等式的基本性质(解方程)练习
七年级数学上册第5章一元一次方程5-2等式的基本性质作业新版浙教版
B.等式的性质 2
C.分式的基本性质C ) A.若 x-1=3,则 x=4 B.若 x-3=y-3,则 x-y=0 C.若12 x-1=x,则 x-1=2x D.若 3x+4=2x,则 3x-2x=-4
4.下列结论不成立的是( D ) A.若 x=y,则 5-x=5-y B.若 x=y,则-5x=-5y C.若ac =bc ,则 a=b D.若 a=b,则ac =bc
A.在等式 ab=ac 的两边同时除以 a,可得 b=c B.在等式 a=b 的两边同时除以 c2+1,可得c2+a 1 =c2+b 1 C.在等式ab =ac 的两边同时除以 a,可得 b=c D.在等式 x-2=6 的两边同时加上 2,可得 x=6
12.(1)能不能由(a+3)x=b-1,变形成 x =ba- +13 ?为什么?
(4)如果-1m0 =n5 ,那么 m=___-__2_n__.理 由 : 根 据 等 式 性 质 __2___ , 在 等 式 两 边 _______都__乘__以__-__1_0________.
7.利用等式性质解方程: (1)8x=6+7x;
解: x=6;
(2)3-6x=17+x;
解: x=-2
第5章 一元一次方程
5.2 等式的基本性质
课时目标
1.掌握等式的性质1和性质2
2.会用等式的性质解方程
A
1.已知 x=y,下列等式不成立的是( C )
A.x+2=y+2
B.3x=3y
C.5x=5y+1
D.-x2 =-2y
2.把方程12 x=1 变形为 x=2,其依据是( B )
A.等式的性质 1
5.由0.3y=6得到y=20,这是由于( D ) A.等式两边都加上0.3 B.等式两边都减去0.3 C.等式两边都乘以0.3 D.等式两边都除以0.3
《等式的性质》练习题
《等式的性质》练习题一、选择题1、根据等式的性质,下列哪个选项是不正确的?A.若 a = b,则 a + c = b + cB.若 a = b,则 ac = bcC.若 a = b,则 a - c = b - cD.若 a = b,则 ac = bc2、根据等式的性质,下列哪个选项不能由给出的等式推导出来?A.若 2x = 4y,则 x = 2yB.若 x + 3 = y + 3,则 x = yC.若 x2 = y2,则 x = y或 x = -yD.若 x + 5 = y - 3,则 x = y - 83、根据等式的性质,下列哪个选项是正确的?A.若 a = b,则 a2 = b2B.若 a = b,则 a3 = b3C.若 a = b,则 a4 = b4D.若 a = b,则 a5 = b5二、填空题1、若 3x = 9,则 x = ______。
2、若 5y + 2 = 12,则 y = ______。
3、若 -4x = -16,则 x = ______。
4、若 0.5x - 3 = 1,则 x = ______。
三、解答题1、根据等式的性质,解答下列问题:如果 4x + 6 = 10,那么 x的值是多少?2、根据等式的性质,解答下列问题:如果 3x - 7 = 16,那么 x的值是多少?《等式的基本性质》教案【教学目标】1、通过对等式的性质的探究,使学生能够理解并掌握等式的基本性质。
2、学会运用等式的基本性质进行等式的变形。
3、培养学生观察、实验、猜想、验证等探究能力。
【教学重难点】1、重点:探究等式的基本性质。
2、难点:运用等式的基本性质进行等式的变形。
【教具准备】多媒体课件、小黑板【教学过程】一、导入新课,揭示课题1、导入新课:利用天平图示,让学生观察天平两端同时加上或减去同样的重物,天平会怎样?同时向两个相反方向移动同样的距离,天平又会怎样?出示两组数据,分别列出等式并填空。
学生思考回答后,教师及时评价,引出课题。
等式的基本性质
2 5 x 20 ;
解: (1)两边减7,得 x 7 7 26 7 于是 x 19
5 x 5 20 5
x 于是 (3)两边加5,得
4 1 3 x 55 45 化简,得 1 3x 9 两边同乘-3,得 x 27
学会 方法
在下面的括号内填上适当的数或者式子:
小结: 谈谈这节课你的 学习体会
;
/ 活性氧化铝 氢氧化铝 高温氧化铝 分子筛
stb70rus
走几步过去,那做爹娘的赶快千恩万谢地接过窝头,拉着两个娃儿望北街走了。我小声儿对爹说:‘这个田掌柜可真够吝啬的, 自己吃白馍,却给人家小娃儿窝窝头!’。爹没有吭声,拉着我也拐往北街。走到一个包子铺前面的时候,爹站住了。他买了 十个还冒着热气儿的肉包子,并且叫伙计打包好了,然后对我说:‘你快去追上那一家子,把这些包子送给他们哇!唉,这些 逃难过来的人,拖家带口的,很难哪!’。回家的路上,我又说:‘那田掌柜可真够吝啬,自己吃白馍,却给人家小娃儿窝窝 头!’。爹却对我说:‘我们不能总是拿自己的想法来要求别人!那田掌柜已经挺不错了,知道拿两个现蒸的热窝头送给两个 饥饿的小娃儿吃。再说了,也许他们家当时再没有白馍了呢!’。爹说过的这些话,我到现在了还记得清清楚楚的。想一想啊, 这做人就应该是‘严于律己,宽以待人’呢!就拿咱这对门儿和隔壁的两家来说吧,他们都是居家过日子的人了,即便是有能 力帮助梁爷爷和梁奶奶医治伤痛,也不可能有精力就像咱们这样护理两位老人家啊!”耿英想一想也对,从此以后,就不再老 是瞧着那几个邻里人不顺眼了。79第六十三回 慷慨舍财尽全力|(护理老妇超复杂,兄妹三人日夜忙;慷慨舍财尽全力,梁老 妇人活过来。)当时,耿正兄妹三人的手里虽然并没有多少现成的银子,但昨晚“盛元酒店”的老板已经给他们开了一张二百 四十两纹银的收据,这个收据耿正是随身带着的。而且,昨儿晚上耿正已经听张老大说过,这位张老郎中是住在东大街上的; 而要到那里,就必定会途径“盛元酒店”的;所以,耿正无须担心没有现成的银子买药丸儿和膏药。“盛元酒店”柜台上的流 动银子有的是。当耿正匆匆进去说明事由之后,账房先生果然立马就顺利给他提取了一百两银子。然后,耿正就搀扶着张老郎 中慢慢地往东大街去了。张老郎中到家后,把三粒药丸儿和足够的膏药给耿正包好。耿正拿出银子,张老郎中只如数收取了安 宫神丸的费用,并没有考虑其他。耿正说:“这些膏药和您给梁爷爷涂的那些药膏的费用呢!还有啊,您老跑这一趟很累的, 也应该„„”不等耿正说完,张老郎中就说话了:“那些就都不用了。这以后需要花的钱会很多的,你们也不容易啊!少收的 这一点点,就算是我帮了那俩可怜人了!”最后,张老郎中又拿起一个长嘴小壶,说:“你们就用这个小壶给老妇人灌药吧。 切记,灌药的时候,要把老人扶着坐起来。还有,壶里先不要放药水,等到把壶嘴慢慢地全部放入到喉咙里以后,再把药水倒 入壶里,并且等药水全部流完以后,再轻轻敲打壶身,确定壶嘴里已经没有一点药水了,才可以把壶嘴慢慢地抽出来;要不然, 如果不慎把药水灌入到了气道里边,那可是很危险的事情
等式的性质 小学5年级数学练习
等式的性质闯关驿站1.在方程下面找到方程的解,并在□内画“√”。
x+45=100 x-20=90x=55□x=70□x=145□x=110□2.在〇里填运算符号,在()里填数。
(1)x+40=200解:x+40-()=200〇()x=()⑵x-0.7=1.7解:x-0.7+()=1.7〇()x=()3.解下列方程。
(1)x+13.2=15.8 (2)x-4.6=12.1(3)5.4+x=9 (4)x-30=64.5(5)3(x-0.8)=12 (6)36x+6x=844.看图列方程并解答。
(1)(2)(3)5.方程7.2+x=9与方程m-x=7.3(x为未知数)的解相等。
你能求出m等于多少吗?等式的性质考点题库1.(常考题)看图填空。
(1)x○50 x+( )○50+( )(2)x+20○70 x+20-( )○70-( )2.(重点题)如果a=b,根据等式性质填空。
(1)(2)(3)(4)等式的性质轻松十分一、按要求把下列式子的序号填放相应的圈里①4+6=10②3+8x=40③17-6x④x+5=8 ⑤9.2+3x=4 ⑥ x-17<34 ⑦ 0.5x=1⑧ 3.1+x>15.7 ⑨ x+15=45.2()2a b⨯=⨯()33a b÷=()13a b⨯=⨯()()()242a b+⨯=+⨯二、根据等式的性质,在○里填运算符号,在□里填数① x+32=56解:x+32○□=56○□x=□② 15+x=19.5解:15+x○□=19.5○□x=□③ x-18=22解:x-18○□=22○□x=□三、是方程的打“√”,不是的打“×”① 40+60=100()② x-17>70()③ 5+4x=15()④ x+30()⑤ 9<3x+5()⑥ 7x=0()⑦ 8+9x()⑧ 7x+3=8()⑨ 8x+5x=54()⑩ 6-x>1()等式的性质同步练习【基础训练】1.看图填空。
高中数学 第二章 等式与不等式 2.1 等式 2.1.1 等式的性质与方程的解集精品练习(含解析)新
2.1.1 等式的性质与方程的解集必备知识基础练进阶训练第一层知识点一因式分解1.将多项式x -x 3因式分解正确的是( ) A .x(x 2-1)B .x(1-x 2)C .x(x +1)(x -1)D .x(1-x)(1+x)2.分解因式:a 3+a 2-a -1=________.3.把下列各式分解因式:(1)x 2-3x +2=________;(2)x 2+37x +36=________;(3)(a -b)2+11(a -b)+28=________;(4)4m 2-12m +9=________.知识点二 方程的解集 4.方程2x -(x +10)=5x +2(x +1)的解集为( )A .⎩⎨⎧⎭⎬⎫43B .⎩⎨⎧⎭⎬⎫-43C .{-2}D .{2}5.若关于x 的方程(2+2k)x =1无解,则( ) A .k =-1 B .k =1C .k≠-1D .k≠16.一元二次方程x 2-3x +2=0的解集为( ) A .x =-1或x =-2 B .{-1,-2}C .x =1或x =2D .{1,2}7.若(x +2)(x -1)=x 2+mx +n ,则m +n 等于( ) A .1 B .-2C .-1D .2关键能力综合练 进阶训练第二层一、选择题1.下列变形中,正确的是( ) A .若ac =bc ,那么a =bB .若a c =b c,那么a =bC .若|a|=|b|,那么a =bD .若a 2=b 2,那么a =b2.方程3x +(2x -4)=1的解集是( ) A .{1} B .{2}C .{3}D .{-2}3.方程y 2-3y -4=0的解集是( ) A .y =1或y =-4 B .{1,-4}C .y =-1或y =4D .{-1,4}4.方程2m +x =1和3x -1=2x +1的解相同,则m 的值为( )A .0B .1C .-2D .-125.方程(10-2x)(6-2x)=32的解集是( ) A .x =1或x =7 B .{1,7}C .x =3或x =5D .{3,5}6.(易错题)下列等式变形:①若a =b ,则a x =b x ;②若a x =b x,则a =b ;③若4a =7b ,则a b =74;④若a b =74,则 4a =7b ,其中正确的个数是( ) A .1 B .2C .3D .4二、填空题7.补全下列等式.(1)a 3-b 3=________(因式分解);(2)(a+b)(a2-ab+b2)=________(化简);(3)x2+(m+n)x+mn=________(因式分解);(4)x2+(5+t)x+5t=________(因式分解).8.若a+b=4,a-b=1,则(a+1)2-(b-1)2的值为________________________________________________________________________.9.(探究题)方程x2+mx=5m+5x(m为常数且m≠-5)的解集为________.三、解答题10.分解因式:(1)9x2-81;(2)(x2+y2)2-4x2y2;(3)3x(a-b)-6y(b-a);(4)6mn2-9m2n-n3.学科素养升级练进阶训练第三层1.(多选)若x2-y2+mx+5y-6能分解为两个一次因式的积,则m的值可以为( ) A.1 B.-1C.0 D.22.已知a,b,c 是△ABC的三边的长,且满足a2+2b2+c2-2b(a+c)=0,则此三角形为________三角形.3.(学科素养—运算能力)(1)求方程x2-(k+3)x+3k=0(k为常数)的解集;(2)方程ax=3的解集A包含于方程x2+6x+5=0的解集B,求a的值.2.1.1 等式的性质与方程的解集必备知识基础练1.解析:x-x3=x(1-x2)=x(1-x)(1+x).故选D.答案:D2.解析:a3+a2-a-1=a2(a+1)-(a+1)=(a2-1)(a+1)=(a+1)2(a-1).答案:(a+1)2(a-1)3.解析:(1)x2-3x+2=(x-1)(x-2);(2)x2+37x+36=(x+1)(x+36);(3)(a-b)2+11(a-b)+28=[(a-b)+4][(a-b)+7]=(a-b+4)(a-b+7);(4)4m2-12m+9=(2m-3)2.答案:(1)(x-1)(x-2) (2)(x+1)(x+36)(3)(a-b+4)(a-b+7) (4)(2m-3)24.解析:因为2x-(x+10)=5x+2(x+1),所以2x-x-10=5x+2x+2,即-6x=12,所以x=-2.答案:C5.解析:当2+2k=0时,方程无解,即k=-1.答案:A6.解析:原方程可化为(x-1)(x-2)=0,解得x=1或x=2,即方程的解集为{1,2}.答案:D7.解析:∵原式=x2+x-2=x2+mx+n,∴m=1,n=-2.∴m+n=1-2=-1.故选C.答案:C关键能力综合练1.解析:A中若c=0,则不能得到a=b,C中|a|=|b|,可得到a=±b,D中a2=b2,可得a=±b,B显然成立.答案:B2.解析:方程可化为5x=5,即x=1,所以方程的解集为{1}.故选A.答案:A3.解析:方程y2-3y-4=0可化为(y+1)(y-4)=0,即y=-1或y=4,所以方程的解集为{-1,4}.故选D.答案:D4.解析:方程3x-1=2x+1的解集为{2},方程2m+x=1可化为x=1-2m,所以由已知可得1-2m=2,即m=-12.故选D.答案:D5.解析:方程(10-2x)(6-2x)=32可化为28-32x+4x2=0,x2-8x+7=0,(x-1)(x -7)=0,解得x=1或x=7,所以方程的解集为{1,7}.故选B.答案:B6.解析:利用等式的基本性质,且要注意基本性质(2)中两边不能除以一个为0的数,这是一个重要条件,进行判断时要检查是同乘还是同除,在同除时字母是否可以为0.故①③错误,②④正确.答案:B7.答案:(1)(a-b)(a2+ab+b2)(2)a3+b3(3)(x+m)(x+n)(4)(x+5)(x+t)8.解析:∵a+b=4,a-b=1,∴(a+1)2-(b-1)2=(a+1+b-1)(a+1-b+1)=(a+b)(a-b+2)=4×(1+2)=12.答案:129.解析:原方程可化为x2+(m-5)x-5m=0,(x-5)·(x+m)=0,即x=5或x=-m,所以方程的解集为{5,-m}.答案:{5,-m}10.解析:(1)原式=9(x2-9)=9(x+3)(x-3).(2)原式=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2.(3)原式=3(a-b)(x+2y).(4)原式=-n(9m2-6mn+n2)=-n(3m-n)2.学科素养升级练1.解析:x2-y2+mx+5y-6=(x+y)(x-y)+mx+5y-6,-6可分解成(-2)×3或(-3)×2,因此,存在两种情况:由(1)可得m=1,由(2)可得m=-1.故选AB.答案:AB2.解析:a2+2b2+c2-2b(a+c)=0,即a2+b2+b2+c2-2ba-2bc=0,即(a-b)2+(b-c)2=0,即a-b=0 ,b-c=0,所以a=b=c.所以△ABC是等边三角形.答案:等边3.解析:(1)原方程可化为(x-3)(x-k)=0,当k≠3时,方程的解集为{3,k},当k=3时,方程的解集为{3}.(2)原方程x 2+6x +5=0可化为(x +1)(x +5)=0, 即x =-1或x =-5,所以B ={-1,-5}. 又当a =0时,A =∅,满足A ⊆B ;当a ≠0时,A =⎩⎨⎧⎭⎬⎫3a , 由A ⊆B ,得3a =-1或3a=-5, 即a =-3或a =-35. 综上可得,a =0或a =-3或a =-35.。
