SYNTHESIS,CHARACTERIZATION,THERMAL DEGRADATION AND ELECTRICAL CONDUCTIVITY OF OLIGO[2-2-HYDROXYP

合集下载

酰腙及其配合物的表征

酰腙及其配合物的表征

对-二甲氨基苯甲醛缩对氯苯甲酰腙及其钴(Ⅱ )、镍(Ⅱ )配合物的合成与表征姓名:**学号:********指导教师:***摘要合成了对-二甲氨基苯甲醛缩对氯苯甲酰腙(配体)及其钴(Ⅱ )、镍(Ⅱ )配合物, 并通过红外光谱、热重分析对对-二甲氨基苯甲醛缩对氯苯甲酰腙(配体)及配合物进行初步表征。

关键词对-二甲氨基苯甲醛缩对氯苯甲酰腙配合物表征Synthesis and characterization of 4-(dimethylamino) Benzaldehyde 4 –chloro benzoylhydrazone and the Cobalt (Ⅱ) ,Nickel (Ⅱ) ComplexesAbstract:The 4-(dimethylamino)Benzaldehyde 4-chloro benzoylhydrazone and its Cobalt (Ⅱ),Nickel (Ⅱ) complexes were synthesized and characterized by IR and TG.Keywords:4-(dimethylamino)Benzaldehyde 4- chloro benzoylhydrazone Complexes Characterization引言:酰腙因其含有甲亚胺基(C=N)属于席夫碱类化合物,又因为羰基(C=O)的存在,构成活性亚结构基团,因而具有很强的配位能力[l-5],其广泛的生物和药物活性[ 6-7]、非线性光学性质[ 8 ]在分析、催化等方面有广泛的应用。

这类配合物同时具有独特的抗结核病菌的药理活性和消炎、杀菌以及抗肿瘤等生理活性[ 9 ]。

因此,酰腙及其配合物的合成与活性研究引起了人们的广泛关注。

在不同的条件下席夫碱和不同的金属离子配位会呈现出不同的颜色。

为了研究酰腙及其配合物的性质,本实验设计合成对-二甲氨基苯甲醛缩对氯苯甲酰腙及其Co(Ⅱ)、Ni(Ⅱ)配合物以做研究。

应用双金属氰化物催化剂和不同起始剂合成聚醚酯多元醇

应用双金属氰化物催化剂和不同起始剂合成聚醚酯多元醇

应用双金属氰化物催化剂和不同起始剂合成聚醚酯多元醇韩宏伟;朱丙清;顾尧【摘要】环氧丙烷和二氧化碳在双金属氰化物(DMC)催化剂条件下,通过聚合反应合成聚醚酯多元醇.研究了各种类型起始剂对聚合反应的影响.发现起始剂中羟基的质量分数影响催化剂的活性,引发剂中羟基的质量分数越低,使用的催化剂的活性和效率越高.这源于催化剂和环氧丙烷的空位配合效应,且这种效应已经被多种起始剂所证实,而1,3,5-三(2-羟乙基)氰尿酸(THEIC)例外.研究还发现反应产生10%~15%的副产物碳酸丙烯酯.通过红外光谱和核磁共振氢谱确定了聚醚酯共聚物的结构.【期刊名称】《上海塑料》【年(卷),期】2014(000)004【总页数】4页(P22-25)【关键词】合成;聚醚酯多元醇;聚合反应;双金属氰化物催化剂;碳酸丙烯酯【作者】韩宏伟;朱丙清;顾尧【作者单位】青岛科技大学橡塑材料与工程教育部重点实验室,山东青岛266042;青岛科技大学橡塑材料与工程教育部重点实验室,山东青岛266042;青岛科技大学橡塑材料与工程教育部重点实验室,山东青岛266042【正文语种】中文【中图分类】TQ30 前言多元醇是聚氨酯合成工业中的一种主要原料,主要分为聚醚多元醇和聚酯多元醇。

多年来,研究人员一直致力于合成高分子链段中同时含有聚醚和聚酯的多元醇。

这种新型的多元醇既有聚醚也有聚酯的特征属性。

由聚醚酯多元醇制备的聚氨酯产品,不仅保持了聚醚链原有的低温柔顺性和耐水解性,同时还具有酯基的耐油性和力学性能。

最近几年,聚醚酯多元醇[1-2]的研究主要集中在环氧丙烷(PO)和二氧化碳(CO2)的共聚反应[3-4]上。

该反应同时生成含有醚键和酯键的聚碳酸酯。

当这种新型高分子的链末端含有羟基时,则被称为聚醚酯多元醇。

已有多种催化剂被用于合成这种多元醇,并且取得了一定成果[5]。

20世纪60年代,Jack M[6]发明了双金属催化剂。

该催化剂用于合成聚醚和聚酯[7-8]。

advanced materials reasearch分区 -回复

advanced materials reasearch分区 -回复

advanced materials reasearch分区-回复Advanced materials research is a crucial area in scientific studies that aims to develop innovative materials with enhanced properties and functionalities. In this article, we will delve deeper into this field, exploring its significance, research methodologies, and potential applications.To begin with, let us define what advanced materials are. These materials are engineered to possess superior properties when compared to traditional ones, enabling numerous desirable characteristics such as improved strength, flexibility, electrical conductivity, thermal resistance, and more. These materials are often created by manipulating their structures at the atomic or molecular level, allowing for better control over their properties and performance.The significance of advanced materials research cannot be overstated. These materials offer a wide range of possibilities and have the potential to revolutionize various industries such as electronics, aerospace, automotive, energy, healthcare, and many others. By developing materials with enhanced properties, scientists and engineers can create more efficient devices, strongerand lighter structures, and sustainable energy solutions, among other advancements.Now let's move on to the research methodologies employed in advanced materials research. Scientists utilize various techniques and approaches to develop and study these materials. One common method is synthesis, which involves creating new advanced materials through chemical reactions or physical processes. This process may include techniques such as vapor deposition, sol-gel synthesis, electrochemical methods, and more.Characterization techniques also play a crucial role in advanced materials research. These methods allow researchers to analyze the properties and structure of materials at various scales. Techniques like electron microscopy, X-ray diffraction, spectroscopy, and thermal analysis provide valuable information about the composition, crystal structure, surface morphology, and thermal behavior of advanced materials.Moreover, computational modeling and simulations are extensively used in advanced materials research. These tools enable scientists to predict and understand the behavior of new materials beforeactual synthesis and testing. By utilizing computer simulations, researchers can optimize material properties and identify potential limitations or challenges.Now that we have an understanding of the research methodologies, let's explore the potential applications of advanced materials. One prominent area where these materials have made significant advancements is in electronics. Advanced materials like graphene, carbon nanotubes, and semiconducting polymers have transformed the field, enabling advancements in flexible displays, wearable electronics, and high-performance transistors.In the field of energy, advanced materials are crucial for developing efficient and sustainable solutions. Materials such as perovskite solar cells, advanced battery materials, and catalysts for energy conversion have the potential to revolutionize the renewable energy sector. These materials offer higher energy conversion efficiencies, longer battery life, and improved performance.In the healthcare industry, advanced materials are being developed for applications such as drug delivery, tissue engineering, and medical implants. Biomaterials with tailored properties canpromote tissue regeneration, enhance drug delivery efficiency, and reduce implant rejection rates. Advanced materials offer the potential to significantly improve patient outcomes and advance medical treatments.In conclusion, advanced materials research is a multidisciplinary field with immense potential for technological advancements. By employing synthesis, characterization, and computational modeling techniques, scientists can develop materials with enhanced properties. These materials find applications in various industries, ranging from electronics to energy and healthcare. As the field continues to progress, we can anticipate remarkable advancements that will shape the future of technology and innovation.。

资料整理(赤泥)

资料整理(赤泥)

碳化钙化针对高铁、高碱、高铝赤泥的堆存量逐年增加,综合利用难度较大这一世界性难题。

东北大学张廷安教授提出采用改变拜耳法赤泥平衡结构的“钙化-碳化-还原提铁”新工艺处理高铁拜耳法赤泥[1-5]。

即首先通过钙化处理将赤泥中的含硅相全部转化为钙铝硅化合物即水化石榴石,并使用CO2对水化石榴石进行碳化处理,得到主要组成为硅酸钙、碳酸钙以及氢氧化铝,再通过低温溶铝后浸出渣的主要成分为硅酸钙、碳酸钙及氧化铁。

赤泥中的铁经“钙化-碳化”处理后可实现充分单体解离,经还原-磁选提铁后即可得到主要成分为硅酸钙和碳酸钙的低碱、低铝、低铁的新型结构赤泥,可直接用于水泥工业。

该技术可将拜耳法赤泥中的碱和铝转化为铝酸钠溶液并返回拜耳法工艺,高钙介质体系还原-磁选的方式可有效提高赤泥中铁的回收效率,实现赤泥有价元素的有效回收及综合利用,目前该技术已获国家自然科学基金重点项目(云南联合基金)和国家自然科学基金等项目资助,目前已与国内氧化铝厂及设计单位达成工业化试验合作协议。

参考文献[1] Basic research on calcification transformation process of low grade bauxite. Zhu XF,Zhang T A,Lv G Z,et al. 2013 T M S Light M etals . 2013[2] Research on the phase transformation and separation performance in calcificationcarbonationmethod for alumina production. Lv G Z,Zhang T A,Zhu X F,et al. 2013 T M S Light M etals . 2013[3] Calcification-Carbonation method for alumina production by using low-grade bauxite. Zhang Ting’’An,Zhu Xiaofeng,Lv Guozhi,Pan Lu,Liu Yan,Zhao Qiuyue,Li Yan,Jiang Xiaoli,He Jicheng. TMS Light Metals . 2013[4]一种消纳拜耳法赤泥的方法[P]. 张延安,吕国志,刘燕,豆志河,赵秋月,牛丽萍,赫冀成. 中国专利:CN102757060A,[5]一种基于钙化-碳化转型的生产氧化铝的方法[P]. 张延安,吕国志,刘燕,豆志河,赵秋月,牛丽萍,赫冀成. 中国专利:CN102757073A,赤泥胶凝材料现状1)赤泥激发胶凝材料的研究现状碱激发胶凝材料碱激发材料于上世纪30 年代由Purdon 等[33]首次研究并发现,是一种新型的胶凝材料。

