,并运用ABAQUS 和振动分析理论对模型进行模态分析,用Lanczos 算法提取固有频率,得到齿轮的模态和振型,为优化齿轮的结构设计提供支持。

关键词:模态分析;ABAQUS;固有频率;振型Modal Analysis of Spur Gear Based on ABAQUS(School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China)Abstract: T he gear is one of the most common parts, transferring the torque effect. In order to research the factors affecting the gear’s natural frequency and vibration mode and improving the dynamic characteristics.The gear model established by 3D model software SolidWorks was carried on modal analysis by the software ABAQUS and the vibration analysis theory. The modal andvibration model was extracted by using Lanczos algorithm ,providing support for the optimization design of gear.Key words: modal analysis; ABAQUS; natural frequency; vibration mode0引言齿轮是依靠齿的啮合传递扭矩的轮状机械零件。

Abaqus 齿轮力和应力计算

Abaqus 齿轮力和应力计算

Ken Youssefi
Mechanical Engineering Dept.
14
Surface Strength Analysis
The basic surface deterioration Scoring
If the surface asperity welding and tearing cause a transfer of metal from one surface to the other, the resulting surface damage is called scoring. If the local welding of asperities becomes so extensive that the surfaces no longer slide on each other, the resulting failure is called seizure. Initial scoring on 4340 steel helical gear Moderate scoring on a 3310 steel spur gear.
Wt
F
Substituting for x and introducing p (circular pitch),
The form factor y is called Lewis form factor. Substituting P = / p and Y = y
Lewis’ equation, where
Ken Youssefi Mechanical Engineering Dept.
6
Modification of Lewis’ Equation
Assumptions made in deriving Lewis’ equation

基于Abaqus的水泵轴承有限元分析

基于Abaqus的水泵轴承有限元分析

基于Abaqus的水泵轴承有限元分析徐冰晶(富奥汽车零部件股份有限公司 吉林长春130033)摘要:使用Abaqus分析软件模拟水泵的实际工作状态,通过计算得知轴承失效是导致水泵失效的主要原因。

提出更换轴承,提高产品性能。

关键词:Abaqus、轴承、有限元分析水泵在使用过程中出现水泵漏水及轴连轴承松旷等失效形式。

通过应用Abaqus分析软件模拟水泵的实际工作状态,模拟分析轴承和水封的变形。

找到水泵失效的主要因素并加以改进。

1.计算单位及材料参数计算单位:长度mm,力N,应力Mpa水泵壳体材料为ZL112,水封材料为钢,皮带轮材料为SPCC,轴承材料为GCr15,具体材料参数见表1。

表1 材料参数杨氏模E(MPa)泊松比ν屈服极限(MPa)壳体0.73e50.33274皮带轮 2.1e50.3215水封 2.1e50.3215轴承 2.08e50.318142.有限元模型水泵使用轴承为双列滚珠轴承,将水封简化为一个整体。

壳体采用四面体划分,皮带轮、水封、轴承均采用六面体划分。

按照水泵实际工作状态施加约束和载荷,利用Abaqus/Standard进行有限元分析。

图1 有限元分析模型 图2 轴承内部结构3.分析结果图3 水封受力及变形情况图4 轴承内圈受力及变形情况图5 轴承外圈受力及变形情况图6 轴承滚珠受力及变形情况表2 各零件受力及变形情况受力变形最大应力(MPa )屈服极限(MPa )最大变形量(μm )水封58.99215 2.666轴承内圈298.2181429.19轴承外圈138.21814 3.941轴承滚珠236318142707通过计算可知,在水泵使用双列滚珠轴承的时候,轴承滚珠局部所受最大应力为2363MPa ,远远超过了GCr15的屈服极限1814MPa ,产生塑性变形(最大变形量为2.707mm),使其不能正常运转,水泵失效。

于是对轴承提出改进,将其换成球柱混合轴承,具体结构见图7。

基于ABAQUS的轮轴配合的有限元分析

基于ABAQUS的轮轴配合的有限元分析

基于ABAQUS的轮轴配合的有限元分析作者:康东李越杨永伟范丽来源:《河南科技》2019年第01期摘要:本文基于ABAQUS对轮轴配合进行的有限元分析,分析了过盈量、摩擦系数、几何误差等对接触应力的影响。

结果表明:轮轴压装后接触应力沿轴向分布的总体趋势为中间低,两端高,高应力区的位置出现在轴毂配合面边缘附近,并有明显的应力集中现象;过盈量是造成轮对压装合格与否的主要原因。

