三角变换与解三角形
【高考数学热点小专题】三角大题 三角变换与解三角形
3.3三角大题三角变换与解三角形必备知识精要梳理1.三角函数恒等变换“四大策略”(1)常值代换:特别是“1”的代换,1=sin2θ+cos2θ=tan 45°等.(2)角的配凑:如α=(α+β)-β,2α=(α+β)+(α-β);α=12[(α+β)+(α-β)].(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次.(4)弦、切互化:一般是切化弦.2.解三角形的公式变形(1)正弦定理asinA =bsinB=csinC的一些变式:①a∶b∶c=sin A∶sin B∶sin C;②sinA=a2R ,sin B=b2R,sin C=c2R;③a=2R sin A,b=2R sin B,c=2R sin C.其中R是△ABC外接圆的半径.(2)余弦定理a2=b2+c2-2bc cos A的变形为cos A=b2+c2-a22bc.当b2+c2-a2>0(=0,<0)时,角A为锐角(直角,钝角).3.三个等价关系在△ABC中,a>b⇔sin A>sin B⇔A>B.关键能力学案突破热点一三角函数与三角变换的综合【例1】(2020北京海淀二模,17)已知函数f(x)=2cos2ω1x+sin ω2x.(1)求f(0)的值;(2)从①ω1=1,ω2=2;②ω1=1,ω2=1这两个条件中任选一个,作为题目的已知条件,求函数f(x)在[-π2,π6]上的最小值,并直接写出函数f(x)的一个周期.解题心得1.解决三角变换在三角函数图象与性质中的应用的基本思路是:通过变换把函数化为y=A sin(ωx+φ)的形式再研究其性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.2.三角变换的总体思路是化异为同,目的是通过消元减少未知量的个数.如把三角函数式中的异名、异角、异次化为同名、同角、同次,或把未知角用已知角表示,或把未知角通过三角变换化成已知角.【对点训练1】(2020北京东城一模,17)已知函数f(x)=a sin2x-π6-2cos 2x+π6(a>0),且满足.(1)求函数f(x)的解析式及最小正周期;(2)若关于x的方程f(x)=1在区间[0,m]上有两个不同解,求实数m的取值范围.从①f(x)的最大值为1,②f(x)的图象与直线y=-3的两个相邻交点的距离等于π,③f(x)的图象过点(π6,0)这三个条件中选择一个,补充在上面问题中并作答.热点二利用正弦定理、余弦定理解三角形【例2】(2020山东,17)在①ac=√3,②c sin A=3,③c=√3b这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且sin A=√3sinB,C=π,?6解题心得1.已知两边和一边的对角或已知两角和一边都能用正弦定理解三角形,正弦定理的形式多样,其中a=2R sin A,b=2R sin B,c=2R sin C(R为三角形外接圆的半径)能够实现边角互化.2.已知两边和它们的夹角或已知两边和一边的对角或已知三边都能直接运用余弦定理解三角形,在运用余弦定理时,要注意整体思想的运用.3.已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.,②a=2,③b cos A+a cos B=√3+1这【对点训练2】(2020山东菏泽一模,17)在①B=π3三个条件中任选一个,补充在下面问题中,并解决相应问题.已知在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,△ABC的面积为S,若4S=b2+c2-a2,b=√6且,求△ABC的面积S的大小.热点三三角函数与解三角形的综合【例3】(2020山东聊城二模,18)在①a cos B+b cos A=2c cos C,②2a sin A cos B+b sin 2A=√3a,③△ABC的面积为S,且4S=√3(a2+b2-c2),这三个条件中任意选择一个,填入下面的问题中,并求解.在锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,函数f(x)=2√3sin ωx cos ωx+2cos2ωx(ω>0)的最小正周期为π,c为f(x)在[0,π]上的最大值,且,求a-b2的取值范围.解题心得对于在三角形中求解有关三角函数的图象和性质的题目,时刻不要忘记对角的范围的限制,特别是求三角函数值的范围或最值时,先要把自变量的取值范围求出来,再利用三角函数的单调性或利用三角函数线确定函数值的范围.【对点训练3】(2020山东烟台模拟,17)已知函数f(x)=1-2√3sin x cos x-2cos2x+m在R上的最大值为3.(1)求m的值及函数f(x)的单调递增区间;(2)若在锐角三角形ABC中,角A,B,C的对边分别为a,b,c且f(A)=0,求b的取值范围.c热点四三角变换与解三角形的综合【例4】(2020天津,16)在△ABC中,角A,B,C所对的边分别为a,b,c.已知a=2√2,b=5,c=√13.(1)求角C的大小;(2)求sin A的值;(3)求sin(2A+π)的值.4解题心得在含有边角关系的等式中,利用正弦定理的变形a=2R sin A,b=2R sinB,c=2R sin C,R为三角形外接圆的半径,可直接将等式两边的边化为角;也能利用余弦定将角化为边.在三角形中利用三角变换求三角式的值时,要注理的变形如cos A=b2+c2-a22bc意角的范围的限制,还有隐含条件:A+B+C=π,使用这个隐含条件可以减少未知数的个数.【对点训练4】(2020全国Ⅰ,文18)△ABC的内角A,B,C的对边分别为a,b,c.已知B=150°.(1)若a=√3c,b=2√7,求△ABC的面积;(2)若sin A+√3sin C=√22,求C.热点五三角函数、三角变换与解三角形的综合【例5】(2020全国Ⅱ,理17)△ABC中,sin2A-sin2B-sin2C=sin B sin C.(1)求A;(2)若BC=3,求△ABC周长的最大值.解题心得关于三角函数、三角变换与解三角形的综合题的解题思路,一般是由正弦定理、余弦定理求出某个量作为下面问题的已知量,然后利用三角变换,将所求的量化为f(x)=A sin(ωx+φ)或f(x)=A cos(ωx+φ)的形式,最终求出结果.【对点训练5】(2020浙江,18)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,已知2b sin A-√3a=0.(1)求角B的大小;(2)求cos A+cos B+cos C的取值范围.核心素养微专题(三)核心素养在三角应用和三角综合题中的考查【例1】(多选)(2020山东济南三模,10)台球运动已有五六百年的历史,参与者用球杆在台上击球,如图,有一张长方形球台ABCD,AB=2AD,现从角落A沿角α的方向把球打出去,假设和光线一样,台球在球台上碰到障碍物后也遵从反射定律.若球经2次碰撞球台边框后恰好进入角落C的球袋中,则tan α的值为()A.16B.12C.1D.32核心素养分析本例考查考生多个核心素养,首先需要考生在读懂题意的基础上,通过“直观想象”得到两种不同的碰撞情况;然后利用物理学中光的反射定律,通过“数学抽象”得到关于角α所在的直角三角形;再通过“数学建模”将问题转化为三角函数的模型;最后通过“数学运算”得出答案.【例2】(2020山东淄博4月模拟,18)已知A,B分别在射线CM,CN(不含端点C)上运动,∠MCN=2π3,在△ABC中,角A,B,C所对的边分别为a,b,c.(1)若a,b,c依次成等差数列,且公差为2.求c的值;(2)若c=√3,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.核心素养分析本例题是一道跨章节的综合题,在解三角形的题境下,将等差数列与余弦定理的知识相结合,将函数和正弦定理的知识相结合,应用到一个问题中.使三角形的周长的最值问题通过建立三角函数模型得到解决.考查了“数学建模”“数学运算”素养和知识的应用能力、迁移能力,同时也考查了方程与函数的思想.3.3 三角大题三角变换与解三角形关键能力·学案突破【例1】解(1)f(0)=2cos20+sin 0=2.(2)方案一:选条件①.f(x)的一个周期为π.f(x)=2cos2x+sin 2x=(cos 2x+1)+sin 2x=√2√22sin 2x+√22cos 2x+1=√2sin2x+π4+1.因为x∈[-π2,π6 ],所以2x+π4∈[-3π4,7π12].所以-1≤sin(2x+π)≤1.所以1-√2≤f(x)≤1+√2.当2x+π4=-π2,即x=-3π8时,f(x)在-π2,π6上取得最小值1-√2.方案二:选条件②.f(x)的一个周期为2π.f(x)=2cos2x+sin x=2(1-sin2x)+sin x=-2(sinx-14)2+178.因为x∈[-π2,π6 ],所以sin x∈[-1,1].所以-1≤f(x)≤17.当sin x=-1,即x=-π2时,f(x)在[-π2,π6]上取得最小值-1.对点训练1解(1)因为f(x)=a sin2x-π6-cos 2(x+π6)-1=a sin2x-π6-cos2x+π3-1=a sin2x-π6-cos2x-π6+π2-1=(a+1)sin2x-π6-1,所以函数f(x)的最小正周期T=π.因为a>0,所以函数f(x)的最大值和最小值分别为a,-a-2.若选①,则a=1,函数f(x)=2sin2x-π6-1;若选②,则-3为函数f(x)的最小值,从而a=1,函数f(x)=2sin(2x-π6)-1;若选③,则(a+1)sin2×π6−π6-1=0,从而a=1,函数f(x)=2sin2x-π6-1.(2)由(1)知,函数f(x)的最大值为1.因为关于x的方程f(x)=1在区间[0,m]上有两个不同解,当x∈[0,m]时,2x-π6∈-π6,2m-π6,所以5π2≤2m-π6<9π2,解得4π3≤m<7π3.所以实数m的取值范围是4π3,7π3.【例2】解方案一:选条件①.由C=π6和余弦定理,得a2+b2-c22ab=√32.由sin A=√3sin B及正弦定理,得a=√3b.于是2222√3b2=√32,由此可得b=c.由①ac=√3,解得a=√3,b=c=1.因此,选条件①时,问题中的三角形存在,此时c=1.方案二:选条件②.由C=π6和余弦定理,得a2+b2-c22ab=√32.由sin A=√3sin B及正弦定理,得a=√3b.于是3b2+b2-c22√3b2=√32,由此可得b=c.所以B=C=π6.由A+B+C=π,得A=π-π6−π6=2π3.由②c sin A=3,即c sin2π3=3,所以c=b=2√3,a=6.因此,选条件②时,问题中的三角形存在,此时c=2√3.方案三:选条件③.由C=π6和余弦定理,得a2+b2-c22ab=√32.由sin A=√3sin B及正弦定理,得a=√3b.于是3b2+b2-c22√3b2=√32,由此可得b=c.由③c=√3b,与b=c矛盾.因此,选条件③时,问题中的三角形不存在.对点训练2解因为4S=b2+c2-a2,cos A=b2+c2-a22bc ,S=12bc sin A,所以2bc sin A=2bc cos A.显然cos A≠0,所以tan A=1.又因为A∈(0,π2),所以A=π4.若选①B=π3,由asinA=bsinB,得a=bsinAsinB=√6×√2232=2.又因为sin C=sin[π-(A+B)]=sin(A+B)=sin A cos B+cos A sin B=√6+√24,所以S=12ab sin C=3+√32.