4,4’-联苯二乙酰丙酮桥联双核铜(Ⅱ)配合物的合成、EPR谱与热分析

4,4’-联苯二乙酰丙酮桥联双核铜(Ⅱ)配合物的合成、EPR谱与热分析

4,4’-联苯二乙酰丙酮桥联双核铜(Ⅱ)配合物的合成、EPR谱与热分析梅光泉;周建良;刘万云;应惠芳【摘要】在碱性条件下,以4,4’-联苯二乙酰丙酮和二苯甲酰甲烷为原料合成了新型固态三元配合物[Cu2(C22H20O4)(C15H11O2)2],并用元素分析、电导率、红外光谱、电子光谱和电喷雾质谱对其进行了表征,确定了配合物的组成,研究了配合物在氮气气氛中的热分解行为.对配合物测量了室温固体电子顺磁共振谱,定性探讨了配合物的分子几何构型,得到了其波谱参数(g=2.1082).%In alkaline medium, a novel 3, 3'-(biphenyl-4, 4'-diyl) dipentane-2,4-dione-bridged di-copper( Ⅱ ) complex, [Cu2 (C22H20O4) (C15 H11O2 )2] (C15 H11O2 = 1,3-diphe-nylpropane-1,3-dione anion; C22 H20O4 =3 ,3'-(biphenyl-4,4'-diyl)dipentane-2,4-dione di-anion) , was synthesized and characterized by the element analysis, conductivity, infrared spectra, electronic spectra and ESI-MS. Thermogravimetry(TG) and differential scanning calorimetry(DSC) for compound in an atmosphere of N2 was performed. The solid EPR spectra at the X-band frequencies present the signals corresponding to the di-nuclear entity at room temperature, and its electronic structures have been qualitatively investigated. Its parameters have been obtained (g=2. 1082).【期刊名称】《华中师范大学学报(自然科学版)》【年(卷),期】2011(045)004【总页数】5页(P582-586)【关键词】4,4’-联苯-3,3’-二(2,4-戊二酮);铜(Ⅱ)配合物;合成;电子顺磁共振;热分析【作者】梅光泉;周建良;刘万云;应惠芳【作者单位】宜春学院江西省高校应用化学与化学生物学重点实验室,江西宜春336000;中南大学化学化工学院,长沙410083;宜春学院江西省高校应用化学与化学生物学重点实验室,江西宜春336000;宜春学院江西省高校应用化学与化学生物学重点实验室,江西宜春336000【正文语种】中文【中图分类】O614.1近年来,通过合理设计各种含氧、氮等原子配体与金属盐的反应合成简单的模型化合物来研究复杂的金属蛋白、金属酶已经成为生物无机化学的研究热点之一[1-2].而铜的配合物因具有特殊的磁学、电学、光学等性质,在材料、催化等许多领域表现出应用价值,其中对双核配合物,包括同双核和异双核配合物的研究尤为广泛和深入,也成为人们关注的热点[3].本文在成功合成桥联配体4,4’-联苯二乙酰丙酮的基础上[4],合成了双核铜(Ⅱ)四氧杂环混合配体配合物[Cu2(C22H20O4)(C15H11 O2)2].通过各种物理手段,如 ESI-MS、EPR、TG、DSC等对标题配合物进行了详细的表征和性质研究.配合物的合成路线如下(见式1).无水甲醇(北京化工厂,分析纯,经镁回流除水蒸馏);乙腈(北京益利精细化学品有限公司,分析纯,经CaH2回流除水蒸馏);苯(天津化工厂,分析纯,用钠干燥,重蒸);Cu(ClO4)2·6H2O(自合成,铜的含量分析方法参考文献[5]);其它试剂和药品均为分析纯.Flash EA1112元素分析仪(美国热电公司);Bruker DMX400(400MHz,德国 Bruker公司);Shimadzu UV-2550型紫外可见分光光度计(日本岛津公司);Bruker TENSOR 27型红外光谱仪(KBr压片法,德国 Bruker公司,4000~400 cm-1);Finnigan LCQ质谱仪和 Thermo Finnigan DECAX-3000LCQ Deca XP质谱仪(乙腈-甲醇作流动相,美国Finnigan公司);TA DSC-Q10型差示扫描量热分析仪和TA TGA-Q50型热重分析仪(热分析实验在氮气气氛下进行,N2的流速为50mL/min,加热速率为10℃/min,美国TA公司);Bruker ESR-420电子顺磁共振谱仪(X-射线频率段,频率9 656.258Hz,扫场5 000G,微波功率10dB,调制频率100kHz,场调制强度1 Gpp,增益2×105,时间常数0.5s,中心磁场3200G,扫场范围1 000G/60cm,扫描时间300s,德国Bruker公司);DZF-2001型真空干燥器(上海浦东荣丰科学仪器有限公司);DDS-11A型数显电导率仪(上海雷磁新泾仪器有限公司);DLSB-5L/40低温冷却循环泵(巩义市予华仪器有限责任公司). 分别见文献[4,6].59.7mg(0.24mmol)二苯甲酰甲烷、43.2 mg(0.12mmol)4,4’-联苯二乙酰丙酮和91.0mg(0.24mmol)Cu(ClO4)2·6H2O 的20mL混合溶液(甲醇∶水=1∶1),在室温搅拌0.5h后成混浊液,加3滴三乙胺,回流,反应3h,溶液变成草绿色混浊溶液,冷却,过滤,经水、甲醇洗涤,60℃下真空干燥得到106.2mg草绿色粉末.产率96.0%.ESI-MS(m/z):922.6(77%),900.4(100%),860.2(70%).元素分析,按 C52H42O8Cu2(FW=921.98)的计算值(%):C,67.74;H,4.59;Cu,13.78.实测值(%):C,67.43;H,4.11;Cu,13.88.摩尔电导Λm(3.2×10-4 mol·dm-3 DMF溶液,298K):9.3S·cm2·mol-1.从配合物的元素分析结果来看,实验数据和理论值相吻合,其摩尔电导数值也表明配合物为非电解质化合物[7],结合对配合物的热重分析无结晶水存在,初步推测所合成的双核金属配合物的可能结构如式1所示.该固态配合物在空气中稳定,难溶于水和氯仿、丙酮、苯等溶剂;微溶于甲醇、乙醇;溶于DMF和DMSO.配合物的阳离子电喷雾质谱见图1.在921.6(41%),922.6(77%),923.7(72%),924.6(42%)处产生一组具有铜原子同位素特征的峰,这一组峰可以归属为[M+H+]+.比较该配合物与自由配体二苯甲酰甲烷和4,4’-联苯二乙酰丙酮的红外光谱,发现有较大差别:它们除了在1 700cm-1附近皆无吸收,与自由配体的1608cm-1相比,羰基的伸缩振动吸收峰均有所红移,这归因于金属配合物中双β-二酮的Keto和Enol之间的互变异构从Diketo转变成Enol形式,酸性质子从Enol羟基上脱离,Enol羟基氧和Enol羰基氧和金属离子螯合形成六元环,使体系共轭程度增大,红外吸收向低频方向移动[8].另外,从表中数据可看出,配体中的主要红外吸收峰(νC=O,νC-H,νC=C,δC-H)表现在配合物中都发生了明显位移,表明它们确已与金属离子配位.羰基的伸缩振动分裂为1 592cm-1和1 543cm-1两个峰,1 525cm-1附近的吸收为配合物C=C伸缩振动的强吸收峰,这是配体以烯醇负离子配位的特征[9],说明配合物中桥基配体4,4’-联苯二乙酰丙酮以烯醇式阴离子形式与Cu2+离子发生配位.在3 069~2 925cm-1范围内有一个中等强度的宽吸收峰,主要是由该混配物中4,4’-联苯二乙酰丙酮基负离子上甲基、烯键=C-H和芳环上 C-H 的伸缩振动所致.1 400cm-1和1 368cm-1处的两个吸收峰分别是4,4’-联苯二乙酰丙酮基负离子上甲基的反对称变形振动和对称变形振动.1 590~1 400cm-1有多个强吸收峰为苯环的骨架伸缩振动,它是苯环存在的标志,该吸收峰由于和其它吸收峰重叠而不能明确指认.1 226cm-1处的吸收峰为C-CH3的伸缩振动和C=C键的伸缩振动的偶合所致.1 024cm-1的吸收峰可归属于4,4’-联苯二乙酰丙酮基负离子上甲基的C-H的摇摆振动峰.744cm-1附近的吸收峰可指派为配合物中苯环上相邻H原子的同位相面外弯曲振动峰;而545cm-1,463cm-1[10]的吸收峰为配合物中配位键Cu—O键伸缩振动峰. 比较金属配合物和配体的紫外可见吸收光谱图及数据[4,6],发现形成配合物后(图2),配体在268nm和344nm处的二个主要吸收峰均仍然存在,铜配合物的长波紫外吸收峰位置由344nm红移至349nm,摩尔吸光系数变小.这是由于形成配合物分子所造成:金属配位键的生成,使双β-二酮的Keto和Enol之间的互变异构从Diketo转变成Enol形式,配位原子上电子云密度发生改变,增加了整个电子体系的共轭化和离域化程度,分子的平面性有所增强,电子跃迁则需要更少的能量,导致共轭生色团π→π*跃迁的能量发生变化,表现在电子光谱上是红移现象[11].配合物与配体谱图相似,说明配体对中心金属离子影响较大,配体与金属离子键合较强所致.没有观察到明显的d-d跃迁.从配体的跃迁可证明配合物的紫外吸收是来自配体的电子跃迁.其配合物的紫外最大吸收出现在349nm,均为对应于配体二苯甲酰甲烷烯醇式单线态π→π*的吸收.由此可见,桥基配体对光仅有很弱的吸收,对配合物的紫外吸收贡献较小.由于该配合物在低温下的顺磁共振信号太弱,测试了它的室温粉末EPR谱.室温下固体双核Cu(Ⅱ)配合物的EPR谱,具有轴对称性质.图3中配合物在3200×104 T附近呈现的上下不对称吸收信号即为总自旋态为三重态引起的,对应于三重态中ΔMs=1的允许跃迁,这表明双核铜配合物中存在着弱的各向异性三重态[12].峰型的上下不对称性意味着配合物中两个铜离子之间存在磁相互作用. 配合物中g⊥=2.0527和g//=2.2192,根据3 g=2g⊥+g//可算出其平均g因子值:g=2.1082,和二价Cu离子四方平面型的g值相吻合[13].对于四方形配位构型的二价铜离子,还可以根据G值来进一步说明Cu(Ⅱ)的电子处于dx2-y2或者dxy轨道上,文献[14]指出,G值大小可用来评估处于四角场环境中Cu(Ⅱ)间交换偶合的程度[G=(g//-2)/(g⊥-2)],交换偶合的结果将使G 值小于4.0;当(g//>g⊥>2,且G >4)时可以说明二价铜离的电子处于dx2-y2上.根据公式G=(g//-2)/(g⊥-2),配合物的G 值为4.16,由此可知,配合物的Cu(Ⅱ)的电子处在四方形平面构型的dx2-y2轨道上,表明二个Cu(Ⅱ)之间交换偶合较二乙酰丙酮桥联双核铜配合物有一定的减弱[15].因为二乙酰丙酮桥联分子的空间长度远小于4,4’-联苯二乙酰丙酮桥联长度,使核间距较短的二乙酰丙酮桥联双核铜配合物的二个Cu(Ⅱ)之间交换偶合作用增大.图4中从Cu(Ⅱ)配合物的TG曲线看到,在至185℃之前没有任何失重,表明无水分子存在.随着温度升高,TG曲线在185~398℃之间出现了二个剧烈的连续失重过程:185~334℃之间失重43.13%,在 DTG曲线的最快失重速率点在315℃;334~398℃之间失重31.10%,在 DTG曲线的最快失重速率点在384℃.其总失重74.23%,对应于失去二个二苯甲酰甲烷和一个C5H8O2(理论值70.36%).残余物重26.77%,推测为二分子CuO(理论值17.26%)和未充分燃烬的有机碳残渣.图5中的DSC曲线表明,在不到315℃出现一个的放热过程,随后在341℃附近出现一个几乎连续的吸热过程.DDSC曲线说明DSC曲线的二个峰都是单独、无重复的峰.以二苯甲酰甲烷为端基配体,4,4’-联苯二乙酰丙酮为桥联配体合成了双核铜(Ⅱ)的新型固态三元配合物,组装反应产率达到96.0%.通过元素分析、电导、IR、UV-Vis、电喷雾质谱和热分析等手段,确证了所得产物的结构.室温下Cu2+双核配合物的多晶粉末电子顺磁共振谱测试表明,Cu(Ⅱ)配合物的未成对电子处在四方形平面构型的dx2-y2轨道上,二个Cu(Ⅱ)之间有一定的交换偶合,波谱参数g⊥=2.0527,g//=2.2192,g=2.1082,G=4.16.【相关文献】[1]Siddiqi Z A,Khalid M,Kumar S,et al.Antimicrobial and SOD activities of novel transition metal complexes of pyridine-2,6-dicarboxylic acid containing 4-picoline as auxiliary ligand[J].Eur J Med Chem,2010,45(1):264-269.[2]La Mendola D,Bonomo R P,Caminati S,et al.Copper(Ⅱ)complexes with an avian prion N-terminal region and their potential SOD-like activity[J].J Inorg Biochem,2009,103(2):195-204.[3]Sartoris R P,Santana R C,Baggio R F,et al.Pyrophosphate-bridged Cu(Ⅱ )chain magnet:{[Na3Cu(P2O7)(NO3)]·3H2O}n[J].Inorganic Chemistry,2010,49(12):5650-5657.[4]曾锦萍,黄海平,梅光泉,等.4,4’-联苯-3,3’-二(2,4-戊二酮)的合成与热谱研究[J].化学试剂,2009,31(11):908-911.[5]Cavalheiro E T G,Lemos F C D,Schpector J Z,et al.The thermal behaviour of nickel,copper and zinc complexes with the Schiff bases cis-and trans-N,NO-bis (salicylidene)-1,2-ciclohexadiamine(Salcn)[J].Thermochimica Acta,2001,370(1-2):129-133.[6]梅光泉,曾锦萍,袁晓玲,等.二苯甲酰甲烷的合成与热稳定性研究[J].宝鸡文理学院学报:自然科学版,2008,28(4):283-286.[7]Geary W e of conductivity mesurements in organic solvents for the characterization of coordination compounds[J].Coordination Chemistry Reviews,1971,7(1):81-122.[8]Chen Z M,Wu Y Y,Huang F X,et al.Synthesis,spectral,and thermal characterizations of Ni(Ⅱ)and Cu(Ⅱ)β-diketone complexes with thenoyltrifluoroacetone ligand[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2007,66(4-5):1024-1029.[9]梅光泉,袁晓玲,刘万云,等.二乙酰丙酮桥联双核镍(Ⅱ)配合物的合成、表征与磁性研究[J].华中师范大学学报:自然科学版,2010,44(3):418-422.[10]Gaber M,Ayad M M,El-Sayed Y S Y.Synthesis,spectral and thermal studies of Co(Ⅱ),Ni(Ⅱ)and Cu(Ⅱ)complexes 1-(4,6-dimethyl-pyrimidin-2-ylazo)-naphthalen-2-ol[J].Spectrochimica Acta Part A,2005,62(1-3):694-702. [11]Sultan R,Gadamsetti K,Swavey S.Synthesis,electrochemistry and spectroscopyof lanthanide(Ⅲ)homodinuclear complexes bridged by polyazine ligands[J].Inorg Chim Acta,2006,359(4):1233-1238.[12]Julve M,Verdaguer M,Charlot M F,et al.Interactions in Cu(Ⅱ)Cu(Ⅱ),VO (Ⅱ)VO(Ⅱ)and Cu(Ⅱ)VO(Ⅱ)pairs through oxalato bridging ligand[J].Inorg Chim Acta,1984,82(1):5-12.[13]Chandra S,Kumar R.Electronic,cyclic voltammetry,IR and EPR spectral studies of copper(Ⅱ)complexes with 12-membered N4,N2O2and N2S2donor macrocyclic ligands[J].Spectrochimica Acta Part A,2005,61(3):437-446.[14]Hathaway B J,Tomlinson A A G.Copper(Ⅱ)ammonia complexes[J].Coordination Chemistry Reviews,1970,5(1):1-43.[15]梅光泉,袁晓玲,刘万云,等.二乙酰丙酮桥联双核铜(Ⅱ)配合物的合成、EPR谱与热分析[J].河南师范大学学报:自然科学版,2010,38(2):104-107.。

聚苯乙烯亚微米球的制备与表征

聚苯乙烯亚微米球的制备与表征

