中考数学冲刺模拟测试题(六)

合集下载

2020年中考数学复习冲刺小卷06 三角形1

2020年中考数学复习冲刺小卷06 三角形1

06三角形2一、选择题:1.(江苏省镇江市丹徒区江心实验学校2019届九年级3月份调研考试数学试题)如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是A.60°B.65°C.55°D.50°【答案】A【解析】∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选A.2.(江苏省镇江市丹阳市2019年中考一模数学试题)如图,在长方形纸片ABC D中,AD= 4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若OC=5cm,则CD的长为A.6cm B.7cmC.8cm D.10cm【答案】C【解析】根据折叠前后角相等可知∠BAC=∠EAC,∵四边形ABCD是矩形,∴AB∥CD,∴∠BAC =∠ACD , ∴∠EAC =∠ACD , ∴AO =CO =5cm ,在直角三角形ADO 中,DO ,CD = AB =DO +CO =3+5=8cm . 故选C .【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.3.(江苏省如皋市2019届九年级第一次模拟考试数学试题)如图,点D 在△ABC 的边AB 的延长线上,DE ∥BC ,若∠A =35°,∠C =24°,则∠D 的度数是A .24°B .59°C .60°D .69°【答案】B【解析】∵∠A =35°,∠C =24°, ∴∠DBC =∠A +∠C =35°+24°=59°, 又∵DE ∥BC , ∴∠D =∠DBC =59°, 故选B.【点睛】本题考查了平行线的性质,三角形外角的性质,熟练掌握相关的性质是解题的关键.4.(江苏省2019年苏州市常熟市中考数学模拟试题)如图,ABC △是一块直角三角板,90,30C A ∠=︒∠=︒,现将三角板叠放在一把直尺上,AC 与直尺的两边分别交于点D ,E ,AB 与直尺的两边分别交于点F ,G ,若∠1=40°,则∠2的度数为A.40ºB.50ºC.60ºD.70º【答案】D【解析】∵DF∥EG,∴∠1=∠DFG=40°,又∵∠A=30°,∴∠2=∠A+∠DFG=30°+40°=70°,故选D.【点睛】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.5.(江苏省盐城市阜宁县实验初级中学2019-2020学年九年级上学期12月月考数学试题)如图,M(0,﹣3)、N(0,﹣9),半径为5的⊙A经过M、N,则A点坐标为A.(-5,-6)B.(4,-6)C.(-6,-4)D.(-4,-6)【答案】D【解析】过A作AB⊥NM交y轴于B,连接AM,∵点M (0,−3)、N (0,−9), ∴MN =6, ∴BM =BN =3, ∴OB =3+3=6,∴()06B -,, ∵=5AM ,由勾股定理得:4AB ==, ∴点A 的坐标为(−4,−6), 故答案为:(−4,−6).【点睛】本题考查了勾股定理和垂径定理,能根据垂径定理求出BM 和BN 是解此题的关键. 6.(江苏省无锡市2019届九年级中考适应性考试数学试题(三))如图,字母B 所代表的正方形的面积是A .12B .144C .13D .194【答案】B【解析】如图,根据勾股定理我们可以得出: a 2+b 2=c 2a 2=25,c 2=169,b 2=169﹣25=144, 因此B 的面积是144. 故选B .【点睛】本题主要考查了正方形的面积公式和勾股定理的应用.只要搞清楚直角三角形的斜边和直角边本题就容易多了.7.(江苏省无锡市江阴市青阳片2019-2020学年九年级上学期期中数学试题)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是A .B .C .D .【答案】C【解析】三角形外心为三边的垂直平分线的交点,由基本作图得到C 选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心. 故选C .【点睛】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的外心.8.(江苏省苏州市2019届九年级中考数学模拟试题(一))如图,已知60AOB ∠=︒,点P 在OA 上,12OP =.点M 、N 在OB 边上,PM PN =.若2MN =,则OM =A .3B .4C.5D.6【答案】C【解析】过P作PQ⊥MN,∵PM=PN,∴MQ=NQ=1,在Rt△OPQ中,OP=12,∠AOB=60°,∴∠OPQ=30°,∴OQ=6,则OM=OQ-QM=6-1=5.故选:C.【点睛】本题考查等腰三角形的性质,以及含30度直角三角形的性质,熟练掌握等腰三角形以及含30°直角三角形的性质是解题的关键.9.(江苏省南通市海安市十校联考2019-2020学年九年级上学期期中数学试题)如图,△ABD是等边三角形,以AD为边向外作△ADE,使∠AED=30°,且AE=3,DE=2,连接BE,则BE的长为A.4 BC.5 D【答案】B【解析】作EF⊥AE,且EF=DE,连接AF、DF,因为∠AEF=90°,所以∠DEF=90°-30°=60°,DE=EF,所以△DEF是等边三角形,所以∠EDF=60°,∠ADF=∠BDE,因为AD=BD,DE=EF,∠ADF=∠BDE,所以△BDE≌△ADF,所以BE=AF=B.【点睛】本题主要考查的就是三角形全等证明的应用以及直角三角形勾股定理的应用,解决这个问题的关键就是要能够作出辅助线,将所求的线段转化到直角三角形中,利用勾股定理进行求解.对于这种无法直接计算的题目,我们可以通过旋转,作直角三角形等将所求的线段放到特殊的三角形中,然后来进行求解,特别需要注意的就是题目中出现30°、45°、135°等特殊角的时候.10.(江苏省南京市联合体(秦淮下关浦口沿江)2019年中考三模数学试题)如图,在一张长方形纸条上画一条截线AB,将纸条沿截线AB折叠,则△ABC一定是A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形【答案】A【解析】如图:∵所给图形是长方形,∴∠1=∠2,∵∠2=∠ABC,∴∠1=∠ABC,∴AC=BC,即△ABC为等腰三角形.故选:A.【点睛】本题考查了翻折变换的问题,综合性较强,注意熟练掌握翻折不变性、平行线的性质、等腰三角形的性质.二、填空题11.(2019年江苏省连云港市海州区新海实验中学九年级(下)第一次月考数学试题)如图,在△AB C中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为_______.【答案】13【解析】已知DE是AB的垂直平分线,根据线段的垂直平分线的性质得到EA=EB,所以△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,12.(江苏省南通市海安市十校2019-2020学年九年级上学期10月月考数学试题)平面直角坐标系中,C(0,4),A为x轴上一动点,连接AC,将AC绕A点顺时针旋转90°得到AB,当点A在x轴上运动时,OB+BC 的最小值为_____.【答案】【解析】过点B作BE⊥x轴,∴∠AEB=∠COA=90°,∵将AC绕A点顺时针旋转90°得到AB,∴∠CAB=90°,AC=AB,∴∠OCA+∠CAO=∠CAO+∠BAE=90°,∴∠OCA=∠BAE,∴△ACO≌△BAE,∴CO=AE=4,OA=BE,如图,作点O关于BE的对称点D,则BE垂直平分OD,∴OB =DB ,∴当点C 、B 、D 三点共线时OB +BC =BD +BC =CD ,OB +BC 的最小值为CD ; 设点A 坐标为(x ,0),则OA =x (0x ≥), ∴点E 为(x +4,0),则点D 为(2x +8,0), ∴OD =2x +8,在直角三角形OCD 中,由勾股定理,得:222CD OC OD =+,∴CD ==, ∵0x ≥,∴当0x =时,CD 有最小值,CD 的最小值为:min CD ==,∴OB +BC 的最小值为:【点睛】本题考查了旋转的性质,全等三角形的判定和性质,二次函数的性质,轴对称求最短距离问题,以及勾股定理,解题的关键是正确理解题意,找到使OB +BC 得到最小值的情况,然后进行分析解答.13.(江苏省徐州市2019届中考模拟考试数学试题)如图,在△AB C 中,AB =5cm ,AC =3cm ,BC 的垂直平分线分别交AB 、BC 于D 、E ,则△ACD 的周长为__________cm . 【答案】8【解析】∵DE 是BC 的垂直平分线, ∴BD =CD ,∴AB =AD +BD =AD +CD ,∴△ACD 的周长=AD +CD +AC =AB +AC =8cm ; 故答案为8【点睛】本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等.14.(江苏省东台市第四联盟2019届九年级下学期学情调查一数学试题)等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为__________.【答案】60°或120°【解析】如图(1),∵AB=AC,BD⊥AC,∴∠ADB=90°,∵∠ABD=30°,∴∠A=60°;如图(2),∵AB=AC,BD⊥AC,∴∠BDC=90°,∵∠ABD=30°,∴∠BAD=60°,∴∠BAC=120°;综上所述,它的顶角度数为:60°或120°.【点睛】此题考查了等腰三角形的性质.此题难度适中,注意掌握分类讨论思想的应用是解此题的关键.15.(江苏省常州市新北区外国语学校2019届九年级下学期一模数学试题)在Rt△AB C中,∠ACB=90°,AC=8,BC=6,点D、E分别在AC、AB上,且△ADE是直角三角形,△BDE是等腰三角形,则BE=_________.【答案】307或154.【解析】①如图1中,当∠AED=90°,DE=BE时,设DE=BE=x.在Rt△AB C中,∵AC=8,BC=6,∴AB,∵∠A=∠A,∠AED=∠C=90°,∴△AED∽△ACB,∴AE DE AC BC=,∴1086x x-=,解得x=307.②如图2中,当∠ADE=90°,DE=EB时,设DE=BE=x,∵△ADE∽△ACB,∴DE AE BC AB=,∴10610x x-=,解得x=154,综上所述,BE的值为307或154.【点睛】本题考查等腰三角形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.16.(江苏省盐城市建湖县2019-2020学年九年级上学期期中数学试题)如图,BC=cm,点D是线段BC上的一点,分别以BD、CD为边在BC的同侧作等边三角形ABD和等边三角形CDE,AC、BE相交于点P,则点D从点B运动到点C时,点P的运动路径长(含与点B、C重合)为_________.【答案】16π3【解析】作△BCP的外接圆⊙O,过点O作OF⊥BC于F,延长OF交⊙O于G,连接BG,CG,OB,OC,∵△ABD和△CDE是等边三角形,∴∠ABD=∠EDC=60°,∴AB//DE,∠ABD+∠ADE=∠EDC+∠ADE,∴∠ABE=∠BED,∠BDE=∠ADC,在△BDE和△AD C中,BD ADBDE ADC DE DC=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△ADC,∴∠BED=∠ACD,∴∠ACD=∠ABE,∴∠ACD+∠EBC=∠ABE+∠EBC=∠ABD=60°,∴∠BPC=180°-(∠ACD+∠EBC)=120°,∴点D从点B运动到点C时,点P的运动路径长(含与点B、C重合)为»BC的长,∵OG⊥BC,∠BGC=∠BPC=120°,∴BF=12BC=12×,∠OGB=12∠BGC=60°,∵OB=OG,∴△OBG是等边三角形,∴∠BOG=60°,∴∠BOC=2∠BOG=120°,∠OBF=30°,∴OF=12 OB,∴OB 2=OF 2+BF 2,即OB 2=(12OB )22, 解得OB =8,(负值舍去),∴»BC=120π8180⨯=16π3,故答案为:16π3【点睛】本题考查等边三角形的性质、全等三角形的判定与性质、圆周角定理及垂径定理,根据圆周角定理确定点P 的运动轨迹是解题关键.17.(江苏省东台市第四联盟2019届九年级下学期学情调查一数学试题)如图,在等边△AB C 中,AB =4,点P 是BC 边上的动点,点P 关于直线AB ,AC 的对称点分别为M ,N ,则线段MN 长的取值范围是.【答案】6MN ≤≤.【解析】如图1,当点P 为BC 的中点时,MN 最短.此时E 、F 分别为AB 、AC 的中点, ∴PE =12AC ,PF =12AB ,EF =12BC , ∴MN =ME +EF +FN =PE +EF +PF =6;如图2,当点P 和点B (或点C )重合时,此时BN (或CM )最长.此时G (H )为AB (AC )的中点,∴CG (BH ,CM (BN .故线段MN 长的取值范围是6≤MN18.(江苏省徐州市2019届九年级第二次模拟考试数学试题)如图,△AB C 中,AB =AC ,∠A =40º,点P 是△ABC 内一点,连结PB 、PC ,∠1=∠2,则∠BPC 的度数是_________.【答案】110°【解析】∵△ABC 中,AB =AC ,∠A =40°, ∴∠ABC =12(180°−40°)=70°, ∴∠1+∠PBC =70°, ∵∠1=∠2, ∴∠2+∠PBC =70°,∴∠BPC =180°-(∠2+∠PBC )=180°-70°=110°, 故答案为:1100.【点睛】此题考查等腰三角形的性质,关键是根据等腰三角形的性质和三角形内角和解答.19.(江苏省盐城市中学2019-2020学年九年级上学期第一次月考数学试题)已知:在ABC △中,AB AC =.(1)求作:ABC △的外接圆.(要求:尺规作图,保留作图痕迹,不写作法) (2)若ABC △的外接圆的圆心O 到BC 边的距离为4,6BC =,则O S =e .【答案】(1)见解析;(2)25π 【解析】(1)如图O e 即为所求.(2)设线段BC 的垂直平分线交BC 于点E . 由题意4,3OE BE EC ===,在Rt OBE △中,5OB ==,∴2π·525πO S ==圆. 故答案为25π.【点睛】本题考查作图-复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题20.(江苏省镇江市丹徒区江心实验学校2019-2020学年九年级12月份月考数学试题)三角形的两边长分别为3和4,第三边的长是方程x 2﹣8x +15=0的解,求此三角形的面积【答案】6或【解析】x 2﹣8x +15=0,解得123,5x x ==,根据三角形三边关系可知,此三角形第三边大于1且小于7, ∴当三边长为3,4,5时,三角形是直角三角形,其面积S =134=62⨯⨯; 当三边长为3,3,4时,三角形为等腰三角形,∴面积为S =142⨯∴三角形面积为:6或【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了三角形三边的关系、勾股定理及三角形面积的求法.21.(江苏省扬州市江都区邵樊片2019-2020学年九年级上学期第一次质量检测数学试题)已知关于x 的方程22(21)0x m x m m -+++=. (1)用含m 的代数式表示这个方程的实数根.(2)若Rt ABC ∆的两边a b 、恰好是这个方程的两根,另一边长5c =,求m 的值. 【答案】(1)11x m =+,2x m =;(2)3m =或12m =.【解析】(1)22(21)0x m x m m -+++=()2224[(21)]4b ac m m m -=-+-+ 2244144m m m m =++--1=∴2112m x +±=∴11x m =+,2x m =(2)当5c =为斜边时,22(1)25m m ++=13m =,24m =-(舍去)当边长为1m +斜边时2225(1)m m +=+12m =综上:3m =或12m =【点睛】本题考查的是求根公式与勾股定理,解题的关键是根据求根公式和根据勾股定理列出关于m 的方程,注意把不合题意的解舍去.22.(江苏省镇江市丹徒区江心实验学校2019届九年级3月份调研考试数学试题)如图,点A 、D 、C 、F 在同一条直线上,AD =CF ,AB =DE ,BC =EF . (1)求证:ΔABC ≌△DEF ;(2)若∠A =55°,∠B =88°,求∠F 的度数.【答案】(1)证明见解析;(2)37°【解析】(1)∵AC =AD +DC ,DF =DC +CF ,且AD =CF ∴AC =DF在△ABC 和△DEF 中,AB DEBC EF AC DF =⎧⎪=⎨⎪=⎩∴△ABC≌△DEF(SSS)(2)由(1)可知,∠F=∠ACB,∵∠A=55°,∠B=88°,∴∠ACB=180°-(∠A+∠B)=180°-(55°+88°)=37°,∴∠F=∠ACB=37°.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23.(江苏省如皋市2019届九年级第一次模拟考试数学试题)如图,A、B、C是直线l上的三个点,∠DAB =∠DBE=∠ECB=a,且BD=BE.(1)求证:AC=AD+CE;(2)若a=120°,点F在直线l的上方,△BEF为等边三角形,补全图形,请判断△ACF的形状,并说明理由.【答案】(1)详见解析;(2)△ACF为等边三角形.【解析】(1)∵∠DAB=∠DBE=α,∴∠ADB+∠ABD=∠CBE+∠ABD=180°﹣α.∴∠ADB=∠CBE在△ADB和△CBE中,∵ADB CBEDAB BCEDB BE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB≌△CBE(AAS)∴AD=CB,AB=CE.∴AC=AB+BC=AD+CE (2)补全图形.△ACF为等边三角形.理由如下:∵△BEF为等边三角形,∴BF=EF,∠BFE=∠FBE=∠FEB=60°.∵∠DBE=120°,∴∠DBF=60°.∵∠ABD=∠CEB(已证),∴∠ABD+∠DBF=∠CEB+∠FEB,即∠ABF=∠CEF.∵AB=CE(已证),∴△AFB≌△CFE(SAS),∴AF=CF,∠AFB=∠CFE.∴∠AFC=∠AFB+∠BFC=∠CFE+∠BFC=60°.∴△ACF为等边三角形.【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,熟练运用全等三角形的判定和性质是本题关键.24.(2019年江苏省无锡市中考数学试题)如图,在△AB C中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;△≌△;求证:(1)DBC ECB.(2)OB OC【答案】(1)见解析;(2)见解析. 【解析】(1)∵AB =AC , ∴∠ECB =∠DBC , 在DBC ECB ∆∆与中BD CE DBC ECB BC CB =⎧⎪∠=∠⎨⎪=⎩, ∴DBC ECB △≌△;(2)由(1)DBC ECB △≌△, ∴∠DCB =∠EBC , ∴OB =O C.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质与判定,熟练掌握全等三角形的判定定理与性质定理是解题的关键.25.(江苏省南通市海安市八校联考2019-2020学年九年级上学期第一次阶段性测试数学试题)如图,等腰Rt △AB C 中,BA =BC ,∠ABC =90°,点D 在AC 上,将△ABD 绕点B 沿顺时针方向旋转90°后,得到△CBE . (1)求∠DCE 的度数;(2)若AB =4,CD =3AD ,求DE 的长.【答案】(1)90°;(2)【解析】(1)∵△ABCD 为等腰直角三角形, ∴∠BAD =∠BCD =45°.由旋转的性质可知∠BAD =∠BCE =45°. ∴∠DCE =∠BCE +∠BCA =45°+45°=90°. (2)∵BA =BC ,∠ABC =90°, ∴AC=.∵CD=3AD,∴AD,DC.由旋转的性质可知:AD=EC.∴DE=21。

江苏南京中考数学模拟测试题(6)

江苏南京中考数学模拟测试题(6)

