27.2.2 相似三角形的性质
人教版数学九年级下册27.2.2《相似三角形的性质》教案
人教版数学九年级下册27.2.2《相似三角形的性质》教案一. 教材分析人教版数学九年级下册27.2.2《相似三角形的性质》是学生在学习了相似三角形的概念和性质之后的一个深化和拓展。
本节内容主要让学生掌握相似三角形的性质,并能够运用这些性质解决一些实际问题。
教材通过生动的例题和丰富的练习,帮助学生理解和掌握相似三角形的性质,培养学生的几何思维和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经学习了相似三角形的概念和性质,对相似三角形的知识有一定的了解。
但学生在运用相似三角形的性质解决实际问题时,往往会存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,帮助学生更好地理解和运用相似三角形的性质。
三. 教学目标1.理解相似三角形的性质,并能够运用这些性质解决一些实际问题。
2.培养学生的几何思维和解决问题的能力。
3.提高学生的数学兴趣,使学生能够自主学习,提高学习效果。
四. 教学重难点1.掌握相似三角形的性质。
2.能够运用相似三角形的性质解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过提出问题,引导学生思考和探索,从而激发学生的学习兴趣。
通过案例教学,让学生直观地理解和掌握相似三角形的性质。
通过小组合作学习,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾相似三角形的概念和性质,为新课的学习做好铺垫。
2.呈现(15分钟)教师通过多媒体展示相似三角形的性质,让学生直观地理解和掌握。
同时,教师结合性质给出相应的例题,让学生进一步理解和运用。
3.操练(15分钟)教师给出一些练习题,让学生独立完成。
教师在过程中给予个别学生指导,确保学生能够正确地运用相似三角形的性质解决问题。
4.巩固(10分钟)教师学生进行小组讨论,让学生分享自己的解题心得,互相学习和交流。
27.2.2相似三角形的性质.ppt
都等于相似比.
角 对应角平分线的比
形 周长的比
相似三角形的性质
问题:两个相似三角形的面积 之间有什么关系呢?
用心观察 当相似比=k时,面积比=k2.
(1)
1
(2)
2
(3)
3
(1)与(2)的相似比=_1_∶___2_, (1)与(2)的面积比=___1_∶__4 (2)与(3)的相似比=___2∶___3, (2)与(3)的面积比=___4_∶__9
其中AD、 AD分别为BC、 BC边上的高,
由ABD ∽ABD能否得到 AD 等于什么?
AD
因为ABD∽ ABD,
所以 AD AB (相似三角形的对应边成比例)
AD AB
k
结论:相似三角形对应高
的比等于相似比.
图 18.3.9
图 18.3
自主思考---类似结论
问题2 : 如图, ABC∽ ABC,相似比为k,
相似三角形面积的比等于相似比的平方.
已知△ABC∽△ A,B且C 相似比为k,
AD、 分A别D是△ABC、△ 对AB应C边 BC、
上的高B,C求 证:
证明:∵△ABC∽△ABC
S ABC k 2
S ABC
A
∴ AD k, BC k
AD BC
B
D
C
∴ SABC
1 AD• BC 2
k2
A'
SABC 1 AD • BC
4.如图,在 ABCD中,若E是AB的中点,
则(1)∆AEF与∆CDF的相似比为__1__: _2_.