关键词:过盈量;有限元;ABAQUS;接触应力中图分类号:TH131.7 文献标识码:A 文章编号:1003-5168(2019)01-0055-04Research on Axle Assembly Based on Finite Element Software ABAQUSKANG Dong LI Yue YANG Yongwei FAN Li(1. Chengdu Tongchuang Zhongyi Technology Limited Company,Chengdu Sichuan 610000;2.Sichuan Coal Industry Group Guangwang Company,Guangyuan Sichuan 628000)Abstract: In this paper, the finite element analysis of wheel-axle fit based on ABAQUS wa carried out, and the effects of interference, friction coefficient and geometric error on contact stress were analyzed. The results show that the overall trend of contact stress distribution along the axis is low in the middle and high at both ends. The location of the high stress zone appears near the edge of the hub mating surface, and there is obvious stress concentration phenomenon. The interference is the main reason for the qualifications of the wheelset pressing.Keywords: overflow fit;finite element;ABAQUS;contact stress在礦车轮对的装配过程中,目前被广泛所采用的方法是过盈连接,利用轮轴间的过盈量产生径向接触压力,在接触面会产生一个摩擦力,其可以改变扭矩和轴向力。

基于ABAQUS的轴承-齿轮系统模态分析

基于ABAQUS的轴承-齿轮系统模态分析

基于ABAQUS的轴承-齿轮系统模态分析摘要建立轴承-齿轮系统的有限元模型。

齿轮啮合等效为弹簧-阻尼系统,并研究轴承和齿轮啮合的等效平均刚度和阻尼。

在ABAQUS软件中计算了轴承-齿轮系统的模态,最终为有限元分析提供一种新的思路。

关键词有限元法;ABAQUS;模态分析;轴承齿轮系统ABAQUS为用户提供了广泛的功能,且使用起来又非常简单。

大量的复杂问题可以通过选项块的不同组合很容易的模拟出来。

例如,对于复杂多构件问题的模拟是通过把定义每一构件的几何尺寸的选项块与相应的材料性质选项块结合起来。

在大部分模拟中,甚至高度非线性问题,用户只需提供一些工程数据,像结构的几何形状、材料性质、边界条件及载荷工况。

在一个非线性分析中,ABAQUS 能自动选择相应载荷增量和收敛限度。

他不仅能够选择合适参数,而且能连续调节参数以保证在分析过程中有效地得到精确解。

用户通过准确的定义参数就能很好的控制数值计算结果。

由于轴承-齿轮系统的每一级传动均是通过二级齿轮减速实现,是典型的齿轮系统。

在齿轮系统中齿轮副啮合效应、齿侧间隙、轴的弹性、轴承径向刚度和轴承径向间隙等因素相互耦合并影响了系统的动态特性,设计过程中要综合考虑这些因素,孤立地研究某一因素,都不能从整体上对系统进行把握。

通过该有限元的试验方法,设计人员可以综合考虑影响齿轮系统动态特性的各种因素,在产品的设计阶段就对产品的性能和存在的问题一目了然,从而为产品的改进设计提供了有效的技术途径,并且大大减少了物理样机试制的时间和研制经费的投入,提高了设计效率。

1理论依据本文中对轴承-齿轮系统的分析,主要是在非线性范围内进行,所以考虑采用Abaqus作为求解器。

Abaqus不仅功能强大,而且具有很高的软件兼容性,能为前处理完毕之后计算工作的提交带来诸多方便,此外,其求解结果经过简单转换就能被Hypermesh所读取,能为整个工作带来很大的便利。

2轴承-齿轮系统有限元模型建立该有限元模型以六面体单元、四边形壳单元为主,还有少部分的连接单元、弹簧阻尼单元、刚性单元。

abaqus有限元分析(齿轮轴)

abaqus有限元分析(齿轮轴)

Abaqus分析报告(齿轮轴)名称:Abaqus齿轮轴姓名:班级:学号:指导教师:一、简介所分析齿轮轴来自一种齿轮泵,通过用abaqus软件对齿轮轴进行有限元分析和优化。

齿轮轴装配结构图如图1,分析图1中较长的齿轮轴。

图1.齿轮轴装配结构图二、模型建立与分析通过part、property、Assembly、step、Load、Mesh、Job等步骤建立齿轮轴模型,并对其进行分析。

1.part针对该齿轮轴,拟定使用可变型的3D实体单元,挤压成型方式。

2.材料属性材料为钢材,弹性模量210Gpa,泊松比0.3。

3.截面属性截面类型定义为solid,homogeneous。

4.组装组装时选择dependent方式。

5.建立分析步本例用通用分析中的静态通用分析(Static,General)。

6.施加边界条件与载荷对于齿轮轴,因为采用静力学分析,考虑到前端盖、轴套约束,而且根据理论,对受力部分和轴径突变的部分进行重点分析。

边界条件:分别在三个轴径突变处采用固定约束,如图2。

载荷:在Abaqus中约束类型为pressure,载荷类型为均布载荷,分别施加到齿轮接触面和键槽面,根据实际平衡情况,两力所产生的绕轴线的力矩方向相反,大小按比例分配。

