最新人教版六年级数学下册第四单元第1课时 比例尺的应用【教案】

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学笔记
3.比例的应用
第1课时比例尺(1)
教学内容
教科书P53例1,完成教科书P56“练习十”中第1~4题。

教学目标
1.结合具体情境,使学生理解比例尺的意义,掌握求比例尺的
方法,掌握数值比例尺与线段比例尺互相改写的方法。

2.使学生通过观察、猜测、推理、计算、绘图等活动,体验数
学与生活的联系,培养学生综合应用所学知识解决问题的能力。

3.使学生在观察、思考和交流等活动中培养分析、抽象、概括
的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣,
培养学生“学数学,用数学”的意识和创新精神。

教学重点
理解比例尺的意义。

教学难点
数值比例尺与线段比例尺互相改写的方法。

教学准备
课件、刻度尺。

教学过程
一、建构比例尺的概念,唤起已有知识的回忆
师:我们的教室长8m,宽6m。

如果要把这么大的一个教室在
纸上画出平面图,你有什么好办法?
【学情预设】学生会说出,缩小后画在纸上。

师:是个好办法,请看这里有两个长方形(出示课件),请同学
们仔细观察一下,哪个长方形能正确地表示出这个教室的平面图?
【学情预设】预设1:第一个是正确的,因为第一个长方形是
把教室的长缩小到原来的
1
100
,宽也缩小到原来的
1
100。

预设2:第二个是错误的,因为第二个长方形是把教室的长缩
小到原来的
1
200
,宽缩小到原来的
1
400
,长、宽缩小的比例不一样。

师:谁还想来解释一下?
【学情预设】预设1:第一个是正确的,它是按1∶100的比缩小的。

预设2:第二个是不正确的,因为4cm与8m的比是1∶200,而1.5cm与6m的比是1∶400。

师:大家分析得很对!其实大家所说的1∶100,1∶200,1∶400,这些我们都叫做比例尺。

在同一幅图中,用同一个比例尺,才能正
确表示原来的形状。

例如,第一幅图长和宽都缩小到原来的
1 100

也就是按1∶100的比缩小的,所以第一个长方形表示教室的平面图是正确的。

师:这节课我们就来研究有关比例尺的知识。

[板书课题:比例尺(1)]
【设计意图】学生在生活中对比例尺是有接触的,之前也学过比的知识,创设将教室的平面图画在纸上的情境,贴近学生生活实际。

要判断哪个长方形能准确表示教室的平面图,学生会自主地将图上长度与实际长度比较,找到它们之间的关系,写出图上长度与实际长度的比,由此很自然地引出课题。

二、联系旧知识,理解比例尺的意义
1.理解图上距离、实际距离、比例尺的意义。

师:我们把画在图上的长度比如8cm、6cm叫做图上距离,把教学笔记【教学提示】
引导学生在观察时,可以小组内讨论,教师可以提示学生算一算实际长度与图中长度的比。

教室实际的长度8m、6m叫做实际距离。

数学上把图上距离和实际距离的比,叫做这幅图的比例尺。

1∶100就是教室平面图的比例
尺。

(板书:图上距离∶实际距离=比例尺或图上距离
实际距离
=比例尺)
2.根据比例尺说意义。

师:根据1∶100这个比例尺,你能说说图上距离与实际距离的倍数关系吗?
【学情预设】图上距离是实际距离的
1
100
,实际距离是图上距
离的100倍,图上距离1cm表示实际距离100cm,也就是1m。

师:如果一幅地图的比例尺是1∶100000000,你能说出这个比例尺的含义吗?
【学情预设】图上距离是实际距离的
1
100000000
,实际距离是
图上距离的100000000倍,图上距离1cm表示实际距离100000000cm,也就是1000km。

(重点让学生说说100000000cm是怎样换算成1000km的,掌握1km=100000cm的进率。

)
三、数值比例尺和线段比例尺
1.认识数值比例尺和线段比例尺。

师:像1∶100000000这样的比例尺,通常叫做数值比例尺。

(板书)
师:有一幅北京地图的比例尺是这样表示的。

(教师在黑板上画出)这种叫做线段比例尺。

线段比例尺的一小段是1cm。

谁能说说这个线段比例尺的含义吗?
【学情预设】图上距离1cm表示实际距离50km。

师:线段比例尺通常不止画一段,可能会这样表示。

(教师边说边在黑板上画)谁再来说说这个线段比例尺表示的含义呢?
【学情预设】预设1:图上距离1cm表示实际距离150km。

预设2:图上距离1cm表示实际距离100km。

教学笔记
【教学提示】
这部分教学先揭示图上距离、实际距离的概念,而后引导学生概括出比例尺的概念,强化思维,突出重点,用填空的形式来帮助学生理解比例尺表示的意思,达到深入理解比例尺意义的目的。