(2)若∆AEF的面积为5cm2,
k AE 1 CD 2
则∆CDF的面积为____2_0_c.m2 D
人教版九年级数学下册27.2.2相似三角形的性质说课稿
(三)学习动机
为了激发学生的学习兴趣和动机,我将在教学中采取以下策略或活动:
1.创设生活情境,引入与相似三角形相关的实际问题,让学生感受到数学知识的实用性和趣味性;
2.设计具有挑战性的探究活动,引导学生通过自主探究、合作交流发现相似三角形的性质;
在总结反馈阶段,我将采取以下方式引导学生自我评价并提供有效的反馈和建议:
1.自我评价:让学生回顾本节课所学内容,总结相似三角形的定义、判定方法和性质,评估自己的学习效果;
2.互相评价:组织学生相互评价,鼓励他们提出建议和意见,促进学生之间的交流;
3.教师反馈:针对学生的表现,给予肯定和鼓励,对存在的问题进行指导,提供改进的建议。
板书在教学过程中的作用是帮助学生梳理知识结构,强化记忆。为确保板书清晰、简洁且有助于学生把握知识结构,我将:
1.在课前精心设计板书内容,确保逻辑性和条理性;
2.在课堂中适时更新板书,突出重难点;
3.使用不同颜色粉笔,区分关键信息和辅助信息,提高视觉效果。
(二)教学反思
在教学过程中,我预见到以下可能出现的问题或挑战:
3.利用多媒体教学资源,如动画、图片等,形象生动地展示相似三角形的性质,提高学生的学习兴趣;
4.适时给予学生鼓励和肯定,增强他们的自信心,培养良好的学习氛围;
5.组织课堂讨论和小组竞赛,激发学生的学习积极性,培养团队协作能力。
三、教学方法与手段
(一)教学策略
我将采用的主要教学方法包括启发式教学、探究式教学和情境教学。选择这些方法的理论依据如下:
2.多媒体资源:课件、动画、图片等,形象生动地展示相似三角形的性质,提高学生的学习兴趣;
27.2.2 相似三角形的性质课件(共21张PPT)
∴ AD//BC,AD = BC,AE:BC=2:5.
∵△AEF∽△CBF, ∴ S△AEF:S△CBF = 4:25.
注意:
②当 AE:ED = 3:2时,AE:AD = 3:5,
AE: ED要分两种
同理可得, S△AEF:S△CBF = 9:25.
情况讨论.
27.2.2 相似三角形的性质
D'
C
C'
27.2.2 相似三角形的性质
(2)玻璃样品的角平分线和图纸上的角平分线相对应吗?如图,△ABC
∽△A′B′C′,相似比为 k,求它们对应角平分线的比.
A
解:如图,分别作出 △ABC 和△A' B' C' 的角平分线
AD 和 A'D',则∠BAD =∠B' A' D'
∵△ABC ∽△A′B′C′
∵△CEB的面积为9,∴△FDE的面积为1,∴△ABF的面积为4,
∴▱ABCD的面积=9-1+4=12.
27.2.2 相似三角形的性质
课堂小结
对应角相等
相
似
三
角
形
的
性
质
对应边成比例
对应边的比叫做相似比
对应高的比,对应中线的比、对应角平分线的比都等于
相似比.
周长的比等于相似比
面积的比等于相似比的平方
(5)图纸中图形与三角形玻璃样品面积比也等于相似比吗?为什么?
如图,△ABC ∽△A′B′C′,相似比为 k,它们的面积比是多少?
A
B
A'
C
B'
C'
27.2.2 相似三角形的性质
最新人教版九年级数学相似三角形27.2.2相似三角形的性质
27.2.2相似三角形的性质
知识点
1.如何灵活应用相似三角形的判定方法
(1)条件中若有平行线,可以采用找角相等证明两个三角形相似
(2)条件中若有一对等角,可再找一对等角或者再找此角所在的两边比对应相等
(3)条件中若有两边比对应相等,可找夹角相等或者第三边的比对应相等
(4)条件中若有一对直角,可考虑再找一对等角或两直角边的比对应相等
(5)条件中若有等腰三角形,可找顶角相等或找一对底角相等或找腰和底的比对应相等
2.相似三角形的性质:对应边的比相等,对应角相等(画出图形,并且用数学符号语言表示)
3.相似三角形对应线段(对应高,对应中线,对应角分线)的比:等于相似比(画出图形,写出已知求证并证明)
4.相似三角形(多边形)的周长比:等于相似比(画出图形,写出已知求证并证明)
5.相似三角形(多边形)的面积比:等于相似比的平方(画出图形,写出已知求证并证明)
练习题
5.
6.。
27.2.2相似三角形的性质课件
练习
1、两个相似三角形对应高的长分别是6cm和18cm,若较大三角形的周长是42cm,面积是12cm2,则较小三角形的周长为____cm,面积为____cm2。
2、在△ABC中,DE∥BC,EF∥AB,已知△ADE和△EFC的面积分别为4和9,求△ABC的面积。
14
第10页/共20页
同理可证:相似三角形对应边上的中线,对应角平分线的比也等于K。结论: 相似三角形对应高的比,对应边上的中线,对应角平分线的比等于______。
相似比
第2页/共20页
知识点二:相似三角形的周长比
已知,如图,△ABC∽△A′B′C′,探究下列问题: △ABC与△A′B′C′的对应边有什么 关系?