均布载荷比计算:矩形键槽数据:长度:8mm、宽度:5mm、高度:3mm、键槽所在轴半径:7mm 键槽压力面积:S1 = 8x3=24mm2 平均受力半径:R1=6.5mm齿轮数据:=齿轮分度圆半径:R2 =14.7mm、压力角:20°、单个齿轮受力面积:S2 ≈72mm2通过理论计算分析,S1xR1xP1=S2xR2xP2,其中,P1为键槽均布载荷幅值,P2为齿轮均布载荷幅值。

键槽均布载荷幅值和齿轮均布载荷幅值之比约为P1:P2≈6.3 。

取键槽均布载荷幅值为1260,齿轮载荷幅值为200.由于键槽不是平面,所以需要切割,再施加均布载荷。

图3 键槽载荷施加比较保守考虑,此处齿轮载荷只施加到一个齿轮上。

采用ABAQUS进行齿轮接触应力分析

采用ABAQUS进行齿轮接触应力分析

采用ABAQUS进行齿轮接触应力分析采用ABAQUS进行齿轮接触应力分析 1 接触理论介绍及其在航空领域中的应用接触问题是土木、建筑、水利工程、石油化工、机械工程等领域中普遍存在的力学问题。

不管在接触边界之间是否有间隙存在,接触作用的出现对结构受载之后的接触状态和应力分布都有直接的影响,一方面通过接触可以提高整个结构的承载力和刚度或者可以起到减震作用;而另一方面也正是因为由于接触的存在,伴随着局部高应力,很容易使材料屈服或发生裂缝,如果再受到循环载荷的影响,还可能产生疲劳失效。

所以了解结构的接触状态和应力状态,对结构设计、施工及其补强措施,都有重要的意义。

两个物体在接触面上的相互作用是复杂的高度非线性力学现象,也是发生损伤失效和破坏的主要原因。

接触问题存在两个较大的难点:其一,在用户求解问题之前,不知道接触区域;其二,大多数的接触问题需要计算摩擦,可供挑选的几种摩擦定律和模型都是非线性的,使问题的收敛变得困难。

在飞机结构中,缝翼的运动是通过相互啮合的齿轮的旋转带动的,发动机带动齿轮的旋转是缝翼机构运动的动力来源。

齿轮是机械中广泛应用的传动零件之一,它具有功率范围大,传动效率高、传动比准确、使用寿命长等特点。

但从零件的失效情况来看,齿轮也是最容易出现故障的零件之一。

据统计,在各种机械故障中,齿轮失效就占总数的60%以上,其中齿面损坏又是齿轮失效的主要原因之一。

传动齿轮复杂的应力分布情况和变形机理又是造成齿轮设计困难的主要原因。

为此,人们对齿面接触及其应力分布进行了大量的研究。

有限元理论和各种有限元分析软件的出现,让普通设计人员无需对齿轮受力作大量的计算和研究就可以基本掌握齿轮的受力和变形情况,并可利用有限元软件进行结果分析,找出设计中的薄弱环节,进而达到对齿轮进行改进设计的目的。

2 采用ABAQUS进行齿轮接触分析的合理性齿轮结构对缝翼的运动起着决定性的作用,如果齿轮的接触不能满足强度要求,缝翼机构的运动将会受到严重影响。

abaqus有限元分析过程

abaqus有限元分析过程

一、有限单元法的基本原理有限单元法(The Finite Element Method)简称有限元(FEM),它是利用电子计算机进行的一种数值分析方法。

它在工程技术领域中的应用十分广泛,几乎所有的弹塑性结构静力学和动力学问题都可用它求得满意的数值结果。

有限元方法的基本思路是:化整为零,积零为整。

即应用有限元法求解任意连续体时,应把连续的求解区域分割成有限个单元,并在每个单元上指定有限个结点,假设一个简单的函数(称插值函数)近似地表示其位移分布规律,再利用弹塑性理论中的变分原理或其他方法,建立单元结点的力和位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程组,从而求解结点的位移分量. 进而利用插值函数确定单元集合体上的场函数。

由位移求出应变, 由应变求出应力二、ABAQUS有限元分析过程有限元分析过程可以分为以下几个阶段1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型――有限元模型,从而为有限元数值计算提供必要的输入数据。