预设3:图上距离1cm表示实际距离50km。

师:哪一位同学说得对呢?
【学情预设】指导学生明确线段比例尺有多段时,通常只看第一段,也就是图上距离1cm表示实际距离50km;如果看两段,那就是图上距离2cm表示实际距离100km;如果看三段,就是图上距离3cm表示实际距离150km。

2.数值比例尺和线段比例尺的改写。

(1)把数值比例尺改写成线段比例尺。

师:你能将数值比例尺1∶100000000改写成线段比例尺吗?
学生自主改写,集体订正后教师指导、规范格式。

【学情预设】学生可能出现的问题:将厘米换算成千米,进率出错;画线段比例尺时,每段长1cm,学生画得不规范;有的学生画了几段,数据标错了。

师:(一边画一边说)画一条1cm长的线段,第一个端点上标0,第二个端点上标1000km。

如果多画几段,在1cm处标1000,在2cm处标2000……在最后一段的数据中写上单位。

师:将数值比例尺1∶20000000改写成线段比例尺。

学生完成后集体订正。

(2)把线段比例尺改写成数值比例尺。

师:你能把这个线段比例尺改写成数值比例尺吗?自己动手试试吧!
【学情预设】预设1:1∶50。

预设2:1∶50000。

预设3:1∶5000000。

师:说说你们是怎么想的。

哪一个答案是正确的呢?
【学情预设】预设1:我认为1∶50这个比例尺是错误的,因为它表示图上距离1cm相当于实际距离50cm,不是50km。

(教师教学笔记
【教学提示】
数值比例尺与线段比例尺的改写是这节课的教学难点,这部分的教学,引导学生理解比例尺的意义,即图上距离1cm 表示实际距离多少,然后转化单位名称,改写成另一种比例尺。

注意让学生说清楚改写过程中的想法,要比较细致地处理这一部分的教学。

追问:你知道他是怎么错的吗?引导学生说出没有统一单位。

)
教学笔记预设2:我认为1∶50000这个比例尺也是错误的,因为它表
示图上距离1cm相当于实际距离50000cm,也就是500m,
不是50km。

(教师追问:你知道他是怎么错的吗?引导学生说出
单位换算错了。

)
预设3:我认为1∶5000000这个比例尺是正确的,因为它表
示图上距离1cm相当于实际距离5000000cm,5000000cm去掉5
个0就换算成了50km。

师:同学们真会思考!能从检验的角度来证明哪一个数值比例
尺改写得是正确的。

最后一名同学还给我们分享了一个把厘米换算
成千米的好办法,就是在数的末尾去掉5个0。

那大家想一想,如
果我们要把千米换算成厘米,方法是怎样的呢?(学生齐声回答:
在数的末尾添上5个0。

)
教师板书规范的改写过程:1cm∶50km
=1cm∶5000000cm
=1∶5000000
师:想一想:比例尺1∶5000000表示图上距离是实际距离的
几分之几?实际距离是图上距离的多少倍?
【学情预设】比例尺1∶5000000表示图上距离是实际距离的
1
,实际距离是图上距离的5000000倍。

5000000
师:把线段比例尺改写成数值比例尺。

学生完成后集体订正,注意格式的指导。

师:改写比例尺要注意什么?
【学情预设】学生会说出:要看清楚比例尺的意思,明白图上
距离1cm表示实际距离是多少;将线段比例尺改写成数值比例尺
时要注意统一单位;要注意千米与厘米的换算进率等。

教师及时进
行鼓励评价。

【设计意图】数值比例尺与线段比例尺的改写是建立在学生对
比例尺的概念的理解之上,首先要理解比例尺表示的含义,让学生
对不同形式的比例尺加以理解,在灵活改写的过程中全面理解概念。