聚苯乙烯亚微米球的制备与表征丁立稳;李浩;王春秀;李平;章磊;温祖标【摘要】以苯乙烯为反应物、过硫酸钾为引发剂、十二烷基苯磺酸钠(SDBS)为表面活性剂,采用无皂乳液聚合法,制备了单分散的聚苯乙烯(PS)亚微米球.利用傅里叶红外光谱仪、扫描电子显微镜、激光散射粒度分析仪、热重-差热分析仪和比表面积测定仪等分别对所制得的PS亚微米球的红外性能、形貌特征、粒径分布、热稳定性和N2吸附-脱附等温线与比表面积等性质进行了表征.研究结果表明:随着SDBS用量的增加,单分散PS亚微米球的粒径逐渐减小,比表面积逐渐增大,且当表面活性剂浓度为0.025 mol· L-1时,制备的PS亚微米球粒径小、分散效果好,并表现出良好的热稳定性.%The monodisperse polystyrene(PS)sub-microspheres are prepared by soap-free emulsion polymerization using styrene as monomers, potassium persulfate as polymerization initiators, sodium dodecyl benzene sulfonate (SDBS)as surfactants.Fourier transform infrared instrument,scanning electron microscopy,laser scattering parti-cle size analyzer, thermogravimetric-differential thermal analyzer and nitrogen adsorption-desorption at 77 K are used to characterize the FT-IR spectrum, morphology, particle size distribution, thermal stability, N2adsorption-desorption isotherms and specific surface area of the as-prepared PS sub-microspheres, respectively.The results show that the particle size of the monodisperse polystyrene sub-microspheres decreases,and the specific surface ar-ea increases gradually with the increasing amount of SDBS surfactant concentration.PS sub-microspheres present the excellent properties such as small particle size,good dispersity and thermal stabilityat the optimal SDBS con-cen tration of 0.025 mol· L-1in the synthetic process.【期刊名称】《江西师范大学学报(自然科学版)》【年(卷),期】2018(042)002【总页数】5页(P155-159)【关键词】聚苯乙烯亚微米球;表面活性剂;苯乙烯;物理表征【作者】丁立稳;李浩;王春秀;李平;章磊;温祖标【作者单位】江西师范大学化学化工学院,江西南昌 330022;江西师范大学化学化工学院,江西南昌 330022;江西师范大学化学化工学院,江西南昌 330022;江西师范大学化学化工学院,江西南昌 330022;江西师范大学化学化工学院,江西南昌330022;江西师范大学化学化工学院,江西南昌 330022【正文语种】中文【中图分类】TQ325.240 引言单分散聚合物微球是一类新型的高聚物材料,因其具有粒径均一、表面可修饰、耐温抗盐性好、膨胀性适宜、比表面积大、吸附性强、凝聚作用大以及表面带有可反应基团等独特的优点,在药物载体、生物分离、光子晶体、油田深部调剖、生物医学材料、色谱填料、固相有机合成等许多领域有着广泛的应用[1-3].制备单分散聚合物微球的方法有多种,如乳液聚合、分散聚合与沉淀聚合等[1].聚苯乙烯(PS)微球,是由苯乙烯(St)单体经自由基加聚反应合成的聚合物颗粒,为无毒、无臭、无色透明的热塑性塑料,因其比表面积大、表面吸附作用强、反应活性高、聚集作用大、玻璃转化温度高(>100 ℃)等突出特点,在生物医学、标准计量、情报信息、分析化学、胶体科学、超级电容电极材料及色谱分离等领域中具有十分广阔的应用前景[4].因此,制备粒径分布均一、颗粒形态和表面特征可控的PS 微球越来越受到国内外科学工作者的关注[5].自1955年J.W. Vanderhoff等[6]制备出粒径高度均一化的PS微球后,学界已经有了许多制备PS微球的方法;王东波等[7]通过乳液聚合方法,成功制备出粒径约为50 nm、粒径分布均匀且具有良好球形度的单分散PS纳米微球,并指出通过控制反应温度、乳化剂浓度、加料方式等条件可控制PS纳米微球的生长;淮路枫等[8-10]采用无皂乳液聚合工艺,成功制备出粒径接近或小于1 μm的单分散PS微球;N.U.L. Du等[11]用悬浮聚合法合成了包含多孔环氧树脂的PS微球;张阳等[12]制备了PS/PAA核壳微球.然而,基于乳液聚合制备的聚合物微球,存在较大的环境污染,也因添加各种助剂致使生产成本大,而制约了其工业化发展.表面活性剂是指同时具有亲水和亲油基团、在溶剂中表面能定向排列后使表面张力显著下降的物质[13],通常是优良的阴离子乳化剂.其分子中的两亲结构可使某些不溶或微溶于水的有机物富集于表面活性剂形成的胶束内部,从而使该物质的溶解性能显著增大[14-15],在日用洗化[16]、医药卫生[17]、石油化工[18]等诸多领域均有广泛的应用.翟小杰等[19]研究了阴离子表面活性剂对CdS纳米颗粒合成的影响;Yang Kun等[20]研究了单壁碳纳米管在十二烷基苯磺酸钠(SDBS)溶液中的分散悬浮和团聚沉降性能;何淑婷等[21]利用表面活性剂对纳米SiO2的表面进行改性,优化了SiO2纳米微球的分散性和稳定性.但是,表面活性剂SDBS对PS 微球粒径大小影响的研究却鲜有报道.本文以苯乙烯为单体、过硫酸钾为引发剂、SDBS为表面活性剂,研究了在无皂乳液聚合过程中聚苯乙烯亚微米球的制备,并对其物理性质进行了表征.1 实验1.1 实验药品所用试剂均由国药集团化学试剂有限公司提供.苯乙烯、十二烷基苯磺酸钠等为化学纯试剂;过硫酸钾、氢氧化钠、无水乙醇等均为分析纯试剂.1.2 聚苯乙烯亚微米球的制备苯乙烯(St)聚合前用质量分数为5%的氢氧化钠溶液洗涤3次以除去阻聚剂,再用蒸馏水洗涤至中性,冷藏备用.在N2保护下,将去除阻聚剂后的10 g St 注入盛有80 mL蒸馏水的250 mL三口烧瓶中,室温下搅拌30 min后,再向(a)、(b)、(c)和(d)4组三口烧瓶中分别加入浓度为0、0.015、0.025与0.050 mol·L-1的SDBS溶液10 mL,室温下继续搅拌30 min,得到均匀乳液.将20 mL溶有0.029 g过硫酸钾(KPS)的溶液,通过恒压滴液漏斗以每秒1~2 滴的速度缓慢滴加到上述乳液中,均匀搅拌[3].将反应体系保持45 ℃反应1 h左右,促进自由基稳定生成,再将体系升温至70 ℃回流3 h,得到白色悬浮液.反应结束后,在搅拌状态下减压蒸馏除去未反应的St 单体,然后待反应体系冷却至室温后,以11 000 rmp速率离心分离20 min、用蒸馏水洗涤2次、无水乙醇漂洗和超声分散各3次,再将其置于40 ℃下烘干,研磨,得到白色颗粒,分别记作PS(a)、PS(b)、PS(c)与PS(d).1.3 测试与表征采用傅里叶变换红外光谱仪(Nicolet 6700型,美国Nicolet公司)、扫描电子显微镜(S-3400N型,日本日立公司)、激光散射粒度分布分析仪(LA-950型,日本HORIBA公司)、高精度比表面积和孔径测定仪(BELSORP-miniⅡ型,日本BEL公司)与热重-差热同步分析仪(Diamond TG/DTA 6300,美国PE公司)分别对所制备的PS亚微米球的红外、形貌、粒径分布、热稳定性与N2吸附/脱附等温线等进行表征.2 结果与讨论2.1 PS亚微米球的 FT-IR特性苯乙烯通过加聚反应,生成聚苯乙烯(PS),图1是PS(a)、PS(b)、PS(c)和PS(d)亚微米球的IR图谱.从PS(a)图可知,在3 442.3 cm-1处的峰是空气中H2O分子的O—H键伸缩振动峰;3 081.7,3 060.4和3 025.7 cm-1处的峰为苯环上不饱和C—H键的伸缩振动峰;2 923.5,2 850.2 cm-1处的峰分别是饱和—CH—和—CH2—上的C—H键的伸缩振动峰;1 600.6 cm-1左右的峰为苯环刚性振动引起的的骨架振动峰;在1 492.6 cm-1处的峰为—CH—上C—H键的面内弯曲振动峰;1 452.1 cm-1处的峰为—CH2—上C—H键的面外弯曲振动峰;在1 027.8,756.0和698.1 cm-1处的峰分别为单取代苯环上C—H键的面内弯曲振动峰、面外弯曲振动峰;538.0 cm-1处的峰为乙烯聚合物的扭曲振动峰,此峰的存在说明苯乙烯处于聚合状态[22].图1 PS(a)、PS(b)、PS(c)与PS(d)亚微米球的FT-IR图谱图1与标准PS的IR图谱相吻合,这表明在KPS为引发剂的实验条件下,采用无皂乳液聚合法可以成功制备PS亚微米球.另外,与PS(a)的IR图谱比较,PS(b)、PS(c)与PS(d)图谱的特征峰,除出现低频漂移、峰位宽度与强度变化外,指纹区峰的位置基本与PS(a)一一吻合.表明实验中加入表面活性剂SDBS后,对St的加聚反应不会产生干扰,均可制备出PS亚微米球.2.2 PS亚微米球的形貌特征图2是PS(a)、PS(b)、PS(c)与PS(d)亚微米球的SEM图.从图2可知,反应时未加SDBS制备的PS(a)亚微米球的粒径最大,约为270 nm,且单分散性好.随着加入SDBS的浓度增大,所得PS(b)、PS(c)和PS(d)微粒粒径逐渐变小,分别为250,200,160 nm,且单分散性开始降低,而开始出现团聚现象.当加入的SDBS浓度增大到0.05 mol·L-1甚至更大时,已不适于PS亚微米球的制备.原因是在机械搅拌过程中,加入的SDBS发生乳化,使得其疏水基团聚集在一起,形成一个个胶束,这些胶束形成许多微型反应器[23],均包含着单体St与引发剂在引发剂的作用下,St双键上的碳原子失去电子,双键打开,形成自由基.该自由基在上述胶束微型反应器中发生加聚反应,形成粒径较小的PS亚微米球,其形成机理见图3.随着SDBS浓度的进一步增大,作为微型反应容器的胶束逐渐变得更小,进而形成粒径更小的PS亚微米球.同时,PS亚微米球粒径越小,比表面积越大,表面吉布斯自由能越大,从而使得亚微米球之间发生团聚现象[3].图2 PS(a)、PS(b)、PS(c)与PS(d)亚微米球的SEM图图 3 PS亚微米球形成机理2.3 PS亚微米球的粒径分布特征图4为PS(a)、PS(b)、PS(c)与PS(d)亚微米球的粒径分布图.由图4可知,PS(a)、PS(b)、PS(c)与PS(d)的峰值粒径分别为150,169,104和98 nm,属于亚微米级别,与SEM测试结果一致.PS(a)在20 μm和600 μm处出现峰值分布粒子,这可能是制备样品时没有分散开的堆积所致,不属于团聚现象范畴.更重要的是,随着表面活性剂SDBS的浓度增大,PS亚微米球的粒径逐渐减小,且表现出高度统一的趋势,主粒径的亚微米球数量占全部微球数量的比例显著增大.2.4 PS亚微米球的热稳定性特征图5为PS(a)、PS(b)、PS(c)与PS(d)亚微米球的热失重曲线图.由图5可知,系列PS亚微米球热稳定性能好,均在300 ℃左右开始分解,410 ℃左右分解完全,这与先前研究的聚甲基丙烯酸甲酯(PMMA)的热稳定性相似[3].至于在300 ℃前的失重,原因可能是PS样品中含有少量溶剂乙醇以及水,在升温过程中挥发所致.2.5 PS亚微米球的比表面积特征从系列PS亚微米球的形貌、粒径分布特征来看,PS亚微米球大体相似,均属于亚微米级,因此,仅对PS(d)亚微米球进行比表面积测试.图6是PS(d)亚微米球的N2吸附-脱附等温线.由图8可知,PS(d)亚微米球样品的吸附-脱附等温线为Ⅲ-型吸附等温线(根据IUPAC分类标准[24]),即表示PS(d)亚微米球具有大孔时表现出的吸附情况,这里的大孔主要来自于PS(d)亚微米球之间的堆积所形成的空隙.曲线的下凹段是由于吸附质(N2)分子与吸附剂(PS亚微米球)表面基团间的相互作用较弱而吸附剂间作用较强产生的.在较低的吸附质浓度下,只有极少量的吸附平衡,曲线后半段急剧上升,一直到达到饱和蒸汽压也未呈现出吸附饱和现象.吸附等温曲线与脱附等温曲线互不重合,形成了H3型滞留回环,是由毛细凝聚而发生大孔容积充填所致.用BET(Brunauer-Emmett-Teller)法测得PS(d)的比表面积为4.97 m2 ·g-1.图 4 PS(a)、PS(b)、PS(c)与PS(d)亚微米球的粒径分布图图5 PS(a)、PS(b)、PS(c)与PS(d)亚微米球的热失重曲线图6 PS(d)亚微米球的N2吸附-脱附等温线3 结论采用无皂乳液聚合法,以K2S2O8为引发剂,研究了阴离子表面活性剂SDBS下的PS亚微米球制备.实验发现,虽然增加SDBS用量对PS亚微米球的分子红外结构无明显影响,但是,PS亚微米球的粒径逐渐减小,比表面积逐渐增大.当表面活性剂浓度为0.025 mol·L-1时,亚微米球粒径小、分散效果好,同时具有较好的热稳定性,有望作为软模板试剂在制备多孔材料[25]方面得到应用.4 参考文献【相关文献】[1] 杨瑞娟,姜绪宝,朱晓丽.单分散聚合物微球的制备及应用 [J].山东化工,2017,42(6):21-22.[2] Liu Baijun,Fu Zhongyu,Han Ye,et al.Facile synthesis of large sized and monodispersed polymer particles using particle coagulation mechanism: an overview [J].Colloid Polym Sci,2017,295(5):749-757.[3] 李莉,代芳,朱杨军,等.PMMA微球的制备与表征 [J].复旦大学学报:自然科学版,2015,54(5):630-634.[4] Alva G,Lin Y,Liu L,et al.Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review [J].Energ Buildings,2017,144:276-294.[5] 杨飞,赵雄燕,王鑫,等.微米级单分散聚苯乙烯微球的研究进展 [J].塑料科技,2013.[6] Vanderhoff J W,Brandford E B.Polmer colloid I (Fitch R M Ed) [M].New York:Plenum Press,1971.[7] 王东波,冯玉杰,韩俐伟,等.乳液聚合制备聚苯乙烯纳米微球 [J].化工新型材料,2007,35(8):48-49.[8] 淮路枫,杨明.无皂乳液聚合制备微米级单分散聚苯乙烯微球[J].武汉工业学院学报,2008,27(4):30-32.[9] 盛维琛,曹顺生,袁新华.无皂乳液聚合制备阳离子纳米聚苯乙烯微球 [J].化工新型材料,2010,38(10):124-125.[10] Yeole N,Hundiwale D,Jana T.Synthesis of core-shell polystyrene nanoparticles by surfactant free emulsion polymerization using macro-RAFT agent [J].J Colloid Interf Sci,2011,380(1/2/3):250-256.[11] Du N U L,Hadano S,Abu Bakar A,et al.Preparation of poly (methyl methacrylate) and polystyrene-composite filed porous epoxy microparticles via in-situ suspension polymerization [J].Polym Test,2011,30:841-847.[12] 张阳,宋韦汶.种子聚合法制备PS/PAA核壳微球的研究 [J].当代化工,2017(1):14-16.[13] 刘俊莉,马建中,鲍燕,等.绿色表面活性剂的研究进展 [J].日用化学品科学,2009,32(10):22-26.[14] 周雅文,刘静伟,赵莉,等.表面活性剂的性能与应用(IX):表面活性剂的增溶作用及其应用[J].日用化学工业,2014,44(9):486-489.[15] 李振泉,郭新利,王红艳,等.阴离子表面活性剂在油水界面聚集的分子动力学模拟 [J].物理化学学报,2009,25(1):6-12.[16] 徐彬,尹青春,程燕,等.表面活性剂与皮肤的相互作用研究 [J].日用化学品科学,2017,40(2):55-57.[17] 赵成英,王利民.表面活性剂在制药工业中的应用 [J].日用化学工业,2007,37(6):389-392.[18] 陈刚,宋莹盼,唐德尧,等.表面活性剂驱油性能评价及其在低渗透油田的应用 [J].油田化学,2014,31(3):410-413.[19] 翟小杰,夏英静,殷乐,等.阴离子表面活性剂SDS对CdS纳米颗粒合成的影响 [C].中国化学会学术年会第12分会场,2012.[20] Yang Kun,Yi Zili,Jing Qingfeng.Dispersion and aggregation of single-walled carbon nanotubes in aqueous solutions of anionic surfactants [J].Journal of Zhejiang University:Science A(Applied Physics & Engineering),2014,15(8):624-633.[21] 何淑婷,刘宝春.纳米SiO2的表面改性 [J].应用化工,2017,46(4):693-697.[22] Xue Qi.Spectral analysis in study of polymeric structure [M].Higher Education Press,1995.[23] Chen S A,Chang H S.Kinetics and mechanism of emulsifier-free emulsion polymerization: Styrene/surface active ionic comonomer system [J].Journal of Polymer Science Polymer Chemistry Edition,1985,23(10):2615-2630.[24] Rouquerol J,Avnir D,Fairbridge C W,et al.Recommendations for the characterization of porous solids [J].Pure Appl Chem,1994,66(8):1739-1742.[25] Qu Qunting,Fu Lijun,Zhan Xiaoyun,et al.Porous LiMn2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries [J].Energy Environ Sci,2011,4:3985-3990.。