若选②a=2,由asinA =bsinB,得sin B=bsinAa=√32,因为B∈(0,π2),所以cos B=12.又因为sin C=sin[π-(A+B)]=sin(A+B)=sin A cos B+cos A sin B=√6+√24,所以S=12ab sin C=3+√32.若选③b cos A+a cos B=√3+1,所以a cos B=1,即a ·a 2+c 2-62ac=1,所以a 2=6+2c-c 2.又因为a 2=6+c 2-2√6c ·√22=6+c 2-2√3c ,所以6+2c-c 2=6+c 2-2√3c ,解得c=√3+1. 所以S=12bc sin A=3+√32.【例3】 解 f (x )=2√3sin ωx cos ωx+2cos 2ωx=√3sin 2ωx+cos 2ωx+1=2sin 2ωx+π6+1.因为T=2π2ω=π,所以ω=1,f (x )=2sin (2x +π6)+1.因为0≤x ≤π2,所以π6≤2x+π6≤7π6,所以-12≤sin (2x +π6)≤1. 所以f (x )的最大值为3,即c=3.若选①,由a cos B+b cos A=2c cos C 及正弦定理可得sin A cos B+sin B cosA=2sin C cos C ,即sin(A+B )=2sin C cos C ,所以cos C=12,C为三角形内角,所以C=π3.若选②,由2a sin A cos B+b sin 2A=√3a 及正弦定理得2sin 2A cos B+2sinB sin A cos A=√3sin A.因为sin A ≠0,所以sin A cos B+sin B cos A=√32, 所以sin(A+B )=√32, 所以sin C=√32.因为C 为锐角,所以C=π.若选③,由4S=√3(a 2+b 2-c 2),得2ab sin C=√3(a 2+b 2-c 2),即sinC=√3(a 2+b 2-c 2)2ab ,所以sin C=√3cos C ,即tan C=√3,所以C=π3.因为c=3,C=π3,所以A+B=23π,csinC =2√3.a-b=2√3(sin A-sin B )=2√3sin A-sin 23π-A=2√3sin A-π3.因为π6<A<π2,所以-π6<A-π3<π6,所以-√3<2√3sin A-π3<√3.所以a-b 的取值范围为(-√3,√3).对点训练3 解 (1)f (x )=1-2√3sin x cos x-2cos 2x+m=-(√3sin 2x+cos 2x )+m=-2sin (2x +π6)+m ,由已知2+m=3,得m=1, 所以f (x )=-2sin 2x+π6+1.令2k π+π2≤2x+π6≤2k π+3π2,k ∈Z ,得k π+π6≤x ≤k π+2π3,k ∈Z , 所以函数f (x )的单调递增区间为k π+π6,k π+2π3,k ∈Z . (2)由(1)知-2sin 2A+π6+1=0,所以sin 2A+π6=12, 由0<A<π2得π6<2A+π6<7π6, 所以2A+π6=5π6,解得A=π3.b c =sinBsinC=sin (π3+C )sinC=√32cosC +12sinC sinC=√32tanC+12.因为三角形ABC 为锐角三角形, 所以{ 0<C <π2,0<B =2π3-C <π2,解得π6<C<π2.所以tan C>√33,所以12<bc <2, 即bc 的取值范围为12,2.【例4】解(1)在△ABC中,由余弦定理及a=2√2,b=5,c=√13,可得cosC=a2+b2-c22ab =√22.又因为C∈(0,π),所以C=π4.(2)在△ABC中,由正弦定理及C=π4,a=2√2,c=√13,可得sin A=asinCc=2√1313.(3)由a<c及sin A=2√1313,可得cos A=√1−sin2A=3√1313,进而sin 2A=2sinA cos A=1213,cos 2A=2cos2A-1=513.所以sin(2A+π4)=sin 2A cosπ4+cos2A sinπ4=1213×√22+513×√22=17√226.对点训练4解(1)由题设及余弦定理得28=3c2+c2-2×√3c2×cos 150°,解得c=-2(舍去),c=2.从而a=2√3.△ABC的面积为12×2√3×2×sin 150°=√3.(2)在△ABC中,A=180°-B-C=30°-C,所以sin A+√3sin C=sin(30°-C)+√3sin C=sin(30°+C).故sin(30°+C)=√22.而0°<C<30°,所以30°+C=45°,故C=15°.【例5】解(1)由正弦定理和已知条件得BC2-AC2-AB2=AC·AB.①由余弦定理得BC2=AC2+AB2-2AC·AB cos A.②由①②得cos A=-12.因为0<A<π,所以A=2π3.(2)由正弦定理及(1)得ACsinB =ABsinC=BCsinA=2√3,从而AC=2√3sinB,AB=2√3sin(π-A-B)=3cos B-√3sin B.故BC+AC+AB=3+√3sin B+3cos B=3+2√3sin(B+π3).又因为0<B<π3,所以当B=π6时,△ABC周长取得最大值3+2√3.对点训练5解(1)由正弦定理, 得2sin B sin A=√3sin A,故sin B=√32,由题意,得B=π3.(2)由A+B+C=π,得C=2π3-A,由△ABC是锐角三角形,得A∈(π6,π2).由cos C=cos(2π3-A)=-12cos A+√32sinA,得cos A+cos B+cos C=√32sin A+12cos A+12=sin(A+π6)+12∈(√3+12,32].故cos A+cos B+cos C的取值范围是(√3+12,3 2 ].核心素养微专题(三)【例1】AD解析因为AB=2AD,现从角落A沿角α的方向把球打出去,球经2次碰撞球台边框后恰好进入角落C的球袋中,有两种情况,一种是球先和球台边框DC碰撞,另一种是球先和球台边框BC碰撞,第一种情况如图,A关于DC的对称点为E,C关于AB的对称点为F.根据直线的对称性可得tan α=EGGF =3AD2AD=32.第二种情况如图,A关于BC的对称点为G,C关于AD的对称点为E.根据直线的对称性可得tan α=EFFG =AD6AD=16.故选AD.【例2】解(1)∵a,b,c依次成等差数列,且公差为2,∴a=c-4,b=c-2,又∠MCN=2π3,即cos C=-12,由余弦定理可得a2+b2-c22ab =-12,将a=c-4,b=c-2代入,得c2-9c+14=0,解得c=7或c=2.又c>4,∴c=7.(2)在△ABC中,由正弦定理可得ACsin∠ABC =BCsin∠BAC=ABsin∠ACB,∴AC sinθ=BCsin(π3-θ)=√3sin2π3,即AC=2sin θ,BC=2sin(π3-θ).∴△ABC的周长f(θ)=AC+BC+AB=2sin θ+2sin(π3-θ)+√3=212sin θ+√32cos θ+√3=2sinθ+π3+√3.又θ∈0,π3,∴π3<θ+π3<2π3,当θ+π3=π2,即θ=π6时,f(θ)取得最大值2+√3.。
三角恒等变换与解三角形
三角恒等变换与解三角形三角恒等变换(Trigonometric Identities)是数学中重要的基本概念之一,它们在解三角形等相关问题中发挥着重要的作用。
在本文中,我们将探讨三角恒等变换的基本概念以及如何利用它们解决三角形的问题。
1. 引言三角恒等变换是指在三角函数之间的相等关系。
通过运用这些恒等变换,我们可以简化和变换三角函数的表达式,从而更容易解决与三角函数相关的问题。
2. 基本的三角恒等变换2.1 正弦函数的平方和余弦函数的平方等于1对于任意角θ,有sin^2θ + cos^2θ = 1。
这个恒等变换被称为三角函数的基本恒等变换,它表明正弦函数的平方与余弦函数的平方之和等于1。
2.2 余弦函数与正弦函数的互补关系对于任意角θ,有sin(π/2 - θ) = cosθ 和cos(π/2 - θ) = sinθ。
这表明余弦函数与正弦函数在π/2之间具有互补关系。
2.3 正切函数与余切函数的互补关系对于任意角θ,有tan(π/2 - θ) = cotθ 和cot(π/2 - θ) = tanθ。
这表明正切函数与余切函数在π/2之间具有互补关系。
3. 利用三角恒等变换解三角形利用三角恒等变换,我们可以简化和变换三角函数的表达式,从而解决与三角形相关的问题。
以下是一些常用的例子:3.1 例子1:已知一个角的正弦值,求解这个角的余弦值和正切值。
假设已知角θ的正弦值为sinθ = 3/5。
根据正弦函数的平方和余弦函数的平方等于1,我们可以得到cos^2θ = 1 - (sinθ)^2 = 1 - (3/5)^2 = 16/25。
因此,cosθ = ±4/5,取决于角θ的实际情况。
同样地,根据正切函数的定义,我们可以得到tanθ = sinθ/cosθ = (3/5)/ (±4/5) = 3/4。
3.2 例子2:已知一个角的余弦值,求解这个角的正弦值和余切值。
假设已知角θ的余弦值为cosθ = 4/5。
三角变换及解三角形45张
利用角度差公式将一个角转换为两个角的差,如$alpha = beta - gamma$,则有$sin(alpha) = sin(beta)cos(gamma) - cos(beta)sin(gamma)$。
倍角公式
将一个角转换为它的两倍,如$alpha = 2beta$,则有 $sin(alpha) = 2sin(beta)cos(beta)$。
正弦函数性质
正弦函数在其定义域内是奇函数,即 $f(-x)=-f(x)$,且在每个周期内,其 值域为$[-1,1]$。
余弦函数的图像和性质
余弦函数图像
余弦函数图像也是一个周期函数,其基 本周期为$2pi$,图像呈现波形。
VS
余弦函数性质
余弦函数在其定义域内是偶函数,即$f(x)=f(x)$,且在每个周期内,其值域为$[1,1]$。
正割与余割的转换
利用三角函数的互割关系,将正
割转换为余割或将余割转换为正
割,如$sec(alpha)
=
csc(frac{pi}{2} - alpha)$。
函数值的变换
半角公式
利用半角公式可以将角度减半,从而 求出相应的三角函数值,如 $sin(frac{alpha}{2}) = pmsqrt{frac{1 - cos(alpha)}{2}}$。
正切函数的是一个奇函数,其基本周期为 $pi$,图像呈现锯齿波形。
正切函数性质
正切函数在其定义域内是奇函数,即$f(x)=-f(x)$,且在每个周期内,其值域为$(infty, +infty)$。
04
CATALOGUE
解三角形
正弦定理
总结词
正弦定理是解三角形的重要工具,它建立了三角形各角正弦值与对应边长之间的关系。
22第四章 三角函数、解三角形 简单的三角恒等变换 第1课时 两角和与差的正弦、余弦和正切公式
(2)设 α 为锐角,若 cosα+π6=54,则 sin2α+π3的值为
12 A.25
√24
B.25
C.-2245
解析 因为 α 为锐角,且 cosα+π6=54,
D.-1225
所以 sinα+π6= 1-cos2α+π6=35,
所以 sin2α+π3=sin 2α+π6 =2sinα+6πcosα+π6=2×53×54=2245,故选 B.
tan α+tan β
tan(α+β)= 1-tan
αtan
(T(α+β)) β
2.二倍角公式
sin 2α= 2sin αcos α ; cos 2α= cos2α-sin2α = 2cos2α-=1
2tan α tan 2α= 1-tan2α .