四、学习放大比例尺,深化比例尺的内涵
1.观察对比。

师:观察这些比例尺(手指着黑板),它们有什么共同的特点?
【学情预设】预设1:比例尺就是一个比,是图上距离与实际距离的比。

预设2:比例尺的前项都是1。

2.创设情境,深入探究。

师:有一幅零件图纸的比例尺是2∶1,你知道它表示什么吗?
学生独立思考并发言。

【学情预设】预设1:这个比例尺表示图上距离1cm相当于实际距离2cm。

预设2:这个比例尺表示图上距离2cm相当于实际距离1cm。

师:他们谁说得对?
【学情预设】指导学生从比例尺的意义来理解,比例尺前项是图上距离,后项是实际距离,所以2∶1这个比例尺表示图上距离2cm相当于实际距离1cm。

3.比较放大比例尺与缩小比例尺。

师:刚才大家说比例尺的前项都是1,而这个比例尺的后项是1,你知道它们的区别吗?
【学情预设】指导学生说出前项是1的比例尺是缩小比例尺,后项是1的比例尺是放大比例尺。

(板书:缩小比例尺放大比例尺) 师:同学们再说说比例尺5∶1、20∶1的含义。

学生交流,集体评价。

师小结:为了计算方便,一般把比例尺写成前项或后项是1的形式。

【设计意图】出示放大比例尺,引起学生认知冲突,引导学生紧紧抓住比例尺的定义来解释后项为1的比例尺的含义。

比较缩教学笔记
【教学提示】
教师可以收集一些生活中的“放大比例尺”的示例,使学生更全面地认识比例尺。

小、放大比例尺,让学生从多个角度来思考比例尺的意义。

教学笔记五、求比例尺
1.课件出示教科书P53例1。

师:你能根据刚才所学的知识自主解决吗?试试吧!
因为图上距离∶实际距离=比例尺,120km=12000000cm,2.4∶
12000000=1∶5000000,即这幅地图的比例尺是1∶5000000。

2.课件出示教科书P53“做一做”。

【学情预设】预设1:5mm∶2cm=5mm∶20mm=1∶4。

预设2:2cm∶5mm=20mm∶5mm=4∶1。

指导学生辨析、明确求比例尺的方法是图上距离∶实际距离,
所以第二种答案是对的。

【设计意图】这部分的教学是练习求一幅图的比例尺,设计了
放大比例尺和缩小比例尺两种情况,让学生理解求比例尺的一般方
法。

六、巩固练习,综合应用
学生独立解答教科书P56“练习十”第1~4题。

解答完毕后,集中展示交流,订正。

【学情预设】第1题:这道题是将数值比例尺改写成线段比例
尺,比例尺1∶30000000表示的是1cm的图上距离相当于
30000000cm的实际距离,而线段比例尺是用1cm的线段表示出实
际距离为多长,一般用300km表示,更显得简洁。

如果学生在线
段比例尺上用30000000cm、300000m表示实际长度,从理论上讲
都是可行的,但要注意优化。

第2题:这道题已知图上距离和实际距离,求比例尺,根据比
例尺的意义,把4cm∶4m统一单位后化简就可以了,学生应感到
比较轻松。

第3题:这道题是已知实际距离,要求学生自己量出图上距离,
再求出比例尺,还要将算出来的数值比例尺转化为线段比例尺。

团结路在图上的长度约是6cm,这幅图的比例尺为1∶300000。

线段比例尺为。

第4题:要注意图上距离大于实际距离,求比例尺的方法仍然是图上距离∶实际距离,得到的是一个后项为1的比例尺6∶1。

七、课堂小结
师:回顾今天的学习过程,你们有什么收获呢?你能说说比例尺的特点吗?(课件出示比例尺的特点)
板书设计
教学反思
本节课把关注点聚焦到图上距离和实际距离的关系表示方法上,学生借助比较、讨论、交流等自主学习形式,探索发现比例尺的意义和表示方法。

呈现地图和零件图纸中的比例尺,借助生活中真实情境,深化了对比例尺意义的理解。

最后练习环节也借助房屋平面图、七星瓢虫等问题巩固本节课所学内容。

本节课内容比较多,学生可能会有混淆,数值比例尺与线段比例尺的改写以及求放大比教学笔记【教学提示】
完成这些练习时,要注意引导学生交流细节,说说比例尺的具体含义,在计算比例尺的过程中,要注意对格式和对计算正确性的引导。