相似比
相似比的平方
第12页/共20页
强化训练
1、连结三角形两边中点的线段把三角形截成的一个小三角形与原三角形的周长比等于____,面积比等于____。
2、如果两个相似三角形面积的比为3∶5 ,那么它们的相似比为_______,周长的比为________。
第13页/共20页
强化训练
3、在一张复印出来的纸上,一个多边形的一条边由原图中的2cm变成了6cm,这次复印的放缩比例是多少?这个多边形的面积发生了怎样的变化?
知识点一:相似三角形对应高的比、对应中线的比、对应角平分线的比
已知,如图,△ABC∽△A′B′C′AD,A′D′分别是△ABC与△A′B′C′的高,(1)相似三角形的对应高的比与相似比有什么关系? 写出推导过程。
相等
第1页/共20页
证明:(1)∵△ABC∽△A′B′C′ ∴ ∠B=∠ B′ 又∵AD⊥BC A′D′⊥B′C′ ∴∠ADB=∠ A′D′B′=90° ∴△ABD∽△A′B′D′ ∴
人教版九年级下册27.2.2相似三角形的性质优秀教学案例
一、案例背景
本节内容是“人教版九年级下册27.2.2相似三角形的性质”,是学生在掌握了相似三角形的概念后,进一步探究相似三角形的性质。通过学习,学生能理解和掌握相似三角形的性质,提高他们的几何思维能力,为解决实际问题打下基础。
在教学过程中,我以生活中常见的几何图形为切入点,引导学生发现相似三角形的性质,并通过丰富的教学活动,让学生在实践中体验和感悟这些性质。同时,我注重培养学生的合作交流能力,让他们在讨论中加深对知识的理解。
2.培养学生运用类比、归纳等数学方法,发现和总结数学规律的能力。引导学生从特殊到一般,再从一般到特殊的思考方式,形成良好的数学思维习惯。
3.使学生掌握相似三角形的判定方法,能运用判定方法判断两个三角形是否相似。通过对比、分析,让学生理解判定方法的本质,提高他们的数学分析能力。
(二)过程与方法
1.培养学生主动探究、合作交流的能力。鼓励学生在课堂上积极提问、发表见解,与他人分享自己的思考和发现。通过小组讨论、合作探究等形式,让学生在互动中学习,提高他们的沟通与合作能力。
2.利用多媒体技术,如图片、视频等,展示相似三角形的实际案例,让学生直观地感受相似三角形的性质,提高他们的空间想象力。
3.设计具有启发性的问题,引导学生主动探究相似三角形的性质。如通过提出“为什么相似三角形的性质是这样的?”等问题,激发学生的好奇心,培养他们的思考能力。
(二)问题导向
1.引导学生发现和提出问题。鼓励学生在学习过程中主动发现问题,并大胆提出来,与他人共同探讨。如在学习相似三角形的性质时,学生可以提出“如何判断两个三角形是否相似?”等问题。
2.教师可提出一些与相似三角形相关的问题,如“你们知道相似三角形的性质吗?它们有哪些实际应用?”等,引发学生的思考,为导入新课做好铺垫。
人教版九年级数学下册:27.2.2 《相似三角形的性质》教学设计2
人教版九年级数学下册:27.2.2 《相似三角形的性质》教学设计2一. 教材分析《人教版九年级数学下册》第27.2.2节《相似三角形的性质》是学生在学习了相似三角形的概念和性质之后的内容。
本节主要让学生掌握相似三角形的性质,并能够运用这些性质解决实际问题。
教材通过具体的例题和练习,引导学生探究相似三角形的性质,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了相似三角形的概念,并对相似三角形的性质有一定的了解。
但在实际运用中,对相似三角形的性质的理解和运用还存在一定的困难。
因此,在教学过程中,要注重引导学生通过观察、操作、思考、交流等活动,加深对相似三角形性质的理解,提高解决问题的能力。
三. 教学目标1.理解相似三角形的性质,并能够运用性质解决实际问题。
2.培养学生的观察能力、操作能力、逻辑思维能力和解决问题的能力。
3.激发学生学习数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.相似三角形的性质及其运用。
2.学生在实际问题中,如何运用相似三角形的性质解决问题。
五. 教学方法1.采用问题驱动法,引导学生通过观察、操作、思考、交流等活动,发现相似三角形的性质。
2.使用案例分析法,让学生在具体的问题中,运用相似三角形的性质解决问题。
3.运用启发式教学法,引导学生主动探究,培养学生的创新精神和合作意识。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备练习题和课后作业。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生回顾相似三角形的概念和性质。
例如:在平面直角坐标系中,已知两个三角形的三个顶点坐标,如何判断这两个三角形是否相似?2.呈现(10分钟)呈现教材中的例题,引导学生观察、分析,发现相似三角形的性质。
通过小组讨论,让学生总结出相似三角形的性质。
3.操练(10分钟)让学生通过实际的例题,运用相似三角形的性质解决问题。
27.2.2+相似三角形的性质++课件++-2024-2025学年人教版九年级数学下册
数关系往往需要考虑相似比与对应线段的比,以及相似比
与面积比之间的关系.