等式的性质试题精选附答案
等式的性质一.选择题(共25小题)1.(2003•无锡)已知2x=3y(x≠0),则下列比例式成立的是()A.B.C.D.2.(2002•金华)已知:,那么下列式子中一定成立的是()A.2x=3y B.3x=2y C.x=6y D.x y=63.如图所示,天平右盘里放了一块砖,左盘里放了半块砖和2kg的砝码,天平两端正好平衡,那么一块砖的重量是()A.1kg B.2kg C.3kg D.4kg4.在下列式子中变形正确的是()A.如果a=b,那么a+c=b﹣c B.如果a=b,那么C.如果,那么a=2D.如果a﹣b+c=0,那么a=b+c5.下列说法正确的是()A.如果ab=ac,那么b=c B.如果2x=2a﹣b,那么x=a﹣bC.如果a=b,那么D.等式两边同时除以a,可得b=c6.下列叙述错误的是()A.等式两边加(或减)同一个数(或式子),结果仍相等B.等式两边乘以(或除以)同一个数(或式子),结果仍相等C.锐角的补角一定是钝角D.如果两个角是同一个角的余角,那么它们相等7.下列变形中不正确的是()A.若x﹣1=3,则x=4B.若3x﹣1=x+3,则2x﹣1=3C.若2=x,则x=2D.若5x+8=4x,则5x﹣4x=88.下列各式中,变形正确的是()A.若a=b,则a﹣c=b﹣c B.若2x=a,则x=a﹣2C.若6a=2b,则a=3b D.若a=b+2,则3a=3b+29.如果a=b,则下列等式不一定成立的是()A.a﹣c=b﹣c B.a+c=b+c C.D.a c=bc10.下列等式变形错误的是()A.若a+3=b﹣1,则a+9=3b﹣3B.若2x﹣6=4y﹣2,则x﹣3=2y﹣1C.若x2﹣5=y2+1,则x2﹣y2=6D.若,则2x=3y11.下列方程变形正确的是()A.由方程,得3x﹣2x﹣2=6B.由方程,得3(x﹣1)+2x=1C.由方程,得2x﹣1=3﹣6x+3D.由方程,得4x﹣x+1=412.已知等式a=b成立,则下列等式不一定成立的是()A.a+m=b+m B.﹣a=﹣b C.﹣a+1=b﹣1D.13.下列方程的变形中,正确的是()①3x+6=0,变形为x+2=0;②x+7=5﹣3x,变形为4x=﹣2;③4x=﹣2,变形为x=﹣2;④=3,变形为2x=15.A.①④;B.②③;C.①②④;D.①②③14.已知5﹣(﹣2x+y)=6,则2x﹣y=()A.﹣1B.0C.1D.215.下列说法正确的是()A.在等式ax=bx两边都除以x,可得a=bB.在等式两边都乘以x,可得a=bC.在等式3a=9b两边都除以3,可得a=3D.在等式两边都乘以2,可得x=y﹣116.(2013•东阳市模拟)如图a和图b分别表示两架处于平衡状态的简易天平,对a,b,c三种物体的质量判断正确的是()A.a<c<b B.a<b<c C.c<b<a D.b<a<c17.已知xy=mn,则把它改写成比例式后,错误的是()A.=B.=C.=D.=18.已知mx=my,下列结论错误的是()A.x=y B.a+mx=a+my C.mx﹣y=my﹣y D.amx=amy19.若ma=mb,那么下列等式不一定成立的是()A.a=b B.ma﹣6=mb﹣6C.D.ma+8=mb+820.下列各方程,变形正确的是()A.=1化为x=B.1﹣[x﹣(2﹣x)]=x化为3x=﹣1C.化为3x一2x+2=1D.化为2(x﹣3)﹣5(x+4)=1021.下列各式变形错误的是()A.2x+6=0变形为2x=﹣6B.=1﹣x,变形为x+3=2﹣2xC.﹣2(x﹣4)=﹣2,变形为x﹣4=1D.,变形为﹣x+1=122.下列变形正确的是()A.若x2=y2,则x=y B.若axy=a,则xy=1C.若﹣x=8,则x=﹣12D.若=,则x=y23.根据下图所示,对a、b、c三种物体的质量判断正确的是()A.a<c B.a<b C.a>c D.b<c24.如果■●▲表示三种物体,现用天平称了现两次,情况如图所示则下列结论正确的是()A.■■=▲B.■=▲C.■>●D.▲▲<■■■25.如图小亮拿了一个天平,测量饼干和糖果的质量(每块饼干质量相同,每颗糖果质量相同),第一次,左盘放两块饼干,右盘放三颗糖果,结果天平平衡;第二次,左盘放10g砝码,右盘放一块饼干和一颗糖果,结果天平平衡;第三次,左盘放一颗糖果,右盘放一块饼干,下列哪一种方法可使天平再次平衡()A.在糖果的秤盘上加2g砝码B.在饼干的秤盘上加2g砝码C.在糖果的秤盘上加5g砝码D.在饼干的秤盘上加5g砝码二.填空题(共3小题)26.(2001•江西)如果,那么= _________ .27.(2000•台州)已知2y=5x,则x:y= _________ .28.(1998•宁波)已知3a=2b(b≠0),那么= _________ .三.解答题(共2小题)29.由(3a+7)x=4a﹣b,得到的是否受一定条件的限制?并说明理由.30.将等式5a﹣3b=4a﹣3b变形,过程如下:∵5a﹣3b=4a﹣3b,∴5a=4a(第一步),∴5=4(第二步).上述过程中,第一步的依据是_________ ,第二步得出错误的结论,其原因是_________ .等式的性质参考答案与试题解析一.选择题(共25小题)1.(2003•无锡)已知2x=3y(x≠0),则下列比例式成立的是()A.B.C.D.考点:等式的性质.分析:根据等式的两边同时乘以或除以同一个不为0的数或字母等式仍成立即可解决.解答:解:根据等式性质2,可判断出只有B选项正确,故选B.点评:本题考查的是等式的性质:等式性质1:等式的两边加(或减)同一个数(或式子)结果仍相等;等式性质2:等式的两边同乘(或除以)同一个数(除数不为0)结果仍相等.2.(2002•金华)已知:,那么下列式子中一定成立的是()A.2x=3y B.3x=2y C.x=6y D.x y=6考点:等式的性质.分析:根据等式的性质,在等式两边同时加、减、乘、除同一个数或式子,结果仍相等可得出答案.解答:解:A、根据等式的性质2,等式两边同时乘以6,即可得2x=3y;B、根据等式性质2,等式两边都乘以9,应得3x=y;C、根据等式性质2,等式两边都乘以3,应得x=y;D、根据等式性质2,等式两边都乘以3y,应得xy=y2;故选A.点评:本题考查的是等式的性质:等式性质1,等式的两边加(或减)同一个数(或式子)结果仍相等;等式性质2,等式的两边同乘(或除以)同一个数(除数不为0)结果仍相等.3.如图所示,天平右盘里放了一块砖,左盘里放了半块砖和2kg的砝码,天平两端正好平衡,那么一块砖的重量是()A.1kg B.2kg C.3kg D.4kg考点:等式的性质.专题:应用题.分析:根据题意可知天平两端正好平衡说明左盘里物质的质量等于右盘里物质的质量,可设一块砖的重量是xkg,利用“天平左盘里物质的质量等于右盘里物质的质量”作为相等关系列方程即可求解.解答:解:设一块砖的重量是xkg,则:2+x=x解得:x=4所以一块砖的重量是4kg.故选D.点评:从天平左右两边平衡引出等量关系:天平左盘里物质的质量等于右盘里物质的质量.若天平两边同时去掉半块砖,则可知半块砖头的重量为2kg.同时也体现出了等式的基本性质1:等式的两边同时加上或减去同一个数或字母,等式仍成立.4.在下列式子中变形正确的是()A.如果a=b,那么a+c=b﹣c B.如果a=b,那么C.如果,那么a=2D.如果a﹣b+c=0,那么a=b+c考点:等式的性质.分析:根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.解答:解:A、应同加同减,故选项错误;B、正确;C、a=8,故选项错误;D、a=b﹣c,故选项错误.故选B.点评:本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.5.下列说法正确的是()A.如果ab=ac,那么b=c B.如果2x=2a﹣b,那么x=a﹣bC.如果a=b,那么D.等式两边同时除以a,可得b=c考点:等式的性质.分析:根据等式的基本性质对各选项分析判断后利用排除法求解.解答:解:A、如果a=0,则不能等式两边都除以a,故本选项错误;B、等式两边都除以2,应为x=a﹣,故本选项错误;C、∵c2+1≥1,∴可以等式两边都除以c2+1,正确;D、是等式两边都乘以a,而不是都除以a,故本选项错误.故选C.点评:本题主要考查等式的基本性质,熟练掌握基本性质是解题的关键,也是为今后更好的学习打下坚实的基础.6.下列叙述错误的是()A.等式两边加(或减)同一个数(或式子),结果仍相等B.等式两边乘以(或除以)同一个数(或式子),结果仍相等C.锐角的补角一定是钝角D.如果两个角是同一个角的余角,那么它们相等考点:等式的性质;余角和补角.分析:根据等式的性质1判断A;根据等式的性质2判断B;根据补角的定义判断C;根据余角的性质判断D.解答:解:A、根据等式的性质1:等式两边加同一个数(或式子),结果仍相等,所以叙述正确,故本选项不符合题意;B、根据等式的性质2:等式两边乘同一个数或除以一个不为零的数,结果仍相等.当除数为0时,除法运算无意义,所以叙述错误,故本选项符合题意;C、根据和为180°的两个角互为补角,得到锐角的补角一定是钝角,所以叙述正确,故本选项不符合题意;D、根据余角的性:同角的余角相等,所以叙述正确,故本选项不符合题意.故选B.点评:本题考查了等式的性质,余角与补角的性质,都是基础知识,需熟练掌握.A.若x﹣1=3,则x=4B.若3x﹣1=x+3,则2x﹣1=3C.若2=x,则x=2D.若5x+8=4x,则5x﹣4x=8考点:等式的性质.分析:根据等式的基本性质进行判断.解答:解:A、等式x﹣1=3的两边同时加上1,等式仍成立,即x=4.故本选项正确;B、等式3x﹣1=x+3的两边同时减去x,等式仍成立,即2x﹣1=3.故本选项正确;C、等式2=x的两边同时加上(﹣x﹣2),再除以﹣1,等式仍成立,即x=2.故本选项正确;D、等式5x+8=4x的两边同时减去(4x+8),等式仍成立,即5x﹣4x+16=8.故本选项错误;故选D.点评:本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.8.下列各式中,变形正确的是()A.若a=b,则a﹣c=b﹣c B.若2x=a,则x=a﹣2C.若6a=2b,则a=3b D.若a=b+2,则3a=3b+2考点:等式的性质.分析:根据等式的两条性质对四个选项逐一分析,发现只有选项A正确.解答:解:A、若a=b,根据等式的性质,等式两边加同一个数(或式子)结果仍得等式,则a﹣c=b﹣c,故选项A正确;B、若2x=a,根据等式的性质,等式两边乘同一个数或除以一个不为零的数,结果仍得等式,则x=a÷2,故选项B错误;C、若6a=2b,根据等式的性质,等式两边乘同一个数或除以一个不为零的数,结果仍得等式,则a=,故选项C错误;D、若a=b+2,根据等式的性质,等式两边乘同一个数或除以一个不为零的数,结果仍得等式,则3a=3b+6,故选项D错误.故选A.点评:本题主要考查等式的两条性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.9.如果a=b,则下列等式不一定成立的是()A.a﹣c=b﹣c B.a+c=b+c C.D.a c=bc考点:等式的性质.专题:计算题.分析:根据等式两边加上(或减去)同一个数,等式仍然成立可对A、B进行判断;根据等式两边同除以一个不为0的数,等式仍然成立对C进行判断;根据等式两边乘以同一个数,等式仍然成立对D进行判断.解答:解:A、若a=b,则a﹣c=b﹣c,所以A选项的等式成立;B、若a=b,则a+c=b+c,所以B选项的等式成立;C、当c≠0,若a=b,则=,所以C选项的等式不成立;D、若a=b,则ac=bc,所以D选项的等式成立.故选C.点评:本题考查了等式的性质:等式两边加上(或减去)同一个数,等式仍然成立;等式两边乘以同一个数,等式仍然成立;等式两边同除以一个不为0的数,等式仍然成立.A.若a+3=b﹣1,则a+9=3b﹣3B.若2x﹣6=4y﹣2,则x﹣3=2y﹣1C.若x2﹣5=y2+1,则x2﹣y2=6D.若,则2x=3y考点:等式的性质.分析:根据等式的性质对各选项分析判断后利用排除法求解.解答:解:A、a+3=b﹣1两边都乘以3得,a+9=3b﹣3,故本选项错误;B、2x﹣6=4y﹣2两边都除以2得,x﹣3=2y﹣1,故本选项错误;C、x2﹣5=y2+1两边都加上5减去y2得,x2﹣y2=6,故本选项错误;D、=两边都乘以6得,2x﹣2=3y﹣3,故本选项正确.故选D.点评:本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.11.下列方程变形正确的是()A.由方程,得3x﹣2x﹣2=6B.由方程,得3(x﹣1)+2x=1C.由方程,得2x﹣1=3﹣6x+3D.由方程,得4x﹣x+1=4考点:等式的性质.专题:计算题.分析:本题需利用等式的性质对等式进行变形,从而解决问题.解答:解:A、根据等式的性质,等式的两边同时乘以6,得3x﹣2x+2=6,故本选项错误;B、根据等式的性质,等式的两边同时乘以6,得3(x﹣1)+2x=6,故本选项错误;C、根据等式的性质,等式的两边同时乘以3,得2x﹣1=3﹣18x+9,故本选项错误;D、根据等式的性质,等式的两边同时乘以4,得4x﹣x+1=4,故本选项正确;故选D.点评:本题考查的是等式的性质:等式性质1:等式的两边加(或减)同一个数(或式子)结果仍相等;等式性质2:等式的两边同乘(或除以)同一个数(除数不为0)结果仍相等;12.已知等式a=b成立,则下列等式不一定成立的是()A.a+m=b+m B.﹣a=﹣b C.﹣a+1=b﹣1D.考点:等式的性质.分析:利用等式的性质对每个等式进行变形即可找出答案.解答:解:A、根据等式的性质1,a=b两边同时加m,得a+m=b+m;B、根据等式的性质2,a=b两边同时乘以﹣1,得﹣a=﹣b;C、根据等式1,由﹣a+1=b﹣1可得a+b=2,所以C错误;D、根据等式的性质2,a=b两边同时除以m,得=(m≠0).故选C.点评:本题主要考查了等式的性质.等式性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.13.下列方程的变形中,正确的是()①3x+6=0,变形为x+2=0;②x+7=5﹣3x,变形为4x=﹣2;③4x=﹣2,变形为x=﹣2;④=3,变形为2x=15.A.①④;B.②③;C.①②④;D.①②③考点:等式的性质.分析:依据等式的基本性质即可解答.解答:解:①3x+6=0,两边同时除以3,得到x+2=0,故正确;②x+7=5﹣3x,变形为4x=﹣2,两边同时加上3x,得到4x+7=5,两边再同时减去7,即可得到4x=﹣2.故正确;③4x=﹣2,两边同时除以4得到:x=﹣,故本选项错误;④=3,两边同时乘以5变形为2x=15.故正确.综上可得正确的是:①②④.故选C.点评:本题属简单题目,只要熟知等式的性质即可.等式性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.14.已知5﹣(﹣2x+y)=6,则2x﹣y=()A.﹣1B.0C.1D.2考点:等式的性质.分析:先由去括号法则去掉等式左边的括号,再根据等式的性质两边同时减去5,即可求解.解答:解:∵5﹣(﹣2x+y)=6,∴5+2x﹣y=6,∴2x﹣y=1.故选C.点评:本题考查了去括号法则,等式的性质,是基础题,比较简单.15.下列说法正确的是()A.在等式ax=bx两边都除以x,可得a=bB.在等式两边都乘以x,可得a=bC.在等式3a=9b两边都除以3,可得a=3D.在等式两边都乘以2,可得x=y﹣1考点:等式的性质.分析:根据等式的性质对四个选项进行逐一分析即可.解答:解:A、若x=0时,在等式ax=bx两边都除以x则此等式无意义,故本选项错误;B、由等式的性质2可知,在等式两边都乘以x,可得a=b,故本选项正确;C、在等式3a=9b两边都除以3,可得a=3b,故本选项错误;D、在等式=﹣1两边都乘以2,可得x=y﹣2,故本选项错误.故选B.