有限元建模的中心任务是结构离散,即划分网格。

但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。

2.计算阶段:计算阶段的任务是完成有限元方法有关的数值计算。

由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。

下列的功能模块在ABAQUS/CAE操作整个过程中常常见到,这个表简明地描述了建立模型过程中要调用的每个功能模块。

“Part(部件)用户在Part模块里生成单个部件,可以直接在ABAQUS/CAE环境下用图形工具生成部件的几何形状,也可以从其它的图形软件输入部件。

基于ABAQUS的减速器齿轮的模态分析

基于ABAQUS的减速器齿轮的模态分析

基于ABAQUS的减速器齿轮的模态分析
为了研究齿轮固有频率的影响因素,改善齿轮的动态特性,利用有限元软件ABAQUS和振动理论对齿轮进行模态分析,结果表明:第1~6阶,齿轮的振型主要是弯曲振动和扭转振动,在同阶的情况下,弹性模量越大,齿轮的固有频率越大,腹板的倒角越大,齿轮的固有频率越大,为齿轮动态优化设计提供可靠的参考依据。

减速器是原动机和工作机之间的一个独立闭式传动装置,用来降低转速和传递转矩,在工作过程中,减速器中的齿轮可能会由于机械振动而发出噪音,这样可能会降低齿轮的啮合精度和传递效率,从而影响减速器的使用寿命。

模态分析可以确定零件的固有频率和振型,使设计师在设计零件的时候,尽量使系统的工作频率和固有频率偏差较大,以防止共振,从而减少振动和噪音。

模态分析的最终目标是识别系统的模态参数,为系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据,是结构动态设计及故障诊断的重要方法。

本文利用有限元软件ABAQUS,对减速器中的齿轮进行模态分析,来确定不同阶数下齿轮的固有频率和振型,通过选择不同的材料以及齿轮的腹板倒角,来分析齿轮固有频率的变化趋势,从而为齿轮大的结构优化提供参考依据,避免齿轮在工作时候发生共振,从而减少噪音。

一、有限元模态分析理论
对于一般的多自由度结构系统而言,运动都可以由其自由振动的模态来合成。

有限元的模态分析就是建立模态模型进行数值分析的过程。

由于结构的阻尼对其模态频率及振型的影响很小,所以模态分析的实质就是求解具有限个自由度的无阻尼及无载荷状态下得运动方程的模态适量。

系统的无阻尼多自由。

基于ABAQUS的轴承—齿轮系统静力学分析

基于ABAQUS的轴承—齿轮系统静力学分析

基于ABAQUS的轴承—齿轮系统静力学分析摘要:文章利用ABAQUS建立了轴承—齿轮系统的静态有限元模型,通过该模型的应力分布云图和位移分布云图,提出了一些优化改进轴承—齿轮系统结构的方案和措施。

关键词:轴承—齿轮系统;ABAQUS;有限元法中图分类号:TN957.2 文献标识码:A 文章编号:1000-8136(2010)27-0013-02 现代战争对雷达的性能要求越来越高,轴承—齿轮系统作为雷达的关键基础构件对其性能有重要影响。

这就要求人们采用现代设计方法对雷达的关键基础构件进行设计,通过有限元方法,设计人员可以综合考虑影响齿轮系统动态特性的各种因素,在产品的设计阶段就对产品的性能和存在的问题一目了然,从而为产品改进设计提供了有效的技术途径,并大大减少了物理样机试制的时间和研制经费的投入,提高了设计效率。