例尺时出错较多,教师要注意抓住细节指导。

作业设计
第2课时比例尺(2)
教学内容
教科书P54例2,完成教科书P57“练习十”中第5、6题。

教学目标
1.进一步理解比例尺的意义,能根据比例尺求出相应的实际距离。

2.在用比例尺知识解决问题的过程中,掌握解决实际问题的方法。

3.了解不同形式的比例尺在生活中的实际应用,在具体情境中进一步体会比例尺的应用价值。

教学重点
根据比例尺的意义解决简单的实际问题。

教学难点
运用图上距离、实际距离、比例尺的关系解决问题。

教学准备
课件、刻度尺。

教学过程
一、回忆比例尺的概念,导入新课
师:上节课我们学习了比例尺,你能说说比例尺的意义吗?
【学情预设】学生会说出,图上距离∶实际距离=比例尺或
图上距离
实际距离
=比例尺。

(教师根据学生发言板书)
师:生活中比例尺知识的应用十分广泛,今天我们就来学习比例尺的应用。

[板书课题:比例尺(2)]
【设计意图】引导学生回忆比例尺的意义,直接点明今天要学习的内容,开课简单明了。

二、自主探究,解决有关比例尺的实际问题
1.阅读与理解
教学笔记
师:同学们阅读教科书P54例2,并观察示意图。

根据题目中的信息,你能求出从苹果园站至四惠东站的实际长度大约是多少千米吗?
【学情预设】知道从苹果园站至四惠东站的图上距离和比例尺,要求实际长度。

2.探究解题方法。

师:现在你会解决这个问题吗?自己试一试吧!
【学情预设】预设1:7.8×400000=3120000(cm)=31.2(km)。

预设2:
7.8÷
400000
1
=3120000(cm)=31.2(km)。

预设3:400000cm=4km ,7.8×4=31.2(km)。

预设4:解:设从苹果园站至四惠东站的实际长度是x cm 。

师:这些方法都是正确的吗?请大家说说自己的想法。

【学情预设】预设1:由比例尺1∶400000,可知实际距离是图上距


400000倍,所


7.8×400000就可以求出实际长度。

教学笔记 【教学提示】
例2的教学是本节课的重点。

让学生在自主解决问题的过程中,充分
展示多样化的数学思维,引导学生从不同的角度理解比例尺的意义,交流多种解决问题的方法,提高学生解决问题的能力。

预设2:我是用实际距离=图上距离÷比例尺来解决问题的,用7.8÷
400000
1
来求出实际长度。

(教师板书:实际距离=图上距离÷比
例尺)
预设3:我把400000cm 换算成4km ,表示图上距离1cm 相当于实际距离4km ,直接用7.8×4求出实际长度是31.2km 。

预设4:我是根据图上距离∶实际距离=比例尺列出比例来解答。

教学笔记
师:4种方法中,前面3种都是算术法,第4种是根据比例尺的意义列出比例,再来解答的。

说一说,列出比例的依据是什么?算出
的x 的值表示什么?单位是什么?
【学情预设】学生会说出列出比例的依据是比例尺的
意义,即图上距离∶实际距离=比例尺,算出的x 的值表示的是实际距离,单位还是厘米,最后还要注意将厘米换算成千米。

师:大家用这么多种方法解决了问题,说一说你更喜欢哪种解决问题的方法。

【学情预设】学生可能会说出自己喜欢的方法。

教师可以适时引导用思维更直接的列比例的方法。

3.检验反思。

师:我们的解答正确吗?通过多种方法解决问题,都得到同样的结果,也检验了我们的解答正确。

但如果仅仅用解比例的方法来解决问题,你会怎样检验呢?
【学情预设】预设1:化简7.8cm ∶31.2km ,看得到的比例尺是不是1∶400000。

预设2:把31.2km 换算成3120000cm ,再用3120000×
400000
1

看是否等于7.8cm 。

(教师板书:图上距离=实际距离×比例尺)
预设3:用31.2÷4=7.8(cm)也可以检验。

师:同学们的思路真开阔,会根据比例尺中各数量之间的关系来解决问题和检验反思。

【设计意图】问题呈现时去掉了原例题中的比例尺,是尝试让学生根据给出的问题思考所需要的条件。

这样做,一方面引导学生学会如何从问题出发进行思考,另一方面调动起学生对比例尺意义的理解,让学生真正地学会解决问题。

三、巩固练习,综合应用
1.课件出示教科书P54“做一做”。

师:题目中有哪些要求,在组内说一说。

【学情预设】题目要求先把图中的线段比例尺改写成数值比例
教学笔记
【教学提示】
注意提醒学生易错的地方,由于比例尺表示图上距离是实际距离的
几分之几或实际距离是
图上距离的几倍,它们的
单位是相同的,当图上距离是cm 时,
求出的实际距离的单位也是cm 。