三聚氰胺-环三磷腈阻燃剂的制备及其应用

三聚氰胺-环三磷腈阻燃剂的制备及其应用

三聚氰胺-环三磷腈阻燃剂的制备及其应用吕梅香;廖添;宋亭;曾健;曾和平【摘要】磷腈化合物是一类无卤、对环境友好且具有生物相容性的低毒性阻燃剂,但大部分磷腈衍生物是油溶性的,需要通过熔融共混、辊轧等方式才能制成阻燃纤维、塑料,操作工艺复杂,无法直接用于天然纤维,因此大大限制了其应用范围.该文以六羟甲基三聚氰胺和六氯环三磷腈为原料,通过亲核取代、醚化两步法合成了一种水溶性、醇溶性无卤磷腈阻燃剂.用红外光谱(FT-IR)、核磁共振谱(1H NMR、13C NMR、31P NMR)和电喷雾电离质谱(ESI-MS)等进行了结构表征,证明其为无氯、P螺原子链接的目标化合物.将该阻燃剂用95%乙醇溶解,配成4种浓度梯度(5%、10%、15%、20%)的阻燃溶液,浸泡布料(医用纯棉纱布、化纤窗帘布)获得阻燃布,用热重分析仪(TGA)在氮气氛下对阻燃布料的热性能进行了分析,结果表明,该阻燃剂热稳定性较高,残碳率高达41.8%.阻燃布料点燃后最高残碳率达44.2%,极限氧指数(LOI)比未阻燃前提高了29.6%,对织物有较好的阻燃性能;仅含阻燃剂质量分数为3.0%的窗帘布点燃后不再有熔滴出现,有较好的抗熔滴效果.【期刊名称】《华南师范大学学报(自然科学版)》【年(卷),期】2015(047)002【总页数】6页(P78-83)【关键词】六羟甲基三聚氰胺;六氯环三磷腈;阻燃;熔滴;热性能【作者】吕梅香;廖添;宋亭;曾健;曾和平【作者单位】华南师范大学化学与环境学院,广州 510006;华南师范大学化学与环境学院,广州 510006;华南师范大学化学与环境学院,广州 510006;华南师范大学化学与环境学院,广州 510006;华南师范大学化学与环境学院,广州 510006【正文语种】中文【中图分类】TQ265.1棉织物和化学纤维布料的阻燃对于减少火灾中的伤亡和财产损失非常重要.醚化六羟甲基三聚氰胺作为一种良好的织物硬挺整理剂,能够与织物上的羟基发生发应,生成网状结构使得织物的拉伸强度更高,不易使织物泛黄,甲醛释放也较少,但阻燃效果有限[1].磷腈衍生物虽然是好的阻燃剂,可以做到不含卤素,即对环境友好,又有很好的生物相容性,经磷腈衍生物处理的织物无危害[2-3],但是由于大部分磷腈衍生物水溶性差,并不能直接用于织物的阻燃,因此报道的磷腈衍生物大部分用于聚酯(PET)、聚氨酯(PU)、聚乙烯(PE)、环氧(PO)[4-6]、聚丙烯(PP)[7]等塑料制品中,在制成成品前混合到原料中辊轧制得阻燃塑料[8-10],其阻燃机理在于磷氮元素的协同阻燃.磷腈衍生物的热分解是一个吸热过程,分解过程中生成磷酸、偏磷酸、聚磷酸等非挥发性的物质附着于阻燃材料表面形成保护膜,减缓了材料的进一步分解.同时,热分解过程中还释放出大量的CO2、NH3 和 N2等不燃气体稀释甚至切断氧的供应,从而使得阻燃材料自熄[11-12].在所研究的磷腈衍生物中,六氯环三磷腈是一种同时含有磷元素和氮元素的常用原料,连接于P原子上的2个Cl原子非常活泼,易与多种羟基或氨基化合物发生亲核取代反应[13-15].但是目前多以单羟基化合物或单氨基化合物作为亲核试剂,对多羟基化合物的研究报道极少[16-17],残碳率不高,无实际燃烧的数据报道,而且均为油溶性的产物[18],目前水溶性的膨胀型阻燃剂(IFR)大多通过复配制得[19].因此,寻找合适的亲核试剂使得单一产物具有水溶性,将大大拓宽阻燃剂的使用范围.由于三聚氰胺既是一种衣物整理剂,水溶性较好,又含有大量的N元素,能更好地与磷腈中的磷氮元素产生协同阻燃作用,提高残碳率和氧指数,降低化纤制品的熔滴现象.本文用六羟甲基三聚氰胺为亲核试剂,与六氯环三磷腈发生反应,成功制备了一种新型水溶性磷腈衍生物.1.1 试剂与仪器试剂:六羟甲基三聚氰胺(重庆建峰浩康化工有限公司),六氯环三磷腈(淄博蓝印化工有限公司),无水碳酸钾(K2CO3),三乙胺,乙醇,四氢呋喃(THF,均为分析纯).无水K2CO3使用前在140 ℃下干燥2 h.THF使用前用钠丝干燥,并加入二苯甲酮回流至溶液变蓝色再蒸出备用.材料:纯棉纱布,化纤窗帘布.仪器:IR Prestige-21红外光谱仪(日本岛津公司),VNS-400核磁共振仪(美国Varian公司),STA 409PC型热重分析仪(德国耐驰公司),JF-3型氧指数测定仪(南京市江宁区分析仪器厂).1.2 磷腈衍生物的合成化合物3,化合物4的合成路线如图1所示.1.2.1 化合物3的合成在装有机械搅拌、温度计、回流冷凝管的250 mL三口烧瓶中加入50 mL THF,无水碳酸钾 (K2CO3,16.7 g,0.12 mol),六羟甲基三聚氰胺 (HMM,12.2 g,0.04 mol),N2保护下室温搅拌12 h.加入相转移催化剂 TBAB(0.08 g,0.26 mmol),搅拌均匀后,往烧瓶中滴加含六氯环三磷腈(HCCP)(3.47 g,0.01 mol)的 THF (50 mL) 溶液,室温搅拌反应8 h,然后升温至回流(67 ℃)状态反应72 h.反应结束后自然降温,静置,除去溶剂后,用去离子水充分洗涤,直至水溶液呈中性,产物置于真空干燥箱60 ℃下干燥15 h,得到白色粉末状化合物 3.FTIR cm-1 (KBr pellets):3 315(—OH),2 936 (ν C—H),1 220 (ν PN),1 148 (ν C—O—C),923 (ν P—O—C),735 w(δ P—N);m.p.>300 ℃不熔,原料化合物1 (HCCP),化合物2 (HMM)的熔点分别为112和162 ℃;化合物3不溶于任何溶剂.1.2.2 化合物4的合成称取化合物3 (5.23 g,0.005 mol),加入甲醇 (100 mL),N2保护下室温搅拌1 h,然后滴加浓硫酸,调pH=4~5,于67 ℃回流反应,直至反应液透明,得到成醚化产物,取一滴滴入水中,不变浑浊;同样滴入乙醇中,也不变浑浊,停止加热,用三乙胺调 pH=7~ 8.过滤除去生成的盐,旋转蒸发除去溶剂,产物置于真空干燥箱60 ℃下干燥15 h,得到透明粘稠状化合物4.FT-IR cm-1 (KBr pellets): 3 296(—OH),2 925,2 842 (ν C—H),1 233 (ν PN),1 079,1 007 (ν C—O—C),916 (ν P—O—C),751 (δ P—N).31P{H}NMR (CDCl3):δ 9.87.1HNMR (CDCl3):δ 5.11 (s,2H),3.28 (s,3H).13C{H}NMR (CDCl3):δ 55.33,72.55,76.73,166.76.ESI-Ms:391,1 251.1.3 阻燃整理所用纱布为医用纯棉脱脂纱布,化纤为窗帘布料,按测试极限氧指数的国标(GBT 2406-1993)规格裁剪为140 mm×52 mm,测试燃烧残碳率的布料裁剪为30 mm×30 mm,使用前先用纯水煮沸0.5 h,再用纯水反复洗涤3次以除去表面油脂、其他附着物等杂质,晾干备用.阻燃布料的制备采用浸渍烘燥法,工艺流程为:浸渍→干燥→后处理.将化合物4与去离子水以一定的比例混合均匀得到阻燃剂溶液,用其浸渍纯棉纱布和窗帘布.浸渍一定时间后悬挂晾干→预烘(60 ℃,10 min)→烘干(80 ℃,30 min).恒重后用0.1 g/mL的碳酸钠溶液碱洗,再用蒸馏水洗涤至中性,放入干燥箱中烘干,制得阻燃布料.2.1 阻燃剂红外光谱红外光谱采用KBr压片法测试(图2),原料HMM(化合物1)含有大量羟基,因此3 296 cm-1左右出现了较强的—OH键特征吸收峰,在2 958 cm-1为亚甲基的特征峰,1 013 cm-1处为CN的特征峰;882、818 cm-1 为C—N的特征峰.原料HCCP(化合物2)则只含有1 226 cm-1处PN,867 cm-1 P—N的特征峰以及530、602 cm-1处P—Cl键的特征吸收峰.化合物3与化合物1类似,具有—OH、—CH2、CN、C—N 的特征峰,增加了PN、P—N、P—O—C特征峰,无P—Cl特征吸收峰,表明HCCP上的Cl原子已完全被HMM上的—RO—取代.由于PN、CN的吸收峰与P—O—C的吸收峰在一个区域,产物与原料的IR光谱几乎一致,但羟基峰明显减小.化合物4则与化合物3类似,除具有—CH2、PN、P—N、CN、C—N、P—O—C (1 013 cm-1) 的所有特征峰外,由于醚化反应,羟基峰消失,生成了C—O—C,因此多了1 103 cm-1处的醚键特征吸收峰以及2 900 cm-1处新生成的甲基吸收峰.2.2 化合物4的核磁共振波谱使用反式ATB探头测试1H NMR、13C NMR、31P NMR,测试频率分别为400、100 以及162 MHz.测试温度:20 ℃.13C NMR、31P NMR均在全去耦模式下测试.1H NMR、13C NMR以TMS为内标,31P NMR以85% H3PO4为外标.由于化合物4的有机结构部分只有亚甲基和甲基的存在,因此1H NMR和 13C NMR较简单.1H NMR (CDCl3): δ 5.1 (s,2H,—NCH2OCH3),3.3 (s,3H,CH3—),13C{H}NMR (CDCl3): δ 55.6 (CH3—),72.6 (—NCH2OP),76.8 (—NCH2OCH3),166.76(—C—).而31P NMR则表现出了较大变化,原料六氯环三磷腈(HCCP,化合物2)的化学位移值为18.3 ppm,而产物则为9.9 ppm(图3).表明HMM与环三磷腈发生了取代反应,P—Cl键完全被取代.2.3 化合物4的阻燃性能测试2.3.1 浸泡阻燃剂后布料的燃烧性能化合物4为热固型阻燃剂,在烘干的过程中可以与织物中的羟基反应交联,牢固的附着于织物上不易洗脱.将化合物4用去离子水配成不同质量分数的水溶液,将布料分别浸于溶液中6 h和20 h后,悬挂晾干,再于60 ℃预烘10 min,然后80 ℃烘干30 min,洗涤布料除去易洗脱的杂质,再次烘干,最后点燃布料,测试阻燃布料的阻燃性能.未阻燃的纱布点燃后迅速燃尽,不留残渣;未阻燃的窗帘布在燃烧时释放出大量的浓烟,伴随大量熔滴滴落,当熔滴滴落到未燃烧的部分时,未燃烧部分也被迅速引燃,从而使得火势猛烈.而阻燃样品被点燃后,阻燃纱布肉眼可见残碳保持纱布的原状,表面附着有黑色碳层(图4).含3%阻燃剂的阻燃窗帘布则不再有熔滴滴落,不会引燃未燃的部分,燃烧变得平缓,直至自熄,同时有很多残碳生成,可有效防止火灾中熔滴造成的二次伤害(图5).这是因为生成的磷酸、偏磷酸、聚磷酸等附着在布料表面和内部,同时燃烧释放出的NH3、N2、H2O、CO2等稀释了空气中的O2,使得燃烧变得困难,布料被碳化而不燃烧.毫无疑问,三聚氰胺-磷腈衍生物起到了阻燃和防熔滴的关键作用.表1为纱布在不同浓度化合物4的水溶液浸泡6和20 h后的阻燃性能比较.阻燃布料无阴燃,残碳率随阻燃剂浓度增加而增大,续燃时间相应减少,因此,阻燃性能随阻燃剂浓度的增加而增加.2.3.2 浸泡阻燃剂后的纱布热稳定性图6为固化后的化合物4、阻燃纱布(化合物4固化前配成20%的水溶液浸泡纱布所制得)以及未阻燃纱布在氮气条件下的热稳定性能.阻燃纱布在270.5 ℃开始热分解,拐点出现在304.7 ℃,这一阶段失重27.3%,800 ℃后残余质量占41.8%.而未阻燃的纱布热分解温度为323.7 ℃,拐点为336.6 ℃,此阶段失重率高达84.0%,800 ℃残余8.1%.而化合物4的热分解温度始于127 ℃,直到500 ℃质量下降曲线都较陡峭,500 ℃之后才趋于平缓,没有出现明显的拐点.可见,单独的化合物4固化后分子结构变化较复杂,分解时并不是同一类键同时断裂,而是某个键断裂的同时也有其他键断裂,且起始分解温度较低.纯纱布为多羟基纯棉纤维,当阻燃剂与纱布浸渍反应后,分解温度比单独的阻燃剂提高,但仍比纯纱布低很多.而低温下裂解有利于提高棉纤维的阻燃性.由于在低温下裂解放出的不燃气体可在未达到其燃点前逸出体系,稀释氧气,减少燃烧热,有利于阻止剩余物的进一步裂解.正因为如此,使阻燃棉纤维热分解放热速度变缓,也就抑制了整体的燃烧反应.可见,化合物4能促进棉纤维的脱水作用,减少可燃性挥发物的生成,同时在棉纤维的燃烧表面形成较多的多孔炭层结构,阻止可燃气进入燃烧气相,利于阻断火焰燃烧,使得热分解速度变慢,获得协同阻燃作用,从而提高了样品的阻燃效果[11-12].2.3.3 阻燃布料的极限氧指数(LOI)测定以浸泡20 h,阻燃液浓度为20%为例,纯纱布的LOI值为16.9,阻燃纱布的LOI值为21.9,氧指数提高了29.6%;而当阻燃剂只占布料重量3.0%时,氧指数只提高了6%,有少量残碳,但是窗帘布在燃烧时已不再有熔滴滴落,可有效的防止熔滴在火灾中造成的二次伤害.通过亲核取代反应,成功合成了水溶性阻燃剂——醚化六羟甲基三聚氰胺功能化的环三磷腈衍生物.该阻燃剂的水、醇混合溶液浸渍织物即可获得具有良好的热稳定性和较好阻燃效果的阻燃布料,使用方便.实验表明,该阻燃剂是一种膨胀型阻燃剂(IFR),燃烧后肉眼清晰可见膨胀层,无阴燃,无熔滴.阻燃剂浓度占20%时,浸泡的阻燃布料极限氧指数可提高29.6%;阻燃剂含量占3%即可有效的抑制化纤织物在燃烧过程中产生的熔滴,可防止火灾中熔滴对人造成的二次伤害,是一种较理想的无卤阻燃剂.【相关文献】[1] Dogan M, Yilmaz A, Bayramli E. Effect of boron containing materials on flammability and thermal degradation of polyamide-composites containing melamine cyanurate[J]. Polymers for Advanced Technologies, 2011, 22: 560-566.[2] Chen C, Liu X, Tian Z, et al. Trichloroethoxy-substituted polyphosphazenes: Synthesis, characterization, and properties [J]. Macromolecules, 2012, 45:9085-9091.[3] Morozowich N L, Weikel A L, Nichol J L, et al. Polyphosphazenes containing vitamin substituents: Synthesis, characterization, and hydrolytic sensitivity[J]. Macromolecules, 2011, 44: 1355-1360.[4] Liu R, Wang X. Synthesis, characterization, thermal properties and flame retardancy of a novel nonflammable phosphazene-based epoxy resin [J]. Polymer Degradation and Stability, 2009, 94: 617-624.[5] Ding J, Shi W. Thermal degradation and flame retardancy ofhexaacrylated/hexaethoxyl cyclophosphazene and their blends with epoxy acrylate [J]. Polymer Degradation and Stability, 2004, 84:159-165.[6] Toldy A, Szabo A, Novak C, et al. Intrinsically flame retardant epoxy resin-Fire performance and background-Part II [J]. Polymer Degradation and Stability, 2008, 93: 2007-2013[7] 宋新铺,陈仪权,洪文彪,等. 新型高分子型阻燃抗静电剂的合成及应用[J]. 华南师范大学学报:自然科学版,2014,46(5):59-63.Song X, Chen Y, Hong W, et al. Synthesis and application of the new polymer flame retardant antistatic agent [J]. Journal of South China Normal University:Natural Science Edition, 2014, 46(5): 59-63.[8] Huang W K, Yeh J T, Chen K J, el al. Flame Retardation improvement of aqueous-based polyurethane with Aziridinyl Phosphazene curing system [J]. Journal of Applied Polymer Science, 2001, 79: 662-673.[9] Guo Y N, Ming J Y, Li C Y, et al. Preparation and properties of transparent copolymers based on cyclotriphosphazene and styrene as potential flame-retardant optical resins [J]. Journal of Applied Polymer Science, 2011, 121:3137-3144.[10]Hu Z, Chen L, Zhao B, et al. A novel efficient halogen-free flame retardant system for polycarbonate [J]. Polymer Degradation and Stability, 2011, 96:320-327.[11]Levchik G F, Grigoriev Y V, Balabanovich A I, et al. Phosphorus-nitrogen containing fire retardants for poly(butylenes terephthalate) [J]. Polymer International, 2000, 49(10):1095-1000.[12]Gu J W, Zhang G C, Dong S L, et al. Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings [J]. Surface and Coatings Technology, 2007, 201(18): 7835-7841.[13]Un I, Ibisoglu H, Un S S, et al. Syntheses, characterizations, thermal and photophysicalproperties of cyclophosphazenes containing adamantane units [J]. Inorganica Chimica Acta, 2013, 399:219-222.[14]Mathew D, Nair C P R, Ninan K N. Phosphazene-triazine cyclomatrix network polymers: Some aspects of synthesis, thermal and flame-retardant characteristics [J]. Polymer International, 2000, 49:48-56.[15]Carriedo G A, Valenzuela M L. Polyphosphazenes combining dioxybiphenyl and butyl-amino substituents, a series with unusually high TGA residues and glass transition temperatures with negative deviation from additivity [J]. European Polymer Journal, 2011, 47:338-342.[16]Tao K, Li J, Xu L, et al. A novel phosphazene cyclomatrix network polymer: Design, synthesis and application inflame retardant polylactide [J]. Polymer Degradation and Stability, 2011, 96(7):1248-1254.[17]Uslu A, Coles S J, Davies D B, et al. Stereoisomerism in pentaerythritol-bridged cyclotriphosphazene tetra-spiranes: spiro and ansa 1,3-Propanedioxy di-substituted derivatives [J]. European Journal of Inorganic Chemistry, 2005,(6):1042-1047.[18] 丁佩佩,张灯青,蔡再生. 膨胀型阻燃剂阻燃涤纶性能研究 [J].印染助剂, 2010, 27(8): 24-27.Ding P, Zhang D, Cai Z. Study on an intumescent flame retardant of PET fabrics [J]. Textile Auxiliaries, 2010, 27(8):24-27.[19]Deng C L, Du S L, Zhao J, et al.An intumescent flame retardant polypropylene system with simultaneously improved flameretardancy and water resistance [J]. Polymer Degradation and Stability, 2014,108(6):97-107.。