江苏南京中考数学模拟测试题(6)一.选择题(共6小题,满分12分,每小题2分)1.(2分)a的倒数为﹣3,则a等于()A.B.3C.﹣D.±32.(2分)下列运算正确的是()A.a2•a3=a6B.y12÷y3=y4C.(﹣2x)3=﹣8x3D.x3+x3=2x63.(2分)介于两个连续(相邻)的整数a与b之间,则a+b=()A.1B.3C.5D.74.(2分)在数轴上距离原点6个单位长度的点所表示的数是()A.6B.﹣6C.6或﹣6D.3或﹣35.(2分)如图,从一块半径为2m的圆形铁皮上剪出一个半径为2m的扇形,则此扇形围成的圆锥的侧面积为()A.2πm2B.C.πm2D.6.(2分)如图,将△ABC绕点P顺时针旋转得到△A'B'C',则点P的坐标为()A.(1,1)B.(1,2)C.(1,3)D.(1,4)二.填空题(共10小题,满分20分,每小题2分)7.(2分)式子有意义,则实数a的取值范围是.8.(2分)据统计永州市人口6316100人(数据来源2020年)将6316100用科学记数法表示为.9.(2分)已知a2﹣a﹣1=0,且,则x=.10.(2分)已知x1,x2是一元二次方程2x2+x﹣3=0的两个实数根,则x1+x2的值是.11.(2分)将一张长方形的纸对折如图所示可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次保持平行,连续对折三次后可以得到7条折痕,那么对折7次可以得到条折痕.12.(2分)刘伯伯家今年养了4000条鲤鱼,现在准备打捞出售,为估计鱼塘中鲤鱼的总质量,从鱼塘中捕捞了三次进行统计:(见表格)则估计鱼塘中鲤鱼的总质量为kg.序号条数总质量(kg)12541210173152713.(2分)如图,P A,PB是⊙O的切线,A,B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于度.14.(2分)如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点C,点D在AB上,∠BAC=∠DEC=30°,AC与DE交于点F,若BD=2,AD=8,则=.15.(2分)如图,在平面直角坐标系中,Rt△OBC的顶点B在x轴的正半轴上,反比例函数y=(x>0)的图象与边OC交于点E,已知E为边OC的中点,则△OBC的面积为.16.(2分)已知点A(﹣3,y1),B(﹣1,y2),C(1,y3),D(2,y4)在二次函数y=ax2+2ax+6的图象上,若y1,y2,y3,y4,四个数中有且只有一个数小于零,则a的取值范围为.三.解答题(共11小题,满分88分)17.(7分)解不等式组,并写出它的所有整数解.18.(7分)计算下列各题.(1)﹣;(2)﹣;(3)÷(1﹣);(4)÷(m+2﹣).19.(8分)如图菱形ABCD的一个内角∠B=60°,E为BC的中点,F为CD的中点,连接AF、EF.(1)△AEF的形状如何?试证明;(2)若E为BC上的任意一点,F为CD上的点,且∠EAF=60°,△AEF的形状如何?试证明.20.(8分)某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲、乙两组学生成绩如下(单位:分)甲组:30,60,60,60,60,60,70,90,90,100乙组:50,60,60,60,70,70,70,70,80,90组别平均分中位数方差合格率优秀率甲组68分a37690%30%乙组b c19690%10%(1)以上成绩统计分析表中a=分,b=分,c=分(2)小亮同学说:“这次竞赛我得了70分,在我们小组中属中游略偏上!”观察上面表格判断,小亮可能是甲、乙哪个组的学生?并说明理由(3)如果你是该校数学竞赛的教练员,现在需要你选组同学代表学校参加复赛,你会选择哪一组?并说明理由21.(8分)为了方便业主合理、规范摆放机动车,小伟所住生活小区的管理人员在小区内部道路的一侧画出了一些停车位.如图,道路上有四个空停车位,标号分别为1,2,3,4,如果有两辆机动车要随机停在这四个停车位中的两个里边,请用列表或画树状图的方法求出这两辆机动车停在“标号是一个奇数和一个偶数”停车位的概率.22.(8分)如图,△ABC中,AB=AC,点D是BC中点,连接AD,过点A作AN∥BC.(1)尺规作图:过点C作直线CE⊥AN于点E(基本作图,保留作图痕迹不写作法,并标明字母);(2)求证:四边形ADCE是矩形.23.(8分)某快递公司有甲、乙两辆货车沿同一路线从A地到B地配送货物.某天两车同时从A地出发,驶向B地,途中乙车由于出现故障,停车修理了一段时间,修理完毕后,乙车加快了速度匀速驶向B地;甲车从A地到B地速度始终保持不变.如图所示是甲、乙两车之间的距离y(km)与两车出发时间x(h)的函数图象.根据相关信息解答下列问题:(1)点M的坐标表示的实际意义是什么?(2)求出MN所表示的关系式,并写出乙故障后的速度;(3)求故障前两车的速度以及a的值.24.(8分)在一次科技制作大赛中,小明用木板制作了一个带有卡槽的三角形手机架如图所示,卡槽的长度DF与内三角形ABC的边AB长相等.已知AC=20cm,BC=18cm,∠ACB=50°,一手机最长边为16.5cm,小明能否将此手机立放入卡槽内?请通过计算加以说明(参考数据:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2).25.(8分)已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=60°,求证:AH=AO.26.(8分)画出y1=4x﹣12与y3=ax2﹣2ax﹣3a的所有可能的草图,并判断是否存在一个a值,使得无论x为任何实数,均有y3≥y1?说明你的理由.27.(10分)(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQ⊥AE于点O,点G,F分别在边CD,AB上,GF⊥AE.推断:的值为;(2)类比探究:如图(2),在矩形ABCD中,=k(k常数).将矩形ABCD沿GF 折叠,使点A落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE 交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用在(2)的条件下,连接CP,当k=时,若,GF=2,求CP的长.。

2023年中考数学模拟冲刺卷(福建省)

2023年中考数学模拟冲刺卷(福建省)

2023年福建省中考数学模拟冲刺卷数学试卷一、单选题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.四个有理数﹣3、﹣1、0、1,其中最小的是()A.﹣3B.﹣1C.0D.12.下列各式运算正确的是()A.(x﹣2)2=x2﹣4B.(x3)2=x5C.2xy2•(﹣x2)=﹣3x3y2D.(π﹣3.14)0=03.如图的一个几何体,其左视图是()A.B.C.D.4.在平面直角坐标系中,将点A(﹣1,2)向下平移3个单位长度,再向右平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣3,﹣1)B.(1,﹣1)C.(﹣1,1)D.(﹣4,4)5.下列调查中,适合抽样调查的是()A.调查本班同学的体育达标情况B.了解“嫦娥五号”探测器的零部件状况C.疫情期间,了解全校师生入校时体温情况D.调查黄河的水质情况6.如图,△ABC与△DEF位似,点O是它们的位似中心,其中OE=3OB,则△ABC与△DEF的面积之比是()A.1:2B.1:4C.1:3D.1:97.如图,第①个图形中共有4个小黑点,第②个图形中共有7个小黑点,第③个图形中共有10个小黑点,第④个图形中共有13个小黑点,…,按此规律排列下去,则第⑥个图形中小黑点的个数为( )A .19B .20C .22D .258.△ABC 的边BC 经过圆心O ,AC 与圆相切于点A ,若∠B =20°,则∠C 的大小等于( )A .50°B .25°C .40°D .20°9. 如图,下列图形都是由同样大小的圆按照一定规律所组成的,其中第①个图形中一共有4个圆,第②个图形中一共有8个圆,第③个图形中一共有14个圆,第④个图形中一共有22个圆,…,按此规律排列下去,第⑨个图形中圆的个数是( )A. 100B. 92C. 90D. 81 10.若二次函数的解析式为()()()115y x m x m =--≤≤.若函数过(),p q 点和()5,p q +点,则q 的取值范围为( )A .92544q ≤≤B .944q -≤≤-C .2524q ≤≤D .924q -≤≤-二、填空题(本题共6小题,每小题4分,共24分)11.如图,菱形ABCD 的对角线,AC BD 相交于点O ,点E 是边AB 的中点,若6OE =,则BC 的长为 _______.12.已知1x =-是一元二次方程2100ax bx +-=的一个解,且a b ≠-,则2222a b a b -+的值为__________.13.在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的锁率稳定在0.5附近,则袋子中红球约有_______个.14.在平面直角坐标系中,以原点为位似中心,将ABC 放大为原来的2倍得到A B C ''',若点A 的坐标为()23,,则A '的坐标为 _____. 15.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为________.16.如图,AD 为∠BAC 的平分线,请你添加一个适当的条件______,使得ABD ACD △≌△.三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.18-21题 每题8分 22题10分 23题10分 24题13分 25题13分)17.已知关于x 的一元二次方程210x ax a -+-=.(1)求证:方程总有两个实数根;(2)若该方程有一实数根大于3,求a 的取值范围.18.如图,在ABC 和ADE 中,AB AC =,AD AE =,且BAC DAE ∠=∠,且B ,D ,E 在同一直线上,连接EC .(1)求证:BD EC =.(2)若55ACB ∠=︒,求BEC ∠的度数.19.如图,点D ,E ,F 分别位于ABC 的三边上,DF CA ∥,70C ∠=︒.(1)求CDF ∠的大小;(2)若70A ∠=︒,DF 平分BDE ∠,求证:DE BA ∥.20.某市政府计划建设一项水利工程,工程需要运送的土石方总量为610立方米,某运输公司承担了运送土石方的任务.(1)设该公司平均每天运送土石方总量为y 立方米,完成运送任务所需时间为t 天. ∠求y 关于t 的函数表达式.∠若080t <≤时,求y 的取值范围.(2)若1辆卡车每天可运送土石方210立方米,工期要求在80天内完成,公司至少要安排多少辆相同型号卡车运输?21.已知,如图(1)在平行四边形ABCD 中,点E F ,分别在,BC CD 上,且AE AF AEC AFC =∠=∠,.(1)求证:四边形ABCD 是菱形.(2)如图(2),若AD AF =,延长AE DC ,交于点G ,求证:2AF AG DF =⋅.(3)在第(2)小题的条件下,连接BD ,交AG 于点H ,若412HE EG ==,,求AH 的长. 22.2023年春节档电影《满江红》和《流浪地球2》上映后,热度持续不减,小明一家想选择其中的一部一起观看:哥哥想看《满江红》,弟弟想看《流浪地球2》,妈妈让哥哥和弟弟用掷骰子(骰子质地均匀)的游戏决定听谁的,游戏规则如下:两人随机各掷一枚骰子,若两枚骰子朝上的点数之和为偶数,则哥哥获胜;若两枚骰子朝上的点数之和为奇数,则弟弟获胜.根据上述规则,解答下列问题:(1)弟弟随机掷一枚骰子,点数“6”朝上的概率为______;(2)请用列表格或画树状图的方法判断此游戏是否公平,并说明理由.23.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆120人次,进馆人次逐月增加,到第三个月末累计进馆570人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.24.如图1,直线AB 的解析式为6y kx =+,D 点坐标为()8,0,O 点关于直线AB 的对称点C 点在直线AD 上.(1)求直线AB 的解析式;(2)如图2,在x 轴上是否存在点F ,使ABC 与ABF △的面积相等,若存在,求出F 点坐标,若不存在,请说明理由;(3)如图3,过点()5,2G 的直线:l y mx b =+,当它与直线AB 夹角等于45︒时,求出相应m 的值.25.如图,已知抛物线y =ax 2+bx +c 经过原点O (0,0)、A (2,0),直线y =2x 经过抛物线的顶点B ,点C 是抛物线上一点,且位于对称轴的右侧,联结BC 、OC 、AB ,过点C 作CE ∥x 轴,分别交线段OB 、AB 于点E 、F .(1)求抛物线的表达式;(2)当BC =CE 时,求证:△BCE ∽△ABO ;(3)当∠CBA =∠BOC 时,求点C 的坐标.。