尺,再量出图中河西村与汽车站之间的距离是多少厘米,还要计算出两地的实际距离大约是
多少。

学生独立解答后相互交流,教师适当板书。

【学情预设】图中的线段比例尺表示图上距离1cm 相当于实际距离600m ,改写成数值比例尺是1∶60000。

经过测量,两地之间的图上距离大约是3cm 。

解决问题的方法可能有:
3×600=1800(m);3÷600001
=180000(cm),180000cm=1800m 。

还有
列比例解决问题:
解:设两地的实际距离大约是x cm 。

3∶x =1∶60000 x =180000 180000cm=1800m
师生一起检验。

师:请你在图中随意选择两点,量出两点间的图上距离,再算出实际距离。

学生独立完成后在小组内交流订正。

【设计意图】综合比例尺的改写、测量图上距离,根据比例尺和图上距离求出实际距离的知识,解决实际问题,有效提升学生解决问题的能力。

在教学中充分挖掘教科书素材,巩固学生对比例尺的应用。

2.独立完成教科书P57“练习十”第5题。

【学情预设】引导学生用多种方法解答,有的学生用算术法,大部分学生用解比例的方法。

3.合作完成教科书P57“练习十”第6题。

小组合作完成并讨论,最后汇报结果。

【学情预设】本题需要学生自己在一幅中国地图上选取两个城市,测量出它们的直线距离,再根据此地图的比例尺算出它们的实际距离。

四、课堂小结
教学笔记
【教学提示】
解决问题时,要引导学生抓住问题的本质,灵活解决问题,方法可以多种多样,只要是正确的都要予以肯定。

师:今天我们学习了比例尺的应用,你们有什么收获呢?
板书设计
教学反思
本节课的内容是比例尺的应用。

结合教科书例题,通过创设情
境,让学生经历探索、讨论、交流等活动,体验知识的形成过程,
并在解决问题的过程中,学会运用多种方案来解答求实际距离的问
题,从中选择最合适的方案。

