七年级初一下学期数学 专题03 三角形(专题测试)(原卷版)

合集下载

(完整版)七年级数学三角形测试题(附答案)

(完整版)七年级数学三角形测试题(附答案)

第七章 三角形班级: 姓名: 座号: 评分:一. 选择题。

(每题3分,共24分)1. 若三角形两边长分别是4、5,则周长c 的范围是( )A. B. C. D. 无法确定19c 914c 1018c 2. 一个三角形的三个内角中( )A. 至少有一个等于90°B. 至少有一个大于90°C. 不可能有两个大于89°D. 不可能都小于60°3. 从n 边形的一个顶点作对角线,把这个n 边形分成三角形的个数是( )A. n 个B. (n-1)个C. (n-2)个D. (n-3)个4. n 边形所有对角线的条数有( ) A. B. C. D. ()12n n -条()22n n -条()32n n -条()42n n -条5. 装饰大世界出售下列形状的地砖:正方形;长方形;正五边形;正○1○2○3○4六边形。

若只选购其中某一种地砖镶嵌地面,可供选用的地砖共有()A. 1种B. 2种C. 3种D. 4种6. 下列图形中有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形7. 如图1,点O 是△ABC 内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC 等于( )A. 95°B. 120°C. 135°D. 无法确定8. 若一个三角形的三边长是三个连续的自然数,其周长m 满足,则这样的三角形有( )1022m A. 2个 B. 3个 C. 4个 D. 5个二. 填空题。

(每空2分,共38分)1. 锐角三角形的三条高都在 ,钝角三角形有 条高在三角形外,直角三角形有两条高恰是它的 。

2. 若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 。

3. 要使六边形木架不变形,至少要再钉上 根木条。

4. 在△ABC 中,若∠A=∠C=∠B,则∠A= ,∠B= ,这个三角形13是 。

{更新}2020最新北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(5)

{更新}2020最新北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(5)