2022年人教版中考冲刺模拟考试《数学试卷》含答案解析

2022年人教版中考冲刺模拟考试《数学试卷》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有项是符合题目要求的)1.下列四个数中最小的数是( )A. 1B. 0C. -2D. -1 2.计算:222a a -+=( )A. 2aB. 2a -C. 22aD. 03.如图是五个相同的小正方体搭成的几何体,其俯视图是( )A. B.C. D.4. 2. 5PM 是指大气中直径小于或等于0.0000025m 的颗粒物,是衡量空气污染程度的重要指标.将0.0000025用科学记数法表示为2.510n ⨯,则的值是( )A.B. 6-C.D. 5.如图,130,60,B AB AC ∠=︒∠=︒⊥,则下列说法正确的是( )A. AC CD ⊥B. AB CD ∥C. AD BC ∥D. 180DAB D ∠+∠=︒ 6.已知332(1)x ax bx cx d -=+++,则+++a b c d 的值为( )A. B. 0 C. 1 D. 不能确定 7.如图,在直角坐标系中,菱形OACB 的顶点在原点,点的坐标为(4,0),点的纵坐标是,则菱形OACB 的边长为( )A. 3B. 3C. 5D. 58.已知:关于的一元二次方程220x x a +-=有实数根,则的取值范围是( )A. 1a -B. 1a -C. 1a >D. 1a <9.如图,EF 是ABC 纸片的中位线,将AEF 沿EF 所在的直线折叠,点落在BC 边上的点处,已知AEF 的面积为7,则图中阴影部分的面积为( )A. 7B. 14C. 21D. 2810.如图,四边形 ABCD 是⊙O 的内接四边形,若∠BOD =88°,则∠BCD 的度数是A. 88°B. 92°C. 106°D. 136°11.如图,在正方形ABCD 中,4,AB E =是CD 的中点,点在BC 上,且14FC BC =.则AEF 的面积是( )A. 5B. 6C. 7D. 812.如图,在等腰ABC 中,AB AC =,把ABC 沿EF 折叠,点的对应点为,连接AO ,使AO 平分BAC ∠,若50BAC CFE ∠=∠=︒,则点是( )A. ABC的内心B. ABC的外心C. ABF的内心D. ABF的外心13.已知2410x x--=,则代数314xx x---的值是()A. 7B. 6C. 5D.14.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是( )A. B.C. D.15.如图,是反比例函数3yx=和7yx=-在轴上方的图象,轴的平行线AB分别与这两个函数图象相交于点,A B,点在轴上.则点从左到右的运动过程中,APB△的面积是()A. 10B. 4C. 5D. 从小变大再变小 16.如图,在平面直角坐标系xOy 中()(),3,0,3,0A B -,若在直线y x m =-+上存在点满足60APB ∠=︒,则的取值范围是( )653653m ≤≤B. 653653m -≤≤ 326326m ≤≤ D. 326326m -≤二、填空题(本大题有3个小题,共10分.17、18小题3分;19小题有2个空,每空2分.) 17.分解因式:ax 2-4a = .18.不等式21303x --<的最大整数解是____. 19.在平面直角坐标系xOy 中,点坐标是(3,1)-.当把坐标系绕点顺时针选择30°时,点在旋转后的坐标系中的坐标是____;当把坐标系绕点逆时针选择30°时,点在旋转后的坐标系中的坐标是____.三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.小丽同学准备化简:()()2236826x x x x ----,算式中”□”是”+,-,×,÷”中的某一种运算符号.(1)如果”□”是”×”,请你化简:()()2236826x x x x ----⨯;(2)若2230x x --=,求()()2236826x x x x -----的值;(3)当1x =时,()()2236826x x x x ----的结果是4-,请你通过计算说明”□”所代表的运算符号. 21.如下表,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中仼意三个相邻格子中所填整数之和都相等.(1)可求得x =_____;y =_____;z =_____.(2)第2019个格子中的数为______;(3)前2020个格子中所填整数之和为______.(4)前个格子中所填整数之和是否可能为2020?若能,求出的值,若不能,请说明理由.22.为了迎接体育中考,初三7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如下(1)请补充完成下面的成绩统计分析表:(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请给出两条支持女生观点的理由;(3)体育老师说,咱班合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是:全班优秀率达到50%.如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标?23.如图,在ABC 中,90,60,2BAC B AB ∠=︒∠=︒=.AD BC ⊥于.为边BC 上一个(不与、重合)点,且AE EF ⊥于,,E EAF B AF ∠=∠相交于点.(1)填空:AC =______;F ∠=______.(2)当BD DE =时,证明:ABC EAF ≌.(3)EAF △面积的最小值是_______.(4)当EAF △的内心在ABC 的外部时,直接写出AE 的范围______.24.小东从地出发以某一速度向地走去,同时小明从地出发以另一速度向地而行,如图所示,图中的线段1y 、2y 分别表示小东、小明离地的距离1y 、2y (千米)与所用时间 (小时)的关系.(1)写出1y 、2y 与的关系式:_______,_______;(2)试用文字说明:交点所表示的实际意义.(3)试求出、两地之间的距离.(4)求出小东、小明相距4千米时出发时间.25.如图,在AOB 中,90AOB ∠=︒,6AO =,63BO =DE ,交AO 于点,交BO 于点.点M 在优弧DE 上从点开始移动,到达点时停止,连接AM .(1)当42AM =时,判断AM 与优弧DE 的位置关系,并加以证明; (2)当MO AB ∥时,求点M 在优弧DE 上移动的路线长及线段AM 的长.(3)连接BM ,设ABM 的面积为,直接写出的取值范围.备用图26.如图,已知二次函数23y x ax =++的图象经过点(2,3)P -.(1)求的值和图象的顶点坐标;(2)点(,)Q m n 在该二次函数图象上.①当2m =时,求的值;②若点Q 到轴的距离小于2,请根据图象直接写出的取值范围;③直接写出点Q 与直线5y x =+2时的取值范围.答案与解析一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有项是符合题目要求的)1.下列四个数中最小的数是( )A. 1B. 0C. -2D. -1【答案】C【解析】 根据实数的大小关系,正数大于0,负数小于0,两负数相比较,绝对值大的反而小,可知最小的数为-2. 故选C.2.计算:222a a -+=( )A. 2aB. 2a -C. 22aD. 0 【答案】A【解析】【分析】根据合并同类项的法则,即可求解.【详解】222a a -+=2a ,故选A .【点睛】本题主要考查合并同类项的法则,掌握”合并同类项时,系数相加,字母和字母的指数不变”是解题的关键.3.如图是五个相同的小正方体搭成的几何体,其俯视图是( )A. B.C.D.【答案】C【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中. 【详解】解:如图是五个相同的小正方体搭成的几何体,其俯视图是. 故选C .【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4. 2. 5PM 是指大气中直径小于或等于0.0000025m 的颗粒物,是衡量空气污染程度的重要指标.将0.0000025用科学记数法表示为2.510n ⨯,则的值是( )A.B. 6-C.D. 【答案】B【解析】【分析】根据科学记数法的定义,即可得到答案.【详解】∵0.0000025=62.510-⨯,∴n=-6.故选B .【点睛】本题主要考查科学记数法的定义,掌握科学记数法的形式:10n a ⨯(110a ≤<,n 为整数)是解题的关键.5.如图,130,60,B AB AC ∠=︒∠=︒⊥,则下列说法正确的是( )A. AC CD ⊥B. AB CD ∥C. AD BC ∥D. 180DAB D ∠+∠=︒【答案】C【解析】【分析】 根据平行线的判定定理,即可得到结论.【详解】∵130∠=︒,AB AC ⊥,∴∠BAC=90°+30°=120°,∵∠B=60°,∴∠BAC+∠B=120°+60°=180°,∴//AD BC .故C 正确以当前条件,无法得到AC ⊥CD ,AB ∥CD ,∠DAB+∠D=180°,故A 、B 、D 错误,故选C .【点睛】本题主要考查平行线的判定定理,掌握”同旁内角互补,两直线平行”是解题的关键. 6.已知332(1)x ax bx cx d -=+++,则+++a b c d 的值为( )A.B. 0C. 1D. 不能确定【答案】B【解析】【分析】根据多项式乘多项式的法则,求出a ,b ,c ,d 的值,进而即可求解.【详解】∵32(1)(1)(1)x x x -=--=2(21)(1)x x x -+-32331x x x =-+-,∴a=1,b=-3 ,c=3,d=-1,∴+++a b c d =0.故选B .【点睛】本题主要考查多项式乘以多项式的法则,数量掌握运算法则,是解题的关键.7.如图,在直角坐标系中,菱形OACB 的顶点在原点,点的坐标为(4,0),点的纵坐标是,则菱形OACB 的边长为( )A. 3 3 C. 5 5【答案】D【解析】【分析】 连接AB 交OC 于点M ,根据菱形的性质得OM=2,OC ⊥AB ,再根据勾股定理,即可求解.【详解】连接AB 交OC 于点M ,∵四边形OACB 是菱形,∴OM=CM=12OC=12×4=2,OC ⊥AB , ∵点的纵坐标是,∴BM=1,∴OB=22OM BM +=22215+=,即:菱形的边长为5.故选D .【点睛】本题主要考查菱形的性质定理以及勾股定理,掌握”菱形的对角线互相垂直平分”是解题的关键. 8.已知:关于的一元二次方程220x x a +-=有实数根,则的取值范围是( )A. 1a -B. 1a -C. 1a >D. 1a < 【答案】A【解析】 【分析】根据一元二次方程有实数根,可得∆≥0,从而得到关于a 的不等式,进而即可求解. 【详解】∵关于的一元二次方程220x x a +-=有实数根,∴∆=2241()a -⨯⨯-=4+4a ≥0,∴1a -,故选A .【点睛】本题主要考查一元二次方程根的情况与判别式的关系,掌握一元二次方程有实数根等价于∆≥0,是解题的关键.9.如图,EF 是ABC 纸片的中位线,将AEF 沿EF 所在的直线折叠,点落在BC 边上的点处,已知AEF 的面积为7,则图中阴影部分的面积为( )A. 7B. 14C. 21D. 28【答案】B【解析】【分析】根据中位线的性质得:∆AEF~∆ABC ,12EF BC =,进而得到ABC 的面积为28,结合折叠的性质,即可得到答案.【详解】∵EF 是ABC 纸片的中位线,∴EF ∥BC ,12EF BC =, ∴∆AEF~∆ABC ,∴:1:4AEF ABC S S ∆∆=,∵AEF 的面积为7,∴ABC 的面积为28,∵将AEF 沿EF 所在的直线折叠,点落在BC 边上的点处,∴DEF 的面积=AEF 的面积=7,∴阴影部分的面积=28-7-7=14.故选B .【点睛】本题主要考查中位线的性质,折叠的性质以及相似三角形的判定和性质定理,掌握相似三角形的面积比等于相似比的平方,是解题的关键.10.如图,四边形 ABCD 是⊙O 的内接四边形,若∠BOD =88°,则∠BCD 的度数是A. 88°B. 92°C. 106°D. 136°【答案】D【解析】【分析】 首先根据∠BOD=88°,应用圆周角定理,求出∠BAD 的度数;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD 的度数【详解】由圆周角定理可得∠BAD=12∠BOD=44°, 根据圆内接四边形对角互补可得∠BCD=180°-∠BAD=180°-44°=136°,故答案选D .考点:圆周角定理;圆内接四边形对角互补.11.如图,在正方形ABCD 中,4,AB E =是CD 的中点,点在BC 上,且14FC BC =.则AEF 的面积是( )A. 5B. 6C. 7D. 8【答案】A【解析】【分析】 根据正方形的性质和勾股定理,可得EF ,AE ,AF 的长,再根据勾股定理的逆定理,可知∆AEF 是直角三角形,进而即可求解.【详解】∵正方形ABCD 中,4,AB E =是CD 的中点,点在BC 上,且14FC BC =, ∴FC=1,EC=2,DE=2,AD=4,BF=3,∠B=∠C=∠D=90°,∴22125EF =+=222420AE =+22345AF +=,∴222EF AE AF +=,即:∆AEF 是直角三角形,∠AEF=90°,∴AEF 面积=12AE∙EF =12×520. 故选A .【点睛】本题主要考查正方形的性质定理以及勾股定理及其逆定理,掌握勾股定理及其逆定理,是解题的关键.12.如图,在等腰ABC 中,AB AC =,把ABC 沿EF 折叠,点的对应点为,连接AO ,使AO 平分BAC ∠,若50BAC CFE ∠=∠=︒,则点是( )A. ABC的内心B. ABC的外心C. ABF的内心D. ABF的外心【答案】B【解析】【分析】连接BO、CO,由等腰三角形的性质得:AO是BC的垂直平分线,从而得BO=CO,根据根据折叠的性质以及三角形内角和定理得∠FCO=40°,∠ACB=65°,进而得∠OAC=∠OCA=25°,即可得到结论.【详解】连接BO、CO,∵AB=AC,AO平分∠BAC,∠BAC=50°,∴AO是BC的垂直平分线,∠BAO=∠CAO=25°.∴BO=CO,根据折叠的性质,可知:CF=OF,∠OFE=∠CFE=50°,∴∠OFC=50°+50°=100°,∴∠FCO=12(180°-100°)=40°,又∵AB=AC,∠BAC=50°,∴∠ACB=12(180°-50°)=65°,∴∠OCA=∠ACB-∠FCO=65°-40°=25°,∴∠OAC=∠OCA=25°,∴AO=CO,∴AO=BO=CO,∴点O是ABC的外心.故选B.【点睛】本题主要考查等腰三角形的性质,折叠的性质,中垂线的性质以及三角形内角和定理,掌握等腰三角形的性质,是解题的关键.13.已知2410x x--=,则代数314xx x---的值是()A. 7B. 6C. 5D. 【答案】C【解析】【分析】先把方程进行变形得241x x-=,再把代数式314xx x---进行通分化简,然后整体代入求值,即可.【详解】∵2410x x--=,∴241x x-=,∴314xx x---=(3)(4)(4)x x xx x----=22344x x xx x--+-=22444x xx x-+-=1451+=.故选C.【点睛】本题主要考查分式的化简求值,掌握分式的通分以及等式的基本性质,是解题的关键.14.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是( )A. B. C. D.【答案】D【解析】A 、由图示可知应用了垂径定理作图的方法,所以CD 是Rt△ABC 斜边AB 上的高线,不符合题意; B 、由直径所对的圆周角是直角可知∠BDC=90°,所以CD 是Rt△ABC 斜边AB 上的高线,不符合题意; C 、根据相交两圆的公共弦被连接两圆的连心线垂直平分可知,CD 是Rt△ABC 斜边AB 上的高线,不符合题意; D 、无法证明CD 是Rt△ABC 斜边AB 上的高线,符合题意.故选D .点睛:本题主要考查尺规作图,能正确地确定作图的步骤是解决此类问题的关键.15.如图,是反比例函数3y x =和7y x=-在轴上方的图象,轴的平行线AB 分别与这两个函数图象相交于点,A B ,点在轴上.则点从左到右的运动过程中,APB △的面积是( )A. 10B. 4C. 5D. 从小变大再变小【答案】C【解析】【分析】 连接AO 、BO ,由AB ∥x 轴,得ABP ABO S S =,结合反比例函数比例系数的几何意义,即可求解.【详解】连接AO 、BO ,设AB 与y 轴交于点C .∵AB ∥x 轴,∴ABP ABO S S =,AB ⊥y 轴, ∵73522ABO BOC AOC S S S -=+=+=, ∴APB △的面积是:5.故选C .点睛】本题主要考查反比例函数比例系数的几何意义,掌握反比例函数图象上的点与原点的连线,反比例函数图象上的点垂直于坐标轴的垂线段以及坐标轴所围成的三角形面积等于反比例函数比例系数绝对值的一半,是解题的关键.16.如图,在平面直角坐标系xOy 中()(),3,0,3,0A B -,若在直线y x m =-+上存在点满足60APB ∠=︒,则的取值范围是( )653653m ≤≤B. 653653m -≤≤m ≤≤D. m ≤【答案】D【解析】【分析】根据题意可以知道当60APB ∠=︒时,此时以AB 所对的圆心角等于120,而且圆心在AB 的垂直平分线上,只有直线y x m =-+与圆相切的时候,此时取最值,所以根据如图所示可以求出结果.【详解】解:如图所示:当60APB ∠=︒时,此时以AB 所对的圆心角等于120,即120AO B '∠=,只有直线y x m =-+与圆相切的时候,此时取最值,此时60AO O '∠=,设,2,OO x AO x ''==根据勾股定理可以求出AO O P ''==,OO '=,y x m =-+与y 轴夹角为45,CPO '∴∆为等腰直角三角形,O C P ''∴===OO '=OC ∴=+,m ∴+同理在y 轴负半轴和其对称最小值为-m ≤≤故选D.【点睛】本题主要考察圆周角与圆心角的关系,以及临界情况是相切的时候m 取得最值点,本题难度较高,应该认真分析题意.二、填空题(本大题有3个小题,共10分.17、18小题3分;19小题有2个空,每空2分.) 17.分解因式:ax 2-4a = .【答案】【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此, 先提取公因式a 后继续应用平方差公式分解即可:()()()22ax 4a a x 4a x 2x 2-=-=+-. 18.不等式21303x --<的最大整数解是____. 【答案】4x =【解析】【分析】先去分母,移项,合并同类项,未知数化为1,求出不等式的解,进而求出最大的整数解,即可.【详解】21303x --<, 2190x --<,210x <,x <5.∴不等式21303x --<最大整数解是:4x =. 故答案是:4x =.【点睛】本题主要考查求一元一次不等式的整数解,掌握解一元一次不等式的基本步骤,是解题的关键. 19.在平面直角坐标系xOy 中,点坐标是(3,1)-.当把坐标系绕点顺时针选择30°时,点在旋转后的坐标系中的坐标是____;当把坐标系绕点逆时针选择30°时,点在旋转后的坐标系中的坐标是____.【答案】 (1). (2,0)- (2). (1,3)-【解析】【分析】根据题意,画出图形,连接AO ,过点A 作AB ⊥x 轴于点B ,得AO=2,∠AOB=30°,当把坐标系绕点顺时针旋转30°时,相当于把OA 绕点O 逆时针旋转30°,当把坐标系绕点逆时针旋转30°时,相当于把OA 绕点O 顺时针旋转30°,分别进行求解,即可.【详解】连接AO ,过点A 作AB ⊥x 轴于点B ,∵点坐标是(3,1)-,∴AB=1,BO=3,∴AO=221(3)+=2,∠AOB=30°.∵当把坐标系绕点顺时针旋转30°时,相当于把OA 绕点O 逆时针旋转30°,∴点在旋转后的坐标系中x 轴的负半轴上,即:A(-2,0).∵当把坐标系绕点逆时针旋转30°时,相当于把OA 绕点O 顺时针旋转30°,∴∠B ′OA ′=60°,OA ′=OA=2,∴A ′B ′= OA ′×sin60°=2×32=3,OB ′= OA ′×cos60°=2×12=1, ∴(1,3)A -′.故答案是:(2,0)-;(1,3)-.【点睛】本题主要考查旋转的性质,图形与坐标,解直角三角形的应用,掌握点的坐标的定义,锐角三角函数的定义,是解题的关键.三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.小丽同学准备化简:()()2236826x x x x ----,算式中”□”是”+,-,×,÷”中的某一种运算符号.(1)如果”□”是”×”,请你化简:()()2236826x x x x ----⨯; (2)若2230x x --=,求()()2236826x x x x -----的值;(3)当1x =时,()()2236826x x x x ----的结果是4-,请你通过计算说明”□”所代表的运算符号. 【答案】(1)2268x x +-;(2);(3)□处应为” -”. 【解析】 【分析】(1)先去括号,再合并同类项,即可求解;(2)先去括号,再合并同类项,再整体代入求值,即可;(3)把1x =代入原式,化简得:268-=-,进而即可得到答案. 【详解】(1)()()2236826x x x x ----⨯2236812x x x x =---+2268x x =+-;(2)()()2236826x x x x -----2236826x x x x =---++2242x x =--, 2230x x --=, 223x x ∴-=,∴原式=()22242222624x x x x --=--=-=; (3)”□”所代表的运算符号是”-”,当1x =时,原式(368)(126)4=----=-,整理得:11(126)4,1267,268---=--=--=-,即□处应为”-”.【点睛】本题主要考查整式的化简以及求值,掌握去括号法则以及合并同类项法则,是解题的关键. 21.如下表,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中仼意三个相邻格子中所填整数之和都相等.(1)可求得x =_____;y =_____;z =_____. (2)第2019个格子中的数为______;(3)前2020个格子中所填整数之和为______.(4)前个格子中所填整数之和是否可能为2020?若能,求出的值,若不能,请说明理由.【答案】(1)5x =,4y =,8z =-;(2)4;(3)665;(4)能;前6060,6071或6085个格子中所填整数之和为2020. 【解析】 【分析】(1)根据题意,直接求出x ,y ,z 的值,即可;(2)由题意得:表格中的数字是3个以循环,进而即可求解;(3)由”表格中的数字是3个以循环” ,2020÷3=673…1,即可求解; (4)分三种情况,分类讨论,即可求解.【详解】(1)由题意得:-8+x+y=x+y+z ,解得:8z =-, x+y+z= y+z+5,解得:5x =,∴表格中的数字是3个以循环,即:-8,5,4,-8,5,4,…, ∴4y =.故答案是:5x =,4y =,8z =-;(2)∵表格中的数字是3个以循环,即:-8,5,4,-8,5,4,…,2019÷3=673, ∴第2019个格子中的数为:4. 故答案是:4;(3)∵2020÷3=673…1,-8+5+4=1,∴前2020个格子中所填整数之和为:673×1+(-8)=665. 故答案是:665.(4)能,理由如下: ①8541202012020-++=÷=,,202036060∴⨯=;②∵2020+8=2028, ∴2028316085⨯+=; ③∵2020+8-5=2023, ∴2023326071⨯+=;综上所述:前6060或6071或6085个格子中所填整数之和为2020.【点睛】本题主要考查数字的排列规律以及有理数的运算,找出数列的循环规律,是解题的关键. 22.为了迎接体育中考,初三7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如下 (1)请补充完成下面的成绩统计分析表: 平均分 方差 中位数 合格率 优秀率 男生 6.9 2.4 ______ 917% 16.7% 女生 ______1.3______83.3%8.3%(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请给出两条支持女生观点的理由;(3)体育老师说,咱班的合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是:全班优秀率达到50%.如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标?【答案】(1)7,7,7;(2)从平均数上看,女生平均分高于男生;从方差上看,女生的方差低于男生,波动性小;(3)男生新增优秀人数为6人,女生新增优秀人数为12人【解析】 【分析】(1)本题需先根据中位数的定义,再结合统计图得出它们的平均分和中位数即可求出答案; (2)本题需先根据以上表格,再结合女生的平均分和方差两方面说出支持女生的观点; (3)根据之前男、女生优秀人数+新增男、女生优秀人数=总人数50%⨯,列方程求解可得.【详解】解:(1)由条形统计图可知,男生一共2+6+8+4+4=24人,其中位数是第12、第13个数的平均数, 第12、13两数均为7,故男生中位数是7; 女生成绩平均分为:5462710869224⨯+⨯+⨯+⨯+⨯=7(分),其中位数是:772+=7(分); 补充完成的成绩统计分析表如下:(2)从平均数上看,女生平均分高于男生;从方差上看,女生的方差低于男生,波动性小; (3)设男生新增优秀人数为x 人, 则:2+4+x+2x=48×50%, 解得:x=6, 故6×2=12(人). 答:男生新增优秀人数为6人,女生新增优秀人数为12人.【点睛】本题考查的是条形统计图的综合运用,熟练进行平均数和中位数的计算是基础,读懂统计图,从统计图中的到必要的信息是解决问题的关键. 23.如图,在ABC 中,90,60,2BAC B AB ∠=︒∠=︒=.AD BC ⊥于.为边BC 上的一个(不与、重合)点,且AE EF ⊥于,,E EAF B AF ∠=∠相交于点.(1)填空:AC =______;F ∠=______. (2)当BD DE =时,证明:ABC EAF ≌. (3)EAF △面积的最小值是_______.(4)当EAF △的内心在ABC 的外部时,直接写出AE 的范围______. 【答案】(1)23,30︒;(2)见解析;(3334)223AE << 【解析】 【分析】(1)根据锐角三角函数的定义以及三角形内角和定理,即可求解; (2)由ASA ,即可证明ABC EAF ≌; (3)由题意得:EAF △面积32,当AE ⊥BC 时,AE 3; (4)当EAF △的内心恰好落在AC 上时,设EAF △的内心为N ,易证ABE △是等边三角形,此时,AE=2,进而即可得到结论.【详解】(1)∵在ABC 中,90,60,2BAC B AB ∠=︒∠=︒=,∴tan 2323AC AB B =⋅== ∵AE EF ⊥,EAF B ∠=∠, ∴F ∠=180°-90°-60°=30°. 故答案是:3︒,; (2)AE EF ⊥于,90AEF ∴∠=︒,又∵90BAC ∠=︒,AEF BAC ∴∠=∠, ,AD BC BD DE ⊥=,AB AE =∴,又∵EAF B ∠=∠,()ABC EAF ASA ∴△≌△;(3)∵EAF B ∠=∠=60°, ∴EF=3AE , ∴EAF △面积=12EF ∙AE=32AE 2, ∴当AE 的长最小时,EAF △面积的最小,即:AE ⊥BC 时,EAF △面积的最小. ∴AE 的最小值=AB∙sin60°=2×32=3,此时,EAF △面积的最小值=332. 故答案是:332. (4)当EAF △的内心恰好落在AC 上时,设EAF △的内心为N ,连接EN , ∵N 是EAF △的内心,∴AN 平分∠EAF ,EN 平分∠AEF , ∴∠EAC=12∠EAF=30°, ∵∠BAC=90°,∴∠BAE=∠BAC-∠EAC=90°-30°=60°, 又∵∠B=60°,∴ABE △是等边三角形, ∴AE=AB=2,∵为边BC 上的一个(不与、重合)点,由(1)可知23AC =, ∴当EAF △的内心在ABC 的外部时,223AE <<. 故答案是:223AE <<.【点睛】本题主要考查解直角三角形的应用,直角三角形的性质以及等边三角形的判定和性质,掌握锐角三角函数的定义,是解题的关键.24.小东从地出发以某一速度向地走去,同时小明从地出发以另一速度向地而行,如图所示,图中的线段1y 、2y 分别表示小东、小明离地的距离1y 、2y (千米)与所用时间 (小时)的关系.(1)写出1y 、2y 与的关系式:_______,_______; (2)试用文字说明:交点所表示的实际意义. (3)试求出、两地之间的距离.(4)求出小东、小明相距4千米时出发的时间.【答案】(1)1520y x =-+, 23y x =;(2)交点所表示的实际意义是:经过2.5小时后,小东与小明在距离地7.5千米处相遇;(3)A B 、两地之间的距离为20千米;(4)小东、小明相距4千米时出发的时间是2小时或3小时. 【解析】 【分析】(1)根据待定系数法,即可得到答案;(2)由点P 的坐标直接写出它的实际意义,即可; (3)把x=0代入1520y x =-+,求出1y 的值,即可;(4)分两种情况:①若相遇前相距4千米,②若相遇后相距4千米,分别求出时间,即可. 【详解】(1)设1y kx b =+, 把(2.5,7.5)代入得: 2.57.540k b k b +=⎧⎨+=⎩,解得:520k b =-⎧⎨=⎩,∴1520y x =-+. 设2y mx =,把(2.5,7.5) 代入得:2.5m=7.5,解得:m=3,∴23y x =.故答案是:1520y x =-+,23y x =;(2)交点P 表示的实际意义为:经过2.5小时后,小东与小明在距离地7.5千米处相遇; (3)令x=0代入1520y x =-+,得:120y =, ∴、两地之间的距离是20千米;(4)由题意得:小东的速度为:20÷4=5(km/h ),小明的速度为:7.5÷3=2.5(km/h ), ①若相遇前相距4千米,则(20-4)÷(5+3)=2(小时), ②若相遇后相距4千米,则(20+4)÷(5+3)=3(小时), 答:小东、小明相距4千米时出发的时间为2小时或3小时.【点睛】本题主要考查一次函数的实际应用,掌握一次函数的图象和性质,理解函数图象上的点的坐标的实际意义,是解题的关键.25.如图,在AOB 中,90AOB ∠=︒,6AO =,63BO =,以点为圆心,以为半径作优弧DE ,交AO 于点,交BO 于点.点M 在优弧DE 上从点开始移动,到达点时停止,连接AM . (1)当42AM =时,判断AM 与优弧DE 的位置关系,并加以证明; (2)当MO AB ∥时,求点M 在优弧DE 上移动的路线长及线段AM 的长. (3)连接BM ,设ABM 的面积为,直接写出的取值范围.备用图【答案】(1)AM 与优弧的相切(2)272133)12312183S +【解析】 【分析】(1)根据勾股定理的得到∠AMO=90°即可得到AM 与优弧DE 的相切;(2)根据题意分MO 在直线AO 的左侧和右侧两种情况讨论,用三角函数及相似三角形的性质进行求解;(3)根据题意作过点作OH AB ⊥于点,交O 于点M 此时ABM S △的面积最大,过点作DH AB ⊥于点,即点M 与点重合,此时ABM S △的面积最小,分别求出ABM S △最大值与最小值即可求解.【详解】在Rt AOB △中,6AO =,63BO =,60BOA ∴∠=︒ 30OBA ∠=︒. (1)AM 与优弧的相切; 如图1,当42AM =时,2OM =,6AO =且()2222242236AM OM AO +=+==AMO ∴△为直角三角形,90AMO ∠=︒,点M 在O 上,OM AM ⊥AM ∴与优弧DE 相切.(2)当MO AB ∥时,第一种情况:如图 2所示,MO 在直线AO 的左侧;60AOM ∠=︒60221803DM ππ⨯== 过点M 作MG AO ⊥于点 在Rt MOG △中,3sin 602MG MO ︒==3MG ∴= ,1OG =,5AG =在Rt AMG △中,据勾股定理可知()22225327AG AG MG =+=+=.第二种情况:如图 3所示,MO 在直线AO 的右侧;连接AM 240281803DM ππ⨯==MO AB ∥ OMH BAH ∴△∽△OH OM BH AB =,OH OMOB OH AB=- 21263OH =-63OH ∴=在Rt AOH △中,据勾股定理得:6527AH = 由OMH ABH △∽△可知7522136AM AH ===.(3)如图4,过点作OH AB ⊥于点,交O 于点M 此时ABM S △的面积最大在Rt AOB △中,6AO =,63BO =63tan 363OA ABO OB ∠===30ABO ∴∠=︒在Rt AMG △中1332OH OB == 233MH OM OH ∴=+=+()11122331218322ABM S AB MH =⨯=⨯⨯+=+△如图5,过点作DH AB ⊥于点,即点M 与点重合,此时ABM S △的面积最小 在Rt AHD △中3sin 604232DH AD =︒=⨯=11122312322ABMFS AB DH ⨯=⨯⨯=△ 12312183S ∴+.【点睛】此题主要考查圆的综合问题,解题的关键熟知切线的判定方法、三角函数的应用及相似三角形的判定与性质.26.如图,已知二次函数23y x ax =++的图象经过点(2,3)P -.(1)求的值和图象的顶点坐标;(2)点(,)Q m n 在该二次函数图象上.①当2m =时,求的值;②若点Q 到轴的距离小于2,请根据图象直接写出的取值范围;③直接写出点Q 与直线5y x =+2时的取值范围.【答案】(1)2a =,图象的顶点坐标为(1,2)-;(2)①当2m =时,11n =;②211n ≤<;1171711,0m m ---<<-<<. 【解析】【分析】(1)根据待定系数法,即可求出a 的值,把二次函数解析式,化为顶点式,即可得到顶点坐标;(2)①把2m =代入二次函数解析式,即可;②设直线x=-2和直线x=2与抛物线的交点为A ,B ,可得:A(-2,3),B(2,11),进而即可求解;③设直线5y x =+交x 轴,y 轴于点D ,C ,过点Q 作QM ⊥CD 于点M ,过点Q 作QN ∥y 轴,交CD 于点N ,可得∆QNM 是等腰直角三角形,当2时,则QN=2,设2(,23)Q m m m ++,N(m ,m+5),列出关于m 的方程,求出m 的值,进而即可得到结论.【详解】(1)把(2,3)P -代入23y x ax =++中,得:23(2)23a =--+2a ∴=,∴2223(1)2y x x x =++=++,∴图象的顶点坐标为(12)-,;(2)①(,)Q m n 在该二次函数图象上,∴当2m =时,2222311n =+⨯+=;②设直线x=-2和直线x=2与抛物线的交点为A ,B ,如图,把x=2或x=-2,代入223y x x =++,得y=11或3,∴A(-2,3),B(2,11),当点Q 到轴的距离小于2时,点Q 在A ,B 之间的抛物线上(不包含A ,B ),211n ∴≤<;③设直线5y x =+交x 轴,y 轴于点D ,C ,则D(-5,0),C(0,5),∴OC=OD ,∠DCO=45°,过点Q 作QM ⊥CD 于点M ,过点Q 作QN ∥y 轴,交CD 于点N ,∴∠QNM=∠DCO=45°,∴∆QNM 是等腰直角三角形,当时,则QN=2,(,)Q m n 在该二次函数图象上,点N 在直线5y x =+上,∴设2(,23)Q m m m ++,N(m ,m+5), ∴22352m m m ++--=,化简得:240m m +-=或20m m +=,解得:123411=0122m m m m --+===-,,∴点Q 与直线5y x =+1,0m m <<-<<.【点睛】本题主要考查二次函数、一次函数与平面几何的综合,掌握二次函数与一次函数的性质和图象,函数图象上点的坐标特征,是解题的关键.。