教学时发现,学生最容易出现错误的
地方是单位换算,还有少数学生将求图上距离和求实际距离的方法
混淆了导致出错,教师要注意检验环节的落实。

作业设计
四、在比例尺是1∶5000000的地图上,量得A、B两城的距离是8cm。

一辆汽车以40千米/时的速度从A城出发,同时,另一辆汽车以60
千米/时的速度从B城出发,两车相向而行。

经过多少小时两车相遇?
参考答案
教学笔记
第3课
教学笔记
时比例尺(3)
教学内容
教科书P55例3,完成教科书P57~58“练习十”中第9、11题。

教学目标
1.在理解比例尺的意义的基础上,能根据比例尺求出相应的图
上距离,并完成相应平面图的绘制。

2.在用比例尺知识解决问题的过程中,探究解决问题方法的多
样性,提升综合运用所学知识解决实际问题的能力。

3.感受比例尺在生活中的实际应用,体会数学的应用价值。

教学重点
能根据比例尺求出相应的图上距离,并完成相应平面图的绘
制。

教学难点
能灵活运用比例尺知识解决作图问题。

教学准备
课件,铅笔,刻度尺。

教学过程
一、出示问题,导入新课
师:小明、小亮、小红想在一幅图中画出他们三家和学校的位
置平面图,他们想请大家帮帮忙。

课件出示教科书P55例3。

师:请你想一想,要想帮助他们三人完成这幅平面图,要用到什么知识呢?
【学情预设】预设1:要用到位置与方向的知识。

预设2:要用到比例尺的知识。

师:真是一群会思考的孩子,相信你们一定能帮助小明、小亮、小红完成这幅平面图。

今天我们继续来学习比例尺的应用。

[板书课题:比例尺(3)]
【设计意图】创设问题情境,激发学生探究的欲望。

初步了解到要利用比例尺的知识解决这个问题。

二、自主探究,解决实际问题
1.理解题意,明确问题。

师:你从题中知道了什么?
【学情预设】预设1:我们知道了平面图的方向是上北下南、左西右东。

这幅图的比例尺是1∶10000。

预设2:知道了小明家在学校正西方向,距学校200m;小亮家在小明家正东方向,距小明家400m;小红家在学校正北方向,距学校250m。

要画出他们三家和学校的位置平面图。

师:要想解决问题,该怎么做呢?大家可以把自己的想法在组内说一说。

【学情预设】指导学生说出:先要求出小明家、小亮家、小红家分别到学校的图上距离,然后按照上北下南、左西右东的方向标出位置,还要把数值比例尺改写成线段比例尺。

2.自主尝试,解决问题。

师:现在你会解决这个问题吗?自己试一试吧!
【学情预设】预设1:10000cm=100m
小明家到学校的图上距离:200÷100=2(cm)
小亮家到小明家的图上距离:400÷100=4(cm)
小红家到学校的图上距离:250÷100=2.5(cm)
预设2:200m=20000cm 400m=40000cm 250m=25000cm 教学笔记
【教学提示】
要注意让学生自己审题,理解题意,明确首先要求出图上距离,再按照相应的方向标出位置,并把数值比例尺化成以m 为单位的线段比例尺。

小明家到学校的图上距离:20000×1
10000
=2(cm)
小亮家到学校的图上距离:(40000-20000)×1
10000
=2(cm)
小红家到学校的图上距离:25000×1
10000
=2.5(cm)
预设3:图上距离∶实际距离=1∶10000
200m=20000cm 400m=40000cm 250m=25000cm
解:设小明家到学校的图上距离是x cm。

x∶20000=1∶10000 x=2
设小亮家到小明家的图上距离是x cm。

x∶40000=1∶10000 x=4
小亮家到学校的图上距离:4-2=2(cm)
设小红家到学校的图上距离是x cm。

x∶25000=1∶10000 x=2.5
师:我们先来看看3种求图上距离的解题方法,你知道他们是
怎么想的吗?
【学情预设】预设1:方法一是先把数值比例尺转化成线段比
例尺,得到图上距离1cm表示实际距离100m,200m里面有2个
100m,所以小明家到学校的图上距离是2cm;小亮家在小明家正
东方向,距小明家400m,400m里面有4个100m,所以小亮家到
小明家的图上距离是4cm;小红家在学校正北方向,距学校250m,
250m里面有2.5个100m,所以小红家到学校的图上距离是2.5cm。

预设2:方法二是根据图上距离∶实际距离=比例尺推出图上
距离=实际距离×比例尺来计算的。

(板书:图上距离∶实际距离=
比例尺→图上距离=实际距离×比例尺)
预设3:方法三是列比例的方法,是根据图上距离∶实际距离
=比例尺列出比例来求出图上距离的。

师:这几种方法都是根据比例的意义,也就是图上距离、实际
距离与比例尺之间的数量关系来解决问题的。

你喜欢哪一种就用哪
一种。

我们再来看看同学们画的平面图,我收集了两幅,请你们评
教学笔记
价一下。

(出示课件
)
教学笔记Array【学情预设】学生会说出第一幅图中小亮家的位置画错了,因
为根据题目中的信息,小亮家是在小明家正东方向400m,不是在
学校正东方向400m,所以小亮家其实在学校正东方向200m。

师:同学们的眼睛真亮,一下子就找到了错误,而且清楚地说
明了错误的原因,为你们点赞!
【设计意图】在展示与交流中,充分让学生表达自己的想法,
使学生在聆听别人的发言中获取更多的解决问题的经验,加深对比
例尺意义的理解。

3.回顾与反思。

师:我们顺利地帮助小明、小亮和小红完成了这幅平面图,请
大家认真想一想,我们是怎样解决这个问题的?解决问题的过程中
需要注意些什么?
【学情预设】学生会根据自己的感受说出要认真审题,理解题
意,弄清楚方向和图上距离,画图时要看清楚以谁为观测点,不要
忘了标上比例尺等。

教师适时指导、评价。

(根据学生回答板书:
确定方向、标出比例尺、计算图上距离、找准观测点。

)
【设计意图】回顾与反思是解决问题中很重要的一个环节,学
生经历了解决问题的过程,然后在回忆中去感受解决问题的步骤、。

相关文档
最新文档