1-2sin2α ;
【概念方法微思考】 1.诱导公式与两角和差的三角函数公式有何关系? 提示 诱导公式可以看成和差公式中 β=k·π2(k∈Z)时的特殊情形. 2.怎样研究形如f(x)=asin x+bcos x函数的性质? 提示 先根据辅助角公式 asin x+bcos x= a2+b2·sin(x+φ),将 f(x)化成 f(x)
解析
cos2α2
= 121+cos α = 1+cos α =4sin α.
1234567
2
PART TWO
题型分类 深度剖析
第1课时 两角和与差的正弦、余弦和正切公式
自主演练
题型一 和差公式的直接应用
1.(2018·石家庄质检)若 sin(π-α)=13,且π2≤α≤π,则 sin 2α 的值为
A.-
2 10
B.
2 10
√C.-7102
D.7102
三角恒等变换与解三角形
三角恒等变换与解三角形三角恒等变换是解决三角形相关问题中常用的工具。
通过利用三角函数之间的关系,可以在一些情况下简化问题的求解,或者将复杂的三角形相关问题转化为更简单的形式。
本文将介绍一些常见的三角恒等变换,并结合实例说明其在解三角形问题中的应用。
1. 正弦定理正弦定理是三角形中常用的定理之一,用于求解三角形的边或角。
假设有一个三角形ABC,边长分别为a、b、c,对应的内角为A、B、C,正弦定理的数学表达式为:```a/sinA = b/sinB = c/sinC```其中,等式两边都表示边与对应角的正弦值的比例关系。
举例:已知三角形的两边a、b和它们夹角C,求第三边c。
根据正弦定理可得```c/sinC = a/sinA = b/sinB```通过这个等式可以解出c的值,进而求得整个三角形的相关信息。
2. 余弦定理余弦定理也是解决三角形问题时常用的定理之一,可以用于求解三角形的边或角。
假设有一个三角形ABC,边长分别为a、b、c,对应的内角为A、B、C,余弦定理的数学表达式为:```c^2 = a^2 + b^2 - 2*a*b*cosC```其中,等式右侧表示边长和夹角的余弦值的比例关系。
举例:已知三角形的两边a、b和它们的夹角C,求第三边c。
根据余弦定理可得```c^2 = a^2 + b^2 - 2*a*b*cosC```通过解这个方程可以求得c的值。
3. 正切定理正切定理是利用正切函数关系来解决三角形问题的定理,可以用于求解三角形的边或角。
假设有一个三角形ABC,边长分别为a、b,对应的内角为A、B,正切定理的数学表达式为:```tanA = (b*sinA)/(a - b*cosA)```其中,等式右侧表示两个边长度和夹角的正切值的比例关系。
举例:已知三角形的一边a和它的内角A,求另一边b。
根据正切定理可得```tanA = (b*sinA)/(a - b*cosA)```通过这个等式可以解出b的值。
三角变换与解三角形
【归纳拓展】 应用解三角形知识解决实际问题需 要下列四步: (1)分析题意,准确理解题意,分清已知与所求,尤 其要理解题中的有关名词、术语,如坡度、仰角、 俯角、视角、方位角等; (2)根据题意画出示意图,并将已知条件在图形中标 出; (3)将所求问题归结到一个或几个三角形中,通过合 理运用正、余弦定理等有关知识正确求解. (4)检验解出的结果是否具有实际意义,对结果进行 取舍,得出正确答案.
cos A-2cos C 2c-a b,c.已知 = b . cos B sin C (1)求 的值; sin A 1 (2)若 cos B= ,b=2,求△ABC 的面积 S. 4
a b c 【解】 (1)由正弦定理, 设 = = = sin A sin B sin C k, 2c-a 2ksin C-ksin A 2sin C-sin A 则 b = = , ksin B sin B cos A-2cos C 2sin C-sin A 所以 = . cos B sin B 即(cos A-2cos C)sin B=(2sin C-sin A)cos B, 化简可得 sin(A+B)=2sin(B+C).
AB 在 Rt△ABE 中,tanα=BE. ∵AB 为定长,∴当 BE 的长最小时,α 取最大值 60° , 这时 BE⊥CD. 当 BE⊥CD 时,在 Rt△BEC 中, 3 EC=BC· cos∠BCE=50( 3-1)· =25(3- 3)(米). 2 设该人沿南偏西 60° 的方向走到仰角 α 最大时,走了 t 分钟, 253- 3 3- 3 EC 则 t= ×60= ×60= (分钟). 6000 6000 4
1 5π π × - = 2sin 4 6 3
π = 4
2 2× = 2.2 分 2
高考微点六 三角恒等变换与解三角形
高考微点六 三角恒等变换与解三角形牢记概念公式,避免卡壳1.三角恒等变换的主要公式 sin(α±β)=sin αcos β±cos αsin β; cos(α±β)=cos αcos β∓sin αsin β; tan(α±β)=tan α±tan β1∓tan αtan β;sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2 α; tan 2α=2tan α1-tan 2α.2.正弦定理与余弦定理 (1)正弦定理①a =2R sin A ,b =2R sin B ,c =2R sin C . ②sin A =a 2R ,sin B =b 2R ,sin C =c2R . ③a ∶b ∶c =sin A ∶sin B ∶sin C . 注:R 是三角形的外接圆半径. (2)余弦定理①cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac , cos C =a 2+b 2-c 22ab .②b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B , a 2+b 2-c 2=2ab cos C .活用结论规律,快速抢分1.辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a .2.在△ABC 中,A >B ⇔sin A >sinB.3.△ABC 的面积S =12ab sin C =12ac sin B =12bc sin A . 4.设a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,则 (1)若a 2+b 2=c 2,则C =π2;(2)若a 2+b 2>c 2,则C <π2; (3)若a 2+b 2<c 2,则C >π2.高效微点训练,完美升级1.若sin ⎝ ⎛⎭⎪⎫π6-α=13,则2cos 2⎝ ⎛⎭⎪⎫π6+α2-1=( )A.13 B.-13 C.79D.-79解析 2cos 2⎝ ⎛⎭⎪⎫π6+α2-1=cos ⎝ ⎛⎭⎪⎫π3+α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6-α=sin ⎝ ⎛⎭⎪⎫π6-α=13. 答案 A2.已知sin ⎝ ⎛⎭⎪⎫π2+α=12,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α-π3的值为( )A.12 B.23 C.-12D.1解析 由题意得cos α=12,sin α=-32, ∴cos ⎝ ⎛⎭⎪⎫α-π3=12cos α+32sin α=-12.答案 C3.已知△ABC 中,A =π6,B =π4,a =1,则b 等于( ) A.2 B.1 C. 3D. 2解析 由正弦定理a sin A =b sin B ,得1sin π6=bsin π4,∴112=b22,∴b = 2.答案 D4.sin 10°1-3tan 10°=( ) A.14 B.12 C.32 D.1解析sin 10°1-3tan 10°=sin 10°cos 10°cos 10°-3sin 10°=2sin 10°cos 10°4⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°=sin 20°4sin (30°-10°)=14.答案 A5.在△ABC 中,三边长分别为a ,a +2,a +4,最小角的余弦值为1314,则这个三角形的面积为( ) A.154 3 B.154 C.214 3D.354 3解析 由条件知长为a 的边对应的角最小,设为A ,则由余弦定理,得cos A =(a +2)2+(a +4)2-a 22(a +2)(a +4)=1314,解得a =3或a =-2(舍去),则三边长分别为3,5,7,且sin A =3314,所以△ABC 的面积S =12×5×7×3314=1534. 答案 A6.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A sin B +sin C +ba +c=1,则C=( ) A.π6 B.π3 C.2π3D.5π6解析 由正弦定理及sin A sin B +sin C +b a +c =1,得a b +c +ba +c=1,整理可得a 2+b 2-c 2=ab .由余弦定理知cos C =a 2+b 2-c 22ab ,所以cos C =12,又C ∈(0,π),所以C =π3,故选B. 答案 B7.已知3cos 2α=4sin ⎝ ⎛⎭⎪⎫π4-α,α∈⎝ ⎛⎭⎪⎫π4,π,则sin 2α=( )A.79 B.-79 C.19D.-19解析 由题意知3(cos 2α-sin 2α)=22(cos α-sin α).由于α∈⎝ ⎛⎭⎪⎫π4,π,因而cos α≠sin α,则3(cos α+sin α)=22,故9(1+sin 2α)=8,sin 2α=-19. 答案 D8.在△ABC 中,AB =2,C =π6,则AC +3BC 的最大值为( ) A.7 B.27 C.37D.47解析 在△ABC 中,AB =2,C =π6, 则AB sin C =BC sin A =ACsin B =4, 则AC +3BC =4sin B +43sin A=4sin ⎝ ⎛⎭⎪⎫5π6-A +43sin A =2cos A +63sin A=47sin(A +θ)(其中tan θ=39). 所以AC +3BC 的最大值为47. 答案 D9.若点(θ,0)是函数f (x )=sin x +2cos x 图象的一个对称中心,则cos 2θ+sin θcos θ=( ) A.1110 B.-1110 C.1D.-1解析 ∵点(θ,0)是函数f (x )=sin x +2cos x 图象的一个对称中心, ∴sin θ+2cos θ=0,即tan θ=-2.∴cos 2θ+sin θcos θ=cos 2θ-sin 2θ+sin θcos θsin 2θ+cos 2θ=1-tan 2θ+tan θtan 2θ+1=1-4-24+1=-1. 答案 D10.已知tan ⎝ ⎛⎭⎪⎫α-5π4=15,则tan α=____________.解析 tan ⎝ ⎛⎭⎪⎫α-5π4=tan α-tan 5π41+tan αtan 5π4=tan α-11+tan α=15,解得tan α=32. 答案 3211.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2分钟,从D 沿DC 走到C 用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径为________米.解析 连接OC ,由题意知CD =150米,OD =100米,∠CDO =60°.在△COD 中,由余弦定理得OC 2=CD 2+OD 2-2CD ·OD ·cos 60°,即OC =507. 答案 50712.(多填题)已知θ是第四象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=35,则sin θ=________;tan ⎝ ⎛⎭⎪⎫θ-π4=________.解析 由题意,sin ⎝ ⎛⎭⎪⎫θ+π4=35,cos ⎝ ⎛⎭⎪⎫θ+π4=45,∴⎩⎪⎨⎪⎧sin θ·cos π4+cos θsin π4=35,cos θcos π4-sin θsin π4=45,解得⎩⎪⎨⎪⎧sin θ=-152,cos θ=752,∴tan θ=-17,tan ⎝ ⎛⎭⎪⎫θ-π4=tan θ-tan π41+tan θtanπ4=-17-11-17×1=-43.答案 -210 -4313.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝ ⎛⎭⎪⎫-35,-45. (1)求sin(α+π)的值;(2)若角β满足sin(α+β)=513,求cos β的值. 解 (1)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得sin α=-45,所以sin(α+π)=-sin α=45.(2)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得cos α=-35,由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α得cos β=cos(α+β)cos α+sin(α+β)sin α,所以cos β=-5665或cos β=1665.14.△ABC的内角A,B,C的对边分别为a,b,c,已知(a+2c)cos B+b cos A=0.(1)求B;(2)若b=3,△ABC的周长为3+23,求△ABC的面积.解(1)由已知及正弦定理得(sin A+2sin C)cos B+sin B cos A=0,(sin A cos B+sin B cos A)+2sin C cos B=0,sin(A+B)+2sin C cos B=0,又sin(A+B)=sin C,且C∈(0,π),sin C≠0,∴cos B=-12,∵0<B<π,∴B=23π.(2)由余弦定理,得9=a2+c2-2ac cos B. ∴a2+c2+ac=9,则(a+c)2-ac=9.∵a+b+c=3+23,b=3,∴a+c=23,∴ac=3,∴S△ABC =12ac sin B=12×3×32=334.。
三角函数三角变换及解三角形
其中a2 a1 a4 a3 a2008 a2007 1004d 31004. b2 b1 b4 b3 b2008 b2007
b2 b4 b2008 b1 b3 b2007
6 1
1
1004
4
1 1
121
1
1004
4
函数,且函数y f x图象的两相邻对称轴间的距离为 .