1研究方法及理论依据轴承—齿轮系统作为天线运动的载体,以底座为基础,包括横滚、俯仰和方位三个互相垂直的旋转运动,工作原理见图1。

横滚转动为第一级运动,俯仰转动为第二级运动,方位转动为第三级运动。

天线安装在方位部分的天线托架上,随着方位部分一起转动。

方位部分的运动是主要运动,带动天线以一定的转速进行扫描,横滚部分和俯仰部分的运动只用来调整扫描的区域范围。

系统通过对电机进行合理的控制,使轴承—齿轮系统的三个轴以一定的转速转动或转到某个角度。

在3个轴的运动合成下,天线可完成对一定区域的扫描。

图1轴承—齿轮系统工作原理图轴承—齿轮系统的每一级运动都由一个独立的伺服电机驱动。

伺服电机经过两级齿轮减速,最后输出到轴承—齿轮系统的每一个轴上。

在横滚的传动中,电机和减速部分固定不动,只有横滚转体转动;而在俯仰和方位的传动中,伺服电机和减速部分跟着转体一起绕轴转动。

2轴承—齿轮系统有限元模型建立该有限元模型以六面体单元、四边形壳单元为主,还有少部分的连接单元、弹簧阻尼单元、刚性单元。

利用Hypermesh统计该模型有111 850个单元,132 053个节点。

基于ABAQUS有限元准静态的锥齿轮啮合分析及验证

基于ABAQUS有限元准静态的锥齿轮啮合分析及验证

要分 成多 步进行 。这里需要 建立3个 步骤 :
1网 格划 分与 边界加 载
第 一步 :将行 星齿轮 绕 自身 轴线旋 转一 个微d',A9
由于 轮 齿接 触 区域 很小 ,需要 对接 触齿 面 的有 角 度 ,半 轴齿保 持不 动 ,建立起 初始 的接触 ;但 因为
限元 网 格加 密 。为 了保 证计 算 精度 和计 算 效率 ,对 转动 角度 不精确 ,2个齿轮 没有在正 确的位 置啮合 。
根据 主动 齿 与从 动齿 在 啮合 过程 中 最大 主应 力
的应 力云 图可 以 清晰 地看 到 ,在 一对 轮齿 啮 合过 程
中 ,齿轮 轮齿 啮 合状 态在 单齿 对 啮合 和双 齿叉寸啮 合
间交 替变 化 。主 动齿 轮的 轮齿 在 从啮 入到 啮 出过 程
中 ,齿根 应力 随 着啮 合点 向 顶 移动 而逐 渐增 大 , 2200 MPanEl1 800 MPa,非常接 近材料热 处理 以后
应 力值 较 低 ,而 在单 齿对 啮合 状 态下 应力 值 明显 升 力 。因此 ,在重 新设 计优 化 以后 ,再 一次 进行 仿 真
高 .2种状 态转换 时应 力值发生 明显 的突变 。这是 因 与 试 验 。从对 比 结果 可 以看 出 ,啮合 区域 变 得均 匀
为 。当一对 轮 齿啮 合后 进 入双 齿 啮合 状态 时 ,由 于 且 平衡 .主 动 齿 与从 动齿 齿根 所 受最 大应 力 分别约
从动 齿轮 啮 合 (见 圈 1); 又 考虑 到锥 齿轮 的 重合 位移 ,只 保留 沿轴 向的转动 自 由度 。由于本次 分析并
度小 于2,即只 有2个齿 同时 参与 啮合 ,这 里每 个齿 不 考虑齿 轮的冲 击 问题 ,因此在主 动齿 轮上施 加轴 向

ABAQUS有限元分析实例详解 3

ABAQUS有限元分析实例详解 3

弹性杆具有均匀的横断面,面积为A, 长度为L,承受轴向载荷,处于静力平衡 状态,U1、U2是结点1和2处的位移。
L
F1
1
2
F2
X
U1
U2
因此,单元具有两个自由度。
下步任务是找到一个方程把力与位移相关 起来。
F F1 F2 0
F 2 F1 (1)
在轴向方向,杆长度 变化为 L 。与位移相
体单元 六面体单元 CHEXA 五面体单元 CPENTA 四面体单元 CTETRA
约束元(刚体元 RBE2) 其它单元 质量元 CONM2
2、输入文件结构
执行控制(求解类型、允许时间、系统 诊断)
情况控制(输出请求、选择模型数据集)
数据:节点、单元(结构模型定义)、 几何和材料性质、载荷、约束(求解条 件参数)
2、单元 弹簧元(拉伸或扭转)CELAS1、CELAS2、 CELAS3、CELAS4
线单元 杆元 CROD CONROD 直梁元 CBAR CBEAM 曲梁元 CBEND
面单元 三或六节点的三角形板元 CTRIA3、CTRIA6
四或八节点四边形板元 CQUAD4、CQUAD8 四节点剪力板元 CSHEAR
U 1

F
2


Ka,
(Ka

Kb),KbU
2
F 3 0,Kb, Kb
U 3
既 {F}=[K]{U} [K]总刚度阵 {F}载荷向量 {U}位移向量 求解线性代数方程组得出{U}向量
4)求解的基本步骤(线性静力) 将结构离散为单元 由单元性质,几何和材料形成单元刚度矩阵 把单刚装配成总刚 将边界条件施加与约束模型 将载荷(力、弯矩、压力等)施加于分析模型 求解矩阵方程得位移 从位移结果计算应力和反力

abaqus 有限元分析(齿轮轴)

abaqus 有限元分析(齿轮轴)

Abaqus分析报告(齿轮轴)名称: Abaqus齿轮轴姓名:班级:学号:指导教师:一、简介所分析齿轮轴来自一种齿轮泵,通过用abaqus软件对齿轮轴进行有限元分析和优化。

齿轮轴装配结构图如图1,分析图1中较长的齿轮轴。

图1.齿轮轴装配结构图二、模型建立与分析通过part、property、Assembly、step、Load、Mesh、Job等步骤建立齿轮轴模型,并对其进行分析。