聚二甲基硅氧烷合成聚氨酯中的作用_概述及解释说明

聚二甲基硅氧烷合成聚氨酯中的作用_概述及解释说明

聚二甲基硅氧烷合成聚氨酯中的作用概述及解释说明1. 引言1.1 概述在聚氨酯合成中,添加聚二甲基硅氧烷作为助剂对于改善聚氨酯材料的性能和性质具有重要作用。

聚二甲基硅氧烷是一种无机有机化合物,具有特殊的结构和性质。

它可以在聚氨酯合成过程中充当交联剂、增强材料以及改变材料表面特性的功能。

本文旨在探讨聚二甲基硅氧烷在聚氨酯合成中的作用机制以及其对材料性能的影响。

1.2 文章结构本文将分为四个部分进行阐述。

首先,将介绍聚二甲基硅氧烷的合成方法以及相关的技术参数。

接着,会对聚氨酯的性质与应用进行详细探讨,包括其化学结构、物理性能以及广泛应用领域。

然后,我们将深入分析聚二甲基硅氧烷在聚氨酯合成中的作用机制,并解释其中具体过程和影响因素。

最后,通过实验结果与讨论来验证聚二甲基硅氧烷对聚氨酯材料结构和性能的影响,并总结其在合成过程中的重要性。

1.3 目的本文的目标是全面了解聚二甲基硅氧烷在聚氨酯合成中的作用机制,以期为材料工程领域的研究提供参考,并探索未来研究方向。

通过对聚二甲基硅氧烷与聚氨酯相互作用的综合分析,我们可以为开发新型高性能聚氨酯材料以及改进现有制备方法提供理论指导和技术支持。

同时,还可以促进相关领域的学术交流和科学创新。

# 这部分仍然使用了Markdown语法,给您回答整理后如下:## 1. 引言### 1.1 概述在聚氨酯合成中,添加聚二甲基硅氧烷作为助剂对于改善聚氨酯材料的性能和性质具有重要作用。

聚二甲基硅氧烷是一种无机有机化合物,具有特殊的结构和性质。

它可以在聚氨酯合成过程中充当交联剂、增强材料以及改变材料表面特性的功能。

本文旨在探讨聚二甲基硅氧烷在聚氨酯合成中的作用机制以及其对材料性能的影响。

### 1.2 文章结构本文将分为四个部分进行阐述。

首先,将介绍聚二甲基硅氧烷的合成方法以及相关的技术参数。

接着,会对聚氨酯的性质与应用进行详细探讨,包括其化学结构、物理性能以及广泛应用领域。

然后,我们将深入分析聚二甲基硅氧烷在聚氨酯合成中的作用机制,并解释其中具体过程和影响因素。

改善石蜡相变材料导热性能的研究进展

改善石蜡相变材料导热性能的研究进展

改善石蜡相变材料导热性能的研究进展戴琴;周莉;朱月;黄飞【摘要】In recent years, paraffin as a phase change material received more attention. Thermal conductivity of paraffin phase change materials is low, which leads to low effective rate of heat of the energy storage system during storing and releasing thermal energy, the heat can’t be stored and released quickly and efficiently. Therefore, improving thermal conductivity of paraffin phase change materials become a research emphasis. In this paper, the research situation of improving thermal conductivity of paraffin phase change materials at home and abroad were summarized from several aspects, such as fin structure, multiple phase change materials, composite phase change materials and microencapsulated phase change materials.%近年来石蜡作为一种相变储能材料受到越来越多的关注,由于石蜡PCM 本身的导热系数偏低,导致储能系统在吸热或放热过程中的有效热率极低,热量无法快速有效地进行存储和释放。

三核铜配合物的合成、表征及其催化性能

三核铜配合物的合成、表征及其催化性能

2018年第37卷第10期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS·3879·化 工 进展三核铜配合物的合成、表征及其催化性能冷帅1,2,李云涛1,邓建国2(1西南石油大学材料科学与工程学院,四川 成都 610500;2中国工程物理研究院化工材料研究所,四川 绵阳 621900)摘要:采用溶剂热法合成了以三核碘化亚铜(CuI )四面体结构为活性中心的硅氢加成反应催化剂,探讨了物料比对产物收率的影响。

结果说明了当配体与碘化亚铜的摩尔比为1∶6时,产物收率最高。

通过元素分析、傅里叶红外光谱分析、X 射线光电子能谱分析、X 射线单晶体衍射分析、紫外可见光光谱分析、热失重分析对配合物的化学组成、空间结构及性能进行表征,并进一步通过甲基苯基乙烯基树脂和甲基苯基含氢硅油的硅氢加成反应进行催化固化效果验证。

结果说明了在催化剂填加量为0.04%、固化温度为150℃的优化条件下反应24h ,共混体系固化效果最佳。

该配合物对硅氢加成反应具有很好的催化性能,并且原料成本低、制备方法简单、晶体颗粒方便储存,有望解决硅氢加成反应中贵金属催化剂的高成本问题。

关键词:配合物;催化剂;硅氢加成;碘化亚铜;晶体;合成中图分类号:TQ426.61;O643.36 文献标志码:A 文章编号:1000–6613(2018)10–3879–06 DOI :10.16085/j.issn.1000-6613.2017-2271Synthesis, characterization and catalytic performance of tri-nuclearcopper complexLENG Shuai 1,2, LI Yuntao 1, DENG Jianguo 2(1School of Materials Science and Engineering, Southwest Petroleum University ,Chengdu 610500,Sichuan ,China ;2Institute of Chemical Materials ,China Academy of Engineering Physics ,Mianyang 621900,Sichuan ,China)Abstract :A complex catalyst with tetrahedron structure copper(I) iodide (CuI) as active center has been synthesized by solvent-thermal method ,which is then used in hydrosilylation. The effect of the material ratios on the product yield has been discussed in depth. The results show that when the molar ratio of ligand to CuI is 1∶6,the highest yield is obtained. The chemical composition ,spatial structure and properties of the catalyst have been studied by elemental analysis ,Fourier transform infrared spectroscopy analysis ,X-ray photoelectron spectroscopy analysis ,X-ray single crystal diffraction analysis ,UV-visible spectroscopy analysis and thermogravimetric analysis, respectively. Furthermore ,the catalytic performance has been tested by the hydrosilylation reaction of methylphenyl vinyl resin and methylphenyl hydro-silicone oil. The results indicate that the curing effect is the best when the blending system reacts for 24h under the addition of 0.04% complex at 150℃. The complex shows very good catalytic performance in hydrosilylation ,and can be synthesized with the advantages of low-cost raw materials ,simple preparation method and convenient storage. It is promising to solve the problem of the high cost of traditional precious metal catalysts in hydrosilylation.Key words :complex ;catalyst ;hydrosilylation ;copper(I) iodide ;crystal ;synthesis合材料。