综合应用创新
题型
4 利用相似三角形的性质解决实际问题
例 7 课本中有一道复习题:如图27.2-37 ①所示,有一
块三角形材料ABC,它的边BC=120 mm,高AD=
80 mm,要把它加工成正方形零件,使正方形的边
′′
= =k
′′
相似比为k
感悟新知
知1-讲
续表
图形
推理
结论
由两角分别相等
的两个三角形相 相 似 三 角
对应
似 , 得 △ABD ∽ 形 对 应 高
高的
AD , A′D′ 分 别 为 △A′B′D′ , 再 由 相 的 比 等 于
比
△ABC 和 △A′B′C′ 的 似 三 角 形 的 性 质 ,相似比
-6
3
2
6
3 2
2
) ×24= x -
2
12x
+24.
3
8
3
2
9
8
∴ y=S△A1MN-S△A1EF= x2-( x2-12x+24=- x2+12x-
24(4 <x<8).
16
易知当x= 时,y最大=8.
3
16
3
∵ 8>6,∴当x= 时,y最大,y 最大=8.
综合应用创新
解法提醒
本题运用了分类讨论思想,对点A1与四边形BCNM的
的平分线.
感悟新知
知1-练
例 1 如图27.2-32,在△ABC中,AD是BC边上的高,矩形
EFGH内接于△ABC,且长边FG在BC上,AD与EH的
27.2.2 相似三角形的性质
相 似 三 角 形
如图,△ABC~△A'B'C',它们对应的高,对 应的中线,对应角平分线的比与相似比一样 吗?
A
A′
B
D
C
B′
D′
C′
如图AD、 A′D′ 分别是锐角△ABC和锐角 △A′B′C′的高,且△ABC∽ △A′B′C′,则 AD:A’D’=AB:A’B’. ∵ △ABC∽ △A′B′C′, A ∴∠B=∠B’ 又因为AD、 A′D′ 分别是 △ABC和△A′B′C′的高 C ∴∠ADB=∠A’D’B’=9 B D 0° ABD和△A′B′D′中 在△ A′ ∠B=∠B’ ∠ADB=∠A’D’B’ ∴ △ABD∽ △A′B′D′,
判断题(正确的打“√”,错误的画“×”) (1)一个三角形的各边长扩大为原来的5倍,这个三角形的 角平分线也扩大为原来的5倍
( √ )
(2)一个三角形的各边长扩大为原来的9倍,这个三角形的
面积也扩大为原来的9倍
( ×)
B′ D′ C′
∴AD:A’D’=AB:A’B’.
相似三角形对应高的比,对应中线的比、对应 角平分线的比都等于相似比.