点评:本题考查的是等式的基本性质,即①等式的两边同时加上或减去同一个数或字母,等式仍成立;②等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.16.(2013•东阳市模拟)如图a和图b分别表示两架处于平衡状态的简易天平,对a,b,c三种物体的质量判断正确的是()A.a<c<b B.a<b<c C.c<b<a D.b<a<c考点:等式的性质.专题:分类讨论.分析:根据等式的基本性质:等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.分别列出等式,再进行变形,即可解决.解答:解:由图a可知,3a=2b,即a=b,可知b>a,由图b可知,3b=2c,即b=c,可知c>b,∴a<b<c.故选B.点评:本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.17.已知xy=mn,则把它改写成比例式后,错误的是()A.=B.=C.=D.=考点:等式的性质.分析:利用等式的性质2:等式的两边同时乘以或除以同一个数(除数不为0),所得的结果仍是等式,可判断各选项正确与否.解答:解:A、两边同时乘以最简公分母ny得xy=mn,与原式相等;B、两边同时乘以最简公分母mx得xy=mn,与原式相等;C、两边同时乘以最简公分母mn得xn=my,与原式不相等;D、两边同时乘以最简公分母my得xy=mn,与原式相等;故选C.点评:解答此题应把每一个选项乘以最简公分母后与原式相比较看是否相同.18.已知mx=my,下列结论错误的是()A.x=y B.a+mx=a+my C.m x﹣y=my﹣y D.a mx=amy考点:等式的性质.分析:根据等式的基本性质解答.解答:解:A、等式的两边都除以m,根据等式性质2,m≠0,而A选项没有说明,故A错误;B、符合等式的性质1,正确.C、符合等式的性质1,正确.D、符合等式的性质1,正确.故选A.点评:本题主要考查了等式的基本性质.等式性质1、等式的两边同时加上或减去同一个数或字母,等式仍成立;等式性质2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.19.若ma=mb,那么下列等式不一定成立的是()A.a=b B.ma﹣6=mb﹣6C.D.ma+8=mb+8考点:等式的性质.分析:根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.解答:解:A、当m=0时,a=b不一定成立.故选项错误;B、ma=mb,根据等式的性质1,两边同时减去6,就得到ma﹣6=mb﹣6.故选项正确;C、根据等式的性质2,两边同时乘以﹣,即可得到.故选项正确;D、根据等式的性质1,两边同时加上8就可得到ma+8=mb+8.故正确.故选A.点评:本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.20.下列各方程,变形正确的是()A.=1化为x=B.1﹣[x﹣(2﹣x)]=x化为3x=﹣1C.化为3x一2x+2=1D.化为2(x﹣3)﹣5(x+4)=10考点:等式的性质.分析:分别利用性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式求出即可.解答:解:A、﹣=1化为x=﹣3,故此选项错误;B、1﹣[x﹣(2﹣x)]=x化为3x=﹣3,故此选项错误;C、﹣=1化为3x﹣2x+2=6,故此选项错误;D、﹣=1化为2(x﹣3)﹣5(x+4)=10,此选项正确.故选:D.点评:此题主要考查了等式的基本性质,熟练掌握等式的性质是解题关键.21.下列各式变形错误的是()A.2x+6=0变形为2x=﹣6B.=1﹣x,变形为x+3=2﹣2xC.﹣2(x﹣4)=﹣2,变形为x﹣4=1D.,变形为﹣x+1=1考点:等式的性质.分析:根据等式的性质对各选项分析判断后利用排除法求解.解答:解:A、2x+6=0变形为2x=﹣6正确,故本选项错误;B、=1﹣x,变形为x+3=2﹣2x正确,故本选项错误;C、﹣2(x﹣4)=﹣2,变形为x﹣4=1正确,故本选项错误;D、﹣=变形为﹣x﹣1=1,故本选项正确.故选D.点评:本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.22.下列变形正确的是()A.若x2=y2,则x=y B.若axy=a,则xy=1C.若﹣x=8,则x=﹣12D.若=,则x=y考点:等式的性质.分析:利用等式的性质对四个选项逐一判断即可.解答:解:A、当x与y互为相反数时,不成立,故本选项错误;B、当a=0时不成立,故本选项错误;C、方程两边同乘以﹣得x=﹣,故本选项错误;D、根据分式有意义的条件可以得到a≠0,所以该选项正确.故选D.点评:本题考查了等式的性质,在利用等式的性质时,注意所乘因式是否为零.23.根据下图所示,对a、b、c三种物体的质量判断正确的是()A.a<c B.a<b C.a>c D.b<c考点:等式的性质.分析:根据图示知3a=4b ①,3b=4c ②,然后利用等式的基本性质求得a、b、c间的数量关系,最后根据它们之间的数量关系来比较它们的大小.解答:解:由题意知,a、b、c均是正数.根据图示知,3a=4b ①,3b=4c ②,由①的两边同时除以3,得a=b;由②的两边同时除以4,得c=b;A、∵b>b,∴a>c;故本选项正确错误;B、∵a=b>b,∴a>b;故本选项错误;C、∵b>b,∴a>c;故本选项正确错误;D、∵b<b,∴c<b;故本选项错误;故选C.点评:本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.24.如果■●▲表示三种物体,现用天平称了现两次,情况如图所示则下列结论正确的是()A.■■=▲B.■=▲C.■>●D.▲▲<■■■考点:等式的性质.分析:由第一个天平可知▲=■■,由第二个天平可知●=▲,然后对各选项分析判断后利用排除法求解.解答:解:∵■■■=▲■,∴■■=▲,故A选项正确;∵●=▲,∴●=■■,故B选项错误;●>■,故C选项错误;▲▲=■■■■>■■■,故D选项错误.故选A.点评:本题考查了等式的性质,根据第一个天平得到▲=■■是解题的关键.25.如图小亮拿了一个天平,测量饼干和糖果的质量(每块饼干质量相同,每颗糖果质量相同),第一次,左盘放两块饼干,右盘放三颗糖果,结果天平平衡;第二次,左盘放10g砝码,右盘放一块饼干和一颗糖果,结果天平平衡;第三次,左盘放一颗糖果,右盘放一块饼干,下列哪一种方法可使天平再次平衡()A.在糖果的秤盘上加2g砝码B.在饼干的秤盘上加2g砝码C.在糖果的秤盘上加5g砝码D.在饼干的秤盘上加5g砝码考点:等式的性质.专题:计算题.分析:根据题意可设饼干重x克,糖果中y克,利用天平平衡得到方程求得x、y后即可得到答案.解答:解:设饼干重x克,糖果中y克,根据题意得到:,解得x=6,y=4,∴饼干比糖果重2克.故选A.点评:本题考查物理知识和数学不等关系的综合应用.二.填空题(共3小题)26.(2001•江西)如果,那么= .考点:等式的性质.专题:计算题.分析:可设=a,则x=2a,y=3a,继而可得出要求式子的值.解答:解:根据题意:设=a,则x=2a,y=3a,那么==.故填:.点评:此题灵活应用了等式的性质2.等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.27.(2000•台州)已知2y=5x,则x:y= 2:5 .考点:等式的性质.专题:计算题.分析:先根据等式的性质可直接的出x:y的值.解答:解:根据等式的性质2,等式两边同除以2,得y=x.则x:y=x:x=2:5.点评:本题需熟练运用等式的性质进行变形,用一个字母表示出另一个字母,再进一步求其比值.28.(1998•宁波)已知3a=2b(b≠0),那么= .考点:等式的性质.专题:计算题.分析:利用等式的性质2即可解决问题.解答:解:根据等式性质2,等式的两边同除以3b,则.故填:.点评:本题主要考查等式的性质2,需熟练运用等式的性质进行变形.等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.三.解答题(共2小题)29.由(3a+7)x=4a﹣b,得到的是否受一定条件的限制?并说明理由.考点:等式的性质.分析:根据等式的性质,两边除的数不能为0解答.解答:解:∵分母不能为0,∴3a+7≠0,解得,a≠﹣.答:受条件a≠﹣的限制.点评:本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.30.将等式5a﹣3b=4a﹣3b变形,过程如下:∵5a﹣3b=4a﹣3b,∴5a=4a(第一步),∴5=4(第二步).上述过程中,第一步的依据是等式的性质1 ,第二步得出错误的结论,其原因是等式的两边同除以了一个可能等于零的a .考点:等式的性质.分析:根据等式的基本性质进行填空.解答:解:上述过程中,第一步的依据是等式的性质1,第二步得出错误的结论,其原因是等式的两边同除以了一个可能等于零的a.故填:等式的性质1;等式的两边同除以了一个可能等于零的a.点评:本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.。
七年级数学上册等式的性质练习题
七年级数学上册等式的性质练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知x =y ,下列变形错误的是( )A .x +a =y+aB .x -a =y -aC .2x =2yD .x y a a= 2.点B ,C ,D 是线段AE 上的点,AB ,BC ,CD ,CE 的长如图所示,若D 为线段AE 的中点,则下列结论正确的是( )A .a b =B .2a b =C .3a b =D . 1.5a b =3.已知等式342m n =+,则下列等式中不一定成立的是( )A .423n m m =+B .3244m n +=+C .324m n -=D .4233m n =+ 4.解方程()()()235131x x x +--=-,下列去括号正确的是( )A .265533x x x +-+=-B .23533x x x +-+=-C .265533x x x +--=-D .23531x x x +-+=-5.若有理数a ,b 在数轴上的位置如图所示,则下列式子中成立的是( )A .a b >B .0a b +>C .0a b ->D .a b >6.设a ,b ,c 为互不相等的实数,且4155b a c =+,则下列结论正确的是( ) A .a b c >> B .c b a >> C .4()a b b c -=- D .5()a c a b -=-二、填空题7.如图,框图表示解这个方程的流程:其中,“移项”这一步骤的依据是________,“合并同类项”这一步骤的依据是________,“系数化为1”这一步骤的依据是________.8.已知a 、b 、c 、d 、e 、f 都为正数,12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d =,4 abcdf e =,8 abcde f=,则222222a b c d e f +++++=________. 9.如果有理数m 、n 满足0m ≠,且20m n +=,则2n m ⎛⎫-= ⎪⎝⎭________三、解答题10.列等式表示:(1)比a 大5的数等于8;(2)b 的三分之一等于9;(3)x 的2倍与10的和等于18;(4)x 的三分之一减y 的差等于6;(5)比a 的3倍大5的数等于a 的4倍;(6)比b 的一半小7的数等于a 与b 的和.11.根据问题,设未知数,列出方程:用买10个大水杯的钱,可以买15个小水杯,大水杯比小水杯的单价多5元,两种水杯的单价各是多少元? 12.一条东西方向的道路上有A ,B 两点,现有出租车从A 点出发,在这条路道路上进行往返运动,以该道路为直线建立数轴(向东为正,1千米为1个单位长度).点A ,B 分别表示-8,10,将出租车在数轴上的位置记为点C ,每次运动的位置变化记录如下(x >0):(1)第一次运动后点C 在数轴上所表示的数为 ,第二次运动方向为 (填“向东”或“向西”).(2)若经过前三次运动,点C 恰好与点B 重合.①求x 的值.①点C这四次一共运动了多少千米的路程?参考答案:1.D【分析】根据等式的性质逐项分析判断即可【详解】解:A.x y =,∴ x +a =y+a ,故该选项正确,不符合题意;B.x y = ,∴x -a =y -a ,故该选项正确,不符合题意;C.x y =,∴ 2x =2y ,故该选项正确,不符合题意;D. x y =,当0a ≠时,x y a a=,故该选项不正确,符合题意; 故选D【点睛】本题考查了等式的性质,熟练等式的性质是解题的关键.等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数(或式子),结果仍相等.2.B【分析】根据D 是AE 的中点,得出AD ED =,据此列出等式计算找出a 与b 的关系即可.【详解】解:D 是AE 的中点,AD ED ∴=, =AD AB BC CD ++,DE CE CD =-,AB BC CD CE CD ∴++=-,23323a b a b a b a b ∴++-=--+,2a b ∴=.故选:B .【点睛】本题考查了线段的中点、线段的和差和整式的加减,要牢固地掌握这些知识点,会用线段和差与线段中点解决a 与b 的关系是解题关键.3.A【分析】根据等式的性质进行逐一判断即可.【详解】解:A 、当0m =时,等式423n m m=+无意义,故此选项符合题意; B 、由342m n =+可以得到3244m n +=+,故此选项不符合题意;C 、由342m n =+可以得到324m n -=,故此选项不符合题意;D 、由342m n =+可以得到4233m n =+,故此选项不符合题意. 故选A .【点睛】本题主要考查了等式的性质,熟知等式的性质是解题的关键.4.A【分析】根据去括号法则,对方程进行去括号,即可得到答案.【详解】解:去括号得:265533x x x +-+=-,故选:A .【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.5.D 【分析】根据数轴先判断101,,a b a b <-<<从而可得,0,0,a b a b a b 从而可得答案.【详解】解:①101,a b a b <-<<,①,0,0a b a b a b <+<-<,①A ,B ,C 不符合题意,D 符合题意;故选D.【点睛】本题考查的是利用数轴比较有理数的大小,绝对值的含义,有理数的加法与减法的结果的符号确定,理解有理数的加减运算中的符号确定法则是解本题的关键.6.D【分析】举反例可判断A 和B ,将式子整理可判断C 和D .【详解】解:A .当5a =,10c =,41655b ac =+=时,c b a >>,故A 错误; B .当10a =,5c =,41955b ac =+=时,a b c >>,故B 错误; C .4()a b b c -=-整理可得1455b a c =-,故C 错误;D .5()a c a b -=-整理可得4155b ac =+,故D 正确; 故选:D .【点睛】本题考查等式的性质,掌握等式的性质是解题的关键.7. 等式的基本性质1 合并同类项法则 等式的基本性质2【分析】利用等式的性质及合并同类项法则判断即可.【详解】解:“移项”这一步骤的依据是等式的基本性质1,“合并同类项”这一步骤的依据是合并同类项法则,“系数化为1”这一步骤的依据是等式的基本性质2.故答案为:等式的基本性质1;合并同类项法则;等式的基本性质2.【点睛】此题考查了解一元一次方程,熟练掌握等式的性质以及合并同类项法则是解本题的关键. 8.1198【分析】根据等式性质及分式性质进行计算即可求得结果. 【详解】解:由12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d =,4 abcdf e=,8 abcde f =,可将每个等式的左右两边相乘得:()51abcdef abcdef =,①1abcdef =,2112bcdef a a a a ⋅==⋅, ①22a =,同理可得:24b =,28c =,212d =,214e =,218f =, ①2222221198a b c d e f +++++=; 故答案为1198. 