北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(5)一、选择题1.一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在 ( )A.三角形内部B.三角形的一边上C.三角形外部D.三角形的某个顶点上2.下列长度的各组线段中,能组成三角形的是 ( )A.4、5、6 B.6、8、15C.5、7、12 D.3、9、133.在锐角三角形中,最大角α的取值范围是 ( )A.0°<α<90°B.60°<α<90°C.60°<α<180°D.60°≤α<90°4.下列判断正确的是 ( )A.有两边和其中一边的对角对应相等的两个三角形全等B.有两边对应相等,且有一角为30°的两个等腰三角形全等C.有一角和一条边对应相等的两个直角三角形全等D.有两角和一边对应相等的两个三角形全等5.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是( )A.x<6 B.6<x<12C.0<x<12 D.x>126.已知△ABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A.则此三角形 ( ) A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形7.三角形内有一点,它到三边的距离相等,则这点是该三角形的 ( )A.三条中线交点B.三条角平分线交点C.三条高线交点D.三条高线所在直线交点8.已知等腰三角形的一个角为75°,则其顶角为 ( )A.30°B.75°C.105°D.30°或75°9.如图5—124,直线l、l'、l''表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有 ( )A.一处B.二处C.三处D.四处10.三条线段长度分别为3、4、6,则以此三条线段为边所构成的三角形按角分类是 ( ) A.锐角三角形B.直角三角形C.钝角三角形D.根本无法确定二、填空题1.如果△ABC中,两边a=7cm,b=3cm,则c的取值范围是_________;第三边为奇数的所有可能值为_________;周长为偶数的所有可能值为_________.2.四条线段的长分别是5cm,6cm,8cm,13cm,以其中任意三条线段为边可以构成______个三角形.3.过△ABC的顶点C作边AB的垂线将∠ACB分为20°和40°的两个角,那么∠A,∠B中较大的角的度数是____________.4.在Rt△ABC中,锐角∠A的平分线与锐角∠B的平分线相交于点D,则∠ADB=______.5.如图5—125,∠A=∠D,AC=DF,那么需要补充一个直接条件________(写出一个即可),才能使△ABC≌△DEF.6.三角形的一边上有一点,它到三个顶点的距离相等,则这个三角形是_______三角形.7.△ABC中,AB=5,BC=3,则中线BD的取值范围是_________.8.如图5—126,△ABC中,∠C=90°,CD⊥AB,CM平分AB,CE平分∠DCM,则∠ACE的度数是______.9.已知:如图5—127,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则△ADE的周长为______.10.每一个多边形都可以按图5—128的方法割成若干个三角形.而每一个三角形的三个内角的和是180°.按图5—127的方法,十二边形的内角和是__________度.三、解答题1,已知:如图5—129,△ABC的∠B、∠C的平分线相交于点D,过D作MN∥BC交AB、AC分别于点M、N,求证:BM+CN=MN2.已知:如图5—130,在△ABC中,∠ACB=90°,CD为高,CE平分∠BCD,且∠ACD:∠BCD =1:2,那么CE是AB边上的中线对吗?说明理由.3.已知:如图5—131,在△ABC中有D、E两点,求证:BD+DE+EC<AB+AC.4.已知一直角边和这条直角边的对角,求作直角三角形(用尺规作图,不写作法,但要保留作图痕迹).5.