1.part针对该齿轮轴,拟定使用可变型的3D实体单元,挤压成型方式。

2.材料属性材料为钢材,弹性模量210Gpa,泊松比0.3。

3.截面属性截面类型定义为solid,homogeneous。

4.组装组装时选择dependent方式。

5.建立分析步本例用通用分析中的静态通用分析(Static,General)。

6.施加边界条件与载荷对于齿轮轴,因为采用静力学分析,考虑到前端盖、轴套约束,而且根据理论,对受力部分和轴径突变的部分进行重点分析。

边界条件:分别在三个轴径突变处采用固定约束,如图2。

载荷:在Abaqus中约束类型为pressure,载荷类型为均布载荷,分别施加到齿轮接触面和键槽面,根据实际平衡情况,两力所产生的绕轴线的力矩方向相反,大小按比例分配。

均布载荷比计算:矩形键槽数据:长度:8mm、宽度:5mm、高度:3mm、键槽所在轴半径:7mm键槽压力面积:S1 = 8x3=24mm2 平均受力半径:R1=6.5mm齿轮数据:=齿轮分度圆半径:R2 =14.7mm、压力角:20°、单个齿轮受力面积:S2 ≈72mm2通过理论计算分析,S1xR1xP1=S2xR2xP2,其中,P1为键槽均布载荷幅值,P2为齿轮均布载荷幅值。

键槽均布载荷幅值和齿轮均布载荷幅值之比约为P1:P2≈6.3 。

取键槽均布载荷幅值为1260,齿轮载荷幅值为200.由于键槽不是平面,所以需要切割,再施加均布载荷。

图3 键槽载荷施加比较保守考虑,此处齿轮载荷只施加到一个齿轮上。

采用ABAQUS进行齿轮接触应力分析

采用ABAQUS进行齿轮接触应力分析

采用ABAQU进行齿轮接触应力分析采用ABAQU ffi行齿轮接触应力分析1接触理论介绍及其在航空领域中的应用接触问题是土木、建筑、水利工程、石油化工、机械工程等领域中普遍存在的力学问题。

不管在接触边界之间是否有间隙存在,接触作用的出现对结构受载之后的接触状态和应力分布都有直接的影响,一方面通过接触可以提高整个结构的承载力和刚度或者可以起到减震作用; 而另一方面也正是因为由于接触的存在,伴随着局部高应力,很容易使材料屈服或发生裂缝,如果再受到循环载荷的影响,还可能产生疲劳失效。

所以了解结构的接触状态和应力状态,对结构设计、施工及其补强措施,都有重要的意义。

两个物体在接触面上的相互作用是复杂的高度非线性力学现象,也是发生损伤失效和破坏的主要原因。

接触问题存在两个较大的难点: 其一,在用户求解问题之前,不知道接触区域; 其二,大多数的接触问题需要计算摩擦,可供挑选的几种摩擦定律和模型都是非线性的,使问题的收敛变得困难。

在飞机结构中,缝翼的运动是通过相互啮合的齿轮的旋转带动的,发动机带动齿轮的旋转是缝翼机构运动的动力来源。

齿轮是机械中广泛应用的传动零件之一,它具有功率范围大,传动效率高、传动比准确、使用寿命长等特点。

但从零件的失效情况来看,齿轮也是最容易出现故障的零件之一。

据统计,在各种机械故障中,齿轮失效就占总数的60%以上,其中齿面损坏又是齿轮失效的主要原因之一。

传动齿轮复杂的应力分布情况和变形机理又是造成齿轮设计困难的主要原因。

为此,人们对齿面接触及其应力分布进行了大量的研究。

有限元理论和各种有限元分析软件的出现,让普通设计人员无需对齿轮受力作大量的计算和研究就可以基本掌握齿轮的受力和变形情况,并可利用有限元软件进行结果分析,找出设计中的薄弱环节,进而达到对齿轮进行改进设计的目的。

2采用ABAQU进行齿轮接触分析的合理性齿轮结构对缝翼的运动起着决定性的作用,如果齿轮的接触不能满足强度要求,缝翼机构的运动将会受到严重影响。

基于Abaqus的水泵轴承有限元分析

基于Abaqus的水泵轴承有限元分析

基于Abaqus的水泵轴承有限元分析徐冰晶(富奥汽车零部件股份有限公司 吉林长春130033)摘要:使用Abaqus分析软件模拟水泵的实际工作状态,通过计算得知轴承失效是导致水泵失效的主要原因。