2
1求f ;
8
2将函数y f x的图象向右平移 个单位后,再将得到的图象上
6
各点的横坐标伸长到原来的4倍,纵坐标不变化,得到函数y gx 的图象, 求g x 的单调递减区间.
解: 1 f x 3 sinx cosx
2
3 2
sinx
三角函数、三角变换及解三角形
一、三角函数的概念及基本关系式
例如图在平面直角坐标系xoy中,以ox轴为始边作两个锐角, ,它们
的终边分别与单位圆交于A, B两点,已知A, B的横坐标分别为 2 , 2 5 . 10 5
1求 tan 的值;
2求 2的值.
解 : 1由已知条件及三角函数的定义知: cos 2 , cos 2 5 ,
1设方程f x1 0在0, 内有两个零点x1, x2,求x1 x2的值; 2若把函数y f x的图象向左平移mm 0个单位使所得函数的
图象关于点0,2对称, 求m的最小值.
2设y f x图象向左平移m个单位,得到函数gx的图象,
则gx 2 cos 2x 2m 2,
4
y gx的图象关于0,2对称,2m k , k Z,
C.
3 1002,41
1 4
1002
D.
3
1004,41
1 4
1004
三角恒等变换与解三角形
失分警示]1.同角关系应用错误:利用同角三角函数的平方关系开方时,忽略判断角所在的象限或判断出错,导致三角函数符号错误.2.诱导公式的应用错误:利用诱导公式时,三角函数名变换出错或三角函数值的符号出错.3.忽视解的多种情况如已知a ,b 和A ,应先用正弦定理求B ,由A +B +C =π,求C ,再由正弦定理或余弦定理求边c ,但解可能有多种情况.4.忽略角的范围应用正、余弦定理求解边、角等量的最值(范围)时,要注意角的范围. 5.忽视解的实际意义求解实际问题,要注意解得的结果要与实际相吻合.考点三角恒等变换典例示法 题型1 求角典例1 中山模拟]已知cos(2α-β)=-1114,sin(α-2β)=437,0<β<π4<α<π2,则α+β=________.解答此类问题的关键是结合已知条件,求出相应角的三角函数值,然后根据角的范围确定角的具体取值.题型2 求值典例2 安徽合肥质检]已知cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=-14,α∈⎝ ⎛⎭⎪⎫π3,π2. (1)求sin2α的值;(2)求tanα-1tanα的值.化简常用的方法技巧(1)化简常用方法:①直接应用公式,包括公式的正用、逆用和变形用;②切化弦、异名化同名、异角化同角等.(2)化简常用技巧:①注意特殊角的三角函数与特殊值的互化;②注意利用角与角之间的隐含关系,如2α=(α+β)+(α-β),θ=(θ-φ)+φ等;③注意利用“1”的恒等变形,如tan45°=1,sin2α+cos2α=1等.考点正、余弦定理典例示法题型1应用正、余弦定理求边、角典例3淄博模拟]已知a,b,c分别为△ABC的内角A,B,C的对边,且a cos C +3a sin C-b-c=0.(1)求A;(2)若a=2,求△ABC面积的最大值.解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果. 题型2 判断三角形的形状典例4 设△ABC 的内角,A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定利用正、余弦定理判定三角形形状的两种思路(1)“角化边”:利用正弦、余弦定理把已知条件转化为只含边的关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)“边化角”:利用正弦、余弦定理把已知条件转化为只含内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论.题型3 求有关三角形的面积典例5 2014·浙江高考]在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B .(1)求角C 的大小;(2)若sin A =45,求△ABC 的面积.与三角形面积有关问题的常见类型及解题策略(1)求三角形的面积.对于面积公式S=12ab sin C=12ac sin B=12bc sin A,一般是已知哪一个角就使用含哪个角的公式.(2)已知三角形的面积解三角形.与面积有关的问题,一般要利用正弦定理或余弦定理进行边和角的互化.考点正、余弦定理的实际应用典例示法典例6如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130 m/min,山路AC长为1260 m,经测量,cos A=1213,cos C=35.(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?.1.解三角形应用题的常见情况及方法(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.2.解三角形应用题的一般步骤针对训练2015·湖北高考]如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=_______________________________________________ _________________________m.全国卷高考真题调研]1.全国卷Ⅱ]若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin2α=( )A.725 B.15 C .-15 D .-7253.2015·全国卷Ⅰ]在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________.4.浙江高考]已知2cos 2x +sin2x =A sin(ωx +φ)+b (A >0),则A =________,b =________.5.2015·广东高考]设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.6.2014·山东高考]设f (x )=sin x cos x -cos 2⎝⎛⎭⎪⎫x +π4.(1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC面积的最大值.一、选择题1.合肥质检]sin18°sin78°-cos162°cos78°=( ) A .-32 B .-12 C.32 D.122.广西质检]已知π2<α<π,3sin2α=2cos α,则cos(α-π)等于( ) A.23 B.64 C.223 D.326。
常考问题三角恒等变换与解三角形
知识与方法
热点与突破
审题与答题
热点与突破 热点一 三角变换及应用 【例 1】 (1)已知 0<β<π2<α<π,且 cosα-β2=-19,sinα2-β=23,
求 cos(α+β)的值; (2)已知 α,β∈(0,π),且 tan(α-β)=12,tan β=-17,求 2α-β 的值.
知识与方法
A,所以
tan
A=
33,
因为 0<A<23π,所以 A=6π,C=π2.
法二 由已知,得 A+C=2B,又 A+B+C=π,所以 B=3π,又由
sin C=2sin A,得 c=2a,所以 b2=a2+4a2-2a·2acosπ3=3a2,c2
=a2+b2,即△ABC 为直角三角形,所以 C=2π,A=23π-2π=π6.
热点与突破
审题与答题
x2=ACcos∠CAD=10 13cos(45°-θ)=30. y2=ACsin∠CAD=10 13sin(45°-θ)=20. 所以过点 B,C 的直线 l 的斜率为 k=2, 故直线 l 的方程为 y=2x-40. 又点 E(0,-55)到直线 l 的距离为 d=|0+515+-440|=3 5<7. 所以船会进入警戒水域.
知识与方法
热点与突破
审题与答题
[规律方法] 求解此类问题,一要注意从问题的不断转化中寻求解
题的突破口,如求A→B·A→C,需要求出 bc,由三角形的面积及 cos A,
可求出 sin A,二要注意求解本题第(2)问时,应该结合第(1)问中的 结论.
知识与方法
热点与突破
审题与答题
【训练 2】 (2013·山东卷)设△ABC 的内角 A,B,C 所对的边分别 为 a,b,c,且 a+c=6,b=2,cos B=79. (1)求 a,c 的值; (2)求 sin(A-B)的值. 解 (1)由余弦定理,得 cos B=a2+2ca2c-b2=a2+2ac2c-4=79,即 a2+c2-4=194ac. ∴(a+c)2-2ac-4=194ac,∴ac=9. 由aa+ c=c= 9,6, 得 a=c=3.