已知:如图5—132,点C 在线段AB 上,以AC 和BC 为边在AB 的同侧作正三角形△ACM 和△BCN ,连结AN 、BM ,分别交CM 、CN 于点P 、Q .求证:PQ ∥AB .6.已知:如图5—133,AB =DE ,CD =FA ,∠A =∠D ,∠AFC =∠DCF ,则BC =EF .你能说出它们相等的理由吗?【参考答案】一、1.A 2.A 3.D 4.D 5.B 6.A 7.B 8.D 9.A 10.D . 二、1.cm c cm 104<<,5cm 、7cm 、9cm ,16cm 或18cm ; 2.2; 3.70° 4.︒135 5.AB =DE (或∠B =∠E 或∠C =∠F ); 6.直角; 7.41<<BD ; 8.︒45; 9.14cm 10.1800.三、1.证明:∵ BD 、CF 平分∠ABC 、∠ACB . ∴ ∠1=∠2,∠3=∠4. ∵ MN ∥BC ,∴ ∠6=∠2,∠3=∠5. ∴ ∠1=∠6,∠4=∠5. ∴ BM =DM ,CN =DN . ∴ BM +CN =DM +DN . 即 BM +CN =MN .2.解:CE 是AB 边上的中线.理由:∵ ∠ACB =90°,∠ACD:∠BCD =1:2, ∴ ∠ACD =30°,∠BCD =60°. ∵ CE 平分∠BCD , ∴ ∠DCE =∠BCE =30°.∵ CD ⊥AB ,∠ACD =30°,∠BCD =60°, ∴ ∠A =60,∠B =30∴ ∠A =∠ACD +∠DCE =∠ACE ,∠B =∠BCE . ∴ AE =EC ,BE =EC . ∴ AE =BE .所以CE 为AB 边上的中线. 3.证明:延长BD 交AC 于M 点,延长CE 交BD 的延长线于点N . 在△ABM 中,BM AM AB >+, 在△CNM 中,NC MC NM >+,∴ NC BM MC NM AM AB +>+++. ∵ NM BN BM AC MC AM +==+,, ∴ NC NM BN NM AC AB ++>++.∴ NC BN AC AB +>+. ① 在△BNC 中,EC NE DN BD NC BN +++=+ ② 在△DNE 中,DE NE DN >+ ③ 由②、③得:EC DE BD NC BN ++>+ ④ 由①、④得:EC DE BD NC BN AC AB ++>+>+4.已知:线段a 和∠α如下图(1).求作Rt △ABC 使α∠=∠︒=∠=A C a BC ,90,. 作法:(1)作∠α的余角∠β. (2)作∠MBN =∠β. (3)在射线BM 上截取BC =a .(4)过点C 作CA ⊥BM ,交BN 于点A ,如图(2). ∴ △ABC 就是所求的直角三角形.5.证明:∵ △ACM 和△BCN 都是正三角形, ∴ ∠ACM =∠BCN =60°,AC =CM ,BC =CN . ∵ 点C 在线段AB 上,∴ ∠ACM =∠BCN =∠MCN =60°. ∴ ∠ACM +∠MCN =∠BCN +∠MCN =120°. 即 ∠NCA =∠BCM =120°.在△ACN 和△MCB 中⎪⎩⎪⎨⎧=∠=∠=,,,CB CN BCM ACN CM AC ∴ △ACN ≌△MCB (SAS ). ∴ ∠ANC =∠MBC . 在△PCN 和△QCB 中⎪⎩⎪⎨⎧=∠=∠∠=∠,,,CB CN BCN MCN MBC ANC ∴ △PCN ≌△QCB (AAS ). ∴ PC =QC . ∵ ∠PCQ =60°∴ △PCQ 是等边三角形. ∴ ∠PQC =60° ∴ ∠PQC =∠QCB . ∴ PQ ∥AB .6.解:连结CE 、BF ,如图. 在△ABF 和△DEC 中⎪⎩⎪⎨⎧=∠=∠=,,,CD FA D A DE AB ∴ △ABF ≌△DEC (SAS ). ∴ ∠3=∠4,BF =EC . ∵ ∠AFC =∠DCF ,∴ ∠AFC -∠3=∠DCF -∠4. 即 ∠1=∠2. 在△BCF 和△EFC 中⎪⎩⎪⎨⎧=∠=∠=,,21,CF FC EC BF ∴ △BCF ≌△EFC (SAS ). ∴ BC =EF .。

(完整版)七年级下册数学三角形测试题经典(含答案)

(完整版)七年级下册数学三角形测试题经典(含答案)