提出更换轴承,提高产品性能。

关键词:Abaqus、轴承、有限元分析水泵在使用过程中出现水泵漏水及轴连轴承松旷等失效形式。

通过应用Abaqus分析软件模拟水泵的实际工作状态,模拟分析轴承和水封的变形。

找到水泵失效的主要因素并加以改进。

1.计算单位及材料参数计算单位:长度mm,力N,应力Mpa水泵壳体材料为ZL112,水封材料为钢,皮带轮材料为SPCC,轴承材料为GCr15,具体材料参数见表1。

表1 材料参数杨氏模E(MPa)泊松比ν屈服极限(MPa)壳体0.73e50.33274皮带轮 2.1e50.3215水封 2.1e50.3215轴承 2.08e50.318142.有限元模型水泵使用轴承为双列滚珠轴承,将水封简化为一个整体。

壳体采用四面体划分,皮带轮、水封、轴承均采用六面体划分。

按照水泵实际工作状态施加约束和载荷,利用Abaqus/Standard进行有限元分析。

图1 有限元分析模型 图2 轴承内部结构3.分析结果图3 水封受力及变形情况图4 轴承内圈受力及变形情况图5 轴承外圈受力及变形情况图6 轴承滚珠受力及变形情况表2 各零件受力及变形情况受力变形最大应力(MPa )屈服极限(MPa )最大变形量(μm )水封58.99215 2.666轴承内圈298.2181429.19轴承外圈138.21814 3.941轴承滚珠236318142707通过计算可知,在水泵使用双列滚珠轴承的时候,轴承滚珠局部所受最大应力为2363MPa ,远远超过了GCr15的屈服极限1814MPa ,产生塑性变形(最大变形量为2.707mm),使其不能正常运转,水泵失效。

于是对轴承提出改进,将其换成球柱混合轴承,具体结构见图7。

ABAQUS应用例子-有扭矩的曲轴有限元分析

ABAQUS应用例子-有扭矩的曲轴有限元分析

ABAQUS应用例子
-有扭矩的曲轴有限元分析1 在UG中输出曲轴的parasolid格式模型。

2 在ABAQUS中读入模型
在模型上添加定义好的材料属性
5 对装配体中的各Part划分网格
1) 将小的面合并,以利于网格的划分
2)设置网格密度-设置总体网格尺寸
设置某些局部区域网格密度(如关键部分的网格加密)
3)划分网格
6 添加力
1)定义轴段载荷分布函数
可在如下对话框中定义、修改和删除具体函数
2)定义轴颈的分布载荷
3)定义约束
4)创建工作,然后写Input文件
5)定义力矩
重新建立一个ABAQUS分析文件,读入上一步的生成的*.inp文件。

为曲轴定义新的柱坐标系,并使曲轴的轴向为z轴。

在曲轴加固定约束的另一侧外边缘的各个节点,添加和力矩相适应的切向力(如下图所示)。

6)求解
设置合适内存容量(不影响系统的情况下,可尽量设置大些),求解进程等选项(一般双核CPU可采用两个进程)。

设置完求解选项后,点Submit,提交任务进行计算。

7)查看结果
在Visualization模块,打开含单元数据的结果文件。

设置查看项目
显示最终结果。

Abaqus螺栓有限元分析

Abaqus螺栓有限元分析

1.分析过程1.1.理论分析1.2.简化过程如果将Pro/E中的3D造型直接导入Abaqus中进行计算,则会出现裂纹缝隙无法修补,给后期的有限元分析过程造成不必要的麻烦,因此,在Abaqs中进行计算之前,对原来的零件模型进行一些简化和修整。

A.法兰部分不是分析研究的重点,因此将其简化掉;B.经计算,M24×3的螺纹的升角很小,在度,因此可以假设螺旋升角为0;C.忽略螺栓和螺母的圆角等细节;1.3.Abaqus中建模查阅机械设计手册,得到牙型如下图所示,在Abaqus中按照下图所示创建出3D模型,如图1-1所示。

同样的方式,我们建立螺母的3D模型nut,如图1-2所示。

图1-1图1-2建立材料属性并将其赋予模型。

在Abaqus的Property模块中,选择Material->Manager->Create,创建一个名为Bolt&Nut的新材料,首先设置其弹性系数。

在Mechanical->Elastic中设置其杨氏模量为193000Mpa,设置其泊松比为0.3,如图1-4所示。

建立截面。

点击Section->Manager->Creat,建立Solid,Homogeneous的各向同性的截面,选择材料为Bolt&Nut,如图1-5所示。

将截面属性赋予模型。

选择Assign->Section,选择Bolt模型,然后将刚刚建立的截面属性赋予它。

如图1-3所示。

同样,给螺母nut赋予截面属性。

图1-3图1-4图1-5然后,我们对建立的3D模型进行装配,在Abaqus中的Assembly模块中,我们同时调入两个模型,然后使用Constraint->Coaxial命令和Translate和Instance 命令对模型进行移动,最终的装配结果如图1-6所示。