有机硅改性酚醛树脂的研究

有机硅改性酚醛树脂的研究

有机硅改性酚醛树脂的研究廖庆玲;李轩科;左小华【摘要】Conductance experience showed that the crosslinking density of the synthesis phenolic resin was influenced by adding organosilicon.The normal detection indexes of the phenolic resin modified by the organosilicon were better than the normal phenolic parison to the unmodified phenolic resin,the residual carbon of the modified phenolic resin reaches to 50.75% and increases about 10%FESEM images show that fiber-like carbon were formed from the modified phenolic resin after carbonization under 800 ℃.The SiO2 with diameter in 350~450 nm are distributed uniformly and bind with matrix carbon well.The mechanical quality of the phenolic resin is reinforced by the organic-inorganic hybrid material modify.%电导实验表明:有机硅的加入对合成的酚醛树脂的交联密度有影响.改性酚醛树脂的各项常规指标均优于普通酚醛树脂,其中残碳率可以达到50.75%,比普通酚醛树脂的残碳率(40.80%)提高了近10%.FESEM照片可以看到有机硅改性酚醛树脂在800℃碳化后生成了碳纤维,而且所生成半径大致为350~450 nm的SiO2粒子分布于酚醛树脂的碳化物中,分布较均匀且与基体的结合较好,有机-无机杂化改性有利于酚醛树脂力学性能的提高.【期刊名称】《重庆文理学院学报(自然科学版)》【年(卷),期】2011(030)004【总页数】5页(P54-58)【关键词】有机硅;改性;酚醛树脂【作者】廖庆玲;李轩科;左小华【作者单位】中南民族大学工商学院,湖北武汉430071;武汉科技大学高温陶瓷与耐火材料湖北省重点实验室,湖北武汉430081;黄石理工学院化学与材料工程学院,湖北黄石435003【正文语种】中文【中图分类】TQ175.72酚醛树脂是一种最早发现并获得广泛应用的合成树脂,以其诸多的性能而具有广泛的应用领域,1975年开始作为耐火制品的结合剂[1].目前含碳耐火材料仍广泛采用酚醛树脂作为结合剂,但其热分解温度和抗氧化能力较差[2],因此对现有酚醛树脂结合剂的耐热性进行改性是目前耐火制品生产企业和相关科研院所研究的重点.近年来,将正硅酸酯或金属有机化合物的溶胶-凝胶反应与高聚物基体的聚合反应结合,制备有机-无机杂化材料已成为材料科学的研究热点[3].本文利用正硅酸乙酯与酚醛树脂单体(苯酚、甲醛)及催化剂混合,在纳米粒子生成的同时原位复合生成改性酚醛树脂,以期获得一种用于镁碳砖的热固性酚醛树脂.1 实验1.1 实验药品实验主要原料及化学试剂:苯酚、甲醛、氢氧化钠、有机硅、煤油、乙酸(冰醋酸)和乙二醇.1.2 实验装置及过程实验装置由容积为500mL的三口烧瓶,电子恒速搅拌器,油浴及真空脱水装置构成,并在反应器上配备回流冷凝管和玻璃温度计.按摩尔比 n(苯酚)∶n(甲醛)=1∶1.25,称取苯酚和浓度为37%的甲醛溶液于500mL的三口烧瓶中,边搅拌边按比例加入正硅酸乙酯(TEOS),然后滴加一定量的NaOH溶液并油浴加热.反应液加热搅拌至50℃后,控制升温速度在5min内不超过3℃.反应到达一定温度时开始计时,恒温反应一定时间后加醋酸中和至pH值6.5~7.0,最后真空脱水,脱水结束后配入20mL乙二醇搅拌均匀后装样备用.1.3 测试方法利用METTLER TOLEDO 326型电导率仪测定了不同反应条件下,各反应体系电导率随时间变化的曲线.常规指标的测定按照相关行业标准[4].将待检测酚醛树脂样品经800℃碳化后,利用LEO 1530 FESEM型场发射扫描电镜对产物的形貌进行观察.2 结果与讨论2.1 正硅酸乙酯的加入对苯酚、甲醛聚合反应的影响将不添加TEOS的反应体系编号为a;量取300mL煤油作为溶剂,在搅拌状态下加入24 mLTEOS,最后加入50mL浓度为1.4 mol/L的NaOH溶液,将此反应体系编号为b;将添加24 mL有机硅TEOS的反应体系编号为c.上述a、b、c体系都在加入NaOH之前就将电导仪电极插入溶液并保持溶液温度为25℃,加入NaOH的时候开始读数和记时,然后油浴加热,控制在1min内升3℃.反应到达90℃后恒温反应一定时间,直到电导率基本不发生变化为止.图1 各种反应体系电导率随时间的变化从图1中可以看出,a反应体系的电导率随反应的进行开始快速增加,这是由于催化剂NaOH电离产生的Na+和OH-随温度的升高而迁移速度加剧而造成的;反应20min的时候电导率达到最大值121.0mS·cm-1,此时苯酚和甲醛的合成已经开始了;然后电导率随反应时间的增加而慢慢减小,因为此时对电导率影响很大的反应体系的温度和电解质的浓度基本保持不变,而由于反应时间的增加生成的树脂越来越多,分子量也越来越大,反应体系的粘度也在变大,导致Na+和OH-的运动所受的阻力越来越大,而反应体系的粘度对电导率的影响较小,所以电导率随反应时间的增加而非常缓慢地减小.b反应体系的电导率开始也同样随反应时间的增加而急速增大,此时溶液的电导率的起始值主要还是催化剂NaOH的解离行为决定,其次TEOS在碱性溶液中快速水解生成大量的 Si(OH)4和ROH,使得反应体系中离子数量增多,溶液的电导率瞬间增加,同时由于Si(OH)4是一种弱酸又中和了部分NaOH而导致溶液中离子数量反而相对减少,所以相对于a体系来说,增加幅度有所减小;反应时间到16 min时电导率达到最大值110.4 mS·cm-1,然后又随时间的增加而慢慢减小.由于TEOS水解缩合,溶胶的形成对离子的运动产生了很大的牵制,所以电导率慢慢减小;直到40min以后,电导率才基本维持不变,表明此时反应体系中TEOS的水解缩合过程已经完成.c反应体系的电导率开始也随着反应时间的增加而快速增加,此时电导率增加的原因与b体系一样,但当反应进行12 min以后电导率增加的速率慢慢减小,此时反应体系的温度到达71℃,苯酚与甲醛在碱性催化剂下已经开始反应生成羟甲基苯酚,由于TEOS水解产物Si(OH)4与羟甲基苯酚的酚羟基或者羟甲基间发生脱水反应,导致体系离子数量减少,从而导致体系电导率增加速率减小,反应时间到18 min时电导率达到最大值95.8 mS·cm-1,比 a和b体系的最大电导率分别小了25.2 mS·cm-1和14.6 mS·cm-1.这也说明 TEOS 与酚醛树脂间有着相互的影响,TEOS的加入导致了c体系的离子数量相对于a、b体系而有所减少,所以最大电导率值也最小;随后c反应体系的电导率几乎不随反应时间而变化,说明此时反应体系中离子的数量基本维持不变.根据电导率实验,可以初步判定TEOS的加入确实对苯酚、甲醛的聚合反应体系有一定的影响.2.2 正硅酸乙酯改性酚醛树脂和普通酚醛树脂的常规指标分析由表1常规指标可以很明显地看到,改性酚醛树脂残碳率可以达到50.75%,比普通的酚醛树脂的残碳率40.80%提高了近10%,粘度有很大程度的增加,这也说明了硅改性剂与酚醛树脂之间发生了作用,使得酚醛树脂体系的交联密度大大增加.这将有效改善酚醛树脂固化后交联结构的均匀性,减小分子内空间,从而有效抑制碳化层产生龟裂、鼓泡现象,对耐火制品十分有利.表1 普通酚醛树脂和改性酚醛树脂的常规检测指标2.3 有机硅TEOS改性酚醛树脂的微观形貌分析利用场发射扫描电镜(FE-SEM)观察有机硅改性酚醛树脂800℃碳化产物的表面形貌,图2中a和c以及b和d分别为有机硅的改性酚醛树脂和优化条件下合成的改性酚醛树脂的FESEM照片及放大照片.图2 SiO2改性酚醛树脂800℃碳化产物表面的FE-SEM照片(a)SiO2改性的酚醛树脂;(b)优化条件下的酚醛树脂;(c)a图的放大图;(d)b图的放大图从图2中观察发现,两种酚醛树脂碳化后均出现了纤维状产物.根据前人[5-7]对纤维增强树脂基复合材料的研究,纤维与基体的界面强度对材料的力学性能影响很大.因为碳纤维是由于酚醛树脂碳化后生成的,与酚醛树脂基体的界面结合很好,基体与纤维的化学组成一致,两相在高温时达到热力学平衡,纤维与基体两相间化学反应速度十分缓慢,从而纤维发生断裂、拔出和界面“脱粘”等现象都可以吸收大量外来能量[8-9],从而提高材料的强度.另外,未经优化的酚醛树脂碳化后表面出现较大的气孔,主要是因为碳化时大量的小分子物质挥发而造成.优化处理后,酚醛树脂表面层相对比较致密,仅有一些很小的孔洞,说明优化后的酚醛树脂成碳结构更加致密,碳化过程比较平稳、均匀.从高倍放大图片来看,前者生成的纤维短而粗细不均匀,断裂的纤维很多(白箭头所示);后者生成的碳纤维相对比较长而且粗细相对均一,而且出现断裂的纤维数量较少,纤维的完整性较好,说明优化条件下合成的酚醛树脂由于长径比相对较大,更能起到较好的增强作用.图3 图2(d)中局部放大FE-SEM图对图2中(d)进行局部放大,得到了图3.从图3中可以看到,较规整的半径大致为350~450nm的球状物分布于酚醛树脂的碳化物中,分散均匀且与基体所生成的碳纤维结合较好.当材料受到外力时,粒子的存在产生应力集中效应,易引发周围基体树脂产生微开裂,吸收更多能量,从而在一定程度上提高了材料的强度.2.4 有机硅TEOS改性酚醛树脂简要机理推理溶胶-凝胶过程能够在分子复合水平上制备各种有机-无机杂化材料[10].采用正硅酸乙酯为改性剂,其在高分子预聚单体中发生的反应如下:缩合过程:TEOS试剂与酚醛树脂之间的化学反应[11]:TEOS试剂与酚醛树脂之间的物理相互作用[10]:从上述反应中可以看出TEOS试剂的加入不仅在酚醛树脂高分子链里引入了自缩合反应产生的无机Si—O—Si网络,而且还会与酚醛树脂发生反应,使部分酚羟基的氢被杂原子硅取代.这样就克服了由于酚羟基所造成的吸水,导致制品在干燥过程中的开裂、强度下降.另外,由于酚醛树脂分子中引进了柔性较大的—Si—O—键,所以脆性有所改善,机械强度大大提高,固化产物中含硅的四向交联结构,使产品的耐烧蚀性比一般酚醛树脂好.3 结论1)电导实验证实:酚醛树脂的聚合过程和改性剂TEOS的水解-缩合过程相互存在影响;2)常规指标说明了硅改性剂与酚醛树脂之间发生了作用,使得酚醛树脂体系的交联密度大大增加;3)FE-SEM照片显示有机硅改性酚醛树脂碳化后生成了碳纤维,而且所生成半径大致为350~450nm的SiO2球均匀分布于酚醛树脂的碳化物中,与基体的结合较好.[参考文献][1]Reghunadhan C P.Nair advance in addition-cure phenolic resins [J].Progress in Polymer Science,2004,29(5):403-406.[2]田建团,张炜,郭亚林.酚醛树脂的耐热改性研究进展[J].热固性树脂,2006(2):44-48.[3]刘晓蕾,何毅,李赛,等.溶胶-凝胶法制备PCL/SiO2杂化材料的凝胶过程[J].高分子材料科学与工程,2004,20(6):124.[4]唐路林,王景红,刘献丽.酚醛树脂检测方法与国际标准的对照研究[J].热固性树脂,2007,22(5):31-34.[5]王树海.玻璃纤维增强热塑性有机复合材料界面强度及其对材料力学性能的影响[J].材料科学进展,1992,6(4):363-368.[6]张汝光.单向复合材料的破坏机理——纤维、基体和界面状况对强度的影响[J].上海力学,1986(4):64-71.[7]Hiroyuki Hamada,Masaya Kotaki,Yasunobu Hirai.Effect of surface treatment and weave structure on model interlaminar fracture behavior of glass woven fabric composites[J].Proceedings of ICCM-10,1995(5):643-650.[8]冼杏娟.纤维增强复合材料的破坏机理[J].力学进展,1986,16(2):229-236.[9]Kimberley Dransfield,Caroline Baillie,MaiYiuwing.Improving the delamination resistance of CFRP by stitchinga review[J].Composites Science and Technology,1994,50:305-317.[10]Chiang Chinlung,Ma Chenchi.Synthesis,characterization,thermal properties and flame retardance of novel phenolic Resin/Silicon nanocomposites[J].Polymer Degradation and Stability,2004,83(2):207-209.[11]黄发荣,焦杨声.酚醛树脂及其应用[M].北京:化学工业出版社,2003:128.。

Synthesis and characterization of ATO SiO2 nanocomposite coating obtained by sol–gel method

Synthesis and characterization of ATO SiO2 nanocomposite coating obtained by sol–gel method

Synthesis and characterization of ATO/SiO 2nanocompositecoating obtained by sol–gel methodXiaoChuan Chen *The Key Laboratory of Materials Physics,Institute of Solid State Physics,Chinese Academy of Sciences,Hefei 230031,People’s Republic of ChinaReceived 19June 2004;accepted 20December 2004Available online 11January 2005AbstractA new sol–gel route was developed for synthesizing homogeneous nanocomposite thin film that was composed of Sb-SnO 2(ATO)nanoparticles and silica matrix.TEM studies show that as-prepared composite thin film contains the amorphous silica matrix and ATO nanocrystalline particles that were dispersed homogeneously in silica matrix.The oxalic acid is an excellent dispersant for colloidal stability of ATO aqueous sol at pH b 5.The result of Zeta potential measurement shows that dispersion mechanism comes from the chemisorption of oxalic acid on the surface of ATO nanoparticles.The thermal treatment in reducing atmosphere considerably promotes grain growth of ATO nanoparticles and changes the optical property of ATO/SiO 2nanocomposite thin film.D 2005Elsevier B.V .All rights reserved.Keywords:Sol–gel preparation;Thin films;Nanocomposites;Sb-doped SnO 21.IntroductionTin oxide is a wide band gap nonstoichiometric semi-conductor with a low n-type resistivity [1–3].The resistance can be reduced further by doping Sb,F elements [4,5].F-doped SnO 2(FTO),Sb-doped SnO 2(ATO)conducting thin films not only have high transparency in the visible region but also are good infrared reflecting materials [6,7].ATO thin films have been used in many fields such as heat shielding coating on low-emissivity window for energy saving [8].Fabrication techniques used to deposit ATO thin film include dip coating based on sol–gel method;sputtering and spray pyrolysis.The sol–gel route has several advantages over the other method.It is a low cost and simple process and makes the precise control of doping concentration easier [9,10].In order to improve the scratching abrasive resistance of ATO thin film prepared by sol–gel route [11,12]a novel sol–gel route has been proposed.In this technological process an organic–inorganic hybrid silica sol was used as the pre-cursor of protecting matrix.The ATO functional componentwas homogeneously distributed in a transparent silica matrix.The mixed structure is of benefit to preventing the crack of thin film in drying and annealing process [13].When a composite material containing two oxides with different pho-to index hopes to keep high transmittance in visible light re-gion the second phase component must be dispersed homogeneously into the amorphous matrix at a level of nanometer.In this work a transparent nanocomposite thin film com-posed of ATO and silica was synthesized by the sol–gel route.The sol–gel method includes (a)the synthesis of ATO sol and hybrid organic–inorganic silica sol;(b)mixing of two nanoparticulate sols.A TEM investigation of phase structure in ATO–silica composite gel is reported.The optical proper-ties and crystallizability of composite thin film is discussed.2.Experimental2.1.Preparation of ATO aqueous solAll the chemical reagents used in the synthesis experi-ment were obtained from commercial sources without0167-577X/$-see front matter D 2005Elsevier B.V .All rights reserved.doi:10.1016/j.matlet.2004.12.033*Tel.:+865515591477;fax:+865515591434.E-mail address:chenxiaochuan126@.Materials Letters 59(2005)1239–1242/locate/matletfurther purification.The aqueous ATO sol were prepared by a co-precipitation process from hydrolysis of SnCl4d5H2O and SbCl3,and followed by the peptization of the precipitate. The reaction was performed at room temperature.In the co-precipitation procedure aqueous NH4OH solution was added directly to the mixture solution of SnCl4d5H2O and SbCl3 until the pH of the mixture reach6–8,where pale yellow ATO hydroxide precipitate were produced.Peptization of ATO hydroxide with the aqueous solution containing oxalic acid gives a yellowish transparent sol.Finally ATO sol was heated and refluxed at608C for4h.2.2.Synthesis of hybrid organic–inorganic silica solThe hybrid organic–inorganic silica-based sols were synthesized as follows:First a mixture solution of tetrae-thoxysilane(TEOS),3-glycidoxypropyltrimethoxysilane (GPTS),isopropyl and alcohol in weight ratio1:1:2.5:3.5 was prepared.Then a suitable amount of deionized water (pH=1,by HCl addition)was added to the mixture solution. The mole ratio of TEOS and H2O is about1:6to1:8.The mixed solution was stirred and heated under reflux at808C for16h.The synthesized transparent hybrid silica sol was used as protecting component of nanocomposite thin film.2.3.Preparation of ATO/SiO2nanocomposite thin filmsA transparent functional gelled film was deposited from the mixture sol comprising the hybrid organic–inorganic silica sol and the ATO sol.Deposition was performed on the glass substrate at room temperature by a simple dip coating process.After being dried at room temperature the nano-composite gelled thin film was thermally densified at a temperature up to4008C in a reducing atmosphere containing N2and vapor of alcohol.2.4.InstrumentationThe Zeta potential measurement of the0.5wt.%ATO aqueous sol was carried out with a ZETASIZER3000HS A measuring system(MALVERN).0.1N HNO3was used to adjust the pH of reference ATO sol that does not contain oxalic acid.The X-ray diffractometer(XRD)was used for the structural characterization of the as-dried and thermally densified ATO–SiO2nanocomposite material.The micro-structure feature of nanocomposite gel film and annealed film were observed with a transmission electron microscope (TEM)(type JEM-2010).The sample for TEM study was prepared as follows:A droplet of mixed sol consisting of ATO colloidal sol and hybrid silica sol was dropped on a copper grid covered with organic film,and after solvents were vaporized a nanocomposite thin film was deposited on the copper grid.The chemical composition of annealed nanocomposite thin film was measured using an energy dispersive X-ray analysis system(EDS)equipped with a scanning electron microscope.Optical transmission was determined using a Varian Cary5E spectrophotometer in the wavelength range of300–2500nm.3.Results and discussion3.1.Surface adsorption studiesWhen oxalic acid was added to the ATO suspension the pH of suspension was adjust to2by the ionization of oxalic acid.Peptization with oxalic acid turns slowly the initial turbid ATO suspension into transparent stable sol.If without addition of oxalic acid ATO nanoparticles in the suspension will show aggregating behavior and begin precipitating at pH b5.The experimental result tells us that colloidal stability of ATO sol comes from addition of oxalic acid.Oxalic acid molecule acts as a surface-modifying agent and prevents aggregation of ATO particles.Fig.1shows the result of Zeta potential measurement at different pH level.The date shows that surface of ATO nanoparticles in aqueous sol is positively charged at pH\5without the addition of oxalic acid.The addition of oxalic acid decreases the Zeta potential of surface and changes the surface to a negative charge in the pH range2–4.According to the dissociation constant of oxalic acid the neutral molecules and negatively charged HO–(CO)2–OÀ1ions are predominant components in aqueous solution at2b pH b3.In initial suspension surface of ATO nanoparticles has a charge especially opposing the oxalic acid ions.The electrostatic force generated by the opposing charges will facilitate the ions transport stage of adsorption reaction.Now we assume that markedinteraction Fig.1.Zeta potential of ATO aqueous sol as a function of pH;0.5wt.% ATO content was used.X.C.Chen/Materials Letters59(2005)1239–1242 1240exist between oxalic acid ions and positive surface hydroxylgroups Q Sn–OH 2+or neutral surface hydroxyl groups Q Sn–OH.The oxalic acid ions can be preferentially adsorbed to the surface of ATO nanoparticles by hydrogen bond or Q Sn–O–C bond.The adsorbed ions neutralize surface positive charges and ultimately reverse the surface to a negative Zeta potential.Fig.1shows that the magnitude of negative Zeta potential is not large enough to stabilize the ATO nanoparticle electrostatically in sol.After oxalic acid was added to the suspension the transparent sol is found to remain stable almost infinitely at pH b 4.The only possible explanation is that effective dispersion mechanism comes from a combination of electrostatic and steric repulsion between oxalic acid ions that were adsorbed on surface of different ATO particles.3.2.XRD and EDS studiesFig.2shows XRD spectra of the ATO–silica nano-composite sample.The pattern (a)relates to the nano-composite gel obtained as dried at room temperature and the pattern (a)shows the presence of a very broad diffraction peak attributable only to cassiterite structure.The XRD patterns of nanocomposite samples show little difference between as-dried and thermally densified samples.Theresult indicates that ATO colloidal particles have developed a nanocrystal structure of cassiterite during sol preparation which contains a hydrothermal process at 608C.TheFig.2.XRD pattern of ATO–SiO 2composite gel:(a)as-dried at room temperature;(b)heat-treated at 5008C in air for 1h.Table 1Elemental concentration of ATO/SiO 2nanocomposite thin film Sample Atomic concentration,%V olume ratio,SiO 2/ATO O Si Sn Sb As-dried69.6917.2510.722.351.5Fig.3.Diffraction pattern and TEM image of ATO–SiO 2nanocomposite thin film as-dried at room temperature:(a)ED pattern;(b)TEMimage.Fig.4.Diffraction pattern and TEM image of ATO–SiO 2composite thin film thermal-treated at 3008C in reducing atmosphere for 2h:(a)ED pattern;(b)TEM image.X.C.Chen /Materials Letters 59(2005)1239–12421241hydrothermal process under atmosphere is also an effective method for promoting the crystallization of ATO nano-particles in the aqueous solution [14,15].The element contents in ATO–SiO 2film are shown in Table 1.Measured Si/Sn+Sb atom ratio of sample is about 1.3:1.The SiO 2/ATO volume ratio in the nanocomposite is calculated from the atom ratio and theory density.3.3.TEM and UV–Vis–Nir spectra studiesThe TEM image of as-dried ATO–SiO 2nanocomposite thin film is shown in Fig.3(b).We can observe that ATO nanoparticles are homogeneously dispersed in SiO 2-based amorphous matrix without any evidence of aggregation.ATO grains are found to have a size range of 3–5nm in diameter.Fig.3(a)shows a typical electron diffraction pattern of ATO nanocrystalline grain.Four electron dif-fraction (ED)rings can be indexed to the pattern of ATO with cassiterite structure.The result is in good agreement with XRD analysis.The structural change induced by thermal treatment of ATO thin film has been investigated.Fig.4shows the ED pattern and TEM image taken from ATO–SiO 2nanocomposite thin film which was annealed at 3008C in reducing atmosphere.The contrast morphology in this image shows some large crystal grains with diameter range from 20nm to 25nm.The ED pattern taken from the same sample contains some sharp spots resulting from thelarge crystallites.The observed results indicate that thermal treatment in reducing atmosphere can accelerate grain growth of ATO nanoparticles.The growth of crystal grain was accompanied by the disappearance of grain boundary and increased electrical conductivity and Nir-light reflec-tance of ATO film [1].The optical transmission spectra of ATO thin film deposited on the glass substrate of 1mm thick are shown in Fig.5.A high transmission of 85%is observed in the visible region.The reduction of transmission in the Nir wavelength arises from improved conductivity of nanocrystalline ATO particles that were heat-treated in the reducing atmosphere.4.ConclusionsThe transparent ATO–SiO 2nanocomposite thin films have been prepared successfully by the sol–gel method.The transmission of thin film is rather high in the visible region,range between 85%and 90%as well as the transmission in Nir region has been decreased to 41%.The thermal treatment in reducing atmosphere is an effective method for promoting crystalline grain growth of ATO nanoparticles.The oxalic acid is an excellent dispers-ing agent for ATO nanoparticle in the aqueous solution in pH range 2–4.References[1]G.Frank,E.Kauer,H.Kostlin,Thin Solid Films 77(1981)107.[2]M.S.Castro,C.M.Aldao,J.Eur.Ceram.Soc.20(2000)303.[3]O.Safonova,I.Bezverkhy,P.Fabrichnyi,M.Rumyantseva, A.Gaskov,J.Mater.Chem.7(1997)997.[4]S.Shanthi,C.Subramanian,P.Ramasamy,Cryst.Res.Technol.34(1998)1037.[5]A.E.Rakhshani,Y .Makdisi,H.A.Ramazaniyan,J.Appl.Phys.83(2)(1998)1049.[6]C.Goebbert,R.Nonninger,M.A.Aegerter,H.Schmidt,Thin SolidFilms 351(1999)79.[7]C.Terrier,J.P.Chatelon,J.A.Roger,Thin Solid Films 295(1997)95.[8]H.Ohsaki,Y .Kokubu,Thin Solid Films 351(1999)1.[9]M.A.Aegerter,N.Al-Dahoudi,J.Sol–Gel Sci.Technol.27(2003)81.[10]A.N.Banerjee,S.Kundoo,P.Saha,K.K.Chattopadhyay,J.Sol–GelSci.Technol.28(2003)105.[11]S.W.Kim,Y .W.Shin,D.S.Bae,J.H.Lee,J.Kim,H.W.Lee,ThinSolid Films 437(2003)242.[12]K.Abe,Y .Sanada,T.Morimoto,J.Sol–Gel Sci.Technol.26(2003)709.[13]J.Gallardo,A.Duran,I.Garcia,J.P.Celis,M.A.Arenas,A.Conde,J.Sol–Gel Sci.Technol.27(2003)175.[14]D.Y .Zhang,D.Z.Wang,G.M.Wang,Y .H.Wu,Z.Wang,Mater.Sci.Eng.,B,Solid-State Mater.Adv.Technol.8(1991)189.[15]S.J.Kim,S.D.Park,Y .H.Jeong,S.Park,J.Am.Ceram.Soc.82(1999)927.Fig.5.UV–Vis–Nir transmission spectra:(a)550nm thick ATO–SiO 2thin film which was coated on glass substrate;(b)glass substrate.X.C.Chen /Materials Letters 59(2005)1239–12421242。