第7章三角形一、选择题1.如果在一个顶点周围用两个正方形和n 个正三角形恰好可以进行平面镶嵌,则n 的值是( ).A .3B .4C .5D .62.下面四个图形中,线段BE 是⊿ABC 的高的图是( )3.(2008年••福州市)已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cmB .6cmC .5cmD .4cm4.三角形一个外角小于与它相邻的内角,这个三角形是( )A .直角三角形 B .锐角三角形 C .钝角三角形 D .属于哪一类不能确定5.如图,在直角三角形ABC 中,AC≠AB,AD 是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E 、F ,则图中与∠C (∠C 除外)相等的角的个数是( ) A 、3个 B 、4个 C 、5个 D 、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=( )A 、900B 、1200C 、1600D 、18007.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )(A)1个 (B)2个 (C)3个 (D)4个8.给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角 ③三角形的角平分线是射线 ④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线 ⑥三角形的三条角平分线交于一点,且这点在三角形内。

正确的命题有( )A.1个B.2个C.3个D.4个第5题图第6题图二、填空题9.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。

10.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是___________________.11.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是 度。

新北师大版七年级数学下册第三章三角形单元测试卷(5套)及答案

新北师大版七年级数学下册第三章三角形单元测试卷(5套)及答案

新北师大版七年级数学下册第三章三角形单元测试卷(5套)及答案北师大版七年级数学下册第三章三角形单元测试卷(三)班级姓名学号得分一、选择题(每小题3分,共30分)1.有下列长度的三条线段,能组成三角形的是()A 2,3,4B 1,4,2C 1,2,3D 6,2,32.在下列各组图形中,是全等的图形是()3. 下列条件中,能判断两个直角三角形全等的是()A、一个锐角对应相等B、两个锐角对应相等C、一条边对应相等D、两条边对应相等图3 4.已知:如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于O 点,∠1=∠2.图中全等的三角形共有() A .4对 B ..3对 C 2对 D .1对 5.如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻店去配一块完全一样的玻璃,那么最省事的办法是() A.带①去B. 带②去C. 带③去D. 带①和②去6.右图中三角形的个数是()A.6 B .7C .8 D.9 7.如果两个三角形全等,那么下列结论不正确的是()A .这两个三角形的对应边相等B .这两个三角形都是锐角三角形C .这两个三角形的面积相等D .这两个三角形的周长相等 8.在下列四组条件中,能判定△ABC ≌△A /B /C /的是()A.AB=A /B /,BC= B /C /,∠A=∠A /B.∠A=∠A /,∠C=∠C /,AC= B /C /C.∠A=∠B /,∠B=∠C /,AB= B /C /D.AB=A /B /,BC= B /C /,△ABC 的周长等于△A /B /C /的周长)10. 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为500和200的三角形一定是钝角三角形,④直角三角形中两锐角的和为900,其中判断正确的有()A.1个B.2个C.3个D.4个二、填空题:(每题4分共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是。

北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(5)

北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(5)

级数学下册第3章《三角形》单元测试试卷及答案(5)一、选择题1.一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在 ( ) A.三角形内部B.三角形的一边上C.三角形外部D.三角形的某个顶点上2.下列长度的各组线段中,能组成三角形的是 ( )A.4、5、6 B.6、8、15C.5、7、12 D.3、9、133.在锐角三角形中,最大角α的取值范围是 ( )A.0°<α<90°B.60°<α<90°C.60°<α<180°D.60°≤α<90°4.下列判断正确的是 ( )A.有两边和其中一边的对角对应相等的两个三角形全等B.有两边对应相等,且有一角为30°的两个等腰三角形全等C.有一角和一条边对应相等的两个直角三角形全等D.有两角和一边对应相等的两个三角形全等5.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是( )A.x<6 B.6<x<12C.0<x<12 D.x>126.已知△ABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A.则此三角形 ( ) A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形7.三角形内有一点,它到三边的距离相等,则这点是该三角形的 ( )A.三条中线交点B.三条角平分线交点C.三条高线交点D.三条高线所在直线交点8.已知等腰三角形的一个角为75°,则其顶角为 ( )A.30°B.75°C.105°D.30°或75°9.如图5—124,直线l、l'、l''表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有 ( ) A.一处B.二处C.三处D.四处10.三条线段长度分别为3、4、6,则以此三条线段为边所构成的三角形按角分类是( )A.锐角三角形B.直角三角形C.钝角三角形D.根本无法确定。

北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(6)(新审)

北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(6)(新审)