【点睛】本题主要考查等式性质及分式性质,熟练掌握等式性质及分式性质是解题的关键.9.14- 【分析】先根据20m n +=得出2m n =-,然后代入2n m ⎛⎫- ⎪⎝⎭求值即可. 【详解】解:20m n +=, ①2m n =-, ①22211224m n m m ⎛⎫- ⎪⎛⎫⎛⎫-=-=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭. 故答案为:14-. 【点睛】本题主要考查了代数式求值,根据m 、n 的等式,用m 表示出n ,是解题的关键.10.(1)58a +=;(2)193b =;(3)21018x +=;(4)163x y -=;(5)354a a +=;(6)172b a b -=+ 【分析】(1)比a 大5时,是加法算式,(2)b 的三分之一是13b , (3)x 的2倍是2x ,(4)x 的三分之一是13x , (5)a 的3倍是3a ,(6)b 的一半是12b .【详解】(1)依题意得a +5=8,(2)依题意得13b =9, (3)依题意得2x +10=18,(4)依题意得13x -y =6 (5)依题意得3a +5=4a ,(6)依题意得12b -7=a +b .【点睛】本题考查了列代数式.解决问题的关键是读懂题意,找到所求的量的等量关系.11.设大水杯的单价为x 元,()10155x x =-.【分析】可设大水杯的单价为x 元,则小水杯的单价为()5x -元,根据等量关系:买10个大水杯的钱,可以买15个小水杯,列出方程求解即可.【详解】解:设大水杯的单价为x 元,则小水杯的单价为()5x -元,依题意有 ()10155x x =-.【点睛】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.12.(1)-11,向西(2)①9x =①55【分析】(1)根据有理数的加法列式计算,由于正数和负数表示一对相反意义的量,向东为正,则向西为负,即可解答;(2)①根据这几个数的和为10,建立方程求解即可;①点C 运动的路程为这几个数的绝对值之和,把①的结果代入式中计算即可.(1)解:第一次运动后点C 在数轴上所表示的数为:8(3)11-+-=-,①0x >,①0x -<,①向西运动.故答案为:-11,向西;(2)①根据题意,列得方程 ()()()833310x x -+-+-++=,解得9x =;①根据题意,可列式:3334x x x -+-+++--=3939394-+-+⨯++--=3+9+30+13=55,即这四次一共运动了55千米的路程.【点睛】本题主要考查了数轴、绝对值、有理数的加减运算以及一元一次方程的知识,理解题意,灵活运用所学知识是解题的关键.。
人教版七年级数学知识点试题精选-等式的性质
七年级上册等式的性质一.选择题(共20小题)1.根据等式性质,由x=y可得()A.4x=y+4 B.cx=cy C.2x﹣8=2y+8 D.2.如果am=an,那么下列等式不一定成立的是()A.am﹣3=an﹣3 B.5+am=an+5 C.m=n D.﹣2am=﹣2an3.下列各式说法错误的是()A.如果x2=y2,那么﹣3ax2=﹣3ay2B.如果=,那么x=yC.如果ac=bc,那么a=bD.如果a=b,那么a2=b24.已知等式a=b,c为任意有理数,则下列等式中,不一定成立的是()A.a+c=b+c B.ac=bc C.﹣a2c=﹣b2c D.=5.下列式子变形不正确的是()A.若a+c=b+c,则a=b B.若x=y,则C.若x=y,则3x﹣1=3y﹣1 D.若,则x=y6.如果x=y,那么下列等式不一定成立的是()A.x﹣10=y﹣10 B.﹣C.D.7.下列说法正确的是()A.如果a=b,那么a+c=b﹣c B.如果|a|=|b|,那么a=bC.如果a=b,那么D.如果x=y,那么x2=y28.如图,天平两边盘中标有相同字母的物体的质量相同,若A物体的质量为20克,当天平处于平衡状态时,B物体的质量为()A.5克 B.10克C.15克D.30克9.下列由已知得出的结论,不正确的是()A.已知m=n,则ma=na B.已知m=n,则m+a2=n+a2C.已知m=n,则=D.已知m=n,则m﹣a2=n﹣a210.下列判断中正确的是()A.若=5,则x=1 B.若1+2x=7,则x=3C.若4x=2,则x=2 D.若2x﹣6=0,则2x=﹣611.已知x=y,则下列各式:,其中正确的有()A.2个 B.3个 C.4个 D.5个12.下列等式变形错误的是()A.由a=b得a+5=b+5 B.由a=b得C.由x+2=y+2得x=y D.由﹣3x=﹣3y得x=﹣y13.下列变形正确的是()A.若x2=y2,则x=y B.若=,则x=yC.若x(x﹣2)=3(x﹣2),则x=3 D.若(m+n)x=(m+n)y,则x=y,14.下列等式变形中,错误的是()A.由a=b,得a+5=b+5 B.由a=b,得=C.由x+2=y+2,得x=y D.由﹣3x=﹣3y,得x=y15.下列等式变形错误的是()A.由m=n得m+2=n+2 B.由m=n得=C.由m﹣3=n﹣3得m=n D.由﹣3x=﹣3y得x=﹣y16.若xy=xz成立,则下列式子未必成立的是()A.y=z B.x(y+1)=x(z+1)C.xy2=xyz D.x(y﹣1)=x(z﹣1)17.在下列等式变形中错误的是()A.因为a=b,所以a+3=b+3 B.因为ax=bx,所以a=bC.因为a=b,所以D.因为a+x=b+x,所以a=b18.下列变形正确的是()A.若﹣2x=5,那么x=5+2 B.若3x+2=7,那么3x=7﹣2C.若3﹣2(x﹣1)=6,则3﹣2x+1=6 D.若﹣3x=4,那么x=﹣19.若2x=﹣,则8x=()A.﹣4 B.﹣2 C.﹣ D.420.下列等式变形中,结果不正确的是()A.如果a=b,那么a+2b=3b B.如果a=3,那么a﹣k=3﹣kC.如果m=n,那么mc2=nc2D.如果mc2=nc2,那么m=n二.填空题(共20小题)21.若x=y,y=2,则x﹣2=.22.在等式﹣x=3的两边都或,得x=﹣12,这是根据.23.若a=b,b=c,c=d,则a和d之间的关系式为.24.若a=b,则..(判断对错)25.用适当的数或整式填空,使所得结果仍是等式,并说明是根据等式的哪一条性质,以及怎样变形的:(1)如果2x+7=10.那么2x=10﹣;(2)如果,那么a=;(3)如果2a=1.5.那么6a=;(4)如果﹣5x=5y;那么x=.26.如果2x+7=20,那么2x=20﹣,这是根据等式的性质:等式两边得到的.27.已知等式(x﹣4)m=x﹣4,且m≠1,则x=.28.已知,,将y用x的代数式表示为.29.在等式4x﹣2=1+2x的两边都,得到等式2x=3,根据是.30.已知m=an,当a=时,有m=n成立.31.由(a+b)x=a2﹣b2得x=d﹣b的条件是.32.若﹣2a=,则ab=.33.在公式s=vt+5t2中,已知s、t(t>0),那么v=(用s、t的代数式表示).34.已知,用含x的整式表示y,则y=.35.已知﹣,可求得x=,这是根据.36.列等式表示:x的4倍与7的和等于20.37.将方程4x+3y=6变形成用y的代数式表示x,则x=.38.已知x=﹣3a+4,y=2a+3,如果用x表示y,则y=.39.如果﹣5x+6=1﹣6x,那么x=,根据.40.方程﹣=1可变形为﹣=.三.解答题(共10小题)41.利用等式的性质解下列方程:(1)x+25=95;(2)x﹣12=﹣4;(3)0.3x=12;(4)=﹣3.42.已知5x2﹣5x﹣3=7,利用等式的性质,求x2﹣x的值.43.已知2x2﹣3=5,你能求出x2+3的值吗?说明理由.44.如果在等式5(x+2)=2(x+2)的两边同除以x+2就会得到5=2.我们知道5≠2,由此可以猜测x+2等于.45.已知等式(x﹣4)m=x﹣4且m≠1,求2x2﹣(3x﹣x2﹣2)+1的值.46.老师在黑板上写了一个等式:(a+3)x=4(a+3).王聪说x=4,刘敏说不一定,当x≠4时,这个等式也可能成立.你认为他俩的说法正确吗?用等式的性质说明理由.47.怎样从等式m﹣3=m,得到m=﹣6?48.一位同学在对一等式变形时,却得到了1=﹣1的明显的错误,可他又找不到出错的地方,你能帮他找出错误的原因吗?他变形的等式如下:4x=﹣6y等式两边都减去2x﹣3y,得4x﹣(2x﹣3y)=﹣6y﹣(2x﹣3y),所以,2x+3y=﹣3y﹣2x,两边同时除以2x+3y,得=,整理得1=﹣1.49.说明下列等式变形的依据(1)由a=b,得a+3=b+3;(2)由a﹣1=b+1,得a=b+4.50.利用等式的性质解方程:(1)5﹣x=﹣2(2)3x﹣6=﹣31﹣2x.七年级上册等式的性质参考答案与试题解析一.选择题(共20小题)1.根据等式性质,由x=y可得()A.4x=y+4 B.cx=cy C.2x﹣8=2y+8 D.【分析】根据等式的基本性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式,针对每一个选项进行判断即可解决.【解答】解:A、根据等式的性质,由x=y可得4x=4y,故此选项错误;B、根据等式的性质,由x=y可得cx=cy,故此选项正确;C、根据等式的性质,由x=y可得2x﹣8=2y﹣8,故此选项错误;D、根据等式的性质,当c≠0时,由x=y可得=,故此选项错误.故选:B.【点评】此题主要考查了等式的性质,关键是熟练掌握等式的性质定理.2.如果am=an,那么下列等式不一定成立的是()A.am﹣3=an﹣3 B.5+am=an+5 C.m=n D.﹣2am=﹣2an【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.【解答】解:A、am=an,根据等式的性质1,两边同时减去3,就得到am﹣3=an ﹣3,故此选项正确;B、am=an,根据等式的性质1,两边同时加上5,就得到5+am=an+5,故此选项正确;C、当m=0时,m=n不一定成立,故此选项错误.D、根据等式的性质2,两边同时乘以﹣2,即可得到﹣2am=﹣2an,故此选项正确;故选:C.【点评】此题主要考查了等式的性质,利用等式的性质对根据已知得到的等式进行正确变形是解决问题的关键.3.下列各式说法错误的是()A.如果x2=y2,那么﹣3ax2=﹣3ay2B.如果=,那么x=yC.如果ac=bc,那么a=bD.如果a=b,那么a2=b2【分析】根据等式两边都乘以同一个整式,结果仍是等式,可判断A、B、D,根据等式两边都除以同一个不为零的整式,结果仍是等式,可判断C,可得答案.【解答】解:A 如果x2=y2,﹣3ax2=﹣3ay2,故A正确;B如果,那么x=y,故B正确C如果ac=bc (c≠0),那么a=b,故C错误;D 如果a=b,那么a2=b2,故D正确;故选:C.【点评】本题考查了等式的性质,注意等式两边都除以同一个不为零的整式,结果仍是等式.4.已知等式a=b,c为任意有理数,则下列等式中,不一定成立的是()A.a+c=b+c B.ac=bc C.﹣a2c=﹣b2c D.=【分析】根据等式的性质,等式的两边都加或都减同一个整式,结果不变,等式的两边都乘以或除以同一个不为零的整式,结果不变,可得答案.【解答】解;A、两边都加c,故A正确;B、两边都乘以c,故B正确;C、两边都乘方,再都乘以﹣c,故C正确;D、当C=0时,无意义,故D错误;故选:D.【点评】本题考查了等式的性质,注意等式的两边都除以同一个不为零的数,结果不变.5.下列式子变形不正确的是()A.若a+c=b+c,则a=b B.若x=y,则C.若x=y,则3x﹣1=3y﹣1 D.若,则x=y【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.【解答】解:A、根据等式性质1,等式两边都减c,即可得到a=b;B、根据等式性质2,该变形需要条件a≠0;C、先根据等式性质2,两边都乘以3,再根据等式性质1,两边都减1,即可得到3x﹣1=3y﹣1;D、根据等式性质2,两边都乘以a即可;综上所述,故选B.【点评】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.6.如果x=y,那么下列等式不一定成立的是()A.x﹣10=y﹣10 B.﹣C.D.【分析】利用等式的性质对每个式子进行变形即可找出答案.【解答】解:A、根据等式性质1,x=y两边同时减10得x﹣10=y﹣10;B、根据等式性质2,x=y两边同时乘以﹣得﹣=﹣;C、根据等式性质2,x=y两边同时除以a+1≠0时得=;D、根据等式性质2,x=y两边同时除以|a|+1,得=;综上所述,故选C.【点评】本题主要考查等式的性质.运用等式性质2时,必须注意等式两边所乘的(或除以的)数或式子不为0,才能保证所得的结果仍是等式.7.下列说法正确的是()A.如果a=b,那么a+c=b﹣c B.如果|a|=|b|,那么a=bC.如果a=b,那么D.如果x=y,那么x2=y2【分析】根据等式的性质1;等式的两边同时加上或减去同一个数,等式仍然成立;可以知道A不正确;再根据绝对值的定义;表示数a的点与原点的距离可以判断B不正确;根据等式的性质2;等式的两边同时乘以(或除以不为零)同一个数,等式仍然成立,可以判断C不正确;根据等式的性质2;等式的两边同时乘以(或除以不为零)同一个数,等式仍然成立,x•x=y•x,又x=y所以x•x=y•y,即x2=y2可以判断D正确.【解答】解:A、如果a=b,那么a+c=b+c根据等式的性质1:等式的两边同时加上c,等式仍然成立,故本选项错误.B、如果|a|=|b|,则a=±b;a,b相等时绝对值相等,a,b是相反数时绝对值也相等,故本选项错误.C、如果a=b,根据等式的性质2;等式的两边同时除以不为零的同一个数,等式仍然成立,此题中没说明c≠0,故本选项错误.D、如果x=y,则x•x=y•x,因为x=y,所以x•x=y•y,即x2=y2,故本选项D正确.故选D.【点评】此题主要考查了等式的性质的应用,做题时一定要注意等式的两边同时除以不为零的同一个数,等式才仍然成立;很多同学忽视除以不为零这个条件.8.如图,天平两边盘中标有相同字母的物体的质量相同,若A物体的质量为20克,当天平处于平衡状态时,B物体的质量为()A.5克 B.10克C.15克D.30克【分析】由图可得2A+B=A+3B,利用等式的性质两边同时减去(A+B)可得,A=2B,所以可求得B的质量.【解答】解:由图可得2A+B=A+3B,利用等式的性质两边同时减去(A+B)可得,A=2B,且A的质量为20克,所以B的质量为10克,故选B.【点评】本题主要考查等式的性质,解题的关键是由图得到等式.9.下列由已知得出的结论,不正确的是()A.已知m=n,则ma=na B.已知m=n,则m+a2=n+a2C.已知m=n,则=D.已知m=n,则m﹣a2=n﹣a2【分析】根据等式的性质进行判断.【解答】解:A、在等式m=n的两边同时乘以a,不等式仍成立,即ma=na,故本选项不符合题意;B、在等式m=n的两边同时加上a2,不等式仍成立,即m+a2=n+a2,故本选项不符合题意;C、当a=0时,等式=不成立.故本选项符合题意;D、在等式m=n的两边同时减去a2,不等式仍成立,即m﹣a2=n﹣a2,故本选项不符合题意;故选:C.【点评】本题主要考查了等式的基本性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.10.下列判断中正确的是()A.若=5,则x=1 B.若1+2x=7,则x=3C.若4x=2,则x=2 D.若2x﹣6=0,则2x=﹣6【分析】各项中方程利用等式的性质变形得到结果,即可做出判断.【解答】解:A、若=5,则x=25,错误;B、若1+2x=7,则x=3,正确;C、若4x=2,则x=,错误;D、若2x﹣6=0,则2x=6,错误.故选B.【点评】此题考查了等式的性质,熟练掌握等式的性质是解本题的关键.11.已知x=y,则下列各式:,其中正确的有()A.2个 B.3个 C.4个 D.5个【分析】根据等式的性质进行解答即可.