文章投稿中编辑来信与回信

文章投稿中编辑来信与回信

1. Cover letterDear Editor,We would like to submit the enclosed manuscript entitled "Synthesis and optical properties of a series of thermal-stable diphenylanthrazolines", which we wish to be considered for publication in the famous journal of “Dyes and Pigments”.Recently, anthrazolines and polyanthrazolines have been paid attention in the field of electronic and optical devices for their high electron affinity and high thermal stability. They can be used as electron-transport and electroluminescent materials in organic light-emitting devices (OLED) and can also be potential materials for n-channel thin film transistors with further structure modification.Our work is motivated by the above reports and succeed in synthesizing eight new anthrazoline derivatives based on 4,8-diphenylanthrazoline core. The thermal stabilities, optical properties of these compounds are investigated by TGA, DSC,UV-Vis spectra and PL emission spectra respectively, which suggest that all the nine diphenylanthrazolines are thermally robust, and are promising electronic and optoelectronic materials. The series of new diphenylanthrazolines with high thermal stabilities are also expected to serve as excellent model systems for investigating structure-property relationships with respect to the electronic, electrochemical, photoconductive, and nonlinear optical properties of the corresponding π-conjugated polymers.Details of three expert referees that we would like to recommend are listed as follows:(1) Prof. Vinich PromarakDepartment of Chemistry, Faculty of Science, Ubon Ratchathani University, Warinchumrap, Ubon Ratchathani 34190, Thailand.E-mail:***************.ac.thTel.: +66-1-5930005; Fax: +66-45-288379(2) Prof. Ayoob BazgirDepartment of Chemistry, Shahid Beheshti Univerty, Tehran 1983963113, Iran.E-mail:***************.irTel.: +98-21-22431661; Fax: +98-21-22431661(3) Prof. Peihua LinCollege of Chemistry and Chemical Engineering, Shanxi University, Taiyuan030006, PR ChinaE-mail address: ****************.cnTel.: +86-351-7011561; fax: +86-351-7011322.Due to a direct competition and conflict of interest, we request that Prof. Jenekhe of Washington University is not to be considered as reviewer. Thanks for your consideration.Finally, this paper is our original unpublished work and it has not been submitted to any other journal for reviews. Enclosed you will find a full manuscript in the form of WORD.Yours sincerely,Prof. Hong-Jun Zhu2. Your Submission -1发件人:***********************.uk发送时间:2008年9月3日 0:07:47收件人:*********************Ms. Ref. No.: DYPI-D-08-00466Title: Synthesis and optical properties of a series of thermal-stable diphenylanthrazolinesDyes and PigmentsDear zhuhj1963,Reviewers have now commented on your paper. You will see that they are advising that you revise your manuscript. If you are prepared to undertake the work required, I would be pleased to reconsider my decision.For your guidance, reviewers' comments are appended below.If you decide to revise the work, please submit a list of changes or a rebuttal against each point which is being raised when you submit the revised manuscript.To submit a revision, please go to /dypi/ and login as an Author.Your username is: zhuhj1963Your password is: zhu6222On your Main Menu page is a folder entitled "Submissions Needing Revision". You will find your submission record there.Yours sincerely,Stephen M Burkinshaw, PhDEditor-in-ChiefDyes and PigmentsReviewers' comments:Reviewer #1: This manuscript describes the synthesis of diphenylanthrazoline derivatives for applications as electron-transporting electroluminescent materials in optoelectronic devices and their optical and thermal properties were investigated. However, the important properties of these materials i.e. fluorescence quantum yield (QF) and the HOMO-LUMO energy levels were not reported. With this information the author can tell how good of these materials for use as electron-transporting electroluminescent materials. There are several comments and suggestions proposed as following:1. Check the chemical structures of compound i (Fig 3) and compound 1i (Fig. 4), their structures are wrong. In Fig. 3, 4, the chemical bond at carbazole unit is 2-position, but the right structure should be 3-position.2. The author should include the fluorescence quantum yield (QF) and the HOMO-LUMO energy levels of all materials in the article. The HOMO-LUMO energy levels can be obtained from UV-vis and Cyclic voltammetry (CV) experiments (see V. Promarak et al, Tetrahedron, 2007, 63, 8881-8890)I recommended that this manuscript can be published in Dyes and Pigments after the minor additions and revisions above.Reviewer #2: This article reports the synthesis and characterization of some new diphenylanthrazolines. The results are interesting as the molecules could be useful for electronic and optoelectronic devices. The manuscript is well written and the results and conclusions are clearly presented. I recommend publication of this article in Dyes and Pigments.回信-1Dear prof. Stephen M Burkinshaw:Thanks for your help with our paper DYPI-D-08-00466.All response to reviewers and corrections to the manuscript have been made in blue font and are appended in this e-mail. In case of any character that can’t be shown properly in e-mail, a copy of the cover letter together with all response to reviewers and corrections to the manuscript was also sent to you as an attachment in the form of WORD.Three revised files (file names: Table 1. physical properties of diphenylanthrazolines (1a-1i)_rev.doc; Fig1-Fig4_rev.doc; Text_rev.doc) were uploaded via EES system.As was mentioned in the comment of reviewer #1, the fluorescence quantum yield (QF) and the HOMO-LUMO energy levels are indeed the important properties of materials for applications in electronic and optoelectronic devices including organic light-emitting diodes(OLED), thin film transistors, and photovoltaic cells. It is necessary to investigate these properties with our further research carried on in future.The vast majority of our work reported in the manuscript has been focused on the synthesis, structure-characterization, thermal stability and some optical propertiesincluding UV-vis absorption spectrum (λabs), emission spectrum (λem) and E g of all the materials (1a-1i). Due to the lack of required equipments at present, we regret that we have not done experiments to investigate properties of QF and the HOMO-LUMO energy levels. But we would go on to study these properties of all the materials and their applications in OLED when the required equipments are available in schedule next year. We hope that our work in the manuscript could be published to share the interesting structures and results of anthrazoline derivatives with other researchers in time, and we also hope that scientists who are interested in the applications of these materials could get in touch with us to communicate and cooperate with each other after the publication of our work.Additionally, in Table 1, we corrected the Stokes shift of 1b (30 nm, instead of 31nm) and 1g (28 nm, instead of 38nm) when we rechecked the manuscript. And at the end of the third section “result and discussion” in the manuscript, corresponding correction was also made in blue font and listed below. The revised Table 1 (file name: Table 1. physical properties of diphenylanthrazolines (1a-1i)_rev.doc) and revised manuscript (file name: Text_rev.doc) were also uploaded via EES system.The dilute solution (10-8 M) photoluminescence (PL) spectra of 1a - 1i are shown in Fig. 6. All nine compounds have structured emission bands and emit blue light with the emission maximum in the 430 - 466- nm ranges. All the λem of 1b - 1i have a little red shift compared to 1a (λem = 430 nm). Similarly, 1i has the maximum red shift (36 nm). If the 0 - 0 transitions in the emission and corresponding absorption bands are considered, the Stokes shift is small for all the compounds, ranging from 28 to 39 nm.Would you please to consider the publication of our manuscript?If there is any question, would you please let us know ASAP? And we would be very pleased to try our best to make corresponding changes.Thanks again!Yours sincerely,Hong-Jun ZhuAll response to reviewers and corrections to the manuscript have been made in blue font and listed as follows.Reviewer #11.Check the chemical structures of compound i (Fig 3) and compound 1i (Fig. 4),their structures are wrong. In Fig. 3, 4, the chemical bond at carbazole unit is 2-position, but the right structure should be 3-position.We have checked the structures of compound i (Fig 3) and compound 1i (Fig. 4), and their structures are wrong because of our careless. Thank you very much! We redrew Fig. 3 and Fig.4 by changing the chemical bond at carbazole unit of 2-position to 3-position correspondingly. And we also uploaded the revised Fig. 3 and Fig.4 (file name: Fig1-Fig4_rev.doc) via EES system.2.The author should include the fluorescence quantum yield (QF) and theHOMO-LUMO energy levels of all materials in the article. The HOMO-LUMO energy levels can be obtained from UV-vis and Cyclic voltammetry (CV) experiments (see V. Promarak et al, Tetrahedron, 2007, 63, 8881-8890).Thanks very much for your nice suggestion.As was mentioned in your comment, the fluorescence quantum yield (QF) and the HOMO-LUMO energy levels are indeed the important properties of materials for applications in electronic and optoelectronic devices including organic light-emitting diodes(OLED), thin film transistors, and photovoltaic cells. It is necessary to investigate these properties with our further research carried on in future.The vast majority of our work reported in the manuscript has been focused on the synthesis, structure-characterization, thermal stability and some optical properties including UV-vis absorption spectrum (λabs), emission spectrum (λem) and E g of all the materials (1a-1i). Due to the lack of required equipments at present, we regret that we have not done experiments to investigate properties of QF and the HOMO-LUMO energy levels. But we would go on to study these properties of all the materials and their applications in OLED when the required equipments are available in schedulenext year. We hope that our work in the manuscript could be published to share the interesting structures and results of anthrazoline derivatives with other researchers in time, and we also hope that scientists who are interested in the applications of these materials could get in touch with us to communicate and cooperate with each other after the publication of our work.Thanks a lot!Reviewer #2:This article reports the synthesis and characterization of some new diphenylanthrazolines. The results are interesting as the molecules could be useful for electronic and optoelectronic devices. The manuscript is well written and the results and conclusions are clearly presented. I recommend publication of this article in Dyes and Pigments.Thanks for your comments.3. Your Submission -2发件人:***********************.uk发送时间:2008年10月1日 0:04:04收件人:*********************Ms. Ref. No.: DYPI-D-08-00466R1Title: Synthesis and optical properties of a series of thermal-stable diphenylanthrazolinesDyes and PigmentsDear zhuhj1963,Reviewers have now commented on your paper. You will see that they are advising that you revise your manuscript. If you are prepared to undertake the work required, I would be pleased to reconsider my decision.For your guidance, reviewers' comments are appended below.If you decide to revise the work, please submit a list of changes or a rebuttal against each point which is being raised when you submit the revised manuscript.To submit a revision, please go to /dypi/ and login as an Author.Your username is: zhuhj1963Your password is: zhu6222On your Main Menu page is a folder entitled "Submissions Needing Revision". You will find your submission record there.Yours sincerely,Stephen M Burkinshaw, PhDEditor-in-ChiefDyes and PigmentsReviewers' comments:The authors have attended to the comments and suggestions made by the reviewers. There remain a couple of queries relating to nomenclature and the order of the figures for the authors to resolve. Page 3 and appropriate headings in the experimental section for each compound: The names of the compounds require some revision, can the authors please check the revised names (below) in with respect to their revised structures and comment?(1e) 2,4,6,8-tetraphenylanthrazoline(1g) 2,6-bis(2-fluorenyl)-4,8-diphenylanthrazoline(1h) 2,6-bis(2-pyryidyl)-4,8-diphenylanthrazoline(1i) 2,6-bis(3-(N-ethyl)carbazolyl)-4,8-diphenylanthrazolinePage 4 line 1: The first figure referred to appears to be figure 4. The figures should be numbered sequentially throughout the manuscript commencing with figure 1. Can the authors please renumber / reorder the figures (at each instance in the manuscript|) to meet this criterion.In addition to the above there are a couple of minor errors that the authors could attend to: Abstract line 2: 'The substituted diphenylanthrazolines 1a - 1i were synthesised by Friedlander condensation of ..'Abstract line 5/6 and elsewhere in the discussion: '61% and 88%'Abstract line 7: there may be a problem with the font used for 'degrees C' as this often appears as a small box symbol in the text. Additionally '317 - 462'Page 3 line 6: 'reports concerning the photophysical'Page 3 line 8: 'This investigation revealed that these small molecules'Page 3 line 12: 'relationships remain an interesting challenge.'Page 3 line 'In this paper a series of new ... ( give names) ..(Fig. 1) were synthesised and characterised.'Page 4 line 11: '(FTIR) spectra were recorded in KBr'Page 5 line 2: '2-Acetylfluorene'Page 5 line 13 'gas was evolved'Page 6 line 17: 'as a white powder' Authors note this error occurs at several points in the experimental section (page 9) and reach should be similarly revised.Page 8 line 14: 'biphenyl'Page 14: 20: 'with other compounds containing'Page 15 line 13 and 14: 'red shifted by'Page 16 line 12: 'are slightly red shifted compared'Page 17 line 1: 'are slightly red shifted due to the'回信-2Dear prof. Stephen M Burkinshaw:Thanks again for your help with our paper DYPI-D-08-00466.All response to reviewer and corrections to the manuscript have been made in blue font and are appended in this e-mail. In case of any character that can’t be shown properly in e-mail, a copy of the cover letter together with all response and corrections was also sent to you as an attachment in the form of WORD.Three revised files (file names: Fig1-Fig4_rev2.doc; Text_rev2.doc;Table_1._physical_properties_of_diphenylanthrazolines_1a-1i_rev2.doc) wereuploaded via EES system.If there is any problem in the manuscript, would you please let us know ASAP? We would be very pleased to made corresponding changes.Best wishes!Yours sincerely,Prof. Hong-Jun ZhuAll response to reviewer and corrections to the manuscript have been made in blue font and listed as follows.Reviewers' comments:The authors have attended to the comments and suggestions made by the reviewers. There remain a couple of queries relating to nomenclature and the order of the figures for the authors to resolve.(1) Page 3 and appropriate headings in the experimental section for each compound: The names of the compounds require some revision, can the authors please check the revised names (below) in with respect to their revised structures and comment?(1a) 2,4,6,8-tetraphenylanthrazoline(1g) 2,6-bis(2-fluorenyl)-4,8-diphenylanthrazoline(1h) 2,6-bis(2-pyryidyl)-4,8-diphenylanthrazoline(1i) 2,6-bis(3-(N-ethyl)carbazolyl)-4,8-diphenylanthrazolineReply (1): Thanks a lot for your nice corrections. We checked the revised names of compounds 1a, 1g, 1h and 1i., and made changes and corresponding corrections in the manuscript in blue font which were listed as follows:Page 3/4: In this paper, a series of new diphenylanthrazolines:2,4,6,8-tetraphenylanthrazoline (1a),2,6-bis(4’-methylphenyl)-4,8-diphenylanthrazoline (1b),2,6-bis(4’-ethylphenyl)-4,8-diphenylanthrazoline (1c),2,6-bis(4’-isopropylphenyl)-4,8-diphenylanthrazoline (1d),2,6-bis(biphenyl)-4,8-diphenylanthrazoline (1e), 2,6-bis(4’-phenoxylphenyl)-4,8-diphenylanthrazoline (1f), 2,6-bis(2-fluorenyl)-4,8-diphenylanthrazoline (1g), 2,6-bis(2-pyridyl)-4,8-diphenylanthrazoline (1h) and2,6-bis(3-(N-ethylcarbazole))-4,8-diphenylanthrazoline (1i) (Fig. 1) were synthesized and characterized.Corrected the corresponding headings in the experimental section for each compound:page 10:2,4,6,8-Tetraphenylanthrazoline (1a)page 12:2,6-Bis(2-flourenyl)-4,8-diphenylanthrazoline (1g)page 13:2,6-Bis(2-pyridyl)-4,8-diphenylanthrazoline (1h)2,6-Bis(3-(N-ethylcarbazole))-4,8-diphenylanthrazoline (1i)(2) Page 4 line 1: The first figure referred to appears to be figure 4. The figures shouldbe numbered sequentially throughout the manuscript commencing with figure 1. Can the authors please renumber / reorder the figures (at each instance in the manuscript|)to meet this criterion.Reply (2): With your suggestion, we renumbered and reordered the figures that shouldbe numbered sequentially throughout the manuscript (file name: Fig1-Fig4_rev2.doc). Then we made the corresponding changes in the manuscript (file name: Text_rev2.doc):Page 4, line 1:2,6-bis(3-(N-ethylcarbazole))-4,8-diphenylanthrazoline (1i) (Fig. 1). Page 5, line 8: The synthetic routines were shown in Fig. 1 - 4, respectively.Page 14, line 6:Fig.1 outlines the synthesis of the series of diphenylanthrazolines.(3) In addition to the above there are a couple of minor errors that the authors could attend to:Abstract line 2: 'The substituted diphenylanthrazolines 1a - 1i were synthesised by Friedlander condensation of ..'Reply (3)-1:Abstract line 2:The substituted diphenylanthrazolines 1a - 1i were synthesised by Friedländer condensation of 2,5-dibenzoyl-1,4-phenylenediamine and acetyl-functionalized compounds in the presence of polyphosphoric acid (PPA) as a catalyst with the yields ranging from 61 % for 1h to 88 % for 1e.Abstract line 5/6 and elsewhere in the discussion: '61% and 88%'Reply (3)-2: Similar changes have been made throughout the manuscript and listed asfollows.Abstract line 6:The substituted diphenylanthrazolines 1a - 1i were synthesised by Friedländer condensation of 2,5-dibenzoyl-1,4-phenylenediamine and acetyl-functionalized compounds in the presence of polyphosphoric acid (PPA) as a catalyst with the yields ranging from 61 % for 1h to 88 % for 1e.Page 14, line 8/9: The acid-catalyzed Friedländer condensation reactions [13] yielded the desired products in 61 - 88 % yields.Page 15, line 1/2/3: All the materials had melting transitions ranging from 317 to 462o C, with p-phenoxyl phenyl substituted 1d melting at 317o C, and pyridyl substituted1h melting at 462 o C, respectively.Page 17, line 1:…high decomposition temperature (above 380 o C) and high melt transitions (317 – 462 o C).Page 17, line 7: …thermal stability (T m = 348 o C, T d > 450 o C) and is expected to be used as…Abstract line 7: there may be a problem with the font used for 'degrees C' as this often appears as a small box symbol in the text. Additionally '317 - 462'Reply (3)-3: We have solved the problem and made the corresponding changes in the manuscript and Table 1 (File name:Table_1._physical_properties_of_diphenylanthrazolines_1a-1i_rev2.doc).Page 3 line 6: 'reports concerning the photophysical'Reply (3)-4:Page 3 line 6/7:…reports concerning the photophysical properties of small molecules based on the 4,8-diphenylanthrazoline core are limited.Page 3 line 8: 'This investigation revealed that these small molecules'Reply (3)-5:Page 3 line 8/9/10/11: The investigation revealed that these small molecules have high electron affinity and high thermal stability, and are promising electron-transport(n-type) materials for organic light-emitting diodes (OLED).Page 3 line 12: 'relationships remain an interesting challenge.'Reply (3)-6:Page 3 line 12/13: …the development of new anthrazoline molecules and further establishing the underlying structure-property relationships remain an interesting challenge.Page 3 line 'In this paper a series of new ... ( give names) ..(Fig. 1) were synthesised and characterised.'Reply (3)-6:Page 3 line 14: In this paper, a series of new diphenylanthrazolines:2,4,6,8-tetraphenylanthrazoline (1a),2,6-bis(4’-methylphenyl)-4,8-diphenylanthrazoline (1b),2,6-bis(4’-ethylphenyl)-4,8-diphenylanthrazoline (1c),2,6-bis(4’-isopropylphenyl)-4,8-diphenylanthrazoline (1d),2,6-bis(biphenyl)-4,8-diphenylanthrazoline (1e), 2,6-bis(4’-phenoxylphenyl)-4,8-diphenylanthrazoline (1f), 2,6-bis(2-fluorenyl)-4,8-diphenylanthrazoline (1g), 2,6-bis(2-pyridyl)-4,8-diphenylanthrazoline (1h) and2,6-bis(3-(N-ethylcarbazole))-4,8-diphenylanthrazoline (1i) (Fig. 1) were synthesised and characterized.Page 4 line 11: '(FTIR) spectra were recorded in KBr'Reply (3)-7:Page 4 line 11/12/13: Fourier transformation infrared (FTIR) spectra were recorded in KBr pellets using an A V ARTE360 FT-IR spectrometer (Thermo Nicolet).Page 5 line 2: '2-Acetylfluorene'Reply (3)-8:Page 5 line 3: 2-Acetylfluorene (g) and 2-acetylpyridine (h) were purchased from…Page 5 line 13 'gas was evolved'Reply (3)-9:Page 5 line 13/14: During the period, hydrogen chloride gas was evolved, …Page 6 line 17: 'as a white powder' Authors note this error occurs at several points in the experimental section (page 9) and each should be similarly revised.Reply (3)-10: We made all corrections in the manuscript which were listed as follows. Page 6 line 18: then dried at 80 o C for 8 h to give 2 (19.6 g, 52.6 mmol) as a white powder ...Page 10 line 1: … to give i (1.9 g, 8.0 mmol) as a yellow powder in 80.1 % yield, …Page 12 line 5:Yield was 67.1 % as a yellow powder; m. p. 440.2 o C.Page 13 line 1:Yield was 63.0 % as a yellow powder; m. p. 431.5 o C.Page 8 line 14: 'biphenyl'Reply (3)-11:Page 8 line 15: biphenyl (30.8 g, 200 mmol) in carbon disulfide (100 ml) was then added dropwisePage 14: 20: 'with other compounds containing'Reply (3)-12:Page 14: line 21: …, which is in good agreement with other compounds containing …Page 15 line 13 and 14: 'red shifted by'Reply (3)-13:Page 15 line 15:The absorption λAbs max of phenoxyl substituted 1f has red shifted by 14 nm …Page 16 line 12: 'are slightly red shifted compared'Reply (3)-14:Page 16 line 12/13:All the λem of 1b - 1i are slightly red shifted compared to 1a (λem = 430 nm).Page 17 line 1: 'are slightly red shifted due to the'Reply (3)-15:Page 17 line 3/4: … PL emission peaks (from 430 to 466 nm) are slightly red shifted due to the electron-donating effect …Thank you very much for your kind suggestions and nice corrections! With your suggestions, we have made the corresponding corrections in the manuscript.If there is any problem in the manuscript, would you please let us know ASAP? We would be very pleased to made corresponding changes.。