北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(6)一、选择题1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为 ( ) A .10 B .12 C .14 D.162.在△ABC 中,AB =4a ,BC =14,AC =3a .则a 的取值范围是 ( ) A .a >2 B .2<a <14 C .7<a <14 D .a <14 3.一个三角形的三个内角中,锐角的个数最少为 ( ) A .0 B .1 C .2 D .3 4.下面说法错误的是 ( )A .三角形的三条角平分线交于一点B .三角形的三条中线交于一点C .三角形的三条高交于一点D .三角形的三条高所在的直线交于一点 5.能将一个三角形分成面积相等的两个三角形的一条线段是 ( ) A .中线 B .角平分线 C .高线 D .三角形的角平分线6.如图5—12,已知∠ACB=90°,CD⊥AB,垂足是D ,则图中与∠A 相等的角是 ( )A.∠1 B .∠2 C .∠B D .∠1、∠2和∠B7.点P 是△ABC 内任意一点,则∠APC 与∠B 的大小关系是 ( ) A .∠APC>∠B B .∠APC=∠B C .∠APC<∠B D .不能确定 8.已知:a 、b 、c 是△ABC 三边长,且M =(a +b +c)(a +b -c)(a -b -c),那么 ( )A .M >0B .M =0C .M <0D .不能确定9.周长为P 的三角形中,最长边m 的取值范围是 ( )A .23P m P <≤B .23P m P <<C .23P m P ≤<D .23P m P ≤≤10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有( )A .5个B .4个C .3个D .2个 二、填空题1.五条线段的长分别为1,2,3,4,5,以其中任意三条线段为边长可以________个三角形.2.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是________,周长的取值范围是___________. 3.一个三角形的三个内角的度数的比是2:2:1,这个三角形是_________三角形. 4.一个等腰三角形两边的长分别是15cm 和7cm 则它的周长是__________. 5.在△ABC 中,三边长分别为正整数a 、b 、c ,且c≥b≥a>0,如果b =4,则这样的三角形共有_________个.6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________. 7.在△ABC 中,∠A-∠B=30°、∠C=4∠B,则∠C=________.8.如图5—13,在△ABC 中,AD⊥BC,GC⊥BC,CF⊥AB,BE⊥AC,垂足分别为D 、C 、F 、E ,则_______是△ABC 中BC 边上的高,_________是△ABC 中AB 边上的高,_________是 △ABC 中AC 边上的高,CF 是△ABC 的高,也是△_______、△_______、△_______、△_________的高.9.如图5—14,△ABC 的两个外角的平分线相交于点D ,如果∠A=50°,那么∠D=_____.10.如图5—15,△ABC 中,∠A=60°,∠ABC、∠ACB 的平分线BD 、CD 交于点D ,则∠BDC=_____. 11.如图5—16,该五角星中,∠A+∠B+∠C+∠D+∠E=________度.12.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是________.三、解答题1.如图5—17,点B、C、D、E共线,试问图中A、B、C、D、E五点可确定多少个三角形?说明理由.2.如图5—18,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.3.一个飞机零件的形状如图5—19所示,按规定∠A应等于90°,∠B,∠D应分别是20°和30°,康师傅量得∠BCD=143°,就能断定这个零件不合格,你能说出其中的道理吗?4.如图5—20,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.5.如图5—21,△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.6.如图5—22,在△ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的面积;(2)CD的长.7.已知:如图5—23,P是△ABC内任一点,求证:∠BPC>∠A.8.△ABC中,三个内角的度数均为整数,且∠A<∠B<∠C,4∠C=7∠A,求∠A的度数.9.已知:如图5—24,P是△ABC内任一点,求证:AB+AC>BP+PC.10.如图5—25,豫东有四个村庄A、B、C、D.现在要建造一个水塔P.请回答水塔P应建在何位置,才能使它到4村的距离之和最小,说明最节约材料的办法和理由.参考答案:一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C 9.A 10.C二、1.3; 2.32周长20,164<<<<BC ; 3.锐角(等腰锐角); 4.cm 37;5.10; 6.︒65和︒25; 7.︒100; 8.GAC FAC FGC BFC BE CF AD ∆∆∆∆,,,,,,;9.︒65; 10.︒120; 11.︒180; 12.126<<x . 三、1.可以确定6个三角形.理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,所以图中可以确定6个三角形.2.错误.因为AD 虽然是线段,但不符合三角形角平分线定义,这里射线AD 是BAC ∠的平分线. 3.假设此零件合格,连接BD ,则︒=︒-︒=∠+∠37143180CBD CDB ;可知()︒=︒+︒-︒=∠+∠40203090CBD CDB .这与上面的结果不一致,从而知这个零件不合格.4.∵ AD 是BC 边上的中线,∴ D 为BC 的中点,BD CD =.∵ ADC ∆的周长-ABD ∆的周长=5cm . ∴ cm AB AC 5=-. 又∵ cm AB AC 11=+, ∴ cm AC 8=.5.由三角形内角和定理,得︒=∠+∠+∠180BAC ACB B .∴ ︒=︒-︒-︒=∠4210434180BAC .又∵ AE 平分∠BAC .∴ ︒=︒⨯=∠=∠21422121BAC BAE . ∴ ︒=︒+︒=∠+∠=∠552134BAE B AED . 又∵ ︒=∠+∠90DAE AED ,∴ ︒=︒-︒=∠-︒=∠35559090AED DAE .6.(1)∵ 在△ABC 中,︒=∠90ACB ,cm AC 5=,cm BC 12=,().3012521212cm BCAC S ABC =⨯⨯=⋅=∴∆ (2)∵ CD 是AB 边上的高, ∴ CD AB S ABC ⋅=∆21. 即CD ⨯⨯=132130. ∴ ()cm CD 1360=. 7.如图,延长BP 交AC 于D ,∵ A PDC PDC BPC ∠>∠∠>∠,, ∴ A BPC ∠>∠. 8.∵ A C ∠=∠74, ∴ C A ∠=∠74, ∴C B C ∠<∠<∠74. 又∵ ︒=∠+∠+∠180C B A ,∴ ︒=∠+∠+∠18074C B C . ∴ C B ∠-︒=∠711180, ∵ C C C ∠<∠-︒<∠71118074, ∴ ︒<∠<︒8470C .又∵ C A ∠=∠74为整数, ∴ ∠C 的度数为7的倍数. ∴ ︒=∠77C ,∴ ︒=∠=∠4474C A . 9.如图,延长BP 交AC 于点D .在△BAD 中,BD AD AB >+, 即:PD BP AD AB +>+. 在△PDC 中,PC DC PD >+.①+②得PC PD BP DC PD AD AB ++>+++, 即PC BP AC AB +>+.10.如图,水塔P 应建在线段AC 和线段BD 的交点处.这样的设计将最节省材料.理由:我们不妨任意取一点P ',连结P A '、P B '、P C '、P D '、AB 、BC 、CD 、DA , ∵ 在C P A '∆中,CP AP AC P C P A +=>'+', ① 在D P B '∆中,DP BP BD P D P B +=>'+', ②①+②得DP+A+P+>'+'.+'+'BAPBPCPPPDCP∵点P'是任意的,代表一般性,∴线段AC和BD的交点处P到4个村的距离之和最小.。