【解答】解:∵x=y,∴x﹣1=y﹣1,故本式正确;∵x=y,∴2x=2y,故2x=5y错误;∵x=y,∴﹣x=﹣y,故本式正确;∵x=y,∴x﹣3=y﹣3,∴=,故本式正确;当x=y=0时,无意义,故=1错误.故选B.【点评】本题考查的是等式的性质,熟知等式的基本性质1,2是解答此题的关键.12.下列等式变形错误的是()A.由a=b得a+5=b+5 B.由a=b得C.由x+2=y+2得x=y D.由﹣3x=﹣3y得x=﹣y【分析】利用等式的性质对每个式子进行变形即可找出答案.【解答】解:A、根据等式性质1,a=b两边都加5,即可得到a+5=b+5,变形正确,故选项错误;B、根据等式性质2,a=b两边都除以﹣9,即可得到,变形正确,故选项错误;C、根据等式性质1,x+2=y+2两边都减去2,即可得到x=y,变形正确,故选项错误;D、根据等式性质2,﹣3x=﹣3y两边都除以﹣3,即可得到x=y,变形错误,故选项正确.故选D.【点评】本题考查了等式的性质.等式性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.13.下列变形正确的是()A.若x2=y2,则x=y B.若=,则x=yC.若x(x﹣2)=3(x﹣2),则x=3 D.若(m+n)x=(m+n)y,则x=y,【分析】分别利用等式的性质分析得出即可.【解答】解:A、若x2=y2,则x=±y,故此选项错误;B、若=,则x=y,正确;C、若x(x﹣2)=3(x﹣2),则x=3或2,故此选项错误;D、若(m+n)x=(m+n)y,则x=y,m+n≠0,故此选项错误.故选:B.【点评】此题主要考查了等式的性质,正确掌握等式的性质是解题关键.14.下列等式变形中,错误的是()A.由a=b,得a+5=b+5 B.由a=b,得=C.由x+2=y+2,得x=y D.由﹣3x=﹣3y,得x=y【分析】根据等式的性质即可求出答案.【解答】解:等式的两边需要同时乘以3或﹣3,从而可得:或故选(B)【点评】本题考查等式的性质,解题的关键是熟练运用等式的性质,本题属于基础题型.15.下列等式变形错误的是()A.由m=n得m+2=n+2 B.由m=n得=C.由m﹣3=n﹣3得m=n D.由﹣3x=﹣3y得x=﹣y【分析】根据等式的性质:等式的两边都乘以(或除以)同一个不为零的整式,结果不变,等式的两边都加(或减)同一个数(或整式),结果不变,可得答案.【解答】解:A、两边都加2,结果不变,故A正确;B、两边都除以﹣2,结果不变,故B正确;C、两边都加3,结果不变,故C正确;D、左边诚意﹣1,又变成一1,故D错误;故选:D.【点评】本题考查了等式的性质,等式的两边都乘以(或除以)同一个不为零的整式,结果不变,等式的两边都加(或减)同一个数(或整式),结果不变.16.若xy=xz成立,则下列式子未必成立的是()A.y=z B.x(y+1)=x(z+1)C.xy2=xyz D.x(y﹣1)=x(z﹣1)【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【解答】解:A、当x=0时,y≠z,故A错误;B、两边都加x,故B正确;C、两边都乘以同一个不为零的数,故B正确;D、两边都减x,故D正确;故选:A.【点评】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.17.在下列等式变形中错误的是()A.因为a=b,所以a+3=b+3 B.因为ax=bx,所以a=bC.因为a=b,所以D.因为a+x=b+x,所以a=b【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立,可得答案.【解答】解:A、因为a=b,所以a+3=b+3,故A正确;B、x=0时,a=b,故B错误;C、两边都除以3,故C正确;D、两边都减x,故D正确;故选:B.【点评】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.18.下列变形正确的是()A.若﹣2x=5,那么x=5+2 B.若3x+2=7,那么3x=7﹣2C.若3﹣2(x﹣1)=6,则3﹣2x+1=6 D.若﹣3x=4,那么x=﹣【分析】利用等式的性质逐一判定即可.【解答】解:A、若﹣2x=5,那么x=5÷(﹣2),此选项错误;B、若3x+2=7,那么3x=7﹣2,此选项正确;C、若3﹣2(x﹣1)=6,则3﹣2x+2=6,此选项错误;D、若﹣3x=4,那么x=﹣,此选项错误.故选:B.【点评】本题主要考查了等式的基本性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.19.若2x=﹣,则8x=()A.﹣4 B.﹣2 C.﹣ D.4【分析】根据等式的性质,先解方程2x=﹣,再把x的数值代入8x即可.【解答】解:2x=﹣2x÷2=﹣÷2x=,当x=﹣时,8x=8×(﹣)=﹣2,故选B.【点评】本题主要考查了等式的性质2,利用等式的性质解得x是解答此题的关键.20.下列等式变形中,结果不正确的是()A.如果a=b,那么a+2b=3b B.如果a=3,那么a﹣k=3﹣kC.如果m=n,那么mc2=nc2D.如果mc2=nc2,那么m=n【分析】根据等式的两边加或都减同一个数,结果仍是等式;根据等式两边都成一或除以同一个不为0的数,结果仍是等式.【解答】解:A、等式两边都加2b,故A正确;B、等式两边都减k,故B正确;C、两边都乘以c2,故C正确;D、c=0时,故D错误;故选:D【点评】本题考查了等式的性质,等式的两边加或都减同一个数,结果仍是等式;等式两边都成一或除以同一个不为0的数,结果仍是等式.二.填空题(共20小题)21.若x=y,y=2,则x﹣2=0.【分析】根据等式的性质,两边都减去2即可.【解答】解:x=y的两边都减去2得,x﹣2=y﹣2,∵y=2,∴y﹣2=0,∴x﹣2=0.故答案为:2.【点评】本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.22.在等式﹣x=3的两边都乘以﹣4或除以﹣,得x=﹣12,这是根据等式的性质2.【分析】根据等式的性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式分别进行分析可得答案.【解答】解:在等式﹣x=3的两边都乘以﹣4或除以﹣,得x=﹣12,这是根据等式的性质2,故答案为:乘以﹣4;除以﹣;等式的性质2.【点评】此题主要考查了等式的性质,关键是掌握等式的性质.23.若a=b,b=c,c=d,则a和d之间的关系式为a=d.【分析】根据等式的基本性质进行解答.【解答】解:∵a=b,b=c,∴a=c.又∵c=d,∴a=d.故填:a=d.【点评】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.24.若a=b,则.×.(判断对错)【分析】根据等式的基本性质进行解答.【解答】解:若a=b=0时,等式不成立.故答案是:×.【点评】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.25.用适当的数或整式填空,使所得结果仍是等式,并说明是根据等式的哪一条性质,以及怎样变形的:(1)如果2x+7=10.那么2x=10﹣﹣7(等式的两边同时减去7,等式仍成立);(2)如果,那么a=8(等式的两边同时乘以4,等式仍成立);(3)如果2a=1.5.那么6a= 4.5(等式的两边同时乘以3,等式仍成立);(4)如果﹣5x=5y;那么x=﹣y(等式的两边同时除以﹣5,等式仍成立).【分析】根据等式的基本性质进行填空.【解答】解:(1)根据等式的性质1,若2x+7=10,则2x=10﹣7(等式的两边同时减去7,等式仍成立);故填:﹣7(等式的两边同时减去7,等式仍成立);(2)根据等式性质2,若,则a=8(等式的两边同时乘以4,等式仍成立);故填:8(等式的两边同时乘以4,等式仍成立);(3)根据等式性质2,若2a=1.5,则6a=4.5(等式的两边同时乘以3,等式仍成立);故填:4.5(等式的两边同时乘以3,等式仍成立);(4)根据等式性质2,若﹣5x=5y,则x=﹣y(等式的两边同时除以﹣5,等式仍成立);故填:﹣y(等式的两边同时除以﹣5,等式仍成立).【点评】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.26.如果2x+7=20,那么2x=20﹣7,这是根据等式的性质:等式两边都减去7得到的.【分析】根据等式的基本性质进行计算.【解答】解:在2x+7=20的两边同时减去7,得2x=20﹣7,故填:7;都减去7.【点评】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.27.已知等式(x﹣4)m=x﹣4,且m≠1,则x=4.【分析】首先把方程整理成(m﹣1)x=4m﹣4,再根据等式的性质2,两边同时除以m﹣1即可.【解答】解:(x﹣4)m=x﹣4,整理得:(m﹣1)x=4m﹣4,∵m≠1,∴m﹣1≠0,根据等式的性质2,两边同时除以m﹣1得:=,即:x=4.故答案为:4.【点评】此题主要考查了等式的性质,关键是掌握等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.28.已知,,将y用x的代数式表示为y=.【分析】有x和a之间的关系可先用x表示出a,再代入y=1﹣,即可得到y 与x的关系式.【解答】解:∵x=1﹣,∴a=﹣,又∵y=1﹣,∴y=1﹣,即y=.故答案为y=.【点评】本题考查的是用一个未知数表示另一个未知数,解题的依据是等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等.29.在等式4x﹣2=1+2x的两边都加上(2﹣2x),得到等式2x=3,根据是等式性质1.【分析】此题可把变形后与变形前等号前两式相减即可求出即可求出原式与变形后的等式的数量关系.例如2x﹣(4x﹣2)=2x﹣4x+2=2﹣2x.【解答】解:根据等式性质1,在等式4x﹣2=1+2x的两边都加上2﹣2x,得到等式2x=3.【点评】遇到此类题目要先确定等式变形前后用的是性质1还是2,在用相应的方法求解.30.已知m=an,当a=1时,有m=n成立.【分析】根据等式的基本性质2作答.【解答】解:根据等式的基本性质2,等式m=an变形为m=n,等式左边除以1,右边同时除以1,等式仍成立,∴a=1.故答案为1.【点评】本题主要考查了等式的基本性质.等式性质2:等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.31.由(a+b)x=a2﹣b2得x=d﹣b的条件是a+b≠0.【分析】利用等式的性质判断即可.【解答】解:由(a+b)x=a2﹣b2得x=a﹣b的条件是a+b≠0,故答案为:a+b≠0【点评】此题考查了等式的性质,熟练掌握等式的性质是解本题的关键.32.若﹣2a=,则ab=﹣.【分析】根据等式的性质,可得答案.【解答】解;方程得两边都乘以﹣,得ab=﹣,故答案为:﹣.【点评】本题考查了等式的性质,利用了等式的性质2.33.在公式s=vt+5t2中,已知s、t(t>0),那么v=(用s、t的代数式表示).【分析】把s,t看作已知数,解关于字母v的一元一次方程即可.【解答】解:∵s=vt+5t2,∴vt=s﹣5t2,又∵t>0,∴v=.故答案为:.【点评】本题考查的是用两个未知数表示另一个未知数,解题的依据是等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等.34.已知,用含x的整式表示y,则y=.【分析】先把等式两边同乘以42得x﹣13y=42,再把两边同时减去x,得﹣13y=42﹣x,两边同时除以﹣13得y=.【解答】解:根据等式性质2,等式两边同乘以42,得x﹣13y=42,根据等式性质1,等式两边同时减去x,得﹣13y=42﹣x,根据等式性质2,等式两边同时除以﹣13,得y=.【点评】本题考查了等式的性质.等式的性质1,等式的两边加(或减)同一个数(或式子),结果仍相等.等式的性质2,等式的两边乘(或除)同一个不为0的数(或式子),结果仍相等.35.已知﹣,可求得x=−,这是根据等式的性质2.【分析】根据等式的基本性质2可知:由﹣,可求得x=﹣.【解答】解:根据等式的基本性质2,﹣两边都乘以﹣,可求得x=﹣.【点评】主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.36.列等式表示:x的4倍与7的和等于204x+7=20.【分析】由x的4倍与7的和等于20,根据等式的表示方法,即可求得答案.【解答】解:∵x的4倍与7的和等于20,∴列等式表示为:4x+7=20.故答案为:4x+7=20.【点评】此题考查了等式的表示方法.此题比较简单,注意理解题意是解此题的关键.37.将方程4x+3y=6变形成用y的代数式表示x,则x=.【分析】先根据等式的性质1:等式两边同加﹣3y,再根据等式性质2:等式两边同除以4,得出结论.【解答】解:4x+3y=6,4x=6﹣3y,x=,故答案为:.【点评】本题考查了等式的性质,表示x就是求未知数x的值,把等式变形为ax=b 的形式,再利用等式性质2变形为x=;注意本题要把y当常数.38.已知x=﹣3a+4,y=2a+3,如果用x表示y,则y=﹣x.【分析】把x=﹣3a+4两边同时减4得x﹣4=﹣3a,两边同时除以﹣3得a=,代入等式y=2a+3中即可求出答案.【解答】解:∵x=﹣3a+4,∴x﹣4=﹣3a,∴a=,∴y=2a+3=2•+3=﹣x.【点评】本题考查了等式的性质.等式的性质1,等式的两边加(或减)同一个数(或式子),结果仍相等.等式的性质2,等式的两边乘(或除)同一个不为0的数(或式子),结果仍相等.39.如果﹣5x+6=1﹣6x,那么x=﹣5,根据等式性质1.【分析】根据等式的基本性质1可知:﹣5x+6=1﹣6x先两边同加6x,再同减去6,可得x=﹣5.【解答】解:根据等式的基本性质1,﹣5x+6=1﹣6x两边同加6x,得x+6=1,根据等式性质1,等式两边同减去6,可得x=﹣5.【点评】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.40.方程﹣=1可变形为﹣=1.【分析】观察等式的左边,根据分数的性质,分子分母都乘以相同的数,分数的值不变.【解答】解:∵﹣变形为﹣,是利用了分数的性质,∴右边不变,故答案为1.【点评】本题考查了等式的性质,性质1:等式两边同加上或减去同一个数或式子,仍是等式;性质2:等式两边同乘以或除以同一个不为零的数或式子,仍是等式.三.解答题(共10小题)41.利用等式的性质解下列方程:(1)x+25=95;(2)x﹣12=﹣4;(3)0.3x=12;(4)=﹣3.【分析】等式的两个基本性质分别是:等式的两边同时加上或减去同一个数,等式的大小不变;等式的两边同时乘上同一个数或除以同一个不为0的数,等式的大小不变;据此解答.【解答】解:(1)方程两边同时减去25得:x+25﹣25=95﹣25,解得x=70;(2)方程两边同时加上12得x﹣12+12=﹣4+12,解得:x=8;(3)方程两边同时除以0.3得0.3x÷0.3=12÷0.3,解得:x=40;(4)方程两边同时乘以得:×=﹣3×,解得:x=﹣.【点评】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.42.已知5x2﹣5x﹣3=7,利用等式的性质,求x2﹣x的值.【分析】首先根据等式的性质1,两边同时+3得5x2﹣5x=10,再根据等式的性质2,两边同时除以5即可得到答案.【解答】解:5x2﹣5x﹣3=7,根据等式的性质1,两边同时+3得:5x2﹣5x﹣3+3=7+3,即:5x2﹣5x=10,根据等式的性质2,两边同时除以5得:=,即:x2﹣x=2.【点评】此题主要考查了等式的性质,关键是掌握等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.43.已知2x2﹣3=5,你能求出x2+3的值吗?说明理由.【分析】先有2x2﹣3=5,得出2x2=5+3,求出x2的值,再把x2的值代入x2+3中,即可求出答案.【解答】解:由2x2﹣3=5,得:2x2=5+3,x2=4,则x2+3=4+3=7.【点评】此题考查了等式的性质,掌握等式的性质是本题的关键,等式性质1:等式的两边加(或减)同一个数(或式子)结果仍相等;等式性质2:等式的两边同乘(或除以)同一个数(除数不为0)结果仍相等.44.如果在等式5(x+2)=2(x+2)的两边同除以x+2就会得到5=2.我们知道5≠2,由此可以猜测x+2等于0.【分析】根据等式的性质,等式的左右两边同时乘以或除以同一个非0的数或式子,所得的结果仍然是等式.本题中两边同时除以x+2所得的结果不是等式,说明不满足等式的性质,即x+2=0.本题也可以通过解方程的方法求出x的值,进而求出x+2的值.【解答】解:等式5(x+2)=2(x+2)的两边同除以x+2就会得到5=2,故x+2=0.故填:0.【点评】本题主要考查了等式的性质,通过本题,我们应该想到:在解一元一次方程的时候,特别是系数化为1这一步的化简中,注意方程两边同时除的式子一定不能是0.。