图1-6第四步,对模型进行网格划分。

进入Abaqus中的Mesh模块,然后选择Bolt 零件,使用按边布种的方式对其进行布种,布种结果如图1-7所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Abaqus分析报告
(齿轮轴)
名称:Abaqus齿轮轴
姓名:
班级:
学号:
指导教师:
一、简介
所分析齿轮轴来自一种齿轮泵,通过用abaqus软件对齿轮轴进行有限元分析和优化。

齿轮轴装配结构图如图1,分析图1中较长的齿轮轴。

图1.齿轮轴装配结构图
二、模型建立与分析
通过part、property、Assembly、step、Load、Mesh、Job等步骤建立齿轮轴模型,并对其进行分析。

1.part
针对该齿轮轴,拟定使用可变型的3D实体单元,挤压成型方式。

2.材料属性
材料为钢材,弹性模量210Gpa,泊松比0.3。

3.截面属性
截面类型定义为solid,homogeneous。

4.组装
组装时选择dependent方式。

5.建立分析步
本例用通用分析中的静态通用分析(Static,General)。

6.施加边界条件与载荷
对于齿轮轴,因为采用静力学分析,考虑到前端盖、轴套约束,而且根据理论,对受力部分和轴径突变的部分进行重点分析。

边界条件:分别在三个轴径突变处采用固定约束,如图2。

载荷:在Abaqus中约束类型为pressure,载荷类型为均布载荷,分别施加到齿轮接触面和键槽面,根据实际平衡情况,两力所产生的绕轴线的力矩方向相反,大小按比例分配。

均布载荷比计算:
矩形键槽数据:
长度:8mm、宽度:5mm、高度:3mm、键槽所在轴半径:7mm 键槽压力面积:S1 = 8x3=24mm2 平均受力半径:R1=6.5mm
齿轮数据:=
齿轮分度圆半径:R2 =14.7mm、压力角:20°、
单个齿轮受力面积:S2 ≈72mm2
通过理论计算分析,S1xR1xP1=S2xR2xP2,其中,P1为键槽均布载荷幅值,P2为齿轮均布载荷幅值。

键槽均布载荷幅值和齿轮均布载荷幅值之比约为P1:P2≈6.3 。

取键槽均布载荷幅值为1260,齿轮载荷幅值为200.
由于键槽不是平面,所以需要切割,再施加均布载荷。

图3 键槽载荷施加
比较保守考虑,此处齿轮载荷只施加到一个齿轮上。

图4 齿轮载荷施加
图5.施加约束条件和载荷的齿轮轴模型
7.网格划分
采用六面体划分的网格如下图:
图6 六面体网格划分图
六面体划分网格部分细节图:
经过各种划分没能成功,转而采用四面体结构划分,如下图:
图7 四面体网格划分图
8.提交分析(iob)、结果(Visualization)
图8 应力分析图
图9 位移分析图
从应力分析图看出,在齿轮轴轴径突变的地方应力值大,与理论相符合,在键槽施加力的面应力值大,符合圣维南原理。

从位移分析图看出,在齿轮施加力的地方位移最大,因为轴径大。

部分细节形变图:
变形前变形后
从细节图中可以看出,轴在变形过程中还会产生弯曲变形,与受
力分析的弯矩相符合。

三、优化
通过上述分析可以看出,齿轮轴轴径突变地方的应力突变比较明显,采用边倒圆进行优化。

另外,齿轮位移明显的地方可以通过调整齿轮变位系数和压力角进行优化;在条件允许情况下,键槽受力处可以通过改变键槽的尺寸进行优化。

当然,还可以通过采用先进的材料、加工工艺等增强材料性能。

另一方面,在能满足条件情况下,可以通过减小尺寸来进行减重等优化,优先考虑非应力集中处。

下面以采用边倒圆进行优化为例分析,并对优化前和优化后的模型进行对比分析。

主要从优化前后的应力图与位移图对比分析。

优化前应力分析图
优化后应力分析图
优化前位移分析图
优化后位移分析图
从优化前后的应力分析图和位移分析图中,可以看出优化前,应力分布幅值为2.804x10^3,优化后应力分布幅值为2.228x10^3,而且应力幅值的分布也有所变化,应力幅值从优化前的齿轮轴轴径突变处转移到键槽处,说明优化效果明显,即采用边倒圆进行优化,可以显著减少齿轮轴轴径突变地方的应力。

另外,从优化前后的位移分析图
中,可以看出优化前,位移分布幅值为0.1162,优化后位移分布幅值,0.09492。

相关文档
最新文档