专题03 全等三角形中的动态问题(原卷版)

专题03 全等三角形中的动态问题(原卷版)

专题03全等三角形中的动态问题初中数学中,动点问题是学习的重、难点,在三角形、矩形等一些几何图形上,设计一个或多个动点,探究全等三角形存在性问题,该类题目具有较强的综合性。

解决动点问题常见的答题思路是:1. 注意分类讨论;2. 仔细探究全等三角形对应边与对应角的变化;3. 利用时间表示出相应线段或边的长度,列出方程求解.【典例解析】【例1-1】(2020·周口市月考)如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2厘米/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E离开点A后,运动______ 秒时,△DEB与△BCA全等.【例1-2】(2020·江阴市月考)已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.A.1B.1或3C.1或7D.3或7【变式1-1】(2020·无锡市月考)如图,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD为AB边上的高.点E从点B出发沿直线BC以2cm/s的速度移动,过点E作BC的垂线交直线CD于点F.(1)试说明:∠A=∠BCD;(2)当点E运动多长时间时,CF=AB.请说明理由.【变式1-2】(2020·河北灵寿期末)如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(0,m)、B(n,0),且|m﹣n﹣0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.(1)求OA、OB的长;(2)连接PB,设△POB的面积为S,用t的式子表示S;(3)过点P作直线AB的垂线,垂足为D,直线PD与x轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP△△AOB?若存在,请求出t的值;若不存在,请说明理由.【例2】(2020·惠州市月考)如图,点C在线段BD上,AB△BD于B,ED△BD于D.△ACE=90°,且AC =5cm,CE=6cm,点P以2cm/s的速度沿A→C→E向终点E运动,同时点Q以3cm/s的速度从E开始,在线段EC上往返运动(即沿E→C→E→C→…运动),当点P到达终点时,P,Q同时停止运动.过P,Q分别作BD的垂线,垂足为M,N.设运动时间为ts,当以P,C,M为顶点的三角形与△QCN全等时,t的值为_____.【变式2-1】(2020·江阴市月考)如图,在四边形ABCD中,AD=BC=4,AB=CD,BD=6,点E从D 点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C 作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动.(1)试证明:AD△BC.(2)在移动过程中,小芹发现当点G的运动速度取某个值时,有△DEG与△BFG全等的情况出现,请你探究当点G的运动速度取哪些值时,△DEG与△BFG全等.【变式2-2】(2020·重庆巴南月考)如图(1),AB=4cm,AC△AB,BD△AB,AC=BD=3cm.点P在cm s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它线段AB上以1/们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1 时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC△AB,BD△AB”为改“△CAB=△DBA=60°”,其他条件不变.设点Q的cm s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不运动速度为x/存在,请说明理由.【变式2-3】(2020·江苏兴化月考)如图,在△ABC中,△ACB=90°,AC=6,BC=8.点P从点A出发,沿折线AC—CB以每秒1个单位长度的速度向终点B运动,点Q从点B出发沿折线BC—CA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发.分别过P、Q两点作PE△l于E,QF△l于F.设点P的运动时间为t(秒):(1)当P、Q两点相遇时,求t的值;(2)在整个运动过程中,求CP的长(用含t的代数式表示);(3)当△PEC与△QFC全等时,直接写出所有满足条件的CQ的长.【例3】(2020·惠州市月考)如图,在△ABC中,AB=AC=18cm,BC=10cm,△B=△C,AD=2BD.如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【变式3-1】(2019·山西太原月考)如图1,在长方形ABCD中,AB=CD=5 cm,BC=12 cm,点P从点B 出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为ts.(1)PC=___cm;(用含t的式子表示)(2)当t为何值时,△ABP△△DCP?.(3)如图2,当点P从点B开始运动,此时点Q从点C出发,以vcm/s的速度沿CD向点D运动,是否存在这样的v值,使得某时刻△ABP与以P,Q,C为顶点的直角三角形全等?若存在,请求出v的值;若不存在,请说明理由.【变式3-2】(2020·四川成都)如图,已知四边形ABCD 中,AB =12厘米,BC =8厘米,CD =14厘米,△B =△C ,点E 为线段AB 的中点.如果点P 在线段BC 上以3厘米秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动.当点Q 的运动速度为_____厘米/秒时,能够使△BPE 与以C 、P 、Q 三点所构成的三角形全等.【习题精练】1.(2020·江苏东台月考)如图,有一个直角三角形ABC ,△C =90°,AC 10=,BC 6=,线段PQ =AB ,点Q 在过点A 且垂直于AC 的射线AX 上来回运动,点P 从C 点出发,沿射线CA 以2cm /s 的速度运动,问P 点运动___________ 秒时(t 0)>,才能使△ABC △△QP A 全等.2.(2020·江苏泰州月考)如图,AB =12,CA △AB 于A ,DB △AB 于B ,且AC =4m ,P 点从B 向A 运动,每分钟走1m ,Q 点从B 向D 运动,每分钟走2m ,P 、Q 两点同时出发,运动_______分钟后△CAP 与△PQB 全等.3.(2020·常州市月考)如图,ADC 中.△C =90°,AC =10cm ,BC =5cm .AD △AC ,AB =PQ ,P 、Q 两点分别在AC 、AD 上运动,当AQ =_____时,△ABC 才能和△APQ 全等.4.(2020·江西新余期末)如图,ABC ∆中,90ACB ∠=︒,8cm AC ,15cm BC =,点M 从A 点出发沿A C B →→路径向终点运动,终点为B 点,点N 从B 点出发沿B C A →→路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F .设运动时间为t 秒,要使以点M ,E ,C 为顶点的三角形与以点N ,F ,C 为顶点的三角形全等,则t 的值为______.5.