填空: (1)两个三角形的对应边的比为3:4,则这两 个三角形的对应角平分线的比为__3:4___ ,对 应边上的高的比为_3:4___,对应边上的中线的 比为__3:4__ (2)相似三角形对应角平分线比为0.2,则相似比 为___0.2___,对应中线的比等于__0.2___;
对应角相等 相 似 三 角 形 的 性 质
对应边成比例 相似比等于对应边的比 对应高的比,对应中线的比、对应角平分 线的比都等于相似比. 周长的比等于相似比 面积的比等于相似比的平方
1、两个相似多边形的面积比为4:1,则它们的 2:1 。 2:1 ,周长比为_______ 相似比为_______ 2、如果把一个三角形的三条边长都扩大为原 10000 来 100 的100倍,则面积扩大为原来的 _______倍,周长 扩大为______倍。 3、如果把一个三角形的面积扩大为原来的100 10 倍,周长为原来的 倍,则边长为原来的_____ 10 倍。 ______
27.2.2_相似三角形的性质
练习:
(1)已知ΔABC与ΔA/B/C/ 的相似比为2:3, 则周长比为 2:3 ,对应边上中线之比 2:3 ,
面积之比为 4:9 。
(2)已知ΔABC∽ΔA/B/C/,且面积之比为9:4, 则周长之比为 3: 2 ,相似比 3:2 ,对应边上的
高线之比 3:2 。
(3) 如图,在▱ABCD中,E为CD上一点,连接AE、 BD,且AE、BD交于点F.S△DEF:S△ABF =4:25, 则DE:EC=__________ 2:3
相似三角形的周长与面积
(1)相似三角形有哪些判定方法?
平行法,(SSS),(SAS),(AA) (HL)
(2)相似三角形有什么性质?根据是什么? 对应角相等 根据定义 对应边成比例 (3)相似三角形的对应边的比叫什么? 相似比 (4) ΔABC与ΔA/B/C/ 的相似 比为 k, 则ΔA/B/C/
从而 l ABC
lA`B `C `
AB BC CA kA`B`kB`C `kC`A` k A`B` B`C `C `A` A`B` B`C `C `A`
1.相似三角形周长的比等于相似比。
三角形中,除了角和边外,还有哪三种主要线段:
高线,角平分线, 中线
高线
角平分线
例1、如图在ΔABC 和ΔDEF中,AB=2DE, AC=2DF,∠A=∠D,ΔABC的周长是24,面积是 48,求ΔDEF的周长和面积。 解:
∵
AB=2DE,AC=2DF
E
D
DE 1 DF 1 , AB 2 AC 2 DE DF 1 Байду номын сангаас AB AC 2 又∠A=∠D 1 ∴△DEF∽ △ABC,相似比为
A
D
27.2.2相似三角形的性质(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如制作两个相似三角形的模型,并测量它们的边长和角度,以演示相似性质的基本原理。
2.教学难点
-理解相似比的概念,并将其应用于解决实际问题。
-探索并证明相似三角形的周长比、面积比等于相似比。
-理解相似三角形的性质在不同情境下的运用,如等腰三角形、直角三角形等特殊情况。
举例:
a.难点一:相似比的概念。教师需通过直观图形和实例,解释相似比的意义,并指导学生如何计算相似比。
b.难点二:证明相似三角形的周长比、面积比等于相似比。教师需引导学生通过几何画板或实际操作,观察并发现这一性质,并尝试进行证明。
c.难点三:特殊情况下相似三角形性质的应用。教师需针对等腰三角形、直角三角形等特殊情况进行讲解,让学生理解相似性质在特殊图形中的应用。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相似三角形的性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过形状相似但大小不同的三角形?”(如地图上的三角形区域)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似三角形性质的奥秘。
三、教学难点与重点
1.教学重点
-理解并掌握相似三角形的定义,明确相似三角形的判定条件。
-掌握相似三角形的性质,包括对应角相等、对应边成比例。
27.2.2-相似三角形的性质28
随堂练习1
1.已知ΔABC与ΔA’B’C’的相似比为2:3,则
周长比为 2,:3对应边上中线之比 ,面积
之比2:为3 。
4:9
2. 如果两个相似三角形的面积之比为1:9,则
它们对应边的比为____1_:3_,对应角平分线的比
为____1_:3_ ,周长的比为____1_:_3 。
3. 如果两个相似三角形的面积之比为2:7,较
A′D′平分∠B′A′C′,且
AA′BB′=k
.
求证:
AD A′D′
=k
.
A A′
B D
角平分线
B′ C
D′
C′
证明:∵△ABC∽△A′B′C′,
∴∠BAC= ∠B′A′C′,∠B=∠B′,
∵AD、A′D′是角平分线,
∴∠BAD=
1 2
∠BAC
,
∠B′A′D′=
12∠B′A′C′.
∴∠BAD = ∠B′A′D.
∴△ABD∽△A′B′D′, A
A′
∴
AD A′D′
=
AB A′B′
∴
AD A′D′
=k
.