高分子物理名词中英对照(精选.)

高分子物理名词中英对照(精选.)

第一章高分子链的结构aeolotropy 各向异性anti-configuration 反型;反式构型atactic polymer 无规(立构)聚合物average root-mean-square 均方根backbone 主链backbone motion 主链运动backbone structure 主链结构branched polymer 支化聚合物carbon chain 碳链chain conformation 链构象chain element 链单元;链节cis-configuration 顺式构型cis-isomer 顺式异构体cis-isomerism 顺式异构现象cis-stereoisomer 顺式立体异构体cis-trans isomerism 顺-反(式)异构现象cis-trans isomerization 顺反异构化characterization [1]表征;表征法[2]检定;检定法configuration 构型conformation 构象covalent bond 共价键cross link 交联;交联键cross linkage 交联crosslinked network 交联网crosslinked polymer 交联聚合物differential thermal analysis 差热分析differential thermogravimetric analysis 微分热重分析differential thermogravimetrie curve 微分热重曲线degree of isotacticity 全同(立构)规整度degree of order 有序度degree of syndiotacticity 间同(立构)规整度degree of tacticity 构型规整度diisotactic 双全同立构的direction of orientation 取向方向end-to-end distance 末端距fork chain 支链fork group 支基equitactic polymer 全同间同(立构)等量聚合物erythro-diisotactic 叠(同)双重全同立构eutacticity 理想的构型规整性degree of isomerization 异构化程度flexibility 柔性;柔顺性free internal rotation 自由内旋转freely jointed chain 自由连接链functional group 功能基;官能团Gauss chain 高斯链Gauss distribution 高斯分布Gaussian chain 高斯链Gaussian distribution 高斯分布Gaussian network 高斯网络non-Gaussian Chain 非高斯链non-Gaussian distribution 非高斯分布geometrical isomer 几何异构体geometrical regularity 几何规整度graft 接枝物graft block copolymer 接枝嵌段共聚物graft copolymer 接枝共聚物graft copolymerization 接枝共聚graftomer 接枝聚合物graft polymerization 接枝聚合head-tail sequence 头尾顺序head-to-head 头-头接head-to-head polymer 头-头接聚合物head-to-tail polymer 头-尾接聚合物hot setting resin 热固性树脂isotactic 全同立构;等规立构isotactic chain 全同立构链isotactic configuration 全同立构型isotacticity 全同立构规整度isotactic polymer 全同立构聚合物iso-trans-tactic 反式全同立构linear chain 直链linear chain polymer 直链聚合物linear copolymer 线形共聚物linear macromolecule 线形大分子linear molecule 线形分子linear polymer 线形聚合物high polymer 高聚物half polymer 低聚物highly branched chain 高度支化链heat of crystallization 结晶热flexible linear macromolecule 柔性线形大分子flexible side group 柔性侧基interpolymer 共聚体long chain branching 长链支化long chain molecule 长链分子holotactic 全规整macromolecular 大分子的;高分子的macromolecular compound 大分子化合物;高分子化合物macromolecule 大分子;高分子main chain 主链main polymer chain 聚合物主链molecular bond 分子键molecular configuration 分子构型monomer 单体mutamer 旋光异构体mean square end to end distance 均方末端距nonlinear polymer 非线型聚合物net structure 网状结构network polymer 网状聚合物network structure 网状结构optical isomer 旋光异构体;旋光异构物ordered structure 有序结构random copolymer 无规共聚物polymer chain 聚合物链;高分子链polymer single crystal 聚合物primary structure 一级结构;初级结构regularity 规则性;整齐度distance 均方根末端距rotamerism 几何异构现象;旋转异构现象rigid chain 刚性链rigid macromolecule 刚性大分子straight-chain polymer 直链聚合物secondary structure 二级结构syndiotactic 间同立构的syndiotactic polymer 间同立构聚合物stability 稳定性star polymer 星形聚合物statistical copolymer 无规共聚物spatial structure 空间结构sub-chain motion 链段运动trans isomerism 反式异构(现tertiary structure 三级结构unperturbed chain dimension 未受扰分子链尺寸;无扰分子链尺寸valence bond 价键valence distance (=bond length) 键长;键距laevo-configuration 左旋构型microstructure of polymer 聚合物的微结构microtacticity 微观规整性short range structure 近程结构molecular motion 分子运动molecular model 分子模型第二章高分子的聚集态结构intermolecular attraction 分子间引力hydrogen bond 氢键amorphous 非晶的;无定形的amorphous birefringence 非晶双折射amorphous material 非晶材料;无定形材料amorphous phase 非晶相amorphous polymer 非晶态聚合物amorphous region 非晶区;无定形区axial orientation 沿轴取向auto-orientation mechanism 自取向机理biaxial orientation 双轴取向biaxial stretch 双轴拉伸crystal 结晶;晶体crystal angle 晶角crystal defect 晶体缺陷crystal diffraction 晶体衍射crystal grain 晶粒crystal lattice 晶格crystalline copolymer 结晶共聚物crystalline orientation 晶体取向crystalline polymer 结晶聚合物crystalline portion 结晶部分crystalline region 晶区crystalline structure 晶体结构crystallinity 结晶性;结晶度crystallite 微晶;晶粒crystallite dimension 晶粒尺寸crystallite size distribution 晶粒大小分布crystallizable polymer (能)结晶聚合物crystallization 结晶(作用)crystallization rate 结晶速率crystallization temperature 结晶温度crystallize 结晶cubic system 立方晶系chain folding 链折叠chain-folded lamellae 折叠链片晶degree of crystallinity 结晶度程度degree of orientation 取向度diffraction 衍射diffraction angle 衍射角diffraction pattern 衍射图形;衍射花样diffractometer 衍射仪extended chain crystal 伸直链electron microscope 电子显微镜expanded material 发泡材料; 晶体birefringence 双折射density crystallinity 密度结晶度folded chain 折叠链folded chain crystal 折叠链晶体folded chain lamellae 折叠链晶片folded chain model 折叠链模型folded configuration 折叠构型folding length 折叠链长度liquid crystal 液晶lamellae 片晶lamellae structure 片晶结构lattice 晶格;点阵lattice constant 晶格常数lattice energy 晶格能lattice model 晶格模型lattice structure 晶格结构monoclinic 单斜(晶)的mono-crystalline 单晶的morphological structure 形态结构molecular orientation 分子取向non-crystallizable polymer 非结晶聚合物one-way orientation 单向取向orientated polymer 取向聚合物orientated polymerization 取向聚合orientation 取向orthorhombic unit cell 斜方晶胞platelets 片晶polarize 起偏(振)镜;起偏光镜polarizing microscope 偏(振)光显微镜polaroid (人造)偏振片[物];起偏振片single crystal 单晶small angle scattering 小角散射-------------------------------------------------------------------------------- 第三章高分子溶液viscometry 粘度法gelatination 胶凝(作用);胶凝化gel point 凝胶点coacervation 凝聚coagulation point 凝固点;凝结点equilibrium swelling 平衡溶胀heat of solution 溶解热gel 凝胶;冻胶ideal solution 理想溶液fractional precipitation 分级沉淀fractional solution 分级溶解fractionation 分级non-ideal solution 非理想溶液solubility 溶解性;可溶性solubility parameter 溶度参数soluble polymer 可溶性聚合物dilute solution 稀溶液dilute solution theory 稀溶液理论dilution free energy 稀释自由能dilution heat 稀释热dilution viscometer 稀释粘度计free energy 自由能free energy of mixing 混合自由能entropy of mixing 混合熵polar polymer 极性聚合物-------------------------------------------------------------------------------- 第四章高聚物的分子量和分子量分布average molecular weight 平均分子量Z-average molecular weight Z均分子量Z-average molecular weight Z均分子量weight average molecular weight 重(量平)均分子量apparent molecular weight 表观分子量critical entanglement molecular weight 临界缠结分子量end effect 末端效应end group 端基end group method 端基法[测分子量]intrinsic viscosity 特性粘数intrinsic viscosity number 特性粘数narrow molecular weight distribution 窄分子量分布mean molecular weight 平均分子量molecular weight 分子量molecular weight determination 分子量测定molecular weight distribution 分子量分布molecular weight distribution curve 分子量分布曲线number average molecular weight 数均分子量scattering angle 散射角relative viscosity 相对粘度viscometric average molecular weight 粘均分子量viscosity 粘度viscosity-average molecular weight 粘均分子量viscous 粘的;粘性的logarithmic viscosity number 比浓对数粘度kinematic viscosity 比密粘度non-polar polymer 非极性聚合物interfacial tension 界面张力density gradient column 密度梯度管density gradient sedimentation 密度梯度沉降法density gradient tube 密度梯度管concentration gradient 浓度梯度-------------------------------------------------------------------------------- 第五章聚合物的转变与松弛stress relaxation 应力松弛stress-strain curve 应力-应变曲线deformability 变形性deformation 形变;变形deformation band (滑移)形变带continuous stress relaxation 连续应力松弛characteristic relaxation time 特征松弛时间discrete relaxation time 离散松弛时间epitaxy 外延;取向生长glasslike polymer 类玻璃聚合物glass point 玻璃点glass temperature 玻璃化(转变)温度glass transition 玻璃化转变glass transition region 玻璃化转变区glass transition temperature 玻璃化转变温度glassy compliance 玻璃态柔量glassy modulus 玻璃态模量glassy polymer 玻璃态聚合物glassy state 玻璃态half-crystallization time 半结晶期half life period 半衰期fractional free volume 自由体积分数free volume 自由体积noncrystalline 非晶的noncrystalline region 非晶区kinetic of crystallization 结晶动力学nuclei [复]核;晶核nucleus ([复] nuclei)核;晶核nucleus formation (晶)核生成(作用)rubbery plateau zone 橡胶高弹区rubbery state 橡胶态rubbery plateau zone 橡胶高弹区rubbery state 橡胶态rate of crystal growth 晶体生长速率transition zone 转变区compression deformation 压缩变形compression modulus 压缩模量heterogeneous nucleation 异相成核dimensionless glass transition 无量纲玻璃化转变thermo-mechanical curve 热机(械)曲线;温度形变曲线permanent deformation 永久变形non-reversible deformation 不可逆形变;永久形变thermal deformation 热变形thermal degradation 热降解thermal dilation 热膨胀compression set 压缩变形initial modulus 起始模量initial tangent modulus 起始切线模量instantaneous compliance 瞬时柔量instantaneous deformation 瞬时形变instantaneous elasticity 瞬时弹性instantaneous elastic recovery 瞬时弹性回复instantaneous modulus 瞬时模量dynamic mechanical double glass transition 动态力学双重玻璃化转变delayed deformation 延迟形变recrystallization 再结晶(作用)relative deformation 相对形变relative elongation 相对伸长thermogravimetric curve 热重(分析)曲线;温度重量曲线-------------------------------------------------------------------------------- 第六章橡胶弹性anisotropic 各向异性的anisotropy 各向异性(现象)blend [1]共混物[2]共混blending polymer 共混聚合物dynamic elasticity 动态弹性delayed elasticity 延迟弹性elastic 弹性的elastic anisotropy 弹性各向异性elastic compliance 弹性柔量elastic constant 弹性常数elastic deformation 弹性形变elastic elongation 弹性伸长elastic extension 弹性延伸elastic isotropy 弹性各向同性elasticity 弹性elasticity modulus 弹性模量elastic property 高弹性elastomer 高弹体;弹性体elastomeric state 橡胶高弹态;高弹态high elastic deformation 高弹形变high elasticity 高弹性high elastic rubber 高弹性橡胶long range elasticity 高弹性ideal elasticity 理想弹性ideal elastomer 理想弹性体non-elastic deformation 非弹性形变initial elasticity 初弹性;瞬时弹性perfect elastic body 理想弹性体modulus of elasticity 弹性模量modulus of rigidity 刚性模量temporary set(高)弹性形变dynamic resilience 动态弹性回复dynamic rigidity 动态刚度;动态刚性rubber elastic behavior 橡胶弹性行为;高弹行为entropic deformation mechanism 熵变形机理entropy-elastic deformation 熵弹形变entropy elasticity 熵弹性entropy spring 熵弹簧nature rubber 天然橡胶non-Hookean elasticity 非虎克弹性natural cis-polyisoprene 天然顺式聚异戊二烯;天然橡胶natural draw ratio 固有拉伸比;自然拉伸比one-way drawing 单向牵伸draw 拉伸draw ratio 拉伸比Poisson’s ratio 泊松比--------------------------------------------------------------------------------第七章聚合物的粘弹性anelasticity 滞弹性dynamic compliance 动态柔量dynamic creep 动态蠕变dynamic mechanical behavior 动态力学行为dynamic mechanical property 动态力学性能dynamic mechanical test 动态力学试验Boltzmann superposition principle 波尔兹曼叠加原理relaxation phenomenon 松弛现象relaxation spectra 松弛(时间)谱relaxation time 松弛时间retardation time 推迟时间retarded elasticity 推迟弹性superposition principle 叠加原理nature time (=relaxation itme) 松弛时间;自然时间non-linear viscoelasticity 非线性粘弹性recovery creep 回复蠕变principle of superposition 叠加原理time of relaxation 松驰时间time-temperature equivalent principle 时-温等效原理time-temperature superposition principle 时-温叠加原理creep 蠕变creep compliance 蠕变柔量creep curve 蠕变曲线dashpot 粘壶dynamic modulus 动态模量dynamics 动力学dynamic state 动态dynamic viscoelastometer 动态粘弹谱仪dynamic viscosity 动态粘度;动力粘度elastoviscometer 弹性粘度计elasto-viscous system 弹粘体系elastoviscous polymer 弹粘性聚合物distribution of retardation times 推迟时间分布Hookean elasticity 虎克弹性Hookean spring 虎克弹簧immediate set 瞬时变形initial creep 起始蠕变mechanical relaxation 力学松弛viscous elasticity 粘弹性stickiness 粘性compression stress relaxation 压缩应力松弛maximum relaxation time 极大松弛时间distribution of relaxation times 松弛时间分布stretch(ing) 拉伸tangent of the loss angle 损耗角正切mechanical loss factor 力学损耗因子loss angle 损耗角loss factor 损耗因子loss modulus 损耗模量loss tangent 损耗角正切intermittent stress relaxation 间断应力松弛discrete viscoelastic spectra 离散粘弹谱lastics [1]塑料[2]弹塑料;弹塑(性)体damping 阻尼;减幅damping factor 阻尼因子distortion 扭变;畸变;双定向的-------------------------------------------------------------------------------- 第八章聚合物的屈服和断裂work-to-break 断裂功yield 屈服yield strength 屈服强度yield stress 屈服应力Young’s modulus 杨氏模量root-mean-square end-to-end rupture mechanism 断裂机理;破坏机理modulus of rupture (=flexural strength) 抗弯强度;挠曲强度unnotched Izod impact strength 无缺口悬臂梁式抗冲击强度impact strength 冲击强度crack [1]裂缝;龟裂;裂纹[2]裂化craze 银纹load-elongation curve 载荷-伸长曲线fissure 裂缝;裂隙flexing resistance 抗挠性;耐屈挠性flexural modulus 挠曲模量flexural strength 挠曲强度fluid resin 液态树脂fracture 断裂;破裂fracture energy 断裂能fracture mechanism 断裂机理fracture surface energy 断裂表面能fracture toughness 断裂韧性fragility 脆性;易碎性friability 脆性;易碎性friction 摩擦frictional damping 摩擦阻尼fringe 条纹elongation 伸长extended length 伸展长度extension 伸长;延伸extension at break 断裂伸长extension modulus 拉伸模量extension ratio 拉伸比fabricability 加工性failure 破裂;破坏fatigue 疲劳fatigue cracking 疲劳龟裂fatigue curve 疲劳曲线fatigue failure 疲劳破坏fatigue strength 疲劳强度fatigue test 疲劳试验faying surface 接触面bending modulus 弯曲(弹性)模量bend(ing) strength 弯曲强度bend(ing) stress 弯曲应力breaking elongation 断裂伸长-------------------------------------------------------------------------------- 第九章聚合物的流变性rheology 流变学rheometer 流变仪anti-swelling 抗溶胀性anti-thixotropy0 非触变性;非摇溶(现象)apparent area 表观面积apparent density 表观密度apparent fluidity 表观流度apparent viscosity 表观粘度die swell(ing) 挤出胀大;模口胀大die swell ratio 挤出胀大比dilatability 膨胀性dilatate 膨胀dynamic (=dynamical) [1]动态的[2]动力学的dynamic chemorheology 动态化学流变学flowability 流动性flow behavior 流动行为;流动特性flow birefringence 流动双折射flow curve 流动曲线flow diagram 流动图flow index 流动指数flow line 流线flow temperature 流动温度fluid 流体fluid mechanics 流体力学hydrodynamics 流体力学hydronamic orientation 流体力学取向non-recoverable flow 不可逆流动;塑性流动pseudo-plastic fluid 假塑性流体pseudo-plasticity 假塑性;非宾汉塑料pseudo-viscosity 假粘度;非牛顿粘度pure viscous flow 纯粘性流动rate of shear 剪切(变)速率melt crystallization 熔融结晶melt elasticity 熔体弹性melten polymer 熔融聚合物melt flow index 熔体流动指数melt fracture 熔体破裂melt index 熔体指数melting temperature 熔融温度melting viscosity 熔融粘度melt rheology 熔体流变学melt viscosity 熔体粘度telescopic flow 层流viscous flow 粘流drag flow 粘性流动Bingham body 宾汉体Bingham flow 宾汉流动Bingham model 宾汉模型Bingham plastic fluid 宾汉塑性流体Bingham’s yield value 宾汉屈服值Bingham viscometer 宾汉粘度计extrude 挤出;挤压;压出extruding machine 挤出机extrusion 挤出;挤压extrusion molding 挤出成形extrusion swelling 挤出胀大capillary extrusion rheometer 毛细管挤出流变计necking (cold drawing) 颈缩(冷拉);细颈现象Newtonian behavior 牛顿行为Newtonian flow 牛顿流动[纯粘性流动] Newtonian liquid 牛顿液体Newtonian viscosity 牛顿粘度non-homogeneous 不均匀的non-Newtonian behavior 非牛顿行为non-Newtonian liquid 非牛顿液体shear 剪切;切变shear-banding 剪切带shear deformation 剪切形变shear elasticity (=shear modulus) 剪切模量shear stress 剪切应力shear viscosity 剪切粘度plastic flow 塑性流动plastic fluid 塑性液体torsional moment 扭矩torsional pendulum 扭摆torsional vibration rheometer 扭转振动流变仪smelting 熔炼;熔化softening 软化softening temperature 软化温度;软化点fusion heat 熔化热laminar flow 层流polymer melt 聚合物熔体molten polymer 熔融聚合物molten state 熔融状态swelling ratio 溶胀比;胀大比phase equilibrium 相平衡phase transition 相转变-------------------------------------------------------------------------------- 第十章聚合物的电学性能\热性能\光学性能\以及表面与界面性能ageing process 老化过程ageing property 老化性能;耐老化性ageing resistance 耐老化性;抗老化性ageing time 老化时间;老成时间air permeability 透气性dielectric 电介质;介电的dielectric anisotropy 介电各向异性dielectric breakdown 介电击穿dielectric constant 介电系数;介电常数dielectric dissipation factor 介电损耗因子;介电损耗角正切dielectric heating 介电加热dielectric loss 介电损耗dielectric loss factor 介电损耗因子dielectric loss tangent 介电损耗(角)正切dielectric property 介电性质dielectric polarization 介电极化dielectric relaxation 介电松弛dielectric spectra 介电谱conductive polymer 导电聚合物flame resistance 阻燃性flame retardant 阻燃剂flammability 可燃性heat endurance 耐热性heat expansion 热膨胀heat resistance 耐热性high-temperature stability 高温稳定性heat-resistant polymer 耐热聚合物thermal conductivity [1]热导率;导热系数[2]导热性high polymeric polyelectrolyte 高聚物电解质insulating property 绝缘性质low temperature brittleness 低温脆性thermoplastic [1]热塑性塑料[2]热塑性的thermoplasticity 热塑性thermoset plastic 热固性塑料thermosetting plastic 热固性塑料thermosetting resin 热固性树脂thermostability 热稳定性;耐热性translucency 半透明性;半透明度transparency [1]透明性[2]透光度triboelectricity 静电作用;摩擦生电true melting point 真熔点true strain 真应变true stress 真应力Vicat softening point 维卡软化点voltage breakdown 击穿电压wearability 耐磨性wear resistance 耐磨性weatherability 耐候性;耐老化性wettability 吸湿性;润湿性solidness 硬度;硬性strength 强度mechanical property 力学性能;机械性能thermal coefficient of expansion 热膨胀系数gas proofness 不透气性;气密性gas tight 不透气的;气密的anti-static 抗静电的breakdown strength 击穿强度doping 掺杂electric breakdown 电击穿electrodialysis 电渗析-------------------------------------------------------------------------------- 聚合物名称单词ABS resin ABS树脂aldehyde polymer 醛类聚合物aidehyde resin 缩醛树脂;聚醛树脂aldol condensation 醛醇缩合aldol resin 醛醇树脂chemical fibers 化学纤维composite 复合材料composite material 复合材料conjugate fiber 组合纤维;复合纤维high-density polyethylene 高密度聚乙烯low density polyethylene 低密度聚乙烯low molecular polymer 低聚物;低分子量聚合物low pressure processed polyethylene 低压法聚乙烯medium-density polyethylene 中密度聚乙烯phenol-aldehyde plastics 酚醛塑料phenol-aldehyde resin 酚醛树脂phenolic plastics 酚醛塑料polyacrylonitrile 聚丙烯腈polybutadiene 聚丁二烯polybutene 聚丁烯polycarbonate 聚碳酸酯polychlorovinyl 聚氯乙烯poly(ethylene terephthalate) 聚对苯二甲酸乙二醇酯poly(methyl methacrylate) 聚甲基丙烯酸甲酯poly(1-phenylethylene) 聚1-苯基亚乙基;聚苯乙烯polyvinyl formal 聚乙烯醇缩甲醛poly(phenylene ether) 聚苯醚polypropylene 聚丙烯synthetic resin 合成树脂synthetic rubber 合成橡胶synthon 合成纤维最新文件仅供参考已改成word文本。

基于聚(N-异丙基丙烯酰胺-丙烯酸)水凝胶合成与应用研究进展

基于聚(N-异丙基丙烯酰胺-丙烯酸)水凝胶合成与应用研究进展

基于聚(N-异丙基丙烯酰胺-丙烯酸)水凝胶合成与应用研究进展张倩;陈凯月;焦体峰【摘要】智能聚合物水凝胶受到温度、pH、离子强度及其他生物分子等环境影响时,能够产生快速的响应行为,有着诱人的应用前景,因而受到了人们的广泛关注.近10年间,人们合成了聚(N-异丙基丙烯酰胺-丙烯酸)[P(NIPAM-AA)]及其共聚物水凝胶,其合成方法、性能及应用已在文献中报道.本文主要介绍了[P(NIPAM-AA)]水凝胶在医学、环境、纳米技术、催化与光子学领域的合成、基本性能及应用.【期刊名称】《广州化工》【年(卷),期】2018(046)001【总页数】4页(P6-8,14)【关键词】聚(N-异丙基丙烯酰胺-丙烯酸);水凝胶;性能;复合材料【作者】张倩;陈凯月;焦体峰【作者单位】迁安市环保局, 河北迁安 064400;燕山大学环境与化学工程学院, 河北秦皇岛 066004;燕山大学环境与化学工程学院, 河北秦皇岛 066004;燕山大学环境与化学工程学院, 河北秦皇岛 066004【正文语种】中文【中图分类】O648.11水凝胶是一种具有交联结构的胶体粒子如图1所示[1],粒径通常是在0.1~10μm 之间,可在合适的溶剂中膨胀,同种水凝胶在整个网络结构中具有相同的组成和结构[2]。

在核壳水凝胶颗粒中,核与壳属于不同种材料[3],中心处水凝胶的交联密度比周边交联密度要高,故视为一种壳核结构。

在本文中着重研究均匀的水凝胶颗粒。

反应性水凝胶在外部环境温度[4-6]、pH[7]、离子强度[8]、分子键[9]、光[10]、磁场[11]等刺激下会迅速产生溶胀、消溶的轻微变化,智能水凝胶由于其在药物运输[12],葡萄糖传感[13-14],光电[15],催化[16-17],环境科学[18]等领域的潜在应用,因而受到了广泛关注。

聚(N-异丙基丙烯酰胺)[P(NIPAM)]是智能水凝胶的一种[19-27],这种温敏性凝胶在32℃时颗粒会突然变小[4],这个临界温度称为体积相变温度(VPTT)。

席夫碱型有机小分子荧光探针的制备与表征——推荐一个综合化学实验

席夫碱型有机小分子荧光探针的制备与表征——推荐一个综合化学实验

No. 2
doi: 10.3866/PKU.DXHX201906008
71
可以促进学生对化学知识体系的融会贯通,更能激发学生学习化学的积极性。这些知识的掌握和实 践,也为本科毕业生在相关领域的深造和就业打下良好的基础。
本实验包括席夫碱有机配体的设计合成,红外光谱、核磁共振波谱和质谱等常用表征手段的应 用,以及荧光性质的研究等内容。
Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
Abstract: In this paper, a new experiment named “synthesis and characterization of a fluorescent molecule based on Schiff-base” is introduced. It contains the synthesis and characterization of organic compounds, the determination of fluorescence, and the detection of metal ions. This experiment is helpful for students to better understand inorganic chemistry, organic chemistry and analytical chemistry. Moreover, it gives students an opportunity to know the study of organic fluorescent probes. This will stimulate students’ interest in scientific research and cultivate their research ability. Thus, this experiment can be introduced to senior undergraduates.

相变微胶囊的热导率测量郑兴华

相变微胶囊的热导率测量郑兴华

中国工程热物理学会传热传质学学术会议论文编号:113473相变微胶囊的热导率测量郑兴华1,2,邱琳1,2,祝捷1,2,苏国萍1,2,唐大伟1 (⒈国科学院工程热物理研究所, 北京 100190; ⒉中国科学院研究生院, 北京 100039 )(Tel*************,Email:**********************)摘要:提出应用3ω谐波探测技术进行脲醛树脂-石蜡相变微胶囊的等效热导率测量方法。

测试了跨越相变温度区间的微胶囊等效热导率,分析了等效热导率随温度的变化关系。

在其相变温度区间内,热导率存在极大值,该极值点对应的温度与其相变温度峰值一致。

同样温度下,降温时的等效热导率略小于升温,这主要是由降温时相变材料的过冷引起。

关键词:谐波探测;等效热导率;相变微胶囊0前言利用成膜材料把固体或液体材料包覆形成微小粒子的技术,将相变材料进行胶囊化后形成的相变材料微胶囊(Micro encapsulated phase change material,简称MEPCM),囊心与外界环境隔开,可使相变材料免受外界湿度、氧气等因素的影响改善传统相变材料的稳定性,且可解决固-液相变材料相变后液相的流动、挥发、腐蚀及泄漏问题,降低相变材料的毒性。

另外由于微胶囊粒径均匀、直径较小且囊壁较薄,在有效提高相变材料的热传递及使用效率的同时也更易于分散到其他材料中制成性能更加优异的相变储能材料及各种新型功能材料。

目前MEPCM已经可以应用于智能调温纺织品、皮革工业、传热流体、建筑物、太阳能利用、余热回收及农业等领域中,相变储能微胶囊的研究正成为世界范围内的研究热点[1-7]。

目前,国内外关于MEPCM的研究主要集中在其制备方法、焓值、相变潜热及应用领域[8-14],而对于直接影响其传热能力及蓄热调温能力的等效热导率的测量研究较少。

这一方面是因为相变微胶囊目前的生产工艺尚不可量产,科研人员将主要的关注焦点集中在其制备方法上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档