(2020·武城县月考)如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,△B=△C,点E为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为多少时,能够使△BPE与以C、P、Q三点所构成的三角形全等?6.(2020·盐城市盐都区月考)如图,有一个直角△ABC,△C=90°,AC=6,BC=3,一条线段PQ=AB,P、Q 两点分别在AC和过点A且垂直于AC的射线AX上运动,问:当AP=________时,才能使以点P、A、Q为顶点的三角形与△ABC全等.7.(2020·四川青羊期中)如图,在△ABC中,已知AB=AC,△BAC=90°,AH是△ABC的高,AH=4 cm,BC=8 cm,直线CM△BC,动点D从点C开始沿射线CB方向以每秒3厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度向远离C点的方向运动,连接AD、AE,设运动时间为t(t>0)秒.(1)请直接写出CD、CE的长度(用含有t的代数式表示):CD=cm,CE=cm;(2)当t为多少时,△ABD的面积为12 cm2?(3)请利用备用图探究,当t为多少时,△ABD△△ACE?并简要说明理由.8.(2020·郑州市月考)如图,在平面直角坐标系中,O 为坐标原点 A 、B 两点的坐标分别 A (m ,0),B(0,n ),且|m - n -3|= 0 ,点 P 从 A 出发,以每秒 1 个单位的速度沿射线 AO 匀速运动,设点 P 运动时间为 t 秒.(1)求 OA 、OB 的长;(2)连接 PB ,若△POB 的面积不大于 3 且不等于 0,求 t 的范围;(3)过 P 作直线 AB 的垂线,垂足为 D ,直线 PD 与 y 轴交于点 E ,在点 P 运动的过程中, 是否存在这样的点 P ,使△EOP △△AOB ?若存在,请求出 t 的值;若不存在,请说明理由.9.(2020·宜兴市月考)如图,在△ABC 中,△BAD =△DAC ,DF △AB ,DM △AC ,AF =10cm ,AC =14cm ,动点E 以2cm /s 的速度从A 点向F 点运动,动点G 以1cm /s 的速度从C 点向A 点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t .(1)求证:AF =AM ;(2)当t 取何值时,△DFE 与△DMG 全等;(3)求证:在运动过程中,不管t 取何值,都有2AED DGC S S =△△.10.(2020·江苏工业园区期末)如图△,将长方形纸片沿对角线剪成两个全等的直角三角形ABC、EDF,其中AB=8cm,BC=6cm,AC=10cm.现将△ABC和△EDF按如图△的方式摆放(点A与点D、点B与点E 分别重合).动点P从点A出发,沿AC以2cm/s的速度向点C匀速移动;同时,动点Q从点E出发,沿射线ED以acm/s(0<a<3)的速度匀速移动,连接PQ、CQ、FQ,设移动时间为ts(0≤t≤5).(1)当t=2时,S△AQF=3S△BQC,则a=;(2)当以P、C、Q为顶点的三角形与△BQC全等时,求a的值;(3)如图△,在动点P、Q出发的同时,△ABC也以3cm/s的速度沿射线ED匀速移动,当以A、P、Q为顶点的三角形与△EFQ全等时,求a与t的值.11.(2019·江苏期末)如图△,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3 cm /s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm /s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s ).(1)点M 、N 从移动开始到停止,所用时间为 s ;(2)当ABM ∆与MCN ∆全等时,△若点M 、N 的移动速度相同,求t 的值;△若点M 、N 的移动速度不同,求a 的值;(3)如图△,当点M 、N 开始移动时,点P 同时从点A 出发,以2 cm /s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.图△ 图△12. 如图,ABC 中,90ACB ∠=︒,8AC cm =,15BC cm =,点M 从A 点出发沿A →C →B 路径向终点运动,终点为B 点,点N 从B 点出发沿B →C →A 路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F 设运动时间为t 秒,要使以点M ,E ,C 为顶点的三角形与以点N ,F ,C 为顶点的三角形全等,则t 的值为________.13.(2019·湖北襄州)在平面直角坐标系中,点A(0,5),B(12,0),在y轴负半轴上取点E,使OA=EO,作△CEF=△AEB,直线CO交BA的延长线于点D.(1)根据题意,可求得OE=;(2)求证:△ADO△△ECO;(3)动点P从E出发沿E﹣O﹣B路线运动速度为每秒1个单位,到B点处停止运动;动点Q从B出发沿B﹣O﹣E运动速度为每秒3个单位,到E点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM△CD于点M,QN△CD于点N.问两动点运动多长时间△OPM与△OQN全等?14.(2019·福建省惠安期中)如图,在△ABC中,BC=8cm,AG△BC,AG=8cm,点F从点B出发,沿线段BC以4cm/s的速度连续做往返运动,同时点E从点A出发沿线段AG以2cm/s的速度向终点G运动,当点E到达点G时,E、F两点同时停止运动,EF与AC交于点D,设点E的运动时间为t(秒)(1)分别写出当0≤t≤2和2<t≤4时线段BF的长度(用含t的代数式表示);(2)当BF=AE时,求t的值;(3)若△ADE△△CDF,求所有满足条件的t值.15.(2020·无锡市月考)△ABC中,AB=AC=12厘米,△B=△C,BC=8厘米,点D为AB的中点.如果点P 在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q 的运动速度为_____厘米/秒,△BPD与△CQP全等.16.(2020·广东龙岗期末)直角三角形ABC中,△ACB=90°,直线l过点C.(1)当AC=BC时,如图△,分别过点A、B作AD△l于点D,BE△l于点E.求证:△ACD△△CBE.(2)当AC=8,BC=6时,如图△,点B与点F关于直线l对称,连接BF,CF,动点M从点A出发,以每秒1个单位长度的速度沿AC边向终点C运动,同时动点N从点F出发,以每秒3个单位的速度沿F→C→B→C→F向终点F运动,点M、N到达相应的终点时停止运动,过点M作MD△l于点D,过点N 作NE△l于点E,设运动时间为t秒.△CM=,当N在F→C路径上时,CN=.(用含t的代数式表示)△直接写出当△MDC与△CEN全等时t的值.17.(2020·青岛市黄岛区月考)如图1,直线AM AN ⊥,AB 平分MAN ∠,过点B 作BC BA ⊥交AN 于点C ;动点E 、D 同时从A 点出发,其中动点E 以2/m s 的速度沿射线AN 方向运动,动点D 以1/m s 的速度运动;已知6AC cm =,设动点D ,E 的运动时间为t .图1 备用图(1)试求△ACB 的度数;(2)当点D 在射线AM 上运动时满足ADB S :2BEC S =:3,试求点D ,E 的运动时间t 的值; (3)当动点D 在直线AM 上运动,E 在射线AN 运动过程中,是否存在某个时间t ,使得ADB 与BEC 全等?若存在,请求出时间t 的值;若不存在,请说出理由.。