中考数学押轴题备考复习测试题6

中考数学押轴题备考复习测试题6

圆与圆的位置关系一、选择题1.若⊙O的半径为3,⊙2O的半径为1,且圆心距1O2O=4,则⊙1O与1⊙O的位置的关系是().2A.内含B.内切C.相交D.外切【解题思路】根据圆与圆的位置关系,当R=时,两圆相外切。

rd+因为3=所以两圆的位置关系是外切。

4+1【答案】D【点评】本题考查两圆之间的位置关系,利用圆心距与两圆的半径关系可以加以判定,难度较小。

1.若⊙O1、⊙O2的半径分别为4和6,圆心距O1O2=8,则⊙O1与⊙O2的位置关系是A.内切 B.相交 C.外切 D.外离【解题思路】圆心距O1O2满足6-4<8<6+4,所以B选项相交正确.当O1O2=2时,两圆内切;当O1O2=10时,两圆外切;当O1O2>10时,两圆外离.【答案】B.【点评】本题考查了圆与圆的位置关系.利用圆心距与半径之间的关系来确定圆与圆的位置关系,特别是当两圆相交时,圆心距处于内切和外切之间.难度较小.已知相交两圆的半径分别为4和7,则它们的圆心距可能是()A.2 B.3 C.6 D.11【解题思路】两圆相交 R-r<d<R+r(R≥r),即3<d<11.【答案】C.【点评】本题主要考查圆和圆的位置与两圆半径R、r、圆心距d的关系.①当d>R+r时,两圆外离;②当d=R+r时,两圆外切;③当R-r<d<R+r时,两圆相交;④当d=R-r时,两圆内切;⑤当0≤d<R-r时,两圆内含.难度较小.1. (2011台北25)如图(九),圆A、圆B的半径分别为4、2,且AB=12。

若作一圆C使得三圆的圆心在同一直在线,且圆C与圆A外切,圆C与圆B相交,相交于两点,则下列何者可能是圆C 的半径长?(A) 3 (B) 4(C) 5 (D) 6【分析】:根据两圆之间的位置关系很容易发现圆C与圆A、圆B都外切时,圆C半径是3,所以圆C半径应当大于3。

圆C与圆A外切与圆B 相内切时,半径是5【答案】:B【点评】:本题考查了圆与圆的位置关系。

2023年开封市第十四中学中考数学冲刺试题

2023年开封市第十四中学中考数学冲刺试题

2023年开封市第十四中学中考数学冲刺试题2023年开封市第十四中学中考数学冲刺试题注意啦!中考马上来临啦,备考在即,同学们每天进步一点点,基础扎实一点点,通过考试也就会更容易一点点。

备考也需要一点点积累才能到达好的效果。

下面小编给大家整理了关于2023开封市第十四中学中考数学冲刺试题的内容,欢迎阅读,内容仅供参考!2023开封市第十四中学中考数学冲刺试题中考数学冲刺五大要点一是立足基础知识。

复习期间,要重视对基础知识的归纳整理。

归纳应按知识模块进行,对概念、定理、公式、法则不仅要熟练掌握、准确叙述,还要学会运用。

即使是综合题的求解,也是基础知识、基本方法及数学思维的综合运用,知识和方法的积累是开启难题的钥匙。

二是重视课本习题。

通过分析历年中考数学试题可以看出,用于考查基础知识和基本技能的素材、背景,大都是课本中的例题、习题,或是这些题的变形。

因此,对这题要逐一研究,对典型题要亲自演算,重要的步骤、方法可附于题后。

三是掌握解题原理。

在复习中普遍存在重视解题方法,忽视解题原理的倾向。

实际上,结果和对错只是考查的一部分,而对知识、能力、思想、方法等方面的考查主要体现在解题步骤和过程中。

在专题复习阶段,不仅要掌握解题方法和规律,还要领会其原理。

应注意倾听和思考老师对典型题的分析和求解策略,注重通性、通法的运用。

及时归纳各种题型,探求不同解法,以便形成能力。

四是落实解题训练。

复习时,一定量的习题训练是必不可少的。

通过演练习题,可以加深对基础知识的理解,提高解题能力。

单元复习结束或一套试题做完后,都要分析一下,解题中运用了哪些基础知识、基本方法、数学思想,还存在哪些问题,错误的原因是什么,如何改正。

要克服不重视解题过程、不愿演算、计算马虎等不良习惯。

五是加强模拟演练。

考前模拟演练既是对复习效果的检查,又可以提升应考信心。

要重视模拟过程,淡化模拟分数。

应在规定的时间内独立完成试题,批发后及时查找原因。

要将模拟考试中发现的问题、做错的题当成一次锻炼和自己的机会。

2020年江苏中考数学考前压轴题冲刺练习(含参考答案解析)

2020年江苏中考数学考前压轴题冲刺练习(含参考答案解析)