小学奥数2-3-1 列方程解应用题.专项练习及答案解析(精品)
1、会解一元一次方程2、根据题意寻找等量关系的方法来构建方程 3、合理规划等量关系,设未知数、列方程知识点说明:一、 等式的基本性质1、等式的两边同时加上或减去同一个数,结果还是等式.2、等式的两边同时乘以或除以同一个不为零的数,结果还是等式.二、解一元一次方程的基本步骤1、去括号;2、移项;3、未知数系数化为1,即求解。
三、列方程解应用题 (一)、列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,然后解出未知数的值.这个含有未知数的等式就是方程.列方程解应用题的优点在于可以使未知数直接参加运算.解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程. (二)、列方程解应用题的主要步骤是1、 审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密的数量关系;2、 设这个量为x ,用含x 的代数式来表示题目中的其他量;3、 找到题目中的等量关系,建立方程;4、 运用加减法、乘除法的互逆关系解方程;5、通过求到的关键量求得题目答案.板块一、直接设未知数【例 1】长方形周长是64厘米,长比宽多3厘米,求长方形的长和宽各是多少厘米?【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 解:设长方形的宽是x 厘米,则长方形的长3x ()厘米例题精讲知识精讲教学目标列方程解应用题[3]266366233323015x x x x x x x x ++⨯=++=÷++===()() 15318+=(厘米)答:长方形的长18厘米,长方形的宽是15厘米.【答案】长方形的长18厘米,长方形的宽是15厘米【巩固】 一个三角形的面积是18平方厘米,底是9厘米,求三角形的高是多少厘米?【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 解:设三角形的高是x 厘米,则有92189364x x x ⨯÷=⨯== 答:三角形的高是4厘米.【答案】三角形的高是4厘米【巩固】 (全国小学数学奥林匹克)一个半圆形区域的周长等于它的面积,这个半圆的半径是 .(精确到0.01,π 3.14=)【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 设半圆的半径为r ,则21π2π2r r r =+,即 π2π2r =+,所以,半圆的半径42 3.27πr =+≈.【答案】半圆的半径42 3.27πr =+≈【例 2】 用边长相同的正六边形白色皮块、正五边形黑色皮块总计32块,缝制成一个足球,如图所示,每个黑色皮块邻接的都是白色皮块;每个白色皮块相间地与3个黑色皮块及3个白色皮块相邻接.问:这个足球上共有多少块白色皮块?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设这个足球上共有x 块白色皮块,则共有3x 条边是黑白皮块共有的.另一方面,黑色皮块有32x -()块,共有532x -()条边是黑白皮块共有的(如图).由于在这个足球上黑白皮块共有的边是个定值,列得方程:3532x x =-(),解得20x =.即这个足球上共有20块白色皮块.【答案】共有20块白色皮块【例 3】 (2003年全国小学数学奥林匹克)某八位数形如2abcdefg ,它与3的乘积形如4abcdefg ,则七位数abcdefg 应是 . 【考点】列方程解应用题 【难度】3星 【题型】解答【解析】设x abcdefg=,则+⨯=+,x x(20000000)3104x=,759999996x=,8571428即七位数应是8571428【答案】8571428【巩固】有一个六位数1abcde乘以3后变成1abcde,求这个六位数.【考点】列方程解应用题【难度】3星【题型】解答【解析】解:设x abcde=,则有六位数1x和1x,有1000003101x=,(),解得42857+⨯=+x x所以原六位数是142857.【点评】本题的巧妙之处在于abcde始终没有分开,所以我们把它看作一个整体.【答案】142857【巩固】有一个五位数,在它后面写上一个7,得到一个六位数;在它前面写上一个7,也得到一个六位数.如果第二个六位数是第一个六位数的5倍,那么这个五位数是.【考点】列方程解应用题【难度】3星【题型】解答【关键词】迎春杯【解析】设五位数是x,那么第一个六位数是107+.依题意x+,第二个六位数是700000x 列方程x=.(),解得142857000005107x x+=+【答案】14285【例4】有三个连续的整数,已知最小的数加上中间的数的两倍再加上最大的数的三倍的和是68,求这三个连续整数.【考点】列方程解应用题【难度】3星【题型】解答【解析】设最小的那个数为x,那么中间的数和最大的数分别为1x+和2x+.则2(1)3(2)68++++=x x xx+=6868x=660x=.10所以这三个连续整数依次为10、11、12.【答案】10、11、12【巩固】已知三个连续奇数之和为75,求这三个数。
七年级数学上册第三单元《一元一次方程》-解答题专项(培优专题)
一、解答题1.数学课上,某班同学用天平和一些物品(如图)探究了等式的基本性质.该班科技创新小组的同学提出问题:仅用一架天平和一个10克的砝码能否测量出乒乓球和一次性纸杯的质量?科技创新小组的同学找来足够多的乒乓球和某种一次性纸杯(假设每个乒乓球的质量相同,每个纸杯的质量也相同),经过多次试验得到以下记录:记录天平左边天平右边状态记录一6个乒乓球,1个10克的砝码14个一次性纸杯平衡记录二8个乒乓球7个一次性纸杯,1个10克的砝码平衡请算一算,一个乒乓球的质量是多少克?一个这种一次性纸杯的质量是多少克?解:(1)设一个乒乓球的质量是x克,则一个这种一次性纸杯的质量是______克;(用含x的代数式表示)(2)列一元一次方程求一个乒乓球的质量,并求出一个这种一次性纸杯的质量.解析:(1)61014x+或8107x-;(2)一个乒乓球的质量是3克,一个这种一次性纸杯的质量是2克.【分析】(1)根据题意即可得出答案;(2)弄清题意,找到合适的等量关系,列出方程,解方程即可.【详解】解:(1)61014x+或8107x-(2)根据题意得,610810 147x x+-=6101620 x x+=-6162010 x x-=--1030x-=-3x =.当3x =时,610631021414x +⨯+==(克). 答:一个乒乓球的质量是3克,一个这种一次性纸杯的质量是2克. 【点睛】本题考查了一元一次方程与实际问题,解题的关键是找到合适的等量关系,列出方程,解方程.2.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生? 解析:10个家长,5个学生 【分析】设小明他们一共去了x 个家长,则有(15﹣x )个学生,根据“大人门票购买费用+学生门票购买费用=1400”列式求解即可. 【详解】解:设小明他们一共去了x 个家长,(15﹣x )个学生, 根据题意得:100x +100×0.8(15﹣x )=1400, 解得:x =10, 15﹣x =5,答:小明他们一共去了10个家长,5个学生. 【点睛】本题考查了一元一次方程的应用. 3.利用等式的性质解下列方程: (1)x -2=5;(2)-23x =6; (3)3x =x +6.解析:(1)x =7;(2)x =-9;(3)x =3 【分析】(1)两边同时加上2即可求解; (2)两边同时乘-32即可求解; (3)两边同时减x ,然后同时除以2即可求解. 【详解】解:(1)等式两边加2,得x -2+2=5+2, 即x =7. (2)等式两边乘-32,得x =6×(-32), 即x =-9.(3)等式两边减x,得2x=6.两边除以2,得x=3.【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.4.解下列方程(1)-9x-4x+8x=-3-7;(2)3x+10x=25+0.5x.解析:(1)x=2;(2)x=2【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程移项合并,把x系数化为1,即可求出解.【详解】解:(1)合并同类项,得,-5x=-10系数化为1,得,x=2(2)移项,得3x+10x-0.5x=25合并同类项,得12.5x=25系数化为1,得,x=2【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.5.运用等式的性质解下列方程:(1)3x=2x-6;(2)2+x=2x+1;(3)35x-8=-25x+1.解析:(1)x=-6;(2)x=1;(3)x=9【分析】(1)根据等式的性质:方程两边都减2x,可得答案;(2)根据等式的性质:方程两边都减x,化简后方程的两边都减1,可得答案.(3)根据等式的性质:方程两边都加25x,化简后方程的两边都加8,可得答案.【详解】(1)两边减2x,得3x-2x=2x-6-2x.所以x=-6.(2)两边减x,得2+x-x=2x+1-x.化简,得2=x+1.两边减1,得2-1=x+1-1所以x=1.(3)两边加25x , 得35x -8+25x =-25x +1+25x . 化简,得x -8=1.两边加8,得x -8+8=1+8. 所以x =9. 【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立. 6.已知16y x =-,227y x =+,解析下列问题: (1)当122y y =时,求x 的值; (2)当x 取何值时,1y 比2y 小3-. 解析:(1)215x =;(2)18x 【分析】(1)根据题意列出等式,然后解一元一次方程即可;(2)根据题意得到213y y -=-,然后代入x ,解一元一次方程即可求解. 【详解】(1)由题意得:62(27)x x -=+ 解得215x =215x ∴=. (2)由题意得:27(6)3x x +--=- 解得18x18x ∴=.【点睛】本题考查了解一元一次方程,重点是熟练掌握移项、合并同类项、去括号、去分母的法则,细心求解即可.7.解方程:()()3x 7x 132x 3--=-+① ;5x 2x 3132---=②. 解析:(1)5;(2)138; 【分析】①方程去括号,移项合并,把x 系数化为1,即可求出解;②方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】①去括号得:3x−7x+7=3−2x−6,移项合并得:−2x=−10,解得:x=5;②去分母,去括号得:10−2x−6=6x−9,移项合并得:8x=13,解得:x=13 8.【点睛】此题考查解一元一次方程,解题关键在于掌握方程的解法.8.a※b是新规定的这样一种运算法则:a※b=a2+2ab,例如3※(-2)=32+2×3×(-2)=-3(1)试求(-2)※3的值(2)若1※x=3,求x的值(3)若(-2)※x=-2+x,求x的值.解析:(1)-8;(2)1;(3)65.【分析】(1)根据规定的运算法则求解即可.(2)(3)将规定的运算法则代入,然后对等式进行整理从而求得未知数的值即可.【详解】(1)(-2)※3=(-2)2+2×(-2)×3=4-12=-8;(2)∵1※x=3,∴12+2x=3,∴2x=3-1,∴x=1;(3)-2※x=-2+x,(-2)2+2×(-2)x=-2+x,4-4x=-2+x,-4x-x=-2-4,-5x=-6,x=65.【点睛】此题考查有理数的混合运算,解一元一次方程,解题关键在于掌握运算法则.9.关于x的方程357644m x mx+=-的解比方程4(37)1935x x-=-的解大1,求m的值.解析:623 m=-【分析】分别求出两方程的解,根据题意列出关于m 的方程,然后求解即可. 【详解】解:357644m x m x +=-, 整理得:2(310)321m x m x +=-313x m =-解得:331m x =-, 4(37)1935x x -=-4747x =1x =由题意得:31131m--= 解得:623m =- 【点睛】本题考查了一元二次方程的解和解方程,关键是能先用含有m 的式子表示x ,然后根据题意列出方程.10.如图,甲船逆水,静水速度为28海里/时;乙船顺水,静水速度为12海里/时,两船相距60海里.已知水流速度为3海里/时,两船同时相向而行. (1)两船同时航行1小时,求此时两船之间的距离;(2)再(1)的情况下,两船再继续航行1小时,求此时两船之间的距离; (3)求两船从开始航行到两船相距12海里,需要多长时间?解析:(1) 20海里;(2) 20海里;(3) 1.2小时或1.8小时. 【分析】(1)根据1h 后甲、乙间的距离=两船相距-(甲船行驶的路程+乙船行驶的路程)即可得; (2)根据2h 后甲、乙间的距离=甲船行驶的路程-乙船行驶的路程即可得; (3)可分相遇前与相遇后两种情况讨论即可解答. 【详解】解:根据题意可知甲船的行驶速度为28-3=25海里/时,乙船的行驶速度为12+3=15海里/时(1)1h 后甲、乙间的距离=60-25×1-15×1=20海里; (2)2h 后甲、乙间的距离=25×2-15×2=20海里;(3)相遇前,设两船从开始航行到两船相距12海里,需要t 小时则12=60-(25+15)t,求得t=1.2小时相遇后,设两船从开始航行到两船相距12海里,需要t1小时则12+60=(25+15)t1,求得t1=1.8小时故两船从开始航行到两船相距12海里,1.2小时或1.8小时.【点睛】本题主要考查列代数式与一元一次方程的实际应用,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.11.图1为全体奇数排成的数表,用十字框任意框出5个数,记框内中间这个数为 a(如图2).(1)请用含a的代数式表示框内的其余4个数;(2)框内的5个数之和能等于 2015,2020 吗?若不能,请说明理由;若能,请求出这5个数中最小的一个数,并写出最小的这个数在图1数表中的位置.(自上往下第几行,自左往右的第几个)解析:(1)详见解析;(2)详见解析.【分析】(1)上下相邻的数相差18,左右相邻的数相差是2,所以可用a表示;(2)根据等量关系:框内的5个数之和能等于2015,2020,分别列方程分析求解.【详解】(1)设中间的数是a,则a的上一个数为a−18,下一个数为a+18,前一个数为a−2,后一个数为a+2;(2)设中间的数是a,依题意有5a=2015,a=403,符合题意,这5个数中最小的一个数是a−18=403−18=385,2n−1=385,解得n=193,193÷9=21…4,最小的这个数在图1数表中的位置第22排第4列.5a=2020,a=404,404是偶数,不合题意舍去;即十字框中的五数之和不能等于2020,能等于2015.【点睛】本题考查一元一次方程的应用,关键是看到表格中中间位置的数和四周数的关系,最后可列出方程求解.12.某市百货商店元月1日搞促销活动,购物不超200元不予优惠;购物超过200元而不足500元的按全价的90%优惠;超过500元,其中500元按9折优惠,超过部分按8折优惠,某人两次购物分别用了134元和466元.