B
D
C B′ D′ C′
相似三角形的对应角平分线之比等于相似比。
探究新知
相似三角形的性质:
中线
(1)相似三角形对应 高 的比都等于相似比.
角平分线
概括为:相似三角形所有对应线段之比都等于相似比.
猜想:那么相似三角形周长的比与相似比有什么关系?
答:放缩比例是1:3;这个三角形的面积扩大为 原来的9倍.
随堂练习2 1. 已知两个三角形相似,请完成下列表格.
相似比 4
1
10
相似三角形的性质--对应线段、周长
27.2.2(1.1)相似三角形的性质--对应线段、周长一.【知识要点】1.常见模型:2.山字型二.【经典例题】1.如图,△ABC 中若DE ∥BC ,EF ∥AB ,则下列比例式正确的是( )A .BC DE DB AD = B .ADEF BC BF = C .FC BF EC AE = D .BC DE AB EF =2.如图所示,在矩形ABCD 中,AB =4,BC =12,点F 在AD 边上,AF:FD =1:3,CE ⊥BF 交BF 的延长线于点E ,交AD 于点G ,求△BCE 的周长.3.已知:在ΔABC 中,BC=10,BC 边上的高h=5,点E 在边AB 上,过点EF//BC,交AC 边于点F,点D 为BC 上一点,连接DE 、DF.那么ΔDEF 的面积的最大值为 .4.如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC 、AB 上的高求证:(1)△ABD ∽△ACE ;(2)△ADE ∽△ABC ;(3)BC=2ED三.【题库】【A 】1.如图,DE ∥BC,若AD=3,BD=2,AG ⊥BC ,交DE 于 F,,则AG:AF= :____.【B 】 1.如图所示,小明家的窗口面对大楼,相距AB =80m ,窗高CD =1.2m,小明从窗口后退2m ,眼睛从点O 处恰好能看到对面楼顶E 和楼底F ,则大楼的高度为____________.2.如图所示,AB∥GH∥CD,点H在BC上,A C与BD交于点G,AB=2,CD=3,则GH的长为。
【C】1.如图,三个正方形的边长分别为2,6,8;则图中阴影部分的面积为_____________.【D】(答案:12.考查:相似三角形的判定和性质;转化线段)。
2.如图,在ΔABC中,AB=AC=a,BC=b(a>b)。
在ΔABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE。
则EF等于()。
(答案:C.考查:相似三角形的判定和性质)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.2.2 相似三角形的性质
知识技能 1.理解并掌握相似三角形及相似多边形的对应高、中线、角平分线的性质;
2.理解并掌握相似三角形及相似多边形的周长与面积的性质;
3.能够运用相似三角形及相似多边形的性质解决相关问题.
数学思考 经历相似三角形各条性质的简单推理过程,进一步深化对相似三角形的认识. 问题解决1.学会把多边形问题转化为三角形问题来解决的方法;
2.能够运用相似三角形和相似多边形的性质解决有关问题.
情感态度 通过对性质的发现和论证的过程,感受数学活动充满着探索以及数学结论的确定性,提高学习热情、增强探究意识. 重点 相似三角形的性质. 难点 探究相似三角形的性质.
活动1 知识准备
1.如图27-2-178,如果△ABC ∽△DEF ,那么AB DE =__BC EF __=__AC
DF __,∠A =__∠D __,
∠B =__∠E __,∠C =__∠F __.
图27-2-178
2.若两个相似三角形的边长分别为2 d m ,5 d m ,6 d m 和1 m ,2.5 m ,3 m ,则它们的相似比是__1∶5__.
活动2 教材导学
1.相似三角形周长的比
如果两个三角形相似,那么它们的周长之间有什么关系? 分析:已知△ABC ∽△A ′B ′C ′,相似比为k ⇒
AB A ′B ′=BC B ′C ′=CA
C ′A ′
=k ⇒AB =kA ′B ′,
BC =__kB ′C ′__,CA =__kC ′A ′__⇒AB +BC +CA
A′B′+B′C′+C′A′=__kA ′B ′+kB′C′+kC′A′A′B′+B′C′+C′A′__=__k __.
可以得到:相似三角形周长的比等于相似比.
2.相似三角形对应高的比、面积的比
如图27-2-179,已知△ABC ∽△A ′B ′C ′,相似比为k 1,它们对应高的比是多少?面积的比呢?如何利用这个图形证明?