2020年江苏中考数学考前压轴题冲刺练习一、选择题(共6题)1.如图,四边形ABCD的顶点坐标分别为A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),当过点B的直线l将四边形ABCD分成面积相等的两部分时,直线l所表示的函数表达式为()A.y=x+B.y=x+C.y=x+1 D.y=x+2.如图,E是正方形ABCD的边AB的中点,点H与B关于CE对称,EH的延长线与AD 交于点F,与CD的延长线交于点N,点P在AD的延长线上,作正方形DPMN,连接CP,记正方形ABCD,DPMN的面积分别为S1,S2,则下列结论错误的是()A.S1+S2=CP2B.AF=2FD C.CD=4PD D.cos∠HCD=3.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)4.如图,在等腰直角三角形ABC中,∠ACB=90°,BC=2,D是BC边上一动点,将AD 绕点A逆时针旋转45°得AE,连接CE,则线段CE长的最小值为()A.B.C.﹣1 D.2﹣5.如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC、DE上分别找一点M、N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为()A.90°B.100°C.110°D.120°6.如图,P是半圆O上一点,Q是半径OA延长线上一点,AQ=OA=1,以PQ为斜边作等腰直角三角形PQR,连接OR.则线段OR的最大值为()A.B.3 C.D.1二、填空题(共6题)1.如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持∠EDF=90°,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①DE=DF;②四边形CEDF的面积随点E、F位置的改变而发生变化;③CE+CF=AB;④AE2+BF2=2ED2.以上结论正确的是(只填序号).2.如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作⊙C与直线BD相切,点P 是⊙C上一个动点,连接AP交BD于点T,则的最大值是.3.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为.第3题第4题4.问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是.5.如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为.第5题第6题6.如图,AB为半圆O的直径,点C在半圆O上,AB=8,∠CAB=60°,P是弧上的一个点,连接AP,过点C作CD⊥AP于点D,连接BD,在点P移动过程中,BD长的最小值为.三、解答题(共6题)1.如图,A,B,C,D在⊙O上,AB∥CD经过圆心O的线段EF⊥AB于点F,与CD交于点E.(1)如图1,当⊙O半径为5,CD=4,若EF=BF,求弦AB的长;(2)如图2,当⊙O半径为,CD=2,若OB⊥OC,求弦AC的长.2.如图,在平面直角坐标系xOy中,二次函数y=ax2+bx与x轴交于点A(10,0),点B (1,2)是抛物线上点,点M为射线OB上点(不含O,B两点),且MH⊥x轴于点H.(1)求直线OB及抛物线解析式;(2)如图1,过点M作MC∥x轴,且与抛物线交于C,D两点(D位于C左边),若MC=MH,点Q为直线BC上方的抛物线上点,求△BCQ面积的最大值,并求出此时点Q的坐标;(3)如图2,过点B作BE∥x轴,且与抛物线交于E,在线段OA上有点P,在点H从左向右运动时始终有AP=2OH,过点P作PN⊥x轴,且PN与直线OB交于点N,当M 与N重合时停止运动,试判断在此运动过程中△MNE与△BME能否全等,若能请求出全等时的HP长度,若不能请说明理由.3.如图(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,动点P在线段AC上以5cm/s 的速度从点A运动到点C,过点P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△A′DP,设点P的运动时间为x(s).(1)当点A′落在边BC上时,求x的值;(2)在动点P从点A运动到点C过程中,当x为何值时,△A′BC是以A′B为腰的等腰三角形;(3)如图(2),另有一动点Q与点P同时出发,在线段BC上以5cm/s的速度从点B运动到点C,过点Q作QE⊥AB于点E,将△BQE绕QE的中点旋转180°得到△B′EQ,连结A′B′,当直线A′B′与△ABC的一边垂直时,求线段A′B′的长.4.在△AOB中,∠ABO=90°,AB=3,BO=4,点C在OB上,且BC=1,(1)如图1,以O为圆心,OC长为半径作半圆,点P为半圆上的动点,连接PB,作DB⊥PB,使点D落在直线OB的上方,且满足DB:PB=3:4,连接AD①请说明△ADB∽△OPB;②如图2,当点P所在的位置使得AD∥OB时,连接OD,求OD的长;③点P在运动过程中,OD的长是否有最大值?若有,求出OD长的最大值:若没有,请说明理由.(2)如图3,若点P在以O为圆心,OC长为半径的圆上运动.连接P A,点P在运动过程中,P A﹣是否有最大值?若有,直接写出最大值;若没有,请说明理由.5.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.6.如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD =AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设AE=x,y=(其中S△BCE表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当=7时,请直接写出线段AE的长.【答案与解析】一、选择题1.【分析】由已知点可求四边形ABCD分成面积=AC×(|y B|+3)==14;求出CD的直线解析式为y=﹣x+3,设过B的直线l为y=kx+b,并求出两条直线的交点,直线l与x轴的交点坐标,根据面积有7=×(3﹣)×(+1),即可求k;【解答】解:由A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),∴AC=7,DO=3,∴四边形ABCD分成面积=AC×(|y B|+3)==14,可求CD的直线解析式为y=﹣x+3,设过B的直线l为y=kx+b,将点B代入解析式得y=kx+2k﹣1,∴直线CD与该直线的交点为(,),直线y=kx+2k﹣1与x轴的交点为(,0),∴7=×(3﹣)×(+1),∴k=或k=0(舍去),∴k=,∴直线解析式为y=x+;故选:D.【点评】本题考查一次函数的解析式求法;掌握平面内点的坐标与四边形面积的关系,熟练待定系数法求函数解析式的方法是解题的关键.2.【分析】根据勾股定理可判断A;连接CF,作FG⊥EC于G,易证得△FGC是等腰直角三角形,设EG=x,则FG=2x,利用三角形相似的性质以及勾股定理得到CG=2x,CF=2x,EC=3x,BC=x,FD=x,即可证得3FD=AD,可判断B;根据平行线分线段成比例定理可判断C;求得cos∠HCD可判断D.【解答】解:∵正方形ABCD,DPMN的面积分别为S1,S2,∴S1=CD2,S2=PD2,在Rt△PCD中,PC2=CD2+PD2,∴S1+S2=CP2,故A结论正确;连接CF,∵点H与B关于CE对称,∴CH=CB,∠BCE=∠ECH,在△BCE和△HCE中,∴△BCE≌△HCE(SAS),∴BE=EH,∠EHC=∠B=90°,∠BEC=∠HEC,∴CH=CD,在Rt△FCH和Rt△FCD中∴Rt△FCH≌Rt△FCD(HL),∴∠FCH=∠FCD,FH=FD,∴∠ECH+∠FCH=∠BCD=45°,即∠ECF=45°,作FG⊥EC于G,∴△CFG是等腰直角三角形,∴FG=CG,∵∠BEC=∠HEC,∠B=∠FGE=90°,∴△FEG∽△CEB,∴==,∴FG=2EG,设EG=x,则FG=2x,∴CG=2x,CF=2x,∴EC=3x,∵EB2+BC2=EC2,∴BC2=9x2,∴BC2=x2,∴BC=x,在Rt△FDC中,FD===x,∴3FD=AD,∴AF=2FD,故B结论正确;∵AB∥CN,∴=,∵PD=ND,AE=CD,∴CD=4PD,故C结论正确;∵EG=x,FG=2x,∴EF=x,∵FH=FD=x,∵BC=x,∴AE=x,作HQ⊥AD于Q,HS⊥CD于S,∴HQ∥AB,∴=,即=,∴HQ=x,∴CS=CD﹣HQ=x﹣x=x∴cos∠HCD===,故结论D错误,故选:D.3.【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选:A.4.【分析】在AB上截取AF=AC=2,由旋转的性质可得AD=AE,由勾股定理可求AB=2,可得BF=2﹣2,由“SAS”可证△ACE≌△AFD,可得CE=DF,则当DF⊥BC时,DF值最小,即CE的值最小,由直角三角形的性质可求线段CE长的最小值.【解答】解:如图,在AB上截取AF=AC=2,∵旋转∴AD=AE∵AC=BC=2,∠ACB=90°∴AB=2,∠B=∠BAC=45°,∴BF=2﹣2∵∠DAE=45°=∠BAC∴∠DAF=∠CAE,且AD=AE,AC=AF∴△ACE≌△AFD(SAS)∴CE=DF,当DF⊥BC时,DF值最小,即CE的值最小,∴DF最小值为=2﹣故选:D.5.【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【解答】解:作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交ED于N,则A′A″即为△AMN的周长最小值.作EA延长线AH,∵∠BAE=120°,∴∠HAA′=60°,∴∠A′+∠A″=∠HAA′=60°,∵∠A′=∠MAA′,∠NAE=∠A″,且∠A′+∠MAA′=∠AMN,∠NAE+∠A″=∠ANM,∴∠AMN+∠ANM=∠A′+∠MAA′+∠NAE+∠A″=2(∠A′+∠A″)=2×60°=120°,故选:D.6.【分析】将△RQO绕点R顺时针旋转90°,可得△RPE,可得ER=RO,∠ERO=90°,PE=OQ=2,由直角三角形的性质可得EO=RO,由三角形三边关系可得EO≤PO+EP =3,即可求解.【解答】解:将△RQO绕点R顺时针旋转90°,可得△RPE,∴ER=RO,∠ERO=90°,PE=OQ=2∴EO=RO,∵EO≤PO+EP=3∴RO≤3∴OR的最大值=故选:A.二、填空题1.【分析】连接CD.证明△ADE≌△CDF,利用全等三角形的性质即可一一判断.【解答】解:连接CD,∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB;在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴ED=DF,故①正确;∴S△ADE=S△CDF,∴S四边形CEDF=S△ADC=S△ABC=定值,故②错误,∵△ADE≌△CDF,∴AE=CF,∴CE+CF=CE+AE=AC=AB,故③正确,∵AE=CF,AC=BC,∴EC=BF,∴AE2+BF2=CF2+CE2=EF2,∵EF2=2DE2,∴AE2+BF2=2ED2,故④正确.故答案为①③④.2.【分析】方法1、过点A作BD的垂线AG,AG为定值;过点P作BD的垂线PE,只要PE最大即可,进而求出PE最大,即可得出结论;方法2、先判断出最大时,BE最大,再用相似三角形的性质求出BG,HG,CH,进而判断出HM最大时,BE最大,而点M在⊙C上时,HM最大,即可HP',即可得出结论.【解答】方法1、解:如图,过点A作AG⊥BD于G,∵BD是矩形的对角线,∴∠BAD=90°,∴BD==5,∵AB•AD=BD•AG,∴AG=,∵BD是⊙C的切线,∴⊙C的半径为过点P作PE⊥BD于E,∴∠AGT=∠PET,∵∠ATG=∠PTE,∴△AGT∽△PET,∴,∴=×PE∵==1+,要最大,则PE最大,∵点P是⊙C上的动点,BD是⊙C的切线,∴PE最大为⊙C的直径,即:PE最大=,∴最大值为1+=3,故答案为3.方法2、解:如图,过点P作PE∥BD交AB的延长线于E,∴∠AEP=∠ABD,△APE∽△ATB,∴,∵AB=4,∴AE=AB+BE=4+BE,∴,∴BE最大时,最大,∵四边形ABCD是矩形,∴BC=AD=3,CD=AB=4,过点C作CH⊥BD于H,交PE于M,并延长交AB于G,∵BD是⊙C的切线,∴∠GME=90°,在Rt△BCD中,BD==5,∵∠BHC=∠BCD=90°,∠CBH=∠DBC,∴△BHC∽△BCD,∴,∴,∴BH=,CH=,∵∠BHG=∠BAD=90°,∠GBH=∠DBA,∴△BHG∽△BAD,∴=,∴,∴HG=,BG=,在Rt△GME中,GM=EG•sin∠AEP=EG×=EG,而BE=GE﹣BG=GE﹣,∴GE最大时,BE最大,∴GM最大时,BE最大,∵GM=HG+HM=+HM,即:HM最大时,BE最大,延长MC交⊙C于P',此时,HM最大=HP'=2CH=,∴GP'=HP'+HG=,过点P'作P'F∥BD交AB的延长线于F,∴BE最大时,点E落在点F处,即:BE最大=BF,在Rt△GP'F中,FG====,∴BF=FG﹣BG=8,∴最大值为1+=3,故答案为:3.3.【分析】连接OE,延长EO交CD于点G,作OH⊥B′C,由旋转性质知∠B′=∠B′CD′=90°、AB=CD=5、BC=B′C=4,从而得出四边形OEB′H和四边形EB′CG 都是矩形且OE=OD=OC=2.5,继而求得CG=B′E=OH===2,根据垂径定理可得CF的长.【解答】解:连接OE,延长EO交CD于点G,作OH⊥B′C于点H,则∠OEB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,∴四边形OEB′H和四边形EB′CG都是矩形,OE=OD=OC=2.5,∴B′H=OE=2.5,∴CH=B′C﹣B′H=1.5,∴CG=B′E=OH===2,∵四边形EB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,∴CF=2CG=4,故答案为:4.4.【分析】(1)在BC上截取BG=PD,通过三角形全等证得AG=AP,BG=DP,得出△AGP是等边三角形,得出AP=GP,则P A+PC=GP+PC=GC=PE,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D、E、O、N四点共线时,MO+NO+GO值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO的最小值.【解答】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,BG=DP,∴GC=PE,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴AP=GP,∴P A+PC=GP+PC=GC=PE∴P A+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,5.【分析】如图,连接BD.由△ADG∽△GCF,设CF=BF=a,CG=DG=b,可得=,推出=,可得b=a,在Rt△GCF中,利用勾股定理求出b,即可解决问题;【解答】解:如图,连接BD.∵四边形ABCD是矩形,∴∠ADC=∠DCB=90°,AC=BD=,∵CG=DG,CF=FB,∴GF=BD=,∵AG⊥FG,∴∠AGF=90°,∴∠DAG+∠AGD=90°,∠AGD+∠CGF=90°,∴∠DAG=∠CGF,∴△ADG∽△GCF,设CF=BF=a,CG=DG=b,∴=,∴=,∴b2=2a2,∵a>0.b>0,∴b=a,在Rt△GCF中,3a2=,∴a=,∴AB=2b=2.故答案为2.6.【分析】以AC为直径作圆O′,连接BO′、BC.在点P移动的过程中,点D在以AC 为直径的圆上运动,当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D,利用勾股定理求出BO′即可解决问题.【解答】解:如图,以AC为直径作圆O′,连接BO′、BC,O'D,∵CD⊥AP,∴∠ADC=90°,∴在点P移动的过程中,点D在以AC为直径的圆上运动,∵AB是直径,∴∠ACB=90°,在Rt△ABC中,∵AB=8,∠CAB=60°,∴BC=AB•sin60°=4,AC=AB•cos60°=4,∴AO'=CO'=2,∴BO'===2,∵O′D+BD≥O′B,∴当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D=2﹣2,故答案为2﹣2.三、解答题1.【分析】(1)如图1中,连接OB,OC.设BF=EF=x,OF=y.利用勾股定理构建方程组解决问题即可.(2)如图2中,作CH⊥AB于H.证明△ACH是等腰直角三角形,四边形EFHC是矩形,求出EF即可解决问题.【解答】解:(1)如图1中,连接OB,OC.设BF=EF=x,OF=y.∵AB∥CD,EF⊥AB,∴EF⊥CD,∴∠CEF=∠BFO=90°∴AF=BF=x,DE=EC=2,根据勾股定理可得:,解得(舍弃)或,∴BF=4,AB=2BF=8.(2)如图2中,作CH⊥AB于H.∵OB⊥OC,∴∠A=∠BOC=45°,∵AH⊥CH,∴△ACH是等腰直角三角形,∵AC=CH,∵AB∥CD,EF⊥AB,∴EF⊥CD,∠CEF=∠EFH=∠CHF=90°,∴四边形EFHC是矩形,∴CH=EF,在Rt△OEC中,∵EC=,OC=,OE===2,∵∠EOC+∠OCE=90°,∠EOC+∠FOB=90°,∴∠FOB=∠ECO,∵OB=OC,∴△OFB≌△CEO(AAS),∴OF=EC=,∴CH=EF=3,∴AC=EF=6.2.【分析】(1)将点A(10,0),点B(1,2)代入y=ax2+bx中,可求y=﹣x2+x,直线OB的解析式为y=2x;(2)设M(m,2m),由已知可求C(3m,2m),将点C代入抛物线解析式可得m=,即可求BC的直线解析为y=x+,设Q(n,﹣n2+n),过点Q与BC垂直的直线解析式为y=﹣x﹣n2+n,则两直线的交点为T(﹣n2+n﹣,n2+n﹣),QT=|n2﹣8n+7|,当QT最大时,则△BCQ的面积最大;(3)函数对称轴x=5,E(9,2),设P(t,0),则依次可求N(t,2t),H(5﹣t,0),M(5﹣t,10﹣t),BM2=t2﹣8t+32,ME2=t2﹣11t+89,NE2=5t2﹣26t+85,MN2=t2﹣75t+125,当BM=MN,BE=EN时,此时△BEN是等腰三角形,M是BN的中点,BN⊥ME,t+1=10﹣t,,此时不成立;当BE=MN,BM=EN时,t2﹣8t+32=5t2﹣26t+85,由于△<0,t不存在.【解答】解:(1)将点A(10,0),点B(1,2)代入y=ax2+bx中,∴a=﹣,b=,∴y=﹣x2+x,直线OB的解析式为y=2x;(2)设M(m,2m),∵MC=MH,∴C(3m,2m),∴2m=﹣×9m2+×3m,∴m=,∴C(7,),M(,),∴BC的直线解析为y=x+,设Q(n,﹣n2+n),∴过点Q与BC垂直的直线解析式为y=﹣x﹣n2+n,则两直线的交点为T(﹣n2+n﹣,n2+n﹣),∴QT=|n2﹣8n+7|,∴当n=4时,△BCQ面积的最大值,∴Q(4,);(3)函数对称轴x=5,∴E(9,2),设P(t,0),∴N(t,2t),∵AP=2OH,∴H(5﹣t,0),∴M(5﹣t,10﹣t),∴BM2=t2﹣8t+32,ME2=t2﹣11t+89,NE2=5t2﹣26t+85,MN2=t2﹣75t+125,当BM=MN,BE=EN时,此时△BEN是等腰三角形,M是BN的中点,BN⊥ME,∴t+1=10﹣t,,∴t=,t=,∴此时不成立;当BE=MN,BM=EN时,t2﹣8t+32=5t2﹣26t+85,∴△<0,∴t不存在;综上所述:在此运动过程中△MNE与△BME不能全等.3.【分析】(1)根据勾股定理求出AC,证明△APD∽△ABC,△A′PC∽△ABC,根据相似三角形的性质计算;(2)分A′B=BC、A′B=A′C两种情况,根据等腰三角形的性质解答;(3)根据题意画出图形,根据锐角三角函数的概念计算.【解答】解:(1)如图1,∵在△ABC中,∠C=90°,AB=5cm,BC=3cm,∴AC==4cm,当点A′落在边BC上时,由题意得,四边形AP A′D为平行四边形,∵PD⊥AB,∴∠ADP=∠C=90°,∵∠A=∠A,∴△APD∽△ABC,∵AP=5x,∴A′P=AD=4x,PC=4﹣5x,∵∠A′PD=∠ADP,∴A′P∥AB,∴△A′PC∽△ABC,∴,即=,解得:x=,∴当点A′落在边BC上时,x=;(2)当A′B=BC时,(5﹣8x)2+(3x)2=32,解得:.∵x≤,∴;当A′B=A′C时,x=.(3)Ⅰ、当A′B′⊥AB时,如图6,∴DH=P A'=AD,HE=B′Q=EB,∵AB=2AD+2EB=2×4x+2×3x=5,∴x=,∴A′B′=QE﹣PD=x=;Ⅱ、当A′B′⊥BC时,如图7,∴B′E=5x,DE=5﹣7x,∴cos B=,∴x=,∴A′B′=B′D﹣A′D=;Ⅲ、当A′B′⊥AC时,如图8,由(1)有,x=,∴A′B′=P A′sin A=;当A′B′⊥AB时,x=,A′B′=;当A′B′⊥BC时,x=,A′B′=;当A′B′⊥AC时,x=,A′B′=.4.【分析】(1)①由∠ABO=90°和DB⊥PB可得∠DBA=∠PBO,结合边长关系由两边对应成比例及其夹角相等的三角形相似即可证明结论.②过D点作DH⊥BO交OB延长线于H点,由AD∥OB平行可得∠DAB=90°,而△ADB∽△OPB可知∠POB=90°,由已知可求出AD.由Rt△DHO即可计算OD的长,③由△ADB∽△OPB可知,可求AD=,由此可知D在以A为圆心AD为半径的圆上运动,所以OD的最大值为OD过A点时最大.求出OA即可得到答案.(2)在OC上取点B′,使OB′=OP=,构造△BOP~△POB′,可得=P A﹣PB′≤AB',求出AB’即可求出最大值.【解答】解:(1)①∵DB⊥PB,∠ABO=90°,∴∠ADB=∠CDP,又∵AB=3,BO=4,DB:PB=3:4,即:,∴△ADB∽△OPB;②如解图(2),过D点作DH⊥BO交OB延长线于H点,∵AD∥OB,∠ABD=90°,∴∠DAB=90°,又∵△ADB∽△OPB,∴,∴AD=,∵四边形ADHB为矩形,∴HD=AB=3,HB=AD=,∴OH=OB+HB=在Rt△DHO中,OD===.③在△AOB中,∠ABO=90°,AB=3,BO=4,∴OA=5.由②得AD=,∴D在以A为圆心AD为半径的圆上运动,∴OD的最大值为OD过A点时最大,即OD的最大值为=OA+AD=5+=.(2)如解图(4),在OC上取点B′,使OB′=OP=,∵∠BOP=∠POB′,=,∴△BOP~△POB′,∴,∴=P A﹣PB′≤AB',∴∴有最大值为AB′,在Rt△ABB′中,AB=3,BB′==,∴AB′===,即:点P在运动过程中,P A﹣有最大值为,5.【分析】(1)根据角平分线的定义得到∠EDF=∠ADF,根据圆内接四边形的性质和圆周角定理结论得到结论;(2)根据圆周角定理得到AD⊥BF,推出△ACB是等边三角形,得到∠ADB=∠ACB=60°,根据等腰三角形的性质得到结论;(3)设CD=k,BC=2k,根据勾股定理得到BD==k=10,求得=2,BC=AC=4,根据相似三角形的性质即可得到结论【解答】(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠F AC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.6.【分析】(1)过点E作EG⊥BC,垂足为点G.AE=x,则EC=2﹣x.根据BG=EG构建方程求出x即可解决问题.(2)①证明△AEF∽△BEC,可得,由此构建关系式即可解决问题.②分两种情形:当∠CAD<120°时,当120°<∠CAD<180°时,分别求解即可解决问题.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC﹣AC=2,∠BAC=∠ABC=∠ACB=60°.∵AD=AC,∴AD=AB,∴∠ABD=∠ADB,∵∠ABD+∠ADB+∠BAC+∠CAD=180°,∠CAD=90°,∠ABD=15°,∴∠EBC=45°.过点E作EG⊥BC,垂足为点G.设AE=x,则EC=2﹣x.在Rt△CGE中,∠ACB=60°,∴,,∴BG=2﹣CG=1+x,在Rt△BGE中,∠EBC=45°,∴,解得.所以线段AE的长是.(2)①设∠ABD=α,则∠BDA=α,∠DAC=∠BAD﹣∠BAC=120°﹣2α.∵AD=AC,AH⊥CD,∴,又∵∠AEF=60°+α,∴∠AFE=60°,∴∠AFE=∠ACB,又∵∠AEF=∠BEC,∴△AEF∽△BEC,∴,由(1)得在Rt△CGE中,,,∴BE2=BG2+EG2=x2﹣2x+4,∴(0<x<2).②当∠CAD<120°时,y=7,则有7=,整理得3x2+x﹣2=0,解得x=或﹣1(舍弃),.当120°<∠CAD<180°时,同法可得y=当y=7时,7=,整理得3x2﹣x﹣2=0,解得x=﹣(舍弃)或1,∴AE=1.。

中考数学冲刺模拟测试卷(附答案解析)