问:(1)列方程求出此人两次购物若其物品不打折共值多少钱? (2)若此人将这两次购物合为一次购买是否更节省?为什么?解析:(1)654元钱;(2)将这两次购物合为一次购买更节省,理由见解析. 【分析】(1)根据“超过200元而不足500元的按9折优惠”可得:200×90%=180元,由于第一次购物134元<180元,故不享受任何优惠;由“超过500元,其中500元按9折优惠,超过部分8折优惠”可知500×90%=450元,466>450元,故此人购物享受“超过500元,其中500元按9折优惠,超过部分8折优惠”,设他所购价值x 元的货物,首先享受500元钱时的9折优惠,再享受超过500元的8折优惠,把两次的花费加起来即可得出此人第二次购物不打折的花费,最后将两次购物不打折的花费相加即可;(2)计算出两次购物合为一次购买实际应付的费用,再与他两次购物所花的费用进行比较即可. 【详解】解:(1)①因为134元<200×90%=180元,所以该人此次购物不享受优惠; ②因为第二次付了466元>500×90%=450元,所以该人享受超过500元,其中500元按9折优惠,超过部分8折优惠. 设他所购货物价值x 元,则90%×500+(x ﹣500)×80%=466, 解得x =520, 520+134=654(元).答:此人两次购物若其物品不打折共值654元钱;(2)500×90%+(654﹣500)×80%=573.2(元),134+466=600(元), ∵573.2<600,∴此人将这两次购物合为一次购买更节省. 【点睛】此题主要考查了一元一次方程的应用,关键是分析清楚付款打折的情况,找出合适的等量关系列出方程.13.某同学在给方程21133x x a-+=-去分母时,方程右边的-1没有乘3,因而求得方程的解为2x =,试求a 的值,并正确地解方程. 解析:2a =,0x = 【分析】根据方程的定义,把2x =代入211x x a -=+-,求得a ,把a 代入原方程,去分母、去括号、移项、合并同类项得出议程的解. 【详解】把2x =代入211x x a -=+-, 得:2a = ∴原方程为:212133x x -+=- 去分母得:2123x x -=+- 移项得:2231x x -=-+ 合并同类项得:0x = 【点睛】本题考查了解分数系数的一元一次方程,熟练掌握解方程的一般步骤是解题的关键. 14.某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)如果要购买15盒或30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?解析:(1) 购买乒乓球20盒时,两种优惠办法付款一样;(2)买30盒乒乓球时,在甲店买5副乒乓球拍,在乙店买25盒乒乓球省钱. 【分析】(1)设当购买乒乓球x 盒时,两种优惠办法付款一样,根据总价=单价×数量,分别求出在甲、乙两家商店购买需要的钱数是多少;然后根据在甲商店购买需要的钱数=在乙商店购买需要的钱数,列出方程,解方程,求出当购买乒乓球多少盒时,两种优惠办法付款一样即可;(2)首先根据总价=单价×数量,分别求出在甲、乙两家商店购买球拍5副、15盒乒乓球,球拍5副、30盒乒乓球需要的钱数各是多少;然后把它们比较大小,判断出去哪家商店购买比较合算即可. 【详解】(1)设当购买乒乓球x 盒时,两种优惠办法付款一样, 则30×5+5(x −5)=(30×5+5x )×90% 5x +125=135+4.5x 5x +125−4.5x =135+4.5x −4.5x 0.5x +125=135 0.5x +125−125=135−125 0.5x =10 0.5x ×2=10×2 x =20答:当购买乒乓球20盒时,两种优惠办法付款一样.(2)①在甲商店购买球拍5副、15盒乒乓球需要: 30×5+5×(15−5)=150+50=200(元)在乙商店购买球拍5副、15盒乒乓球需要: (30×5+5×15)×90%=225×90%=202.5(元) 因为200<202.5,所以我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算. 答:我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算. ②在甲商店购买球拍5副、30盒乒乓球需要: 30×5+5×(30−5)=150+125=275(元)在乙商店购买球拍5副、30盒乒乓球需要: (30×5+5×30)×90%=300×90%=270(元) 因为270<275,所以我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算. 答:我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算. 考点:1.一元一次方程的应用;2.方案型. 15.已知14y x =-+,222y x =-. (1)当x 为何值时,12y y =; (2)当x 为何值时,1y 的值比2y 的值的12大1; (3)先填表,后回答:根据所填表格,回答问题:随着x 值的增大,1y 的值逐渐 ;2y 的值逐渐 . 解析:(1)2x =;(2)2x =;(3)表格详见解析,减小,增大. 【分析】(1)由题意可得关于x 的方程,解方程即得答案; (2)根据1y =122y +1可得关于x 的方程,解方程即得答案; (3)把x 的值依次代入1y 和2y 的关系式进行计算,即可完成表格;根据所填表格中的数据即可判断1y 和2y 的变化趋势. 【详解】解:(1)由题意得:422x x -+=-,解得:2x =, 所以,当2x =时,12y y =;(2)由题意得: 1(422)21x x -+=-+,解得:2x =, 所以,当2x =时,1y 的值比2y 的值的12大1. (3)x3-2-1-0 1 2 3 4 1y 7 6543 2 1 0 2y8-6- 4- 2-246由表格中的数据可知:随着值的增大,1的值逐渐减小;2的值逐渐增大. 故答案为:减小,增大. 【点睛】本题考查了一元一次方程的解法、代数式求值和根据表格判断代数式的变化趋势,正确列出方程、熟练掌握一元一次方程的解法是解题的关键.16.如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,一块小正方形以及另两块长方形的纸板,恰好拼成一个大正方形,求大正方形的面积.解析:大正方形的面积是36cm 2 【分析】设小正方形的边长为x ,然后表示出大正方形的边长,利用正方形的面积相等列出方程求得小正方形的边长,然后求得大正方形的边长即可求得面积. 【详解】设小正方形的边长为x ,则大正方形的边长为4+(5−x )cm 或(x +1+2)cm , 根据题意得:4+(5−x )=(x +1+2), 解得:x =3, ∴4+(5−x )=6, ∴大正方形的面积为36cm 2. 答:大正方形的面积为36cm 2. 【点睛】本题考查了一元一次方程的应用,解题的关键是设出小正方形的边长并表示出大正方形的边长.17.如图,在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB =2BC ,设点A ,B ,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.解析:(1)﹣3,﹣1,﹣4;(2)﹣2;(3)8或-40.【分析】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C的右边先确定点C对应的数,进而确定点B、点A所表示的数即可求解.【详解】解:(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,AB+BC=AC,∴AB=4,BC=2,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为﹣12,点A所对应的数为﹣20,∴m=﹣20﹣12﹣8=﹣40.【点睛】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.18.由于施工,需要拆除学校图书馆,七年级同学主动承担图书馆整理图书的任务,如果由一个人单独做要用30小时完成,现先安排一部分人用1小时整理,随后又增加6人和他们一起又做了2小时,恰好完成整理工作,假设每个人的工作效率相同,那么先按排整理的人员有多少? 解析:6人 【分析】设先安排整理的人员有x 人,根据工作效率×工作时间×工作人数=工作总量结合题意,即可得出关于x 的一元一次方程,解之即可得出结论. 【详解】解:设先安排整理的人员有x 人, 根据题意得:()1126=13030x x +⨯+, 解得:x =6.答:先安排整理的人员有6人. 【点睛】本题考查了一元一次方程的应用,找准等量关系正确列出一元一次方程是解题的关键.19.对于任意四个有理数a b c d ,,,,可以组成两个有理数对(,)a b 与(,)c d . 我们规定:(,)(,)a b c d bc ad =-★. 例如:(1,2)(3,4)23142=⨯-⨯=★. 根据上述规定解决下列问题:(1)有理数对(2,3)(3,2)--=★ ;(2)若有理数对(2,31)(1,1)9x x -+-=★,则x = ;(3)当满足等式(3,21)(,)32x k x k k --+=+★的x 是整数时,求整数k 的值. 解析:(1)-5;(2)2;(3)k=0,-1,-2,-3. 【分析】(1)原式利用规定的运算方法计算即可求出值; (2)原式利用规定的运算方法列方程求解即可;(3)原式利用规定的运算方法列方程,表示出x ,然后根据k 是整数求解即可. 【详解】解:(1)根据题意得:原式=−3×3−2×(−2)=−9+4=−5; 故答案为:−5;(2)根据题意得:3x+1−(−2)×(x−1)=9, 整理得:5x =10, 解得:x =2, 故答案为:2;(3)∵等式(−3,2x−1)★(k ,x +k )=3+2k 的x 是整数, ∴(2x−1)k−(−3)(x +k )=3+2k , ∴(2k +3)x =3,∴323x k =+, ∵k 是整数,∴2k +3=±1或±3, ∴k =0,−1,−2,−3. 【点睛】此题考查了新运算以及解一元一次方程,正确理解新运算是解题的关键. 20.解下列方程(1)32(4)25x x --=-; (2) 212164y y -+-=-; (3)312423(1)32x x x -+-+=-; (4)4 1.550.8 1.20.50.20.1x x x----= ; (5) 315x x +-= ; (6)解下列关于x 的方程211423x m mx ---=. 解析:(1)4x =;(2)4y =-;(3)83x =;(4)117x =-;(5)2x =-或32x =;(6)2+364=-m x m . 【分析】(1)先两边同时乘以5去分母,然后去括号解方程即可; (2)先两边同时乘以12去分母,然后去括号解方程即可; (3)先两边同时乘以6去分母,然后去括号解方程即可; (4)先两边同时乘以1去分母,然后去括号解方程即可; (5)分①当x≤13时,②当x >13时,两种情况,分别求出x 即可; (6)把m 当成已知数,先两边同时乘以12去分母,然后去括号解方程即可. 【详解】解:(1)103(4)510--=-x x10312510-+=-x x 351022--=--x x 832-=-x4x =;(2)()()4216224--+=-y y8461224---=-y y 224+16=-y28y =- 4y =-;(3)()()2311232418(1)--++=-x x x62126121818--++=-x x x 1218182-=-+x x616-=-x83x =;(4)()()()24 1.5550.8101.2---=-x x x832541210--+=-x x x 1710121-+=-x x711-=x117x =-; (5)315x x +-= ①当x≤13时, ()315+-+=x x24x -=2x =-,-2<13,∴2x =-满足;②当x >13时,()315+-=x x46x =32x =3123>, ∴32x =满足, ∴2x =-或32x =; (6)()()32641--=-x m mx63644--=-x m mx 644+3+6-=-x mx m()642+3-=m x m2+364=-mx m . 【点睛】 本题是对解一元一次方程的考查,熟练掌握一元一次方程的解法是解决本题的关键. 21.某市水果批发欲将A 市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时,其它主要参考数据如下:(1) 如果汽车的总支出费用比火车费用多1100元,你知道本市与A 市之间的路程是多少千米吗?请你列方程解答.(总支出包含损耗、运费和装卸费用)(2) 如果A 市与B 市之间的距离为S 千米,你若是A 市水果批发部门的经理,要想将这种水果运往B 市销售,试分析以上两种运输工具中选择哪种运输方式比较合算呢?解析:(1) x =400;(2) 当s >200时,选择火车运输;当s <200时,选择汽车运输;当s =200时,两种方式都一样 【分析】(1)设路程为x 千米,题中等量关系是:汽车的总支出费用比火车费用多1100元,列出方程解答;(2)根据(1)中结论分别算出火车和汽车所需的运费,再进行比较即可求解. 【详解】(1) 设本市与A 市之间的路程是x 千米200•20015200011002090010080x x x x +++=++, 解得x =400(2) 火车的运输费用为•200152000172000100ss s ++=+ 汽车运输的费用为•2002090022.590080ss s ++=+ 当17s +2000=22.5s +900,解得s =200 当s >200时,选择火车运输 当s <200时,选择汽车运输 当s =200时,两种方式都一样 【点睛】本题主要考查了一元一次方程的应用,根据题意列出方程是解答本类问题的关键. 22.老师在黑板上写了一个等式(3)4(3)a x a +=+.王聪说4x =,刘敏说不一定,当4x ≠时,这个等式也可能成立.(1)你认为他们俩的说法正确吗?请说明理由; (2)你能求出当2a =时(3)4(3)a x a +=+中x 的值吗? 解析:(1)王聪的说法不正确,见解析;(2)4x = 【分析】(1)根据等式的性质进行判断即可. (2)利用代入法求解即可. 【详解】(1)王聪的说法不正确.理由:两边除以(3)a +不符合等式的性质2,因为当30a +=时,x 为任意实数. 刘敏的说法正确.理由:因为当30a +=时,x 为任意实数,所以当4x ≠时,这个等式也可能成立. (2)将2a =代入,得(23)4(23)x +=+,解得4x =. 【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的性质、等式的性质是解题的关键. 23.李老师准备购买一套小户型商品房,他去售楼处了解情况得知,该户型商品房的单价是5000元2/m ,如图所示(单位:m ,卫生间的宽未定,设宽为xm ),售楼处为李老师提供了以下两种优惠方案:方案一:整套房的单价为5000元2/m ,其中卫生间可免费赠送一半的面积; 方案二:整套房按原销售总金额的9.5折出售.(1)用含x 的代数式表示该户型商品房的面积及按方案一、方案二购买一套该户型商品房的总金额;(2)当2x =时,通过计算说明哪种方案更优惠,优惠多少元.解析:(1)该户型商品房的面积为2(482)x m +,按方案一购买一套该户型商品房的总金额为(2400005000)x +元,按方案二购买一套该户型商品房的总金额为(2280009500)x +元;(2)当2x =时,方案二更优惠,优惠3000元.【分析】(1)该户型商品房的面积=大长方形的面积-卫生间右侧的长方形,代入计算,也可以利用各间的面积和来求;方案一:(总面积-厨房的12)×单价5000;方案二:总价×0.95; (2)分别把数据代入计算即可; 【详解】解:(1)该户型商品房的面积为:2473(84)2(73)(842)(482)x x m ⨯+⨯-+⨯-+--=+按方案一购买一套该户型商品房的总金额为:147342425000(2400005000)2x x ⎛⎫⨯+⨯+⨯+⨯⨯=+ ⎪⎝⎭元;按方案二购买一套该户型商品房的总金额为:(4734242)500095%(2280009500)x x ⨯+⨯+⨯+⨯⨯=+元.