三角恒等变换和解三角形公式
三角恒等变换和解三角形公式三角恒等变换是指一类等式或恒等式,可以通过它们来简化或转换三角函数表达式。
这些变换可以帮助我们解决三角函数问题,并简化复杂的三角表达式。
解三角形公式是用来计算三角形各个角度和边长的公式。
下面将详细介绍三角恒等变换和解三角形公式。
一、三角恒等变换1.正弦、余弦和正切的基本恒等变换:(1) $\sin^2 \theta + \cos^2 \theta = 1$,这个等式被称为三角恒等式的基本等式,它适用于所有角度。
(2) $1 + \tan^2 \theta = \sec^2 \theta$,也是三角函数的基本恒等变换。
2.余弦、正切和余切的基本恒等变换:(1) $1 + \cot^2 \theta = \csc^2 \theta$,也是三角函数的基本恒等变换。
3.正弦和余弦的互补恒等变换:(1) $\sin(\frac{\pi}{2} - \theta) = \cos \theta$(2) $\cos(\frac{\pi}{2} - \theta) = \sin \theta$这两个恒等变换表明,两个角度的正弦和余弦互为相反数。
4.正切和余切的互补恒等变换:(1) $\tan(\frac{\pi}{2} - \theta) = \cot \theta$(2) $\cot(\frac{\pi}{2} - \theta) = \tan \theta$这两个恒等变换表明,两个角度的正切和余切互为倒数。
5.其他常用的三角恒等变换:(1) $\sin(-\theta) = -\sin \theta$(2) $\cos(-\theta) = \cos \theta$(3) $\tan(-\theta) = -\tan \theta$这些变换表明,正弦、余弦和正切函数在角度取相反数时会发生改变。
1.解直角三角形:(1)已知两个直角三角形的边长求第三边:- 斜边长:$c = \sqrt{a^2 + b^2}$- 一边长和斜边长:$b = \sqrt{c^2 - a^2}$或$a = \sqrt{c^2 -b^2}$(2)已知一个直角三角形的边长和一个角度,求其他边长和角度:- 正弦定理:$\frac{a}{\sin A} = \frac{b}{\sin B} =\frac{c}{\sin C}$- 余弦定理:$c^2 = a^2 + b^2 - 2ab \cos C$2.解一般三角形:(1)已知三个角度的和为180度- 内角和公式:$A + B + C = 180^\circ$(2)已知一个三角形的边长和一个角度,求其他边长和角度:- 正弦定理:$\frac{a}{\sin A} = \frac{b}{\sin B} =\frac{c}{\sin C}$- 余弦定理:$a^2 = b^2 + c^2 - 2bc \cos A$总结:三角恒等变换是一类等式或恒等式,可以用来简化或转换三角函数表达式,包括正弦、余弦和正切的基本恒等变换、余弦、正切和余切的基本恒等变换、正弦和余弦的互补恒等变换、正切和余切的互补恒等变换,以及其他常用的变换。
三角恒等变换与解三角形
三角恒等变换与解三角形三角恒等变换是解三角形中常用的方法之一。
通过利用三角函数之间的关系,可以简化复杂的三角形问题,从而解决解题难题。
本文将介绍常见的三角恒等变换,并结合实例来说明其在解三角形问题中的应用。
一、三角恒等变换的定义三角恒等变换指的是一些等式或关系式,通过其变换可以得到与原三角函数等价的另一种表达式。
这些变换可以方便我们在求解三角形问题时进行化简和变形。
下面将介绍几种常见的三角恒等变换:1. 余弦定理余弦定理是三角形中常用的恒等变换之一,可以用来求解三角形的边长或角度。
余弦定理表达式如下:\[c^2 = a^2 + b^2 - 2ab \cos(C)\]其中,\(a\)、\(b\)、\(c\)表示三角形的边长,\(C\)表示夹角\(c\)的对应角。
2. 正弦定理正弦定理也是解三角形问题中常用的恒等变换。
正弦定理表达式如下:\[\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}\]其中,\(a\)、\(b\)、\(c\)表示三角形的边长,\(A\)、\(B\)、\(C\)表示三角形的对应角度。
3. 余角恒等变换余角恒等变换可以将三角函数中的一个角的正弦、余弦、正切、余切等函数转化为另一个角的相应三角函数表达式。
例如,\(sin(\pi -\theta) = sin\theta\)、\(cos(\pi - \theta) = -cos\theta\)等。
二、三角恒等变换在解三角形中的应用三角恒等变换在解三角形问题中是十分有用的。
通过对已知条件进行恒等变换,可以从中发现一些隐藏的关系,从而简化问题。
例如,已知三角形的两边和一夹角,可以使用余弦定理求解第三边的长度。
而当已知三角形的两边和三个角度之一时,可以使用正弦定理求解三角形的三个角度。
通过利用三角恒等变换,可以将复杂的计算问题转化为简单的代数计算,进而解决三角形问题。
下面通过一个具体的例子来说明三角恒等变换在解三角形中的应用。
专题解析:三角恒等变换与解三角形
三角恒等变换与解三角形核心考点(一)三角恒等变换【核心知识】1.两角和与差的余弦、正弦及正切公式①cos (α+β)=cos αcos β-sin αsin β②cos (α-β)=cos αcos β+sin αsin β③sin (α+β)=sin αcos β+cos αsin β④sin (α-β)=sin αcos β-cos αsin β⑤tan (α+β)=tan α+tan β1-tan αtan β(α≠k π+π2,k ∈Z ,β≠k π+π2,k ∈Z ,α+β≠k π+π2,k ∈Z )⑥tan (α-β)=tan α-tan β1+tan αtan β(α≠k π+π2,k ∈Z ,β≠k π+π2,k ∈Z ,α-β≠k π+π2,k ∈Z )2.二倍角公式:①sin 2α=2sin αcos α②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α③tan2α=2tan α1-tan 2α(α≠k π+π2,k ∈Z ,2α≠k π+π2,k ∈Z ,α≠k π±π4,k ∈Z )3.辅助角公式:a cos x +b sin x x +ba 2+b 2sin 令sin θ=aa 2+b 2,cos θ∴a cos x +b sin x =a 2+b 2sin (x +θ),其中θ为辅助角,tan θ=ab .4.降幂公式①sin 2α=1-cos2α2②cos 2α=1+cos2α2③sin αcos α=12sin 2α【典例引领·研明】【典例】(1)(2020·全国卷Ⅲ)已知sin θ+sin 1,则sin ()A .12B .33C .23D .22解析:选B .∵sin θ+sin =32sin θ+32cos θ=3sin 1,∴sin =33.故选B .(2)已知黄金三角形是一个等腰三角形,其底与腰的长度的比值为黄金比值(即黄金分割值5-12,该值恰好等于2sin 18˚),则sin 100˚cos 26˚+cos 100˚sin 26˚=()A .-5+24B .5+24C .-5+14D .5+14解析:选D .由已知可得2sin 18˚=5-12,故sin 18˚=5-14,则sin 100˚cos 26˚+cos 100˚sin 26˚=sin 126˚=sin (36˚+90˚)=cos 36˚=1-2sin 218˚=1-2×(5-14)2=5+14.故选D .(3)(多选)下列各式中值为12的是()A .1-2cos 275°B .sin135°cos 15°-cos 45°cos 75°C .tan 20°+tan 25°+tan 20°tan 25°D .cos 35°1-sin 20°2cos 20°解析:选BD.对于A ,1-2cos 275°=-cos 150°=cos 30°=32,A 错误;对于B ,sin 135°cos 15°-cos 45°cos 75°=sin 45°sin 75°-cos 45°cos 75°=-cos 120°=12,B 正确;对于C ,∵tan 45°=1=tan 20°+tan 25°1-tan 20°tan 25°,∴1-tan 20°tan 25°=tan 20°+tan 25°,∴tan20°+tan 25°+tan 20°tan 25°=1,C 错误;对于D ,cos 35°1-sin 20°2cos 20°=cos 35°(cos 10°-sin 10°)22(cos 10°+sin 10°)(cos 10°-sin 10°)=cos 35°2(cos 10°+sin 10°)=cos 45°cos 10°+sin 45°sin 10°2(cos 10°+sin 10°)=22(cos 10°+sin 10°)2(cos 10°+sin 10°)=12,D 正确;故选BD.(4)(2022·浙江高考)若3sin α-sin β=10,α+β=π2,则sin α=______,cos 2β=____________.解析:∵α+β=π2,∴sin β=cos α,∵3sin α-cos α=10,α-1010cos =10,令sin θ=1010,cos θ=31010,则10sin (α-θ)=10,∴α-θ=π2+2k π,k ∈Z ,即α=θ+π2+2k π,∴sin α=sin +π2+2k cos θ=31010,则cos 2β=2cos 2β-1=2sin 2α-1=45.答案:3101045【解题方法】———————————————————————————————●1.三角函数求值的类型及方法(1)常值代换:常用到“1”的代换,1=sin 2θ+cos 2θ=tan45°等.(2)项的拆分与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等.(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次.(4)弦、切互化:一般是切化弦.【对点集训·练透】1.(2021·全国高考甲卷)若αtan2α=cos α2-sin α,则tan α=()A .1515B .55C .53D .153解析:选A .∵tan 2α=cos α2-sin α,∴tan 2α=sin 2αcos 2α=2sin αcos α1-2sin 2α=cos α2-sin α,∵αcos α≠0,∴2sin α1-2sin 2α=12-sin α,解得sin α=14,∴cos α=1-sin 2α=154,∴tan α=sin αcos α=1515.故选A .2.(2022·江苏盐城二模)计算2cos 10°-sin 20°cos 20°所得的结果为()A .1B .2C .3D .2解析:选C .2cos 10°-sin 20°cos 20°=2cos (30°-20°)-sin 20°cos 20°=3cos 20°+sin 20°-sin 20°cos 20°=3.3.已知αsin +=13,则tan α的值为____________.解析:∵sin 2cos 2α=13,α∴sin α=1-cos 2α2=33,cos α=1+cos 2α2=63,∴tan α=sin αcos α=22.答案:224.(2022·湖南郴州二模)如图,以Ox 为始边作角α(0<α<π),终边与单位圆相交于点P ,已知点P -35,,则sin 2α+cos 2α+11+tan α=________.解析:由三角函数定义,得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos α(sin α+cos α)sin α+cos αcos α=2cos 2α=2=1825.答案:1825核心考点(二)利用正、余弦定理解三角形【核心知识】1.正弦定理及其变形a sin A =b sin B =c sin C=2R (2R 为△ABC 外接圆的直径).