中考数学冲刺模拟测试卷(附答案解析)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________满分150分,答题时间120分钟一、选择题(本题共10小题,每小题3分,共30分)1.下列各式的计算结果为负数的是()A.|﹣2﹣(﹣1)| B.﹣(﹣3﹣2) C.﹣(﹣|﹣3﹣2|) D.﹣2﹣|﹣4|2.如图是由若干个完全相同的正方体搭成的几何体,取走选项序号对应的正方体,其中三视图不会发生变化的是()A.①B.②C.③D.④3.选择计算(﹣2x+3y)(2x+3y)的最佳方法是()A.运用多项式乘多项式法则B.运用平方差公式C.运用单项式乘多项式法则D.运用完全平方公式4.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分5.箱子内装有除颜色外均相同的28个白球及2个红球,小芬打算从箱子内摸球,以每次摸到一球后记下颜色将球再放回的方式摸28次球.若箱子内每个球被摸到的机会相等,且前27次中摸到白球26次及红球1次,则第28次摸球时,小芬摸到红球的概率是()A.B.C.D.6.如图,若⊙O是正方形ABCD与正六边形AEFCGH的外接圆,则正方形ABCD与正六边形AEFCGH的周长之比为()A.2:3 B.:1 C.:D.1:7.实验中学为了解七年级600名学生的身高情况,随机抽取了50名学生进行身高测量,在这个问题中,样本是()A.50B.50名学生C.50名学生的身高情况D.600名七年级学生的身高情况8.在数轴上,表示不小于﹣2且小于2之间的整数的点有()A.3个B.4个C.5个D.无数个9.如图,线段AB,BC的垂直平分线l1,l2相交于点O.若∠1=35°,则∠A+∠C=()A.30°B.40°C.17.5°D.35°10.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球抛出3秒时达到最高点;②小球从抛出到落地经过的路程是80m;③小球的高度h =20时,t=1s或5s.④小球抛出2秒后的高度是35m.其中正确的有()A.①②B.②③C.①③④D.①②③二、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是.12.若线段AB的端点为(﹣1,3),(1,3),线段CD与线段AB关于x轴轴对称,则线段CD上任意一点的坐标可表示为.13.“石头、剪刀、布”是民间广为流传的一种游戏,游戏时甲乙双方每次做“石头”“剪刀”“布”三种手势中的一种,并约定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势不分胜负须继续比赛.假定甲、乙两人每次都是等可能地做这三种手势,那么一次游戏中乙获胜的概率是.14.如图,在△ABC中,点O是△ABC的内心,∠A=48°,∠BOC=°.15.如图,正方形BEFG的顶点E在正方形ABCD的边AD上,CD、EF交于点H,AD=16,连接EC,FC,则△CEF 的面积的最小值为.三、解答题(本题共10小题,共100分)16.如图,某花园的护栏是用一些半圆形造型的钢条围成的,半圆的直径为80厘米,且每增加一个半圆形条钢,护栏长度就增加a厘米(a>0),设半圆形条钢的总个数为x个(x为正整数),护栏总长度为y厘米.(1)当a=60时,用含x的代数式表示护栏总长度y(结果要求化简);(2)用含a、x的代数式表示护栏的总长度y(结果要求化简),并求a=50,x=41时,护栏长度y的值.17.5月1日,“东疆好少年”平台公布了世界读书日暨“阅读吧,少年”第一轮网络答题进入决赛的学生名单,全市初中组有235名同学入围.某中学有300名七、八年级同学积极参与了此次活动,该校老师随机调查收集了50名学生的参赛成绩,整理得到了如下的数据分析表:分数段人数分数段人数55≤x<65 23人85≤x<95 5人65≤x<75 12人95≤x<100 3人75≤x<85 7人/ /其中分数段在65≤x<75组的成绩如下:65 65 70 7070 65 70 6565 65 70 70(1)被抽取的这50名同学成绩的中位数为65;(2)已知50名学生中男生均分为68.2分,女生均分为71.8分,你能求出这50名学生的平均分吗?若能,请求出平均分,若不能,请说明理由;(3)本次进入决赛的成绩为70分以上(包括70分),请你估计该校有多少名学生进入决赛?(4)已知该校八(1)班有三名学生(一名男生,两名女生)取得90分以上,现准备从这三名学生中选两名学生进行班级阅读分享,求恰好选到一名男生与一名女生的概率.18.如图,已知▱ABCD,AE平分∠BAD,交DC于E,DF⊥BC于F,交AE于G,且DF=AD.(1)若∠C=60°,AB=2,求EC的长;(2)求证:AB=DG+FC.19.“只要人人都献出一点爱,世界将变成美好的人间”.在新冠肺炎疫情期间,全国人民万众一心,众志成城,共克时艰.某社区有1名男管理员和3名女管理员,现要从中随机挑选2名管理员参与“社区防控”宣讲活动,请用列表法或树状图法求出恰好选到“1男1女”的概率.20.新冠病毒潜伏期较长,能通过多种渠道传播,所以在生活中就要做好最基本的防护:在公共区域和陌生人保持距离,勤洗手,出门戴口罩,某区中小学陆续复学后,为了提高同学们的防疫意识,决定组织防疫知识竞赛活动,评出一、二、三等奖各若干名,并分别发给洗手液、温度计和口罩作为奖品.(1)如果温度计的单价比口罩的单价多1元,购买洗手液1瓶和口罩5个共需22元;购买2瓶洗手液比购买6支温度计多花6元,求洗手液、温度计和口罩的单价各是多少元?(2)已知本次竞赛活动获得三等奖的人数是获得二等奖人数的2倍,且获得一等奖的人数不超过获奖总人数的五分之一,如果购买这三种奖品的总费用为308元,求本次竞赛活动获得一、二、三等奖各有多少人.21.如图,小颖在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,测得居民楼AB与CD之间的距离AC为35m,在点N处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°.已知居民楼CD的高度为16.6m,小颖的观测点N距地面1.6m.求居民楼AB的高度.(结果精确到1m)【参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43】22.如图,一次函数y=2x+b的图象经过点M(1,3),且与x轴,y轴分别交于A,B两点.(1)填空:b=;(2)将该直线绕点A顺时针旋转45°至直线l,过点B作BC⊥AB交直线l于点C,求点C的坐标及直线l的函数表达式.23.如图,在△ABC中,AC=BC,CD平分∠ACB交AB于点D,BF平分∠ABC交CD于点F,AB=6,过B、F 两点的⊙O交BA于点G,交BC于点E,EB恰为⊙O的直径.(1)判断CD和⊙O的位置关系并说明理由;(2)若cos∠A=,求⊙O的半径.24.如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,二次函数y=x2图象从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.(1)求线段OA所在直线的函数解析式;(2)二次函数的顶点M与A重合时,函数的图象是否过点Q(a,a﹣1),并说明理由;(3)设二次函数顶点M的横坐标为m,当m为何值时,线段PB最短,并求出二次函数的解析式.25.在△ABC中,AB=AC.(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.参考答案满分150分,答题时间120分钟四、选择题(本题共10小题,每小题3分,共30分)1.下列各式的计算结果为负数的是()A.|﹣2﹣(﹣1)| B.﹣(﹣3﹣2) C.﹣(﹣|﹣3﹣2|) D.﹣2﹣|﹣4|【解答】解:A.|﹣2﹣(﹣1)|=|﹣1|=1,不符合题意;B.﹣(﹣3﹣2)=﹣(﹣5)=5,不符合题意;C.﹣(﹣|﹣3﹣2|)=﹣(﹣5)=5,不符合题意;D.﹣2﹣|﹣4|=﹣2﹣4=﹣6,符合题意.故选:D.2.如图是由若干个完全相同的正方体搭成的几何体,取走选项序号对应的正方体,其中三视图不会发生变化的是()A.①B.②C.③D.④【解答】解:A、取走①,主视图会发生变化,故本选项不合题意;B、取走②,俯视图会发生变化,故本选项不合题意;C、取走③,主视图和俯视图都会发生变化,故本选项不合题意;D、取走④,三视图不会发生变化,故本选项符合题意;故选:D.3.选择计算(﹣2x+3y)(2x+3y)的最佳方法是()A.运用多项式乘多项式法则B.运用平方差公式C.运用单项式乘多项式法则D.运用完全平方公式【解答】解:原式=(3y﹣2x)(3y+2x)=(3y)2﹣(2x)2=9y2﹣4x2,∴运用平方差公式最好,故选:B.4.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分【解答】解:A、平行四边形、矩形、菱形、正方形的对角线都互相平分,故本选项正确;B、只有矩形,正方形的对角线相等,故本选项错误;C、只有菱形,正方形的对角线互相垂直,故本选项错误;D、只有菱形,正方形的对角线互相垂直平分,故本选项错误.故选:A.5.箱子内装有除颜色外均相同的28个白球及2个红球,小芬打算从箱子内摸球,以每次摸到一球后记下颜色将球再放回的方式摸28次球.若箱子内每个球被摸到的机会相等,且前27次中摸到白球26次及红球1次,则第28次摸球时,小芬摸到红球的概率是()A.B.C.D.【解答】解:因为每次摸到一球后记下颜色将球再放回,所以箱子内总装有除颜色外均相同的28个白球及2个红球,所以第28次摸球时,小芬摸到红球的概率==.故选:C.6.如图,若⊙O是正方形ABCD与正六边形AEFCGH的外接圆,则正方形ABCD与正六边形AEFCGH的周长之比为()A.2:3 B.:1 C.:D.1:【解答】解:连接OA、OB.OE,如图所示:设此圆的半径为R,则它的内接正方形的边长为R,它的内接正六边形的边长为R,∴内接正方形和内接正六边形的边长之比为R:R=:1,∴正方形ABCD与正六边形AEFCGH的周长之比=内接正方形和内接正六边形的边长之比=4:6=2:3,故选:A.7.实验中学为了解七年级600名学生的身高情况,随机抽取了50名学生进行身高测量,在这个问题中,样本是()A.50B.50名学生C.50名学生的身高情况D.600名七年级学生的身高情况【解答】解:实验中学为了解七年级600名学生的身高情况,随机抽取了50名学生进行身高测量,在这个问题中,样本是50名学生的身高情况.故选:C.8.在数轴上,表示不小于﹣2且小于2之间的整数的点有()A.3个B.4个C.5个D.无数个【解答】解:在数轴上,表示不小于﹣2且小于2之间的整数有:﹣2、﹣1、0、1,共4个.故选:B.9.如图,线段AB,BC的垂直平分线l1,l2相交于点O.若∠1=35°,则∠A+∠C=()A.30°B.40°C.17.5°D.35°【解答】解:连接OB,∵线段AB、BC的垂直平分线l1、l2相交于点O,∴AO=OB=OC,∴∠AOD=∠BOD,∠BOE=∠COE,∠A=∠ABO,∠C=∠CBO,∴∠A+∠C=∠ABC,∵∠DOE+∠1=180°,∠1=35°,∴∠DOE=145°,∴∠ABC=360°﹣∠DOE﹣∠BDO﹣∠BEO=35°;故选:D.10.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球抛出3秒时达到最高点;②小球从抛出到落地经过的路程是80m;③小球的高度h =20时,t=1s或5s.④小球抛出2秒后的高度是35m.其中正确的有()A.①②B.②③C.①③④D.①②③【解答】解:由图象可知,点(0,0),(6,0),(3,40)在抛物线上,顶点为(3,40),设函数解析式为h=a(t﹣3)2+40,将(0,0)代入得:0=a(0﹣3)2+40,解得:a=﹣,∴h=﹣(t﹣3)2+40.①∵顶点为(3,40),∴小球抛出3秒时达到最高点,故①正确;②小球从抛出到落地经过的路程应为该小球从上升到落下的长度,故为40×2=80m,故②正确;③令h=20,则20=﹣(t﹣3)2+40,解得t=3±,故③错误;④令t=2,则h=﹣(2﹣3)2+40=m,故④错误.综上,正确的有①②.故选:A.五、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是x≠0且x≠1.【解答】解:由题意得x(x﹣1)≠0,解得x≠0且x≠1,故答案为x≠0且x≠1.12.若线段AB的端点为(﹣1,3),(1,3),线段CD与线段AB关于x轴轴对称,则线段CD上任意一点的坐标可表示为(x,﹣3)(﹣1≤x≤1).【解答】解:∵线段CD与线段AB关于x轴轴对称,∴线段CD上任意一点的坐标可表示为(x,﹣3)(﹣1≤x≤1),故答案为:(x,﹣3)(﹣1≤x≤1).13.“石头、剪刀、布”是民间广为流传的一种游戏,游戏时甲乙双方每次做“石头”“剪刀”“布”三种手势中的一种,并约定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势不分胜负须继续比赛.假定甲、乙两人每次都是等可能地做这三种手势,那么一次游戏中乙获胜的概率是.【解答】解:用列表法表示所有可能出现的结果有:共有9种情况,其中乙获胜的有3中,P乙获胜==.故答案为:.14.如图,在△ABC中,点O是△ABC的内心,∠A=48°,∠BOC=114°.【解答】解:∵O是△ABC的内心,∴OB,OC分别平分∠ABC,∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣48°)=66°,∴∠BOC=180°﹣66°=114°.故答案为:114.15.如图,正方形BEFG的顶点E在正方形ABCD的边AD上,CD、EF交于点H,AD=16,连接EC,FC,则△CEF 的面积的最小值为96.【解答】解:过F作FG⊥DC于点G,FM⊥AD,交AD的延长线于M,连接CF,∵S△CEF=S△CHF+S△CHE=CH•EM,∵△EMF≌△BAE,∴EM=AB=16,∴S△CEF=8CH,∵△EDH∽△BAE,∴,设AE为x,则DH=(﹣x2+16x)=﹣(x﹣8)2+4≤4,∴DH≤4,∴CH≥12,CH最小值是12,∴△CEF面积的最小值是96.故答案为:96.六、解答题(本题共10小题,共100分)16.如图,某花园的护栏是用一些半圆形造型的钢条围成的,半圆的直径为80厘米,且每增加一个半圆形条钢,护栏长度就增加a厘米(a>0),设半圆形条钢的总个数为x个(x为正整数),护栏总长度为y厘米.(1)当a=60时,用含x的代数式表示护栏总长度y(结果要求化简);(2)用含a、x的代数式表示护栏的总长度y(结果要求化简),并求a=50,x=41时,护栏长度y的值.【解答】解:(1)y=80+a(x﹣1),当a=60时,y=80+60(x﹣1)=60x+20.(2)y=80+a(x﹣1),当a=50,x=41时,y=80+50(41﹣1)=2080.17.5月1日,“东疆好少年”平台公布了世界读书日暨“阅读吧,少年”第一轮网络答题进入决赛的学生名单,全市初中组有235名同学入围.某中学有300名七、八年级同学积极参与了此次活动,该校老师随机调查收集了50名学生的参赛成绩,整理得到了如下的数据分析表:分数段人数分数段人数55≤x<65 23人85≤x<95 5人65≤x<75 12人95≤x<100 3人75≤x<85 7人/ /其中分数段在65≤x<75组的成绩如下:65 65 70 7070 65 70 6565 65 70 70(1)被抽取的这50名同学成绩的中位数为65;(2)已知50名学生中男生均分为68.2分,女生均分为71.8分,你能求出这50名学生的平均分吗?若能,请求出平均分,若不能,请说明理由;(3)本次进入决赛的成绩为70分以上(包括70分),请你估计该校有多少名学生进入决赛?(4)已知该校八(1)班有三名学生(一名男生,两名女生)取得90分以上,现准备从这三名学生中选两名学生进行班级阅读分享,求恰好选到一名男生与一名女生的概率.【解答】解:(1)把50名同学的成绩从小到大排列后处在第25、26位的两个数的平均数为=65;故答案为:65;(2)不能求出这50名学生的平均分,理由如下:因为男生女生人数不知道,相当于权重不一样.并不是男生女生各占一半;所以不能求出这50名学生的平均分;(3)因为50名同学进入决赛的人数有:6+7+5+3=21,所以300×=126(名).答:估计该校有126名学生进入决赛;(4)根据题意画出树状图:根据树状图可知:所有等可能的结果有6种,恰好选到一名男生与一名女生的有4种,所以恰好选到一名男生与一名女生的概率为:=.18.如图,已知▱ABCD,AE平分∠BAD,交DC于E,DF⊥BC于F,交AE于G,且DF=AD.(1)若∠C=60°,AB=2,求EC的长;(2)求证:AB=DG+FC.【解答】解:(1)在▱ABCD中,AB=DC=2,∠C=60°,DF⊥BC,∴∠BAD=∠C=60°,∠CDF=30°,∴CF=1,DF=CF=,∵DF=AD.∴AD=DF=,∵AE平分∠BAD,∴∠DAE=∠BAE=30°,∵AB∥CD,∴∠BAE=∠AED=30°,∴AD=DE=,∴EC=DC﹣DE=2﹣.(2)延长FD至M,使DM=FC,在△ADM和△DFC中,,∴△ADM≌△DFC(SAS),∴∠DAM=∠FDC,AM=DC,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠BAE=∠AED,∵∠BAE=∠DAE,∴∠DAE=∠AED,∴∠DAE+∠DAM=∠AED+∠FDC,即∠MAG=∠MGA,∴AM=MG,∴DC=DG+FC.19.“只要人人都献出一点爱,世界将变成美好的人间”.在新冠肺炎疫情期间,全国人民万众一心,众志成城,共克时艰.某社区有1名男管理员和3名女管理员,现要从中随机挑选2名管理员参与“社区防控”宣讲活动,请用列表法或树状图法求出恰好选到“1男1女”的概率.【解答】解:树状图如下图所示,由树状图知共有12种等可能结果,其中恰好选到“1男1女”的有6种结果,所以恰好选到“1男1女”的概率是=.20.新冠病毒潜伏期较长,能通过多种渠道传播,所以在生活中就要做好最基本的防护:在公共区域和陌生人保持距离,勤洗手,出门戴口罩,某区中小学陆续复学后,为了提高同学们的防疫意识,决定组织防疫知识竞赛活动,评出一、二、三等奖各若干名,并分别发给洗手液、温度计和口罩作为奖品.(1)如果温度计的单价比口罩的单价多1元,购买洗手液1瓶和口罩5个共需22元;购买2瓶洗手液比购买6支温度计多花6元,求洗手液、温度计和口罩的单价各是多少元?(2)已知本次竞赛活动获得三等奖的人数是获得二等奖人数的2倍,且获得一等奖的人数不超过获奖总人数的五分之一,如果购买这三种奖品的总费用为308元,求本次竞赛活动获得一、二、三等奖各有多少人.【解答】解:(1)设洗手液的单价是x元,口罩的单价是y元,则温度计的单价是(y+1)元,依题意得:,解得:,∴y+1=3.答:洗手液的单价是12元,口罩的单价是2元,温度计的单价是3元.(2)设获得一等奖的有m人,二等奖的有n人,则三等奖的有2n人,依题意得:12m+3n+2×2n=308,∴n==44﹣m.∵获得一等奖的人数不超过获奖总人数的五分之一,∴m≤,即4m≤3n.又∵m,n均为正整数,∴m为7的倍数,∴或.答:获得一等奖的有7人,二等奖的有32人,三等奖的有64人或获得一等奖的有14人,二等奖的有20人,三等奖的有40人.21.如图,小颖在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,测得居民楼AB与CD之间的距离AC为35m,在点N处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°.已知居民楼CD的高度为16.6m,小颖的观测点N距地面1.6m.求居民楼AB的高度.(结果精确到1m)【参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43】【解答】解:如图,过点N作EF∥AC交AB于点E,交CD于点F,则AE=CF=MN=1.6,EF=AC=35,EN=AM,NF=MC,∠BEN=∠DFN=90°.∴DF=CD﹣CF=16.6﹣1.6=15.在Rt△DFN中,∵∠DNF=45°,∴NF=DF=15.∴EN=EF﹣NF=35﹣15=20.在Rt△BEN中,∵,∴BE=EN⋅tan∠BNE=20×tan55°≈20×1.43=28.6.∴AB=BE+AE=28.6+1.6=30.2≈30(米).答:居民楼AB的高度约为30 米.22.如图,一次函数y=2x+b的图象经过点M(1,3),且与x轴,y轴分别交于A,B两点.(1)填空:b=1;(2)将该直线绕点A顺时针旋转45°至直线l,过点B作BC⊥AB交直线l于点C,求点C的坐标及直线l的函数表达式.【解答】解:(1)∵一次函数y=2x+b的图象经过点M(1,3),∴3=2+b,解得b=1,故答案为1;(2)∵一次函数y=2x+1的图象与x轴,y轴分别交于A,B两点.∴A(﹣,0),B(0,1),∴OA=,OB=1,作CD⊥y轴于D,∵∠BAC=45°,BC⊥AB,∴∠ACB=45°,∴AB=BC,∵∠ABO+∠BAO=90°=∠ABO+∠CBD,∴∠BAO=∠CBD,在△AOB和△BDC中,,∴△AOB≌△BDC(AAS),∴BD=OA=,CD=OB=1,∴OD=OB﹣BD=,∴C(1,),设直线l的解析式为y=mx+n,把A(﹣,0),C(1,)代入得,解得,∴直线l的解析式为y=x+.23.如图,在△ABC中,AC=BC,CD平分∠ACB交AB于点D,BF平分∠ABC交CD于点F,AB=6,过B、F 两点的⊙O交BA于点G,交BC于点E,EB恰为⊙O的直径.(1)判断CD和⊙O的位置关系并说明理由;(2)若cos∠A=,求⊙O的半径.【解答】解:(1)CD与⊙O相切,理由如下:连接OF,∵AC=BC,CD平分∠ACB,∴AD=BD=3,CD⊥AB,∴∠BDC=90°,∵OF=OB,∴∠OFB=∠OBF,∵BF平分∠ABC,∴∠CBF=∠FBD,∴∠OFB=∠FBD,∴OF∥DB,∴∠CFO=∠BDC=90°,∴CD与⊙O相切;(2)∵AC=BC,∴∠A=∠ABC,∴cos∠ABC=cos∠A=在Rt△BDC中,cos∠ABC==,∴BC=9,∵OF∥DB,∴△CFO∽△CDB,设⊙O的半径是r,则=,∴r=,即⊙O的半径是.24.如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,二次函数y=x2图象从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.(1)求线段OA所在直线的函数解析式;(2)二次函数的顶点M与A重合时,函数的图象是否过点Q(a,a﹣1),并说明理由;(3)设二次函数顶点M的横坐标为m,当m为何值时,线段PB最短,并求出二次函数的解析式.【解答】解:(1)设OA所在直线的函数解析式为y=kx,∵A(2,4),∴2k=4,解得k=2,∴OA所在直线的函数解析式为y=2x;(2)不过点Q,理由:当二次函数的顶点M与A重合时,则顶点M的坐标为(2,4),∴抛物线的解析式为y=(x﹣2)2+4=x2﹣4x+8,设当x=a时,y=x2﹣4x+8=a2﹣4a+8=a﹣1,即a2﹣5a+9=0,∵△=25﹣36<0,故方程无解,则函数的图象不过点Q(a,a﹣1);(3)∵顶点M的横坐标为m,且在OA上移动,∴y=2m(0≤m≤2),∴M(m,2m),∴抛物线的解析式为y=(x﹣m)2+2m,∴当x=2时,y=(2﹣m)2+2m=m2﹣2m+4(0≤m≤2),∴PB=m2﹣2m+4=(m﹣1)2+3(0≤m≤2),∴当m=1时,PB最短,当PB最短时,抛物线的解析式为y=(x﹣1)2+2.25.在△ABC中,AB=AC.(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=15°(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=20°(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:∠EDC=∠BAD(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.【解答】解:(1)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD,∵∠BAD=30°,∴∠BAD=∠CAD=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠EDC=15°.(2)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD,∵∠BAD=40°,∴∠BAD=∠CAD=40°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠EDC=20°.(3)∠BAD=2∠EDC(或∠EDC=∠BAD)(4)仍成立,理由如下∵AD=AE,∴∠ADE=∠AED,∴∠BAD+∠B=∠ADC=∠ADE+∠EDC=∠AED+∠EDC=(∠EDC+∠C)+∠EDC =2∠EDC+∠C又∵AB=AC,∴∠B=∠C∴∠BAD=2∠EDC.故分别填15°,20°,∠EDC=∠BAD。