图27-2-179
分析:如图27-2-179,分别作出△ABC 和△A ′B ′C ′的高AD 和A ′D ′. ∵∠ADB =__∠A ′D ′B ′__=90°,∠B =__∠B ′__, ∴△ABD ∽△A ′B ′D ′. ∴
AD A ′D ′=__AB
A ′
B ′
__=__k 1__.
可以得到:相似三角形对应高的比等于相似比.
S △ABC
S △A ′B ′C ′=1
2
BC ·AD 12B ′C ′·A ′D ′=BC B ′C ′·AD
A ′D ′=k 1·k 1=k 21. 可以得到:相似三角形面积的比等于相似比的平方.
► 知识点一 相似三角形对应线段之比
相似三角形对应高的比,对应中线的比与对应角平分线的比都等于__相似比__. ► 知识点二 相似三角形的周长之比
相似三角形周长的比等于__相似比__.类似地,相似多边形周长的比等于__相似比__. ► 知识点三 相似三角形的面积之比
相似三角形面积的比等于__相似比的平方__.类似地,相似多边形面积的比等于__相似比的平方__.
探究问题一 相似三角形对应线段性质的应用
例1 如图27-2-180所示,在△ABC 中,BC =18,高AD =16,它的内接矩形的两邻边EF ∶F M =5∶9,长边F M 在BC 边上,求矩形
EF MN 的面积.
图27-2-180
[解析] 因为EF ∶F M =5∶9,所以可设EF =5x ,F M =9x ,根据相似三角形的性质,可求
出矩形的两邻边长.
解: ∵EF ∶F M =5∶9, ∴设EF =5x ,F M =9x .
∵AD =16,∴AP =AD -PD =16-5x . 由E N ∥BC ,得△AE N ∽△ABC , ∴EN BC =AP AD
, 即9x 18=16-5x 16,解得x =1613. ∴F M =9x =14413,EF =5x =8013,
∴S 矩形EF MN =
14413×8013=11520
169
. [归纳总结] 根据题意,利用相似三角形对应线段的性质建立比例式,得到已知线段与未知线段的数量关系,设未知数,列出方程求解.
探究问题二 相似三角形周长性质的应用
例2 如图27-2-181,在△ABC 中,DE ∥BC ,AD =2,BD =3,则△ADE 与△ABC 的周长之比为________.
图27-2-181
[答案] 2
5
[解析] ∵DE ∥BC ,∴△ADE ∽△ABC . ∴C △ADE C △ABC =AD AB =25
, 即△ADE 与△ABC 的周长之比为2
5
.
[归纳总结] 相似三角形的周长之比等于相似比,这一性质架起了两个相似三角形的线段长和周长之间的桥梁,为解答三角形的周长问题提供了依据.
一、选择题
1.若两个相似三角形的对应中线的比为3∶4,则它们对应角平分线的比为( ) A .1∶16 B .16∶9 C .4∶3 D .3∶4 [答案] D
2.如图27-2-182,AB ∥CD ,若AO OD =2
3
,则△AOB 的周长与△DOC 的周长的比是( )
图27-2-182
A .25
B .32
C .49
D .23 [答案] D
3.[2014·南京] 若△ABC ∽△A ′B ′C ′,相似比为1∶2,则△ABC 与△A ′B ′C ′的面积的比为( )
A .1∶2
B .2∶1
C .1∶4
D .4∶1 [答案] C
4.如图27-2-183,在△ABC 中,BC =2,DE 是它的中位线,下面三个结论:(1)DE =1;(2)△ADE ∽△ABC ;(3)△ADE 的面积与△ABC 的面积之比为1∶4.其中正确的有( )
A .0个
B .1个
C .2个
D .3个
[解析] D 因为DE 是△ABC 的中位线,所以DE =12BC =1
2×2=1,DE ∥BC , 所以
△ADE ∽△ABC ,其面积比等于相似比的平方.
图27-2-183 图27-2-184
5.如图27-2-184,在Rt △ABC 中,AD 为斜边BC 上的高,若S △CAD =3S △ABD ,则AB ∶AC 等于( )
A .1∶3
B .1∶4
C .1∶3
D .1∶2
[解析] C 由题意可得△CAD ∽△ABD ,所以S △ABD S △CAD =⎝⎛⎭⎫AB AC 2=1
3,所以AB AC =13.。