【变形】a =2R sin A ,b =2R sin B ,c =2R sin C .sin A =a 2R ,sin B =b 2R ,sin C =c 2R.a ∶b ∶c =sin A ∶sin B ∶sin C .2.余弦定理及其推论、变形a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C .【推论】cos A =b 2+c 2-a 22bc,cos B =a 2+c 2-b 22ac,cos C =a 2+b 2-c 22ab.【变形】b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C .3.射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =a cos B +b cos A ,称为“射影定理”.4.面积公式S△ABC=12bc sin A=12ac sin B=12ab sin C.角度1利用正、余弦定理进行边角计算【例1】(2021·福建漳州模拟)在△ABC中,角A,B,C的对边分别为a,b,c,已知(2b -c)cos A=a cos C,则A=()A.π6B.π3C.2π3D.5π6解析:选B.法一∵(2b-c)cos A=a cos C,∴由正弦定理得(2sin B-sin C)cos A=sin A cos C,∴2sin B cos A=sin A cos C+sin C cos A=sin(A+C)=sin B,∵0<B<π,∴cos A=12,又0<A<π,∴A=π3.法二∵(2b-c)cos A=a cos C,∴2b cos A=a cos C+c cos A=b,∴cos A=12,又0<A<π,∴A=π3.【例2】已知△ABC的内角A,B,C的对边分别为a,b,c,且3a cos C-c sin A=3b.(1)求角A;(2)若c=2,且BC边上的中线长为3,求b.解:(1)由题意,3a cos C-c sin A=3b,由正弦定理得3sin A cos C-sin C sin A=3sin B,因为B=π-A-C,所以3sin A cos C-sin C sin A=3sin(A+C),得3sin A cos C-sin C sin A=3sin A cos C+3cos A sin C,得-sin C sin A=3cos A sin C,因为sin C≠0,所以sin A=-3cos A,即tan A=-3,又A∈(0,π),所以A=2π3.(2)在△ABC中,由余弦定理得a2=b2+c2-2bc cos A=b2+4+2b①,cos B=a2+c2-b22ac=a2+4-b24a.设BC的中点为D,则在△ABD中,cos B2×a2×c=a24+12a,所以a 2+4-b 24a =a 24+12a ,得a 2+4-2b 2=0②,由①②可得,b 2-2b -8=0,所以b =4.【解题方法】———————————————————————————————●(1)求边:利用公式a =b sin A sin B ,b =a sin B sin A ,c =a sin Csin A 或其他相应变形公式求解.(2)求角:先求出正弦值,再求角,即利用公式sin A =a sin B b ,sin B =b sin A a ,sin C =c sin Aa或其他相应变形公式求解.(3)已知两边和夹角或已知三边可利用余弦定理求解.(4)灵活利用式子的特点转化:如出现a 2+b 2-c 2=λab 形式用余弦定理,等式两边是关于边或角的正弦的齐次式用正弦定理.(5)常常应用A +B +C =π减少未知角的个数.【对点练】1.(2022·山西大同二模)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B .(1)证明:A =2B ;(2)若cos B =23,求cos C 的值.解:(1)证明:由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin (A +B )=sin B +sin A ·cos B +cos A sin B ,于是sin B =sin (A -B ).又A ,B ∈(0,π),故0<A -B ,所以B =π-(A -B )或B =A -B ,因此A =π(舍去)或A =2B ,所以,A =2B .(2)由cos B =23得sin B =53,cos 2B =2cos 2B -1=-19,故cos A =-19,sin A =459,cos C =-cos (A +B )=-cos A cos B +sin A sin B =2227.2.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A cos C +c sin A cos B =15a4.(1)求sin A ;(2)若a =32,b =4,求c .解:(1)因为b sin A cos C +c sin A cos B =15a4,所以由正弦定理,得sin B sin A cos C +sin C sin A cos B =15sin A4,因为sin A ≠0,所以sin B cos C +sin C cos B =154,所以sin (B +C )=154,所以sin (π-A )=154,所以sin A =154.(2)因为△ABC 为锐角三角形,所以A 为锐角,因为sin A =154,所以cos A =14.因为a =32,b =4,由余弦定理得(32)2=42+c 2-2×4×c ×14,所以c 2-2c -2=0,所以c =3+1.角度2与面积和周长有关的问题【例3】(2022·北京高考)在△ABC 中,sin 2C =3sin C .(1)求∠C ;(2)若b =6,且△ABC 的面积为63,求△ABC 的周长.解:(1)因为C ∈(0,π),则sin C >0,由已知可得3sin C =2sin C cos C ,可得cos C =32,因此,C =π6.(2)由三角形的面积公式可得S △ABC =12ab sin C =32a =63,解得a =4 3.由余弦定理可得c 2=a 2+b 2-2ab cos C =48+36-2×43×6×32=12,∴c =23,所以,△ABC 的周长为a +b +c =63+6.【例4】(2022·湖南益阳二模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin A +3cos A =0,a =27,b =2.(1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.解:(1)由已知可得tan A =-3,所以A =2π3.在△ABC 中,由余弦定理得28=4+c 2-4c cos 2π3,即c 2+2c -24=0.解得c =-6(舍去),c =4.(2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6.故△ABD 面积与△ACD 面积的比值为12AB ·AD ·sinπ612AC ·AD =1.又△ABC 的面积为12×4×2sin ∠BAC =23,所以△ABD 的面积为 3.【解题方法】———————————————————————————————●(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用含该角的公式.(2)与面积有关的问题,一般要利用正弦定理或余弦定理进行边和角的互化.三角形面积公式还可用其他几何量表示:S =12(a +b +c )r ,其中a +b +c 为三角形的周长,r 为三角形内切圆的半径.【对点练】3.(2021·新高考全国Ⅱ卷)在△ABC 中,角A ,B ,C 所对的边为a ,b ,c ,且满足b =a +1,c =a +2.(1)若2sin C =3sin A ,求△ABC 的面积;(2)是否存在正整数a ,使得△ABC 为钝角三角形?若存在,求a ;若不存在,说明理由.解:(1)2sin C =3sin A ⇒2c =3a ,∵c =a +2,∴2(a +2)=3a ,∴a =4,∴b =a +1=5,c =a +2=6,∴cos A =b 2+c 2-a 22bc =52+62-422×5×6=34,∴sin A =1-cos 2A =74,∴S △ABC =12bc sin A =12×5×6=1574.(2)存在.由于c >b >a ,故要使△ABC 为钝角三角形,只能是C 为钝角.cos C =a 2+b 2-c 22ab <0⇒a 2+b 2<c 2⇒a 2+(a +1)2<(a +2)2⇒a 2-2a -3<0⇒-1<a <3,又a >0,∴a ∈(0,3).考虑构成△ABC 的条件,可得a +b >c ⇒a +(a +1)>a +2⇒a >1.综上,a ∈(1,3).又a 为正整数,∴a =2,∴存在a =2,使得△ABC 为钝角三角形.4.(2022·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知4a =5c ,cos C =35.(1)求sin A 的值;(2)若b =11,求△ABC 的面积.解:(1)由于cos C =35,0<C <π,则sin C =45.因为4a =5c ,由正弦定理知4sin A =5sin C ,则sin A =54sin C =55.(2)因为4a =5c ,由余弦定理,得cos C =a 2+b 2-c 22ab=a 2+121-165a 222a =11-a 252a=35,即a 2+6a -55=0,解得a =5,而sin C =45,b =11,所以△ABC 的面积S =12ab sin C =12×5×11×45=22.角度3最值与范围问题【例5】(2019·全国高考Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sin A +C2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.解:(1)由题设及正弦定理得sin A sin A +C2=sin B sin A .因为sin A ≠0,所以sinA +C2=sin B .由A +B +C =180°,可得sinA +C 2=cos B 2,故cos B 2=2sin B 2cos B2.因为cos B 2≠0,故sin B 2=12,因此B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =34a .由正弦定理得a =c sin A sin C =sin (120°-C )sin C=32tan C +12.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°.由(1)知A +C =120°,所以30°<C <90°,故12<a <2,从而38<S △ABC <32.因此,△ABC 面积的取值范围是(38,32).【例6】(2022·河北沧州二模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2(tan A +tan B )=tan A cos B +tan Bcos A.(1)证明:a +b =2c ;(2)求cos C 的最小值.解:(1)证明:由题意知=sin A cos A cos B +sin Bcos A cos B ,化简得2(sin A cos B +sin B cos A )=sin A +sin B ,即2sin (A +B )=sin A +sin B ,因为A +B +C =π,所以sin (A +B )=sin (π-C )=sin C .从而sin A +sin B =2sin C .由正弦定理得a +b =2c .(2)由(1)知c =a +b 2,所以cos C =a 2+b 2-c 22ab =2ab -14≥12,当且仅当a =b 时,等号成立.故cos C 的最小值为12.