中考数学前模拟测试试题6

中考数学前模拟测试试题6

2014年数学中考模拟测试题6一、选择题1.下列运算中,正确的是 ( )A .5a-2a=3B .()22224x y x y +=+C .842x x x ÷= D .41)2(2=--2.据初步统计,2010年浙江省实现生产总值(GDP)27100亿元,全省生产总值增长11.8%。

在这里,若将27100亿元以元为单位用科学记数法表示则为( ) A .111071.2⨯ B .121071.2⨯ C .10101.27⨯D .1010271⨯3.如图摆放的几何体的俯视图是 ( ) 09年中考模拟卷改编4.使代数式x x --87有意义的自变量x 的取值范围是 ( )A.7≥xB. 87≠>x x 且C. 87≠≥x x 且D. 7>x 5.在一个不透明的口袋中放着红色、黑色、黄色的橡皮球共有30个,它们除颜色外其它全相同.小刚通过多次摸球试验后发现从中摸到红色球或黄色球的频率稳定在0.15和0.45之间,则口袋中黑色球的个数可能是 ( ) A .14 B .20 C .9D .66.已知两圆的半径满足方程03622=+-x x ,圆心距为5,则两圆的位置关系为 ( )A .相交B .外切C .内切D .外离 7.若用(1)、(2)、(3)、(4)四幅图分别表示变量之间的关系,将下面的(a )、(b )、(c )、(d )对应的图象排序 ( ) 10年中考模拟卷改编(a )面积为定值的矩形(矩形的相邻两边长的关系) (b )运动员推出去的铅球(铅球的高度与时间的关系)(c )一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物质量的关系)(d )某人从A 地到B 地后,停留一段时间,然后按原速返回(离开A 地的距离与时间的关系)A .(3)(4)(1)(2)B .(3)(2)(1)(4)C .(4)(3)(1)(2)D .(3)(4)(2)(1)8.已知抛物线y=ax 2+2ax+4(0<a<3),A (x1,y1)B(x2,y2)是抛物线上两点,若x1>x2,且x1+x2=1-a, 则 ( )A. y1< y2B. y1= y2C. y1> y2D. y1与y2的大小不能确定(1)(2)(3)(4)EDC BA(第10题图)A B C DFO G HE 9.如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心,EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则tan ∠EAB 的值是( ) A.43B.34C.45D.3510. 如图,点O 为正方形ABCD 的中心,BE 平分∠DBC 交DC 于点E ,延长BC 到点F ,使FC =EC ,连结DF 交BE 的延长线于点H ,连结OH 交DC 于点G ,连结HC .则以下四个结论中正确结论的个数为( ) BBS 习题改编①OH =21BF ; ②∠CHF =45°; ③GH =41BC ;④DH2=HE ·HBA. 1个B. 2个C. 3个D. 4个 二.认真填一填(本题有6个小题,每小题4分,共24分)11.分解因式:a a -5=____________________.12.对正实数b a ,定义运算法则b a ab b a ++=*2,若103=*x ,则x 的值是____________. 原创13.如图,小明在打网球时,使球恰好能打过网,而且落点恰好在离网6米的位置上,则球拍击球的高度h 为_____________米。

人教版中考冲刺模拟测试《数学试卷》含答案解析

人教版中考冲刺模拟测试《数学试卷》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题 1.-15的倒数是( ) A. 15 B. -15 C. -5 D. 52.下列”QQ 表情”中属于轴对称图形的是( )A. B. C. D.3. 下列计算正确的是A. 4312a a a ⋅=B. 93=C. ()02x 10+=D. 若x 2=x ,则x=1 4.将一把直尺与一块直角三角板如图放置,如果158∠=︒,那么2∠的度数为( ).A. 32︒B. 58︒C. 138︒D. 148︒5.如图,△ABC 内接于⊙O ,AD 是⊙O 直径,∠ABC =25°,则∠CAD 的度数是( )A. 25°B. 60°C. 65°D. 75°6.某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)18 19 20 21 22 人数2 4 4 5 1则这12名队员年龄的众数、中位数分别是()A. 5,20岁B. 5,21岁C. 20岁,20岁D. 21岁,20岁7.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上下坡的速度仍然保持不变,那么他从学校回到家需要的时间是().A. 8.6分钟B. 9分钟C. 12分钟D. 16分钟8.如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB∶S四边形CBFG=1∶2;③∠ABC =∠ABF;④AD2=FQ·AC,其中正确结论的个数是( )A. 1个B. 2个C. 3个D. 4个二.填空题9.因式分解:xy3﹣x=_____.10.在函数y=3x+中,自变量x的取值范围是_____.11.新冠肺炎疫情发生以来,我国人民上下齐心,共同努力抗击疫情,逐渐取得了胜利.截止3月13日,我国各级财政安排的疫情防控投入已经达到了1169亿元,1169亿元用科学记数法表示为_____元.12.不等式组2340x xx+<⎧⎨-≤⎩解集为_____.13.如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为矩形,应添加的条件是_____.14.甲、乙两名射击运动员在某场测试中各射击10次,两人的测试成绩如下:甲7 7 8 8 8 9 9 9 10 10乙7 7 7 8 8 9 9 10 10 10这两人10次射击命中的环数的平均数x甲=x乙=8.5,则测试成绩比较稳定的是.(填”甲”或”乙”)15.如图,某地修建高速公路,要从B地向C地修一座隧道(B,C在同一水平上),某工程师乘坐热气球从B 地出发,垂直上升100m到达A处,在A处观测C地的俯角为30°,则B、C两地之间的距离为__________m.16.如图,直角梯形OABC的直角顶点是坐标原点,边OA,OC分别在x轴,y轴的正半轴上.OA∥BC,D是BC上一点,BD=14OA=2,AB=3,∠OAB=45°,E,F分别是线段OA,AB上的两个动点,且始终保持∠DEF=45°.设OE=x,AF=y,则y与x的函数关系式为_____.三.解答题17.计算:13-﹣(3.14﹣π)0+(1﹣cos30°)×(12)﹣2.18.计算22a b11. ab a b-⎛⎫÷-⎪⎝⎭19.如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B市位于点P的北偏东75°方向上,距离点P320千米处.(1)说明本次台风会影响B市;(2)求这次台风影响B市的时间.20.某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D 四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A 级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)(1)求出D级学生的人数占全班总人数的百分比;(2)求出扇形统计图中C级所在的扇形圆心角的度数;(3)该班学生体育测试成绩的中位数落在哪个等级内;(4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?21.如图,已知AB是⊙O的直径,点C,D在⊙O上,且AB=5,BC=3.(1) 求sin∠BAC的值;(2) 如果OE⊥AC, 垂足为E,求OE的长;(3) 求tan∠ADC的值.(结果保留根号)22.某地2015年为做好”精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?23. 正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM ∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN 的面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x值.24.平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是为(0,3)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线过点C、A、A′,求此抛物线解析式;(2)求平行四边形ABOC和平行四边形A′B′OC′重叠部分△OC′D的周长;(3)点M是第一象限内抛物线上的一动点,问:点M在何处时;△AMA′的面积最大?最大面积是多少?并求出此时点M的坐标.答案与解析一.选择题 1.-15的倒数是( ) A. 15 B. -15 C. -5 D. 5【答案】C【解析】 试题分析:根据倒数的定义即若两个数的乘积是1,我们就称这两个数互为倒数,即可得出答案. 试题解析:-15的倒数是-5; 故选C .考点:倒数.2.下列”QQ 表情”中属于轴对称图形的是( )A. B. C. D. 【答案】C【解析】【分析】根据轴对称图形的概念,一一判断四个选项即可得到答案.【详解】解:A 、B 、D 都不关于某一条直线对称,故不是轴对称图形,C 关于直线对称,故是轴对称图形.故选:C .【点睛】本题考查了轴对称图形的概念(如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形),掌握轴对称图形的概念是解题的关键.3. 下列计算正确的是A. 4312a a a ⋅=93= C. ()02x 10+= D. 若x 2=x ,则x=1 【答案】B【解析】试题分析:根据同底数幂的乘法,算术平方根,零指数幂运算法则和解一元二次方程逐一计算作出判断: A 、43437a a a a +⋅==,故本选项错误;B 29333===,故本选项正确;C 、∵x 2+1≠0,∴()02x 11+=,故本选项错误;D 、由题意知,x 2﹣x=x(x ﹣1)=0,则x=0或x=1.故本选项错误.故选B .4.将一把直尺与一块直角三角板如图放置,如果158∠=︒,那么2∠的度数为( ).A. 32︒B. 58︒C. 138︒D. 148︒【答案】D【解析】【分析】 根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【详解】如图,由三角形的外角性质得:∠3=90°+∠1=90°+58°=148°.∵直尺的两边互相平行,∴∠2=∠3=148°.故选D .【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.5.如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,∠ABC =25°,则∠CAD 的度数是( )A. 25°B. 60°C. 65°D. 75°【答案】C【解析】【分析】首先根据直径所对的圆周角是直角,可求得∠ACD=90°,又由圆周角定理的推论可得∠D=∠ABC=25°,继而求得答案.【详解】解:∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠ABC=25°,∴∠CAD=90°﹣∠D=65°.故选:C.【点睛】本题主要考查圆周角定理的推论,掌握圆周角定理的推论是解题的关键.6.某社区青年志愿者小分队年龄情况如下表所示:则这12名队员年龄的众数、中位数分别是()A. 5,20岁B. 5,21岁C. 20岁,20岁D. 21岁,20岁【答案】D【解析】【分析】根据众数和中位数的概念求解可得.【详解】这组数据中出现次数最多的是21,所以众数为21岁,第8、9个数据分别是20岁、20岁,所以这组数据的中位数为20220=20(岁),故选:D.【点睛】本题考查中位数和众数,熟练掌握中位数的求法是解答本题关键.7.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上下坡的速度仍然保持不变,那么他从学校回到家需要的时间是().A. 8.6分钟B. 9分钟C. 12分钟D. 16分钟【答案】C【解析】【分析】根据图象可知:小明从家骑车上学,上坡的路程是1千米,用5分钟,则上坡速度是0.2千米/分钟;下坡路长是2千米,用4分钟,因而速度是0.5千米/分钟,由此即可求出答案.【详解】解:把上下坡的速度求出来是解题的关键,根据图象可知:小明从家骑车上学,上坡的路程是1千米,用5分钟,则上坡速度是0.2千米/分钟;下坡路长是2千米,用4分钟,因而下坡速度是0.5千米/分钟,回家时下坡是1千米,上坡路程是2千米,所以他从学校回到家需要的时间是120.50.2=12分钟.故选C.【点睛】读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.8.如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB∶S四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正确结论的个数是( )A. 1个B. 2个C. 3个D. 4个【答案】D【解析】试题解析:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠GAF+∠AFG=90°, ∴∠CAD=∠AFG ,在△FGA 和△ACD 中,{G CAFG CAD AF AD∠∠∠∠===,∴△FGA ≌△ACD(AAS),∴AC=FG ,①正确;∵BC=AC ,∴FG=BC ,∵∠ACB=90°,FG ⊥CA , ∴FG ∥BC ,∴四边形CBFG 是矩形,∴∠CBF=90°,S △FAB =12FB•FG=12S 四边形CBFG ,②正确; ∵CA=CB ,∠C=∠CBF=90°, ∴∠ABC=∠ABF=45°,③正确; ∵∠FQE=∠DQB=∠ADC ,∠E=∠C=90°, ∴△ACD ∽△FEQ ,∴AC :AD=FE :FQ ,∴AD•FE=AD 2=FQ•AC ,④正确;故选D .【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.二.填空题9.因式分解:xy 3﹣x =_____.【答案】x (y +1)(y ﹣1)【解析】【分析】原式提取x ,再利用平方差公式分解即可.【详解】解:原式=x (y 2﹣1)=x (y +1)(y ﹣1),故答案为:x (y +1)(y ﹣1) .【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.10.在函数y x的取值范围是_____.【答案】x≥﹣3【解析】【分析】因为二次根式的被开方数要为非负数,即x+3≥0,解此不等式即可.【详解】解:根据题意得:x+3≥0,解得:x≥﹣3.【点睛】本题考查了求自变量的取值范围,解题的关键是掌握当函数表达式是二次根式时,被开方数为非负数.11.新冠肺炎疫情发生以来,我国人民上下齐心,共同努力抗击疫情,逐渐取得了胜利.截止3月13日,我国各级财政安排的疫情防控投入已经达到了1169亿元,1169亿元用科学记数法表示为_____元.【答案】1.169×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:1169亿=116900000000用科学记数法表示为:1.169×1011.故答案为:1.169×1011.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.不等式组2340x xx+<⎧⎨-≤⎩的解集为_____.【答案】1<x≤4【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式x+2<3x,得:x>1,解不等式x﹣4≤0,得:x≤4,则不等式组的解集为:1<x≤4,故答案为:1<x≤4.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为矩形,应添加的条件是_____.【答案】AC⊥BD【解析】【分析】根据三角形的中位线定理,可以证明所得四边形的两组对边分别和两条对角线平行,所得四边形的两组对边分别是两条对角线的一半,再根据平行四边形的判定就可证明该四边形是一个平行四边形;所得四边形要成为矩形,则需有一个角是直角,故对角线应满足互相垂直.【详解】解:如图,∵E,F分别是边AB,BC的中点,∴EF∥AC,EF=12 AC,同理HG∥AC,HG=12 AC,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形;要使四边形EFGH是矩形,则需EF⊥FG,即AC⊥BD;故答案为:AC⊥BD.【点睛】此题主要考查了三角形的中位线定理的运用.同时熟记此题中的结论:顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线互相垂直的四边形各边中点所得四边形是矩形.14.甲、乙两名射击运动员在某场测试中各射击10次,两人的测试成绩如下:甲7 7 8 8 8 9 9 9 10 10乙7 7 7 8 8 9 9 10 10 10这两人10次射击命中的环数的平均数x甲=x=8.5,则测试成绩比较稳定的是.(填”甲”或”乙乙”)【答案】甲【解析】【分析】分别计算出两人的方差,方差较小的成绩比较稳定.=(7×2+9×3+10×2+3×8)÷10=8.5,【详解】解:x甲S2甲=[(7-8.5)2+(7-8.5)2+(8-8.5)2+(8-8.5)2+(8-8.5)2+(9-8.5)2+(9-8.5)2+(9-8.5)2+(10-8.5)2+(10-8.5)2]÷10=1.05,x=8.5,乙S2乙=[(7-8.5)2+(7-8.5)2+(7-8.5)2+(8-8.5)2+(8-8.5)2+(9-8.5)2+(9-8.5)2+(10-8.5)2+(10-8.5)2+(10-8.5)2]÷10=1.45,∵S2甲<S2乙,∴甲组数据稳定.故答案为:甲.【点睛】此题主要考查了方差公式的应用,方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法.15.如图,某地修建高速公路,要从B地向C地修一座隧道(B,C在同一水平上),某工程师乘坐热气球从B 地出发,垂直上升100m到达A处,在A处观测C地的俯角为30°,则B、C两地之间的距离为__________m.【答案】3【解析】【分析】利用题意得到∠C=30°,AB=100,然后根据30°正切可计算出BC .【详解】根据题意得∠C=30°,AB=100,∵tanC=AB BC , ∴BC=0100tan 30=0100tan 30=100=100333=1003(m ). 故答案为1003.【点睛】本题考查了解直角三角形的应用-仰角俯角:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.16.如图,直角梯形OABC 的直角顶点是坐标原点,边OA ,OC 分别在x 轴,y 轴的正半轴上.OA ∥BC ,D 是BC 上一点,BD =14OA =2,AB =3,∠OAB =45°,E ,F 分别是线段OA ,AB 上的两个动点,且始终保持∠DEF =45°.设OE =x ,AF =y ,则y 与x 的函数关系式为_____.【答案】21233y x x =+ 【解析】【分析】 首先过B 作x 轴的垂线,设垂足为M ,由已知易求得OA 2,在Rt △ABM 中,已知∠OAB 的度数及AB 的长,即可求出AM 、BM 的长,进而可得到BC 、CD 的长,再连接OD ,证△ODE ∽△AEF ,通过得到的比例线段,即可得出y 与x 的函数关系式.【详解】解:过B 作BM ⊥x 轴于M .在Rt △ABM 中,∵AB =3,∠BAM =45°,∴AM =BM 32,∵BD =14OA ,OA ∴=,∴BC =OA ﹣AM =CD =BC ﹣BD =2,∴D ),32OD ∴== . 连接OD ,则点D 在∠COA 的平分线上,所以∠DOE =∠COD =45°.又∵在梯形DOAB 中,∠BAO =45°,∴由三角形外角定理得:∠ODE =∠DEA ﹣45°,又∠AEF =∠DEA ﹣45°,∴∠ODE=∠AEF ,∴△ODE ∽△AEF ,OE OD AF AE∴= 即x y =∴y 与x 解析式为:2133y x x =-+.故答案为:2133y x x =-+.【点睛】本题主要考查二次函数的应用,掌握相似三角形的判定及性质是解题的关键.三.解答题17.计算:13-﹣(3.14﹣π)0+(1﹣cos30°)×(12)﹣2.【答案】1023 3-【解析】【分析】分别计算绝对值、零指数幂,特殊角的三角形函数值,及负整数指数幂,然后得出各部分的最简值,继而合并可得出答案.【详解】解:13-﹣(3.14﹣π)0+(1﹣cos30°)×(12)﹣2=13114 3⎛-+⨯⎝⎭=11423 3-+-=1023 3-【点睛】本题主要考查了绝对值的计算、零指数幂,特殊角的三角形函数值、及负整数指数幂的计算,熟练掌握各知识点是解题的关键.18.计算22a b11. ab a b-⎛⎫÷-⎪⎝⎭【答案】a b--.【解析】【分析】先计算括号内分式的减法,再将除法转化为乘法,约分即可得.【详解】解:原式()()a b a b b a ab ab+--=÷, ()()()a b a b ab ab a b +-=⋅--, ()a b =-+,a b =--.【点睛】考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.19.如图,台风中心位于点P ,并沿东北方向PQ 移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B 市位于点P 的北偏东75°方向上,距离点P 320千米处.(1)说明本次台风会影响B 市;(2)求这次台风影响B 市的时间.【答案】(1)会;(2)8小时【解析】分析】(1)作BH ⊥PQ 于点H ,在Rt △BHP 中,利用特殊角的三角函数值求出BH 的长与200千米相比较即可.(2)以B 为圆心,以200为半径作圆交PQ 于P 1、P 2两点,根据垂径定理即可求出P 1P 2的长,进而求出台风影响B 市的时间.【详解】(1)如图所示:∵台风中心位于点P ,并沿东北方向PQ 移动,B 市位于点P 的北偏东75°方向上,∴∠QPG=45°,∠NPB=75°,∠BPG=15°,∴∠BPQ=30°作BH ⊥PQ 于点H ,在Rt △BHP 中,由条件知,PB=320,得 BH=320sin30°=160<200,∴本次台风会影响B市.(2)如图,若台风中心移动到P1时,台风开始影响B市,台风中心移动到P2时,台风影响结束.由(1)得BH=160,由条件得BP1=BP2=200,∴所以P1P2 = 222200160=240∴台风影响的时间t =24030= 8(小时).20.某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D 四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A 级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)(1)求出D级学生的人数占全班总人数的百分比;(2)求出扇形统计图中C级所在的扇形圆心角的度数;(3)该班学生体育测试成绩的中位数落在哪个等级内;(4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?【答案】(1)4%;(2)72°;(3)落在B等级内;(4)380人【解析】【分析】(1)先求出总人数,再求D成绩的人数占的比例;(2)C成绩的人数为10人,占的比例=10÷50=20%,表示C的扇形的圆心角=360°×20%=72°,(3)根据中位数的定义判断;(4)该班占全年级的比例=50÷500=10%,所以,这次考试中A级和B级的学生数=(13+25)÷10%=380人,【详解】(1)总人数为25÷50%=50人,D成绩的人数占的比例:2÷50=4%;(2)表示C的扇形的圆心角360°×(10÷50)=360°×20%=72°;(3)由于A成绩人数为13人,C成绩人数为10人,D成绩人数为2人,而B成绩人数为25人,故该班学生体育测试成绩的中位数落在B等级内;(4)这次考试中A级和B级的学生数:(13+25)÷(50÷500)=(13+25)÷10%=380(人).【点睛】本题主要考查统计图和用样本估计总体,提取统计图中的有效信息是解答此题的关键.21.如图,已知AB是⊙O的直径,点C,D在⊙O上,且AB=5,BC=3.(1) 求sin∠BAC的值;(2) 如果OE⊥AC, 垂足为E,求OE的长;(3) 求tan∠ADC的值.(结果保留根号)【答案】(1)35(2)32(3)43【解析】【分析】(1)根据圆周角定理可得到∠ACB是直角,再根据三角函数求解即可;(2)首先根据垂径定理得出E是AC中点.再根据中位线定理求解即可;(3)根据同弧或等弧所对的圆周角相等可得∠ADC=∠ABC,在RtACB中求出tan∠ABC即可.【详解】解:(1)∵AB⊙O直径∴∠ACB=90°∵AB=5,BC=3∴sin∠BAC==35;(2)∵OE⊥AC,O是⊙O的圆心∴E是AC中点.又∵O是AB的中点.∴OE=12BC=32;(3)在RtACB中,∠ACB=90°∵AB=5,BC=3∴=4 ∵∠ADC=∠ABC∴tan∠ADC=tan∠ABC=43 ACBC=.【点睛】此题主要考查锐角三角函数的定义,综合运用了圆周角定理、中位线定理、勾股定理等知识点.求出OE是△ACB的中位线和得出tan∠ADC=tan∠ABC是解题的关键.22.某地2015年为做好”精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?【答案】(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.【解析】【分析】(1)设年平均增长率为x,根据”2015年投入资金×(1+增长率)2=2017年投入资金”列出方程,解方程即可;(2)设今年该地有a户享受到优先搬迁租房奖励,根据”前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万”列不等式求解即可.【详解】(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.5(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.考点:一元二次方程的应用;一元一次不等式的应用.23.正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM ∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.BM=时,四边形ABCN面积最大为10;(3)当点M运动到BC的中点时,【答案】(1)证明见解析;(2)当2∽,此时2ABM AMNx=.【解析】试题分析:(1)、根据AM⊥MN得出∠CMN+∠AMB= 90°,根据Rt△ABM得出∠CMN=∠MAB,从而得出三角形相似;(2)、根据三角形相似得出CN与x的关系,然后根据梯形的面积计算法则得出函数解析式;(3)、根据要使三角形相似则需要满足,结合(1)中的条件得出BM=CM,即M为BC的中点. 试题解析:(1)在正方形ABCD中,AB=BC=CD=4,∠B=∠C =90°,∵AM⊥MN ∴∠AMN= 90°. ∴∠CMN+∠AMB= 90°.在Rt△ABM中,∠MAB+∠AMB=90°,∴∠CMN=∠MAB.∴Rt△AMN∽Rt△MCN;(2)∵Rt△ABM∽Rt△MCN,∴∴∴CN=∴y===当x=2时,y取最大值,最大值为10;故当点肘运动到BC的中点时,四边形ABCN的面积最大,最大面积为10;(3)∵∠B=∠AMN= 90°,∴要使Rt△ABM∽Rt△AMN,必须有由(1)知∴BM=MC∴当点M运动到BC的中点时,Rt△ABM∽Rt△AMN,此时x=2考点:(1)、相似三角形的应用;(2)、二次函数的应用24.平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是为(0,3)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线过点C 、A 、A′,求此抛物线的解析式;(2)求平行四边形ABOC 和平行四边形A′B′OC′重叠部分△OC′D 的周长;(3)点M 是第一象限内抛物线上的一动点,问:点M 在何处时;△AMA′的面积最大?最大面积是多少?并求出此时点M 的坐标.【答案】(1)y=-x 2+2x+3;(2)2101+;(3)当点M 的坐标为(32,154)时,△AMA′的面积有最大值,且最大值为278. 【解析】【分析】(1)根据旋转的性质,可得A′点,根据待定系数法,可得答案;(2)根据相似三角形的判定与性质,可得答案;(3)根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.【详解】解:(1)∵▱A′B′O′C′由▱ABOC 旋转得到,且A 的坐标为(0,3),得点A′的坐标为(3,0).设抛物线的解析式为y=ax 2+bx+c ,将A ,A′C 的坐标代入,得03930a b c c a b c -+⎧⎪⎨⎪++⎩===,解得123a b c -⎧⎪⎨⎪⎩===, 抛物线的解析式y=-x 2+2x+3;(2)∵AB ∥OC ,∴∠OAB=∠AOC=90°, ∴22=10OA AB +又∠OC′D=∠OCA=∠B ,∠C′OD=∠BOA ,∴△C′OD ∽△BOA ,又OC′=OC=1,∴1010C OD OCBOA OB''==的周长的周长,又△ABO的周长为4+10,∴△C′OD的周长为4+1010210=1+105().(3)作MN⊥x轴交AA′于N点,设M(m,-m2+2m+3),AA′的解析式为y=-x+3,N点坐标为(m,-m+3),MN的长为-m2+3m,S△AMA′=12MN•x A′=12(-m2+3m)×3=-32(m2-3m)=-32(m-32)2+278,∵0<m<3,∴当m=32时,-m2+2m+3=154,M(32,154),△AMA′的面积有最大值278.点睛:本题考查了二次函数综合题,解(1)的关键是待定系数法,解(2)的关键是利用相似三角形的判定与性质;解(3)的关键是利用面积的很差得出二次函数.。