(2)当2x =时,方案一总金额为2400005000250000x +=(元); 方案二总金额为2280009500247000x +=(元). 方案二比方案一优惠2500002470003000-=(元). 所以方案二更优惠,优惠3000元. 【点睛】本题是根据实际应用列代数式,是楼房销售问题,考查了图形面积与销售总额及银行利率的知识;解题的关键是熟练掌握利用代数式表示图形的面积. 24.解方程:(1)3(26)17x x +=--; (2)4(2)13(1)x x --=-; (3)4(1)5(3)11x x +--=; (4)14(1)(26)112x x --+=. 解析:(1)5x =-;(2)6x =;(3)8x =;(4)6x = 【分析】(1)去括号,移项及合并同类项,系数化为1即可求解. (2)去括号,移项及合并同类项,系数化为1即可求解. (3)去括号,移项及合并同类项,系数化为1即可求解. (4)去括号,移项及合并同类项,系数化为1即可求解. 【详解】(1)去括号,得61817x x +=--. 移项及合并同类项,得735x =-. 系数化为1,得5x =-.(2)去括号,得48133x x --=-. 移项,得43381x x -=-++. 合并同类项,得6x =.(3)去括号,得4451511x x +-+=. 移项,得4511415x x -=--. 合并同类项,得8x -=-. 系数化为1,得8x =.(4)去括号,得44311x x ---=.移项,得41143x x -=++. 合并同类项,得318x =. 系数化为1,得6x =. 【点睛】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 25.某圆柱形饮料瓶由铝片加工做成,现有若干张一样大小的铝片,若全部用来做瓶身可做900个,若全部用来做瓶底可做1200个.已知每一张这样的铝片全部做成瓶底比全部做成瓶身多20个.(1)问一张这样的铝片可做几个瓶底? (2)这些铝片一共有多少张?(3)若一个瓶身与两个瓶底配成一套,则从这些铝片中取多少张做瓶身,取多少张做瓶底可使配套做成的饮料瓶最多?解析:(1)80个(2)15张(3)6张;9张 【分析】(1)列方程求解即可得到结果; (2)用总量除以(1)的结果即可;(3)设从这15张铝片中取a 张做瓶身,取(15)a -张做瓶底可使配套做成的饮料瓶最多,代入值计算即可; 【详解】解:(1)设一张这样的铝片可做x 个瓶底. 根据题意,得9001200(20)x x =-. 解得80x =.2060x -=. 答:一张这样的铝片可做80个瓶底. (2)12001580=(张) 答:这些铝片一共有15张.(3)设从这15张铝片中取a 张做瓶身,取(15)a -张做瓶底可使配套做成的饮料瓶最多.根据题意,得26080(15)a a ⨯⋅=-. 解得6a =.则159a -=.答:从这些铝片中取6张做瓶身,取9张做瓶底可使配套做成的饮料瓶最多. 【点睛】本题主要考查了一元一次方程的应用,准确理解题意是解题的关键.26.甲、乙两人骑自行车分别从相距36km 的两地匀速同向而行,如果甲比乙先出发半小时,那么在乙出发后经3小时甲追上乙;如果乙比甲先出发1小时,那么在甲出发后经5小时甲才能追上乙.请问:甲、乙两人骑自行车每小时各行多少千米? 解析:甲骑自行车每小时行18千米,乙骑自行车每小时行9千米 【分析】设甲骑自行车每小时行x 千米,先根据“甲比乙先出发半小时,那么在乙出发后经3小时甲追上乙”用含x 的代数式表示出乙的速度,然后根据甲5小时骑行的路程-乙6小时骑行的路程=36千米即可列出方程,解方程即可求出结果. 【详解】解:设甲骑自行车每小时行x 千米,则乙骑自行车每小时行133623x ⎛⎫+- ⎪⎝⎭千米,即7126x ⎛⎫- ⎪⎝⎭千米. 依题意,得()755112366x x ⎛⎫-+-=⎪⎝⎭,解得18x =. 712211296x -=-=. 答:甲骑自行车每小时行18千米,乙骑自行车每小时行9千米. 【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键. 27.解方程:(1)36156x x -=--;(2)45173x x +=-; (3) 2.57.5516y y y --=-;(4)11481.5533z z +=-. 解析:(1)1x =-;(2)66x =-;(3)56y =;(4)407z =- 【分析】(1)先移项,再合并同类项,最后系数化为1即可. (2)先移项,再合并同类项,最后系数化为1即可. (3)先移项,再合并同类项,最后系数化为1即可. (4)先移项,再合并同类项,最后系数化为1即可. 【详解】(1)移项,得36156x x +=-+. 合并同类项,得99x =-. 系数化为1,得1x =-.(2)移项,得41753x x -=--. 合并同类项,得1223x =-.系数化为1,得66x =-.(3)移项,得 2.57.5165y y y --+=.合并同类项,得65y =.系数化为1,得56y =. (4)移项,得11841.5533z z -=--. 合并同类项,得7410z =-. 系数化为1,得407z =-. 【点睛】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键.28.我们知道13写成小数形式为0.3,反过来,无限循环小数0.3也可以转化成分数形式.方法如下: 设0.3x =,由0.30.333=,可知10 3.333x =,所以103x x -=.解方程,得13x =,所以10.33=. 例如:把无限循环小数0.32化为分数的方法如下: 设0.32x =,由0.320.323232=,可知10032.323232x =,所以10032x x -=,解方程,得3299x =,所以320.3299=.根据上述材料,解答下列问题: (1)把下列无限循环小数写成分数形式:①0.5=________;②2.58=________;③0.518=________.(2)借鉴材料中的方法,从第(1)题的①②③中任选一个,写出你的转化过程. 解析:(1)①59;②25699;③518999;(2)见解析 【分析】(1)根据题目中的转化方法进行转化即可.(2)根据题目中的转化方法进行转化,并写出过程.【详解】 (1)①59;②25699;③518999. (2)从①②③中任选一个转化即可. ①设0.5x =,则10 5.5555x =⋯,所以105x x -=,解方程,得59x =,所以50.59=. ②设0.58x =,则10058.5858x =⋯,所以10058x x -=,解方程,得5899x =,所以。
3等式的基本性质和解方程例1-4
等量关系: 两种水果的总价x2=总价钱
两种水果的总价x2=总价钱 (2.8+x)x2=10.4 (2.8+x) x2÷2=10.4÷2 2.8+x=5.2 2.8+x-2.8=5.2-2.8 X=2.4
例 3: 地球的表面积为5.1亿平方千米, 其中,海洋面积约为陆地面积 的2.4倍,地球上海洋的面积和 陆地的面积分别是多少亿平方 千米?
空杯子重100g, 水重x克。
平衡
100g 50g 100g
100g
空杯子重100g, 水重x克。
平衡
100g 50g 100g
X=?
100g
100+x=250
平衡
100g 100g
X=?
100+x=250
假如两边同时 减去100,就能 得出x=150。
100+150=250, 所以x=150。
今日水位-警戒水位=超出部分 14.14-x=0.64
列方程解应用题的过程: 1读题,理解题意,用X表示未知数。 2找等量关系,列方程。 3按格式解方程。 4按题目要求,验算答案。
例 4:
为了知道一个滴水的水龙头每分钟浪费 多少水,有一个同学拿桶接了半个小时, 共接了1.8kg水。
这个滴水的水龙头每分钟浪费多少克水?
答:共有12块黑色皮。
例2: 苹果和梨共要2kg,共10.4元。 苹果每千克多少元?
等量关系: 1苹果的总价+梨的总价=总价钱 2两种水果的总价x2=总价钱
苹果的总价+梨的总价=总价钱 2x+2.8x2=10.4
解:设苹果每千克x元。 2x + 2.8 x 2 = 10.4 2x+5.6=10.4 2x+5.6-5.6=10.4-5.6 2x=4.8 2x÷2=4.8÷2 X=2.4 答:苹果每千克2.4元。
数学五年级上册《等式的性质》练习题(含答案)
【同步专练A 】5.2.2等式的性质(基础应用篇)一、单选题(共10题)1.如果x=y,根据等式的性质,可以得到的是( )。
A . 10x=10yB . x×2=y÷2C . 2x=x+2D . 2x=x+82.如果A =B ,根据等式的性质,将等式变换后,错误是()。
A . A ×4.5=B ×4.5 B . A -4-5=B ÷4×5C . A +8=B +12-4D . 3A+5=3B +53.如果x=y,根据等式的基本性质,经过变化后下面的()是错误的。
A . x÷B =y÷6(B ≠0) B . x+y=y+yC . x×3×5=15yD . x-y=y-4+34.x+3=y+5,那么x()y。
A . 大于B . 小于C . 等于D . 无法确定5.A +17=19+B ,比较A 与B 的大小,()A . A >B B . A <BC . A =BD .B ≠A6.若A +5=B -5,则A +10=()A .B +10 B . BC . B -57.如果甲×2.8=乙×3.9(甲数不等于0),则甲()乙.A . 大于B . 小于C . 等于8.如果x=y,根据等式的性质,经过变换后,下列等式错误的是()。
A . x-8=y-6+2B . x×2×3=6yC . x+8=y+10-2D . x÷B =y÷B (B ≠0)9.如果2m=6n,(m,n均不为0),那么m=()A . nB . 2nC . 3n10.A × =B ×(A 、B 都不为0),A ()B .A . >B . <C . =二、填空题(共10题)11.如果m=n,请根据等式的基本性质填空。
m-________=n-3.4 m×________=n×A12.等式的两边同时________或者________一个相同的数,等式仍然成立。
等式的基本性质12
x =(6)
方程两边同时除以一个不等于0 的数,左右两边2=2b×2
等式:2m=6n
等式:2m÷2=6n÷2
等式的基本性质(二):
等式的两边同时乘或除以相同的数 (0除外),左右两边仍然相等。
如果a=b,那么a c=b c
用等式的基本性质2填空
1、如果a=b,那a×5=b×( 5 ) 2、如果3m=n,那么3m÷6=n÷( 6)
1、什么叫方程?
含有未知数的等式叫做方程?
方程一定是等式,等式不一定是方程
3.看图列出方程。
aa
80
X
25
2a = 80
100
X + 25 = 100
继续
等式:2a=b
等式:2a+a=b+a
等式:2a+a+b=b+a+b
等式:m+n=4n
等式:m+n-n=4n-n
小结: 天平两边同时增加相同的物品,天平保持不变 天平两边同时减少相同的物品,天平也保持不变
等式的基本性质(一): 等式两边同时加上(或减去)相同的数 左右两边仍然相等。
如果a b,那么a c b c
用等式的基本性质1填空
1、如果a=b,那么a+5=b+( 5 ) 2、如果3m+6=n,那么3m+6-6=n-( 6 ) 3、如果7y+a=11,那么7y+a+4=( 15) 2、如果4x+2=y,那么4x=y-( 2 )
3、如果7y×a=10,那么7y×a×4=( 40) 4、如果4x×2÷2=y,那么4x=y÷( 2 )
等式的基本性质:
1、 等式两边加上或者减去相同的数, 左右两边仍然相等;
数学等式性质知识测试题及答案
数学等式性质知识测试题及答案1.若方程3(x+4)-4=2k+1的解是-3,则k的值是( )A.1B.-1C.0D.-思路解析:既然x=-3是方程3(x+4)-4=2k+1的解,就说明-3可以代替x的位置,也就是把原题中的x 换成“-3”,得3×(-3+4)-4=2k+1,可求得k=-1.答案:B2.等式两边都加上(或减去)____或____,所得结果仍是等式.思路解析:根据等式基本性质1.[来源:中.考.资.源.网]答案:同一个数同一个代数式3.等式两边都乘以(或除以)____( ),所得结果仍是等式.思路解析:根据等式基本性质2.答案:同一个数除数不为04.若2x-a=3,则2x=3+______,这是根据等式的性质1,在等式两边同时______.思路解析:等式两边同时加上(或减去)同一个数,所得结果仍是等式.答案:a 加上a5.若-6a=4.5,则______=-1.5,这是根据等式的性质,在等式两边同时______.思路解析:根据等式基本性质2.答案:2a 除以-36.若-=-,则a=______这是根据等式的性质,在等式两边同时______.思路解析:根据等式基本性质2.答案:5b 乘以-100综合应用创新7.若-8x3a+2=1是一元一次方程,则a=____.思路解析:因为一元一次方程中未知数的指数是1,所以-8x3a+2中x的指数3a+2就是1.解:由题意得3a+2=1,3a+2-2=1-2——等式基本性质13a=-1,=——等式基本性质2a=-.答案:-8.下列方程中以x=为解的是( )A.-2x=4B.-2x-1=-3C.-x-1=-D.-x+1=思路解析:如果将四个选项中的`方程一一求解,当然可以解决问题,但是这样做效率太低.根据方程的解的意义,可将代入四个选项中进行验证.只有D选项的方程左右两边的值是相等的.答案:D9.已知5a-3b-1=5b-3a,利用等式的性质比较a、b的大小.解:利用等式的性质将它们移到等式的同一侧,即5a+3a-1=5b+3b,再进行化简,得8a-1=8b,最后用作差法比较大小,即8a-8b=1,8(a-b)=1,a-b=>0,所以a>b.10.利用等式性质解方程:-x+3=-10.思路解析:利用等式的性质先去分母,再化为x=a的形式.答案:x=11.服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童每套平均用布1.5米,现在已做了80套成人服装,用余下的布还可以做几套儿童服装?思路解析:如果设余下的布可以做x套儿童服装,那么这x套儿童就需要布1.5x米,根据题意可以列方程:解:设余下的布可以做x套儿童服装,那么这x套服装就需要1.5x米,根据题意,得80×3.5+1.5x=355,化简,得280+1.5x=355,两边减280,得1.5x=75,两边除以1.5,得x=50.答:用余下的布还可以做50套儿童服装.让大脑放松的小窍门伸个懒腰、闭眼眯一会儿、深呼吸几次……这些短暂的休息,能让高速运转的大脑得到充分休息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、同学们绿化校园种了3 、同学们绿化校园种了 排杨树,每排18棵 排杨树,每排 棵,又种 了一些柳树,现共有100 了一些柳树,现共有 柳树有多少棵? 棵。柳树有多少棵
5、文艺组有52人,比美 、文艺组有 人 术组的2倍多 倍多8人 术组的 倍多 人,美术 组多少人? 组多少人?
6、学校图书馆,连环画 、学校图书馆, 比科技书的2倍少 倍少58本 比科技书的 倍少 本, 连环画有378本,科技书 连环画有 本 有多少本? 有多少本?
4X+15=41 0.8X-4=20 16+ 2X=43.6
X-8.2=10 X-57=83 X+5.7=9.4
X+3=8 X+3 =8 X-11=26 X-11 =26
2X+1=31 2X+1 =31 5X-41=74 5X-41 =74
用方程表示下列数量 关系 1、学校原有 张桌椅, 、学校原有840张桌椅, 张桌椅 又运来x张 又运来 、水果店有 千克苹果, 千克苹果 卖了x千克 还剩335千克。 千克, 千克。 卖了 千克,还剩 千克 3、妈妈买一部电话机, 、妈妈买一部电话机, 付出x元 找回84元 付出 元,找回 元。