【解题方法】———————————————————————————————●求解三角形中最值、范围问题的方法(1)函数法:建立有关的函数关系式,利用角的范围求解;(2)基本不等式法:当三角形中一组边角成对已知时,一般考虑余弦定理,转化为圆内接三角形,利用不等式可求周长最大值问题.【对点练】5.(2021·内蒙古包头一模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin 2B -sin 2A -sin 2C =sin A sin C .(1)求B ;(2)若b =3,当△ABC 的周长最大时,求它的面积.解:(1)由正弦定理得b 2-a 2-c 2=ac ,∴cos B =a 2+c 2-b 22ac =-12,∵B ∈(0,π),∴B =2π3.(2)由余弦定理得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac +ac =(a +c )2-ac =9,∴ac =(a +c )2-9(当且仅当a =c 时取等号),∴a +c ≤23,∴当a =c =3时,△ABC 周长取得最大值,此时S △ABC =12ac sin B =32×32=334.6.(2022·新高考全国Ⅰ卷)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A1+sin A=sin 2B 1+cos 2B.(1)若C =2π3,求B ;(2)求a 2+b 2c 2的最小值.解:(1)因为cos A 1+sin A =sin 2B 1+cos 2B=2sin B cos B 2cos 2B =sin Bcos B ,即sin B =cos A cos B -sin A sin B =cos (A +B )=-cos C =12,而0<B <π2,所以B =π6.(2)由(1)知,sin B =-cos C >0,所以π2<C <π,0<B <π2,而sin B =-cos C =sin所以C =π2+B ,即有A =π2-2B ,所以a 2+b 2c 2=sin 2A +sin 2Bsin 2C=cos 22B +1-cos 2B cos 2B =(2cos 2B -1)2+1-cos 2B cos 2B=4cos 2B +2cos 2B -5≥28-5=42-5,当且仅当cos 2B =22时取等号,所以a 2+b 2c2的最小值为42-5.核心考点(三)解三角形的综合应用角度1与平面几何有关的解三角形问题【例1】(2020·全国Ⅰ卷)如图,在三棱锥P ABC 的平面展开图中,AC =1,AB =AD =3,AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =________.解析:在△ABC 中,AB ⊥AC,AC =1,AB =3,所以BC =2.在△ABD 中,AB ⊥AD,AD =3,AB =3,所以BD = 6.在△ACE 中,AC =1,AE =AD =3,∠CAE =30°,由余弦定理得CE 2=AC 2+AE 2-2AC ·AE ·cos ∠CAE =1+3-2×1×3×32=1,所以CE =1.在△BCF 中,BC =2,FC =CE =1,BF =BD =6,由余弦定理得cos ∠FCB =FC 2+BC 2-FB 22FC ·BC =1+4-62×1×2=-14.答案:-14【例2】(2021·新高考全国Ⅰ卷)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b 2=ac ,点D 在边AC 上,BD sin ∠ABC =a sin C .(1)证明:BD =b ;(2)若AD =2DC ,求cos ∠ABC .解:(1)证明:由题设,BD =a sinC sin ∠ABC,由正弦定理知c sin C =b sin ∠ABC ,即sin C sin ∠ABC =c b,∴BD =acb ,又b 2=ac ,∴BD =b ,得证.(2)由题意知,BD =b ,AD =2b3,DC =b 3,∴cos ∠ADB =b 2+4b 29-c 22b ·2b 3=13b 29-c 24b 23,同理cos ∠CDB =b 2+b 29-a 22b ·b 3=10b 29-a 22b 23,∵∠ADB =π-∠CDB ,∴13b 29-c 24b 23=a 2-10b 292b 23,整理得2a 2+c 2=11b 23,又b 2=ac ,∴2a 2+b 4a 2=11b 23,整理得6a 4-11a 2b 2+3b 4=0,解得a 2b 2=13或a 2b 2=32,由余弦定理知,cos ∠ABC =a 2+c 2-b 22ac=43-a 22b 2,当a 2b 2=13时,cos ∠ABC =76>1不合题意;当a 2b 2=32时,cos ∠ABC =712.综上,cos ∠ABC =712.【解题方法】———————————————————————————————●(1)分析平面几何图形,寻找一个含有三个独立条件的三角形并求解,将解得的边、角再用于求解其他三角形.(2)如果两个三角形有共同的边或角,也可列方程求解.【对点练】1.(2022·山东临沂一模)如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ;(2)求BD ,AC 的长.解:(1)在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin (∠ADC -∠B )=sin ∠ADC cos B -cos ∠ADC sin B =437×12-17×32=3314.(2)在△ABD 中,由正弦定理,得BD =AB ·sin ∠BAD sin ∠ADB =8×3314437=3.在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B =82+52-2×8×5×12=49,所以AC =7.2.(2022·湖南株洲二模)如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值;(2)求BE 的长.解:设∠CED =α.(1)在△CDE 中,由余弦定理,得EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC .于是由题设知,7=CD 2+1+CD ,即CD 2+CD -6=0.解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理,得EC sin ∠EDC=CDsin α.于是,sin α=CD ·sin2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知,0<α<π3,于是由(1)知,cos α=1-sin 2α=1-2149=277.而∠AEB =2π3-α,所以cos ∠AEB =coscos 2π3cos α+sin 2π3sin α=-12cos α+32sin α=-12×277+32×217=714.在Rt △EAB 中,cos ∠AEB =EA BE =2BE,故BE =2cos ∠AEB=2714=47.角度2正、余弦定理的实际应用【例3】如图所示,为了测量A ,B 处岛屿的距离,小明在D 处观测,A ,B 分别在D 处的北偏西15˚、北偏东45˚方向,再往正东方向行驶40n mile 至C 处,观测B 在C 处的正北方向,A 在C 处的北偏西60˚方向,则A ,B 两处岛屿间的距离为()A .206n mileB .406n mileC .20(1+3)n mileD .40n mile解析:选A .在△ACD 中,∠ADC =15˚+90˚=105˚,∠ACD =30˚,所以∠CAD =45˚,由正弦定理可得:CD sin ∠CAD =ADsin ∠ACD,解得AD =CD sin ∠ACDsin ∠CAD=40×1222=20 2.在Rt △DCB 中,∠BDC =45˚,所以BD =2CD =40 2.在△ABD 中,由余弦定理可得:AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB =800+3200-2×202×402×12=2400,解得AB =20 6.【例4】如图,小明同学为了估算索菲亚教堂的高度,在索菲亚教堂的正东方向找到一座建筑物AB ,高为(153-15)m ,在它们之间的地面上的点M (B ,M ,D 三点共线)处测得楼顶A ,教堂顶C 的仰角分别是15˚和60˚,在楼顶A 处测得塔顶C 的仰角为30˚,则小明估算索菲亚教堂的高度为()A .20mB .30mC .203mD .303m解析:选D .由题意知:∠CAM =45˚,∠AMC =105˚,所以∠ACM =30˚.在Rt △ABM 中,AM =AB sin ∠AMB =ABsin 15˚,在△ACM 中,由正弦定理得AM sin 30˚=CMsin 45˚,所以CM =AM ·sin 45˚sin 30˚=AB ·sin 45˚sin 15˚·sin 30˚,在Rt △DCM 中,CD =CM ·sin 60˚=AB ·sin 45˚·sin 60˚sin 15˚·sin 30˚=(153-15)×22×326-24×12=30 3.【解题方法】———————————————————————————————●应用三角知识解决实际问题的模型【对点练】3.小明去海边钓鱼,将鱼竿AB摆成如图所示的样子.已知鱼竿=4.2m,海平面EC与地面AM相距0.9m,鱼竿甩出后,BC,CD均为钓鱼线,线长共5m,鱼竿尾端离岸边0.3m,即AM=0.3m,假设水下钓鱼线CD与海平面垂直,水面上的钓鱼线BC与海平面的夹角为45˚,鱼竿与地面的夹角为30˚,则鱼钩D到岸边的距离约为________.(结果保留两位小数,3≈1.732)解析:如图,过点B作BN⊥CE,垂足为N,过点A作AG⊥BN,垂足为G.∵AB=4.2m,鱼竿与地面的夹角为30˚,∴BG=2.1m,AG=2.13m.∵海平面EN与地面AM相距0.9m,∴BN=2.1+0.9=3m,∵水面上的钓鱼线BC45˚,∴CN=BN=3m,∴C到岸边的距离为3+2.13-0.3≈6.34m.又水下钓鱼线CD与海平面垂直,∴鱼钩D到岸边的距离约为6.34m.答案:6.34m。
专题二 第2讲 三角恒等变换与解三角形
c,已知 bsin 2A=asin B,且 c=2b,则ab等于
A.3
1 B.3
3 C. 3
√D. 3
因为bsin 2A=asin B,
所以2bsin Acos A=asin B,
利用正弦定理可得2abcos A=ab, 所以 cos A=12,又 c=2b, 所以 cos A=b2+2cb2c-a2=b2+44bb22-a2=12, 解得ab= 3.
(2)(2022·全国乙卷)记△ABC的内角A,B,C的对边分别为a,b,c,已 知sin Csin(A-B)=sin Bsin(C-A). ①证明:2a2=b2+c2;
方法一 由sin Csin(A-B)=sin Bsin(C-A),
可得sin Csin Acos B-sin Ccos Asin B
abcos C= 2 ,2bccos A=b2+c2-a2, 将上述三式代入(*)式整理,得2a2=b2+c2.
方法二 因为A+B+C=π, 所以sin Csin(A-B)=sin(A+B)sin(A-B) =sin2Acos2B-cos2Asin2B =sin2A(1-sin2B)-(1-sin2A)sin2B =sin2A-sin2B, 同理有sin Bsin(C-A)=sin(C+A)sin(C-A)=sin2C-sin2A. 又sin Csin(A-B)=sin Bsin(C-A), 所以sin2A-sin2B=sin2C-sin2A,即2sin2A=sin2B+sin2C, 故由正弦定理可得2a2=b2+c2.
所以 cos α=
415,tan
α=csoins
αα=
15 15 .