2023年广东省深圳市中考冲刺模拟数学试卷(含答案解析)

2023年广东省深圳市中考冲刺模拟数学试卷(含答案解析)

2023年广东省深圳市中考冲刺模拟数学试卷学校:___________姓名:___________班级:___________考号:___________【答案】A【分析】总体是调查对象的全体,据此求解即可.【详解】解:调查的是本班学生分别喜欢以上四种动物中的哪种动物,然后确定喜欢哪种动物的人数最多,所以是把本班全体学生作为调查对象,故A正确,故选A.【点睛】本题考查了调查的对象的选择,要读懂题意,解决本题的关键是要分清调查的内容所对应的调查对象,注意所选取的对象要具有代表性.4.下列标志的图形中,是轴对称图形的但不是中心对称图形的是()A.B.C.D.【答案】D【分析】根据轴对称图形与中心对称图形的概念逐一进行判断即可得答案.【详解】A、不是轴对称图形,不是中心对称图形,不合题意;B、不是轴对称图形,不是中心对称图形,不合题意;C、不是轴对称图形,不是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,符合题意,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.某地统计最近五年报名参加中考人数增长率分别为:3.9%,4.3%,3.7%,4.3%,4.7%,业内人士评论说:“这五年中考人数增长率相当平稳”,从统计角度看,“增长率相当平稳”说明这组数据()比较小A.方差B.平均数C.众数D.中位数【答案】A【分析】根据方差的意义:是反映一组数据波动大小,稳定程度的量,方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立,故从统计角度看,“增长率相当平稳”说明这组数据方差比较小.【详解】根据方差的意义知,数据越稳定,说明方差越小,故选:A.【点睛】本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.如图所示的尺规作图的痕迹表示的是()A.尺规作线段的垂直平分线B.尺规作一条线段等于已知线段C.尺规作一个角等于已知角D.尺规作角的平分线【答案】A【分析】利用线段垂直平分线的作法进而判断得出答案.【详解】如图所示:可得尺规作图的痕迹表示的是尺规作线段的垂直平分线.故选A.【点睛】此题主要考查了基本作图,正确把握作图方法是解题关键.A.(6,1)B.(0,1)C.【答案】B【详解】∵四边形ABCD先向左平移3个单位,再向上平移∴点A也先向左平移3个单位,再向上平移2个单位,∴由A(3,-1)可知,A′坐标为(0,1).故选9.如图,在平面直角坐标系x O y中,一次函数的图象与反比例函数象在第二象限交于A(﹣3,m),B(n,2)两点.若点A .2-B .53-【答案】B 【分析】过A 作AM x ⊥轴,过B 作BN x ⊥∴四边形AMNF 为矩形,∴FN AM =,AF MN =,A.5B.4【答案】C【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系逐一判断二、填空题11.0的相反数是___________.【答案】0【分析】只有符号不同的两个数互为相反数,注意规定0的相反数是0.【详解】解:0的相反数是0;【答案】29【分析】作M关于OB的对称点M于点P,交OA于点Q,则M N''的长度即为V为等边三角形,得出边三角形,OMM¢【详解】作M关于OB的对称点M则,MP M P NQ N Q ''==,∴MP PQ QN M P PQ QN '++=++∴M N ''的长即为MP PQ QN ++的最小值.根据轴对称的定义可知:N OQ '∠∴6,060ONN OMM ︒︒''∠=∠=∴ONN ¢V 为等边三角形,OMM V ∴90,2,N OM OM OM ON '''∠=︒==三、解答题(1)学校这次调查共抽取了名学生;(2)请补全条形统计图;(3)在扇形统计图中,羽毛球部分所占的圆心角是(4)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?【答案】(1)100(2)见解析(3)360°×20%=72°,故答案为:72°;(4)1200×20100=240(人)答;该校约有240人喜欢跳绳.【点睛】本题考查的是条形统计图,熟知从条形图可以很容易看出数据的大小,便于比(1)求证:直线FG【分析】(1)证明OE ∥AB ,由FG AB ⊥,一条直线垂直于两平行线的一条直线,则这条直线也垂直于另一条直线,可得OE GF ⊥,FG 与O 相切.(2)设O 的半径为r ,则==OE OC r ,在Rt OGE 中用勾股定理列出关于r 的方程,并求解即可.【详解】(1)证明:如图,连接OE .AB AC = ,B ACB ∴∠=∠.在O 中,OC OE =,OEC ACB ∴∠=∠.B OEC ∴∠=∠.OE AB ∴∥.又AB GF ⊥,OE GF ∴⊥.又OE 是O 的半径,FG ∴与O 相切.(2)设O 的半径为r ,则==OE OC r ,42GE CG ==, ,且90OEG ∠=︒,222OE GE OG +=即()22242r r +=+解得:3r =,即O 的半径为3.【点睛】本题考查了切线的判定、等腰三角形的性质、勾股定理,在圆中证明一条直线是圆的切线是常考题型,常运用的辅助线为:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.24.某专卖店的新型节能产品,进价每件60元,售价每件129元,为了支持环保公益事业,每销售一件捐款3元.且未来40天,该产品将开展每天降价1元的促销活动,即从第一天起每天的单价均比前一天降1元,市场调查发现,设第x 天(140x ≤≤且x 为整数)的销量为y 件,y 与x 满足次函数的数量关系:当1x =时,35y =;当5x =时,55y =;(1)求y 与x 的函数关系式;(2)设第x 天去掉捐款后的利润为w 元,试求出w 与x 之间的函数关系式,并求出哪一天的利润最大,最大利润是多少元?[注:日销售利润=日销售量⨯(销售单价-进货单价-其他费用)]【答案】(1)530y x =+(2)函数关系式是253001980w x x =-++,第30天的利润最大,最大利润是6480元【分析】(1)设y 与x 满足的一次函数数关系式为y =kx +b (k ≠0),用待定系数法求解即可;(2)由题意得w 关于x 的二次函数,将其写成顶点式,根据二次函数的性质可得答案.【详解】(1)解:设一次函数关系式为()0y kx b k =+≠,把()1,35,()5,55代入解析式,得35555k b k b +=⎧⎨+=⎩,解得530k b =⎧⎨=⎩,所以y 与x 的函数关系式为530y x =+;(2)解:由题意,得()()()22530129603530019805306480w x x x x x =+---=-++=--+,∵50-<,140x ≤≤,∴当30x =时,w 有最大值,最大值为6480元,∴w 与x 之间的函数关系式是253001980w x x =-++,第30天的利润最大,最大利润是6480元.【点睛】本题考查了二次函数在实际问题中的应用、待定系数法求一次函数的解析式及二次函数的性质,理清题中的数量关系并熟练掌握二次函数的性质是解题的关键.25.如图,在平面直角坐标系中,∠ACO =90°,∠AOC =30°,分别以AO 、CO 为边向外作等边三角形△AOD 和等边三角形△COE ,DF ⊥AO 于F ,连DE 交AO 于G .(1)求证:△DFG ≌△EOG ;.(1)求抛物线的函数表达式和点C的坐标;∴AE DE ⊥,CF DF ^,∴90AED DFC ∠=∠=︒∵()1,1A -,()2,0C ,()0,1D -∴2AE =,1DE =,2DF =,1CF =∴AE DF =,DE CF=在AED △和DFC △中∵AE DF AED DFC DE CF =⎧⎪∠=∠⎨⎪=⎩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学冲刺模拟测试题(六)
一,填空题(每小题3分,共计21分) 姓名: 总分: 1,-0.3的倒数是 。

2,把527864保留三位有效数字是 。

3,函数2
1
3-+=
x x y 的自变量x 的取值范围是 。

4,直角三角形斜边上的高与中线分别是5㎝和6㎝,则它的面积是 。

5,若方程x 2-3x -1=0的两根是x 1,x 2,则
2
11
1x x +
= 。

6,如图1,小张在打网球时,击球点距球网的水平距离为8米,已知网高0.8米,要使球恰好能打过网,而且落在离网4米的位置,则球拍击球时的高度h 为 . 击球点
7
,如图2,一个三角形ABC ,(∠C=90
°)绕斜边AB 旋转一周,所得的
几何体的剖面图是下面四个图形中的。

(填序号)
① ② ③ ④ 二,选择题(每小题3分,共计24分)
8,计算()
2233a a ÷-的结果是( )A ,-9a 4 B ,6a 4 C ,9a 4 D ,9a 3
9()2
b a b a ++-的结果是( )
A ,2a
B ,2b
C ,-2a
D ,-2b 10,用10根等长的火柴棒拼成一个三角形(火柴棒不允许剩余、折断、重叠),这个三角形一定是( ) A ,等边三角形 B ,等腰三角形 C ,直角三角形 D ,不等边三角形 11,为了鼓励居民节约用水,政府出台新的居民用水收费标准:①若每月每户用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算。

现设该市
居民某月用水x x
A B C D
12,某型号的手机连续两次降价,单台售价由原来的1185元降到580元,设平均每次降价的百分率为x ,
则列出方程正确的是( ) A ,580(1+x )2=1185 B ,1185(1+x )2C ,580(1-x )2=1185 D ,1185(1-x )2=580
13,某工件形状如图3所示,圆弧BC 的度数为60°,AB=BC=6,∠BAC=30则工件的面积为( ) A ,6π B ,4π C ,8π D ,10π
14将函数y=x 2
+6x +7进行配方,正确的结果应为( )
A ,y=(x +3)2+2
B ,y=(x -3)2
+2
C ,y=(x +3)2-2
D ,y=(x -3)2
-2
15,已知圆锥的底面直径为80㎝,母线长90㎝,则它的表面积为( )㎝2。

A ,3600π B ,3600 C ,5200 D ,5200π
三,解答题(共75分)
16,(7分)化简求值:2444222-÷
⎪⎭⎫ ⎝⎛+-+-+x x
x x x x ,其中x=3。

17,(7分)解方程:
322222=-+-x x
x x 。

18,(7分)如图,在梯形ABCD 中,AD ∥BC ,AB=CD ,BD ⊥DC ,且BD 平分∠ABC ,若梯形的周长为20㎝,求此梯形的中位线长。

h m 0.8 m 8m 4 m 落点 图1
图3
19,(7分)某下岗工人在再就业中心扶持下,创办了一个报刊零售点,对经营的某种晚报这位再就业人员
提供如下信息:①买进每份0.2元,卖出每份0.3元;②一个月内(以30天计),有20天每天可卖出200份,其余10天每天只能卖出120份;③一个月内,每天从报社买进的报纸份数必须相同,当天卖不掉的报纸,以每份0.1元退还给报社.(1)填空表:
(2)设每天从报社买进该种晚报x份(120≤x≤200)
时,月利润为y元,试求出y与x的函数关系式,并
求出月利润的最大值。

20,(8分)如图,某客机在海上失事,海上搜救中心立即通知位于A、B两处的专业救助轮甲和乙前往出事点协助搜救,接到通知后,甲轮测得出事地点C在A的南偏东60°,乙轮测得出事地点C在B的南偏东30°,已知B在A的正东方向,且相距100海里,分别求出这两艘船到达出事地点C的距离。

21,(9分)已知如图是某汽车行驶的路程S(千米)与时间t(分钟)的函数关系图。

观察图中所提供的信息,解答下列问题。

(1)汽车在前9分钟的平均速度是多少?
(2)汽车在途中停了多长时间?
(3)当16≤t≤30时,求S与t的函数关系式。

22,(9分)某公司需在一个月(31天)内完成新建办公楼的装修工程,如果由甲、乙两工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10完成。

(1),求甲、乙两工程队单独完成此项工程所需的天数;
(2)如果请甲工程队施工,公司每日需支付费用2000元;如果请乙队施工,公司每日需支付1400元,在规定时间内:A,请甲队单独完成此项工程;B,请乙队单独完成此项工程;C,请甲、乙队两队合作完成此项工程。

以上三种方案哪一种花钱最少?
23,(10分)如图,已知PA切⊙O于点A,PBC是割线,弦CD∥AP,AD交BC于点E,点F在CE上,且ED2=EF·EC。

(1)求证:∠EDF=∠P;
(2)求证:CE·EB=EF·EP;
(3)若CE:EB=3:2,DE=6,EF=4,求PA的长。

24,(11分)已知抛物线1
2
2-
+
-
=c
ax
ax
y的顶点在直线8
3
8
+
-
=x
y上,与x轴交于B(α,0),C (β,0)两点,其中α<β,且10
2
2=

α。

(1)求这个函数的解析式;
(2)设这个抛物线与y轴交点为P,H是线段BC上一动点,过H作HK∥PB,交PC于K,连接PH,记线段BH的长为t,△PHK的面积S,试将S表示成t的函数。

相关文档
最新文档