2sin α 方法二 因为 tan 2α=1-2tatnanα2α=1-cocssoinαs22αα =c2ossi2nα-αcsoisnα2α=21s-in 2αscions2αα,
三角恒等变换及解三角形
2()()2()()()2()ααβαββαβαβααββαβαβα=-++=+--=+-+=++三角恒等变换和解三角形一、基础知识回顾 1、和角与差角公式:①sin()αβ±=____________②cos()αβ±=_____________③tan()αβ±=____________ ④sin cos a b αα+)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,大小由tan baϕ=决定). 2、二倍角公式:①sin 2α=_________;②c o s2α=________=________=_________;③ta n2α=__________ 3、半角公式:①2sin2α=_________________;sin2α=_________________.②2cos 2α=_________________;cos 2α=_________________.③tan 2α=_____________=sin 1cos αα+=1cos sin αα-.4、角的变形:5、正弦定理:_________________________________;主要用于解决以下问题: (1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求三角形其它元素。
6、已知三角形的两边,a b 和其中一边的对角A ∠,三角形解的情况:7、根据正弦定理可得△ABC 的几个常用面积公式: ①ABC S ∆=____________11sin sin 22bc A ca B ==②用,,a b c 及R 表示ABC S ∆=_____________;(R 为△ABC 的外接圆半径) ③用,,a b c 及r 表示ABC S ∆=_____________;(r 为△ABC 的内切圆半径) 8、余弦定理:_________________;___________________;_____________________ 变形为:____________________;____________________;_____________________ 余弦定理主要解决以下问题:(1)已知三边或三边的比例,求三角形的三个角; (2)已知两边和它们的夹角,求第三边和其它两个角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题讲座高中数学“三角变换与解三角形”教学研究谷丹北京四中一、整体把握“三角变换与解三角形”的教学内容(一)教学内容的知识框架三角变换的知识框架为:解三角形的知识框架为:(二)教学内容的结构与作用从上述知识框架可知,三角变换与解三角形问题,常常可视为以若干(三角)公式为基础,解决简单的代数变换(求值、化简、证明等等)问题或实际问题。
从主要解决的问题来看,往往需要对可使用的三角公式有较强的识别、应用能力,所以,这部分数学内容是训练学生代数辨析与变形能力的良好素材。
从方程观点看,三角变换公式与正弦定理、余弦定理皆可视为关于公式、定理中包含的各变量的方程,因此,该部分知识内容也是方程思想的重要体现,对学生进一步理解、掌握方程思想有着相当重要的认知价值。
从函数观点来看,三角变换公式,可视为:如何用自变量的三角函数值表示自变量的和与差所对应的函数值的问题,因此,与三角函数的广泛应用相一致,三角变换的知识内容在数学学科内部与其他学科中也具有十分广泛的应用。
(三)教学内容的重点、难点分析从教学内容来看,“三角变换与解三角形”的教学主要重点是:诸多公式的推导与记忆。
特别是基本公式(如:两角和与差的正弦、余弦公式,正弦、余弦定理)的推导方法,衍生公式(如倍角公式、半角公式、和差化积与积化和差公式)与基本公式的关系,常用公式(如和、差、倍公式)的准确记忆等等。
公式或重要数学模型的识别与应用。
这部分数学内容所涉及的公式数量多,结构比较复杂,在具体问题中又往往遇到的是变换或变形后的公式,或是公式的一部分,我们在教学中的重要任务,就是通过不断引导学生从角、运算关系、系数变化等等特征观察已知条件与待求结论,识别可应用的公式,选择合适的办法解决问题。
一些常见的问题类型,可抽象固化为重要的数学模型,形成具有可操作性的解题程序或解题策略,我们在教学过程中另一个重要任务,就是引导、帮助学生建立数学模型,形成解题程序与策略,并在后继解决问题过程中,提高识别这些数学模型的能力,准确、灵活地执行解题程序、应用解题策略的能力。
由上可知,“三角变换与解三角形”这部分除了几个常用公式以外,更重视这些公式的应用。
因此,这部分教与学的难点,与教学重点有诸多重合,也往往与掌握和使用解决问题的方法与策略有关。
在教与学的过程中,主要或常见的难点是:1. 两角和与差余弦公式的推导:一般来说,我们会用数形结合的工具来推导两角和与差的余弦公式。
而任何教材上介绍的证明方法,都不是很难理解。
比较困难的是,如何引导学生自行探究推导的方法与途径。
同时,引导学生关注、探讨自己找到的解决问题的方法是否对任意角皆适用,也有一定难度。
2.经角度变换或代数变形后的公式识别:正如在“教学重点”中所述,由于这部分所学内容公式多且结构复杂,在题目中呈现时又多有变形,所以,给学生识别公式带来很多困扰。
其中,最常见的难点是:( 1 )公式需由“展开”化简为“合并”形式;( 2 )公式中有一些量替换为常数;( 3 )结合“换元法”进行角的变换,再与三角公式综合应用的问题;( 4 )常用三角公式形式经代数变形以后的应用问题。
帮助学生克服这些难点的主要策略就是从角的关系、函数关系、运算关系入手,识别可用的公式,并选择使用公式的方法或途径。
3.函数模型的识别:三角变换常用于函数问题。
但当变换前的函数表达形式比较复杂时,学生往往会因为不能确定变形的方向而困惑。
帮助学生提高识别能力的主要策略是以函数学习内容的整体结构为基础,帮助学生逐步理解、掌握常用的函数类型,并不断提高根据(变形前)函数的特征大致确定变形方向的能力。
4.与角的变换有关的条件等式问题:一般来说,与角的变换有关的条件等式问题,往往因为已知条件(等式)和待求中角的表达形式有一定的差异,使得学生看不清“已知”与“待求(证)”之间的关系,盲目变形。
其结果或者是造成解题过程繁琐、不严谨,或者是越变越乱,无法解决问题。
这类情况的解决策略,主要是应不断提高学生的“换元”意识,通过适当换元,使得题涉各角之间的关系变得更为明确、简洁,从而帮助学生辨析、选择解决问题的方法或途径。
5.三角形的综合问题:所谓三角形的综合问题,主要是指解三角形问题中,那些条件比较多、表述方式比较复杂,解决问题的方法综合性或灵活性比较强的问题。
这类问题,学生往往因为不能整体把握题目条件、待求之间的关联而无法顺畅、清晰地设计、实现解题程序。
我们可以通过指导学生根据问题的类型(如:求值,证明,判断三角形形状等等),分析、归纳解决各类问题常用的策略,来帮助学生不断提高解决三角形综合问题的能力。
二、“三角变换与解三角形”的教学策略(一)三角公式推导的教学过程设计1.两角和与差的余弦公式一般来说,我们会先推导两角和与差的余弦公式,再利用诱导公式、代数变形等方法得到两角和与差的正弦、正切公式。
通常,教材选用的证明两角和与差的余弦公式的方法,学生并不难理解。
但是,两角和与差的余弦公式作为一个重要的基础公式,推导方法众多,如果我们能引导学生经历其推导过程,对学生更好的体验数学学习的探究过程与方法,都是很有帮助的。
在推导过程中,可能问题设计开放程度不同,将有不同的收获;选取不同的解决问题方法,也会有不同的解题路径;当然,不同方法为保证其证明过程的严谨性所做的努力也不同。
(1)问题设计一般来说,我们所提出的待探究问题对方法和结论的指向性越明确,越容易较快完成探究过程,但这样的问题,往往开放程度比较差,给学生提供的探究空间比较小,对学生探究能力的要求相对也比较低。
所以,我们可以根据学生不同的学业水平,设计、选择具有不同开放程度的问题,引导学生探究两角和与差的三角变换公式。
下面是几个不同层次问题的示例:问题一:在单位圆中作出图 1 ,提问:你能利用的三角函数值表示吗?这个问题,是开放程度比较低的。
特别是图中标出的单位圆、向量等等,已经向学生强烈暗示了可利用向量数量积的坐标方法得到的公式,此问题对学生的挑战性很小。
问题二:由前期学习可知,我们可以将向量的数量积与两个向量间所成角的余弦值联系起来,因此,我们将借助向量的方法得到用的三角函数值表示的公式。
请观察图 2 ,我们如何才能得到的公式呢?问题二虽然也相当明确地指明了推导公式所需用的主要的数学工具——向量,但学生需要在解决问题的过程中体悟应探究关键信息(如的三角函数值)的关系,减少非关键信息(如向量的模)的干扰,从而自行发现或选择第二个重要数学工具——单位圆来帮助自己解决问题,同时,也可以通过比较推导的难易程度,进一步体会坐标法的作用与使用方法,所以,与“问题一”相比,给学生提供的探究空间更大一些。
问题三:如何用角的三角函数值来表示的三角函数值?这个问题,对课题的描述最简要,但对解决问题的办法没有任何提示,因此开放性很强。
当然,“问题”不是有且仅有这样三个层次,在这些问题之间,特别是“问题二”与“问题三”之间,教师们可以根据学生的情况,将“问题”的层次分解得更为细化,比如,铺垫一些过渡性的问题,对学生选择解决问题的工具或方法、途径进行一些提示等等。
(2)方法探究我们从前述“问题三”出发,考虑方法的探究过程。
首先我们可以进一步明确问题:观察的关系可知,如果我们在六个量中推导出任一个量的表达公式,结合诱导公式与同角三角函数关系,就可以得到其他五个量的表达公式。
其次,我们可以确定解决问题的基本方向:可以先通过简单试数判断,的三角函数值与三角函数值不是简单的线性关系,从以前学习的知识方法来看,单纯的代数方法似乎比较难以解决问题。
我们可以尝试通过数形结合,建立的三角函数值与三角函数值的关系。
以数形结合为工具,我们大致有三大类解决问题的常用方法:向量、单位圆与解三角形。
向量方法,如前“问题一”或“问题二”所示。
单位圆方法,主要是在单位圆中寻找的三角函数值与三角函数值的关系,通常可以有如图 3 、图 4 所示的方法推导公式。
如用图3 ,如果学生前期学过余弦定理,则可以在三角形 OAB 中应用之,求得的公式,如果前期未学过余弦定理,则可以通过用不同的方法表示三角形 OAB的面积而求得的表达式,若在作图时将的终边画在第一象限,则学生也有可能用解三角形的方式求得的正弦或余弦公式。
方法众多,但基本上是需借助解(直角)三角形才可推得公式。
如图 4 ,一些学生有可能在未画出的情况下,就布列三角函数值之间的关系,解题方法可以非常类似图 3 中可用的所有方法,但得出方程后,需要做一个角度代换才能得到两角差的余弦公式。
如果学生能够做出,则就可能根据得到的公式。
解三角形方法,主要是如图 5 所示,将置于同一个三角形内, CD = 1 ,。
利用等积法等初中习得的方法,推导的公式。
类似地,也可以如图 6 所示,推导的三角函数公式。
一般来说,各大类方法中有诸多具体方法,而且各类方法中也有一些方法是重叠的。
教学中可以引导学生在课上与课下利用多种形式交流,使大家能共享群体的探究成果。
(3)表述完整一般来说,用解三角形的方法来推导两角和与差的公式,的取值范围皆有限制;向量方法,因两向量间所成角的范围为,所以也要进一步考虑推导方法是否可推广到任意角的情况。
从前所述可知,以图 4 为基础推导公式时,不受角的取值范围的限制;用图 1 所示以向量与单位圆方法为基础推导的公式时,若记向量所成角为,则当为任意角时,有,据诱导公式可知,推导过程可以推广到任意角;若由解三角形而得公式,则推广到任意角的过程就复杂很多,难度比较大。
所以,可以分两步处理“表述完整”的要求:( 1 )通过几类方法的交流,引导全体学生体悟各类方法的优劣,特别是向量方法的简捷,单位圆法的严谨,解三角形法的局限;( 2 )请有兴趣的学生利用课后时间,以探究性作业的形式,将各类方法的严谨证明补充完整。
2.二倍角及其他由两角和公式得到二倍角公式是相当容易的。
课程标准中要求学生能用两角和与差、倍角公式“引导导出积化和差、和差化积、半角公式,但不要求记忆”,而对二倍角公式,则要求“能进行简单的三角变换”。
(《普通高中数学课程标准(实验)》,人民教育出版社,第 32 页。
)因此,我们在设计这些公式的推导过程时,可以主要关注两点:(1)从角的变换讲倍角与半角公式:由①,通过变形可得②,③,显然,公式②、③作为余弦倍角公式的变形,在恒等变形中使用非常多,这可以表述为当两个角成二倍关系的时,正弦、余弦函数间的代数变形关系。
我们在教学过程中可以更多的强调这种角的变换带来的代数变形,而不必过于强调当代换为时,公式②、③两边开方即为半角公式。
同样,我们可以引导学生关注,用的三角函数值表述时,由正切倍角公式和同角三角函数推导公式时难易程度的不同,进而让学生体验在可行的解决问题的方法中,比较、选择更优方法的过程。