最新人教版七年级数学下册第七章《三角形》测试卷及答案名师优秀教案

最新人教版七年级数学下册第七章《三角形》测试卷及答案名师优秀教案

人教版七年级数学下册第七章《三角形》测试卷及答案人教版七年级数学第七章《三角形》测试卷班级 _______ 姓名 ________ 坐号 _______ 成绩 _______一、选择题(每小题3分,共 30 分)1、下列三条线段,能组成三角形的是( )A、3,3,3B、3,3,6C、3,2,5D、3,2,62、如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( ) A、锐角三角形B、钝角三角形C、直角三角形 D、都有可能3、如图所示,AD是?ABC的高,延长BC至E,使CE,BC,?ABC的面积为S,?ACE1A的面积为S,那么( ) 2A、S,SB、S,SC、 S,SD、不能确定 12 12124、下列图形中有稳定性的是( ) BEDCA、正方形 B、长方形 C、直角三角形D、平行四边形 (第3题)5、如图,正方形网格中,每个小方格都是边长为1的正方形,A、B两点在小方格的顶点上,位置如图形所示,C也在小方格的顶点上,且以A、B、 BC为顶点的三角形面积为1个平方单位,则点C的个数为( )A、3个B、4个C、5个D、6个 A6、已知?ABC中,?A、?B、?C三个角的比例如下,其中能说明?ABC是直角三角形的是( )A、2:3:4B、1:2:3C、4:3:5D、1:2:2A7、点P是?ABC内一点,连结BP并延长交AC于D,连结PC, D则图中?1、?2、?A 的大小关系是( ) P21A、?A,?2,?1 B、?A,?2,?1 BC第7题C、?2,?1,?AD、?1,?2,?A8、在?ABC中,?A,80?,BD 、CE分别平分?ABC、?ACB,BD、CE相交于点O,则?BOC等于( )A、140?B、100?C、50?D、130?9、下列正多边形的地砖中,不能铺满地面的正多边形是( ) ACA、正三角形B、正四边形C、正五边形D、正六边形10、在?ABC中, ?ABC,90?,?A,50?,BD?AC,则?CBD等于( ) BD第10题A、40? B、50? C、45? D、60?二、填空题(本大题共6小题,每小题3分,共18分)11、P为?ABC中BC边的延长线上一点,?A,50?,?B,70?,则?ACP,_____。

最新北师大版七年级下册三角形各章节测试试题+单元测试试题以及答案

最新北师大版七年级下册三角形各章节测试试题+单元测试试题以及答案

最新七年级下册三角形各章节测试试题1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。

用字母可表示为a+b>c,a+c>b,b+c>a;a-b<c,a-c<b,b-c<a。

2、判断三条线段a,b,c能否组成三角形方法:当两条较短线段之和大于最长线段时,则可以组成三角形。

3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即a b c a b-<<+.1、下列长度的三条线段能组成三角形的是。

A.1,2,3 B.4,5,9C.20,15,8 D.5,15,82、已知等腰三角形ABC,腰AB=8,腰BC=5,这个等腰三角形的周长是。

3、如果一个三角形的两边长分别是2和5,则第三边长可能是()。

A、2B、3C、5D、84、现有两根木棒的长度分别40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为( )A、10厘米B、40厘米C、90厘米D、100厘米5、为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是()A.5m B.15mC.20m D.28m6、已知三角形三边长分别是2、x、13,若x为正整数,则这样的三角形有个。

7、下列说法:(1)等边三角形是等腰三角形;(2)三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;(3)三角形的两边之差大于第三边;(4)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形。

其中正确的有。

8、下列给出的各组线段能够成三角形的是( )。

A,7.5.12 B,6.8.15C,4.5.6 D,8.4.39、从长度分别是5cm,6cm,11cm,16cm的四根木棒中选择三根围成一个三角形,能围成三角形的个数有()个。

10、在△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()。

A.11B. 5C. 2D.111、已知等腰三角形的一边长是3,一边长是7,它的周长是。

6.中考数学专题03 全等三角形中的辅助线构造(举一反三)(原卷版)

6.中考数学专题03 全等三角形中的辅助线构造(举一反三)(原卷版)

专题03 全等三角形中的辅助线构造【举一反三】【苏科版】【考点1 角分线上点向角两边作垂线构全等】【方法点拨】过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题;【例1】如图,已知BP平分∠ABC,PD⊥BC于D,BF+BE=2BD,求证:∠BFP+∠BEP=180°.【变式1-1】(2019秋•汉阳区期中)已知:∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P 在射线OM上滑动,两直角边分别与OA、OB交于C、D.(1)PC和PD有怎样的数量关系是.(2)请你证明(1)得出的结论.【变式1-2】(2019•北京校级期中)已知∠MAN=120°,AC平分∠MAN,点B、D分别在AN、AM上.(1)如图1,若∠ABC=∠ADC=90°,请你探索线段AD、AB、AC之间的数量关系,并证明之;(2)如图2,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.【变式1-3】(2019秋•东区校级月考)如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.请你判断并写出FE与FD之间的数量关系;(不需证明)(2)如图③,在△ABC中,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【考点2 截取法构全等】【方法点拨】利用对称性,在角的两边截取相等的线段,构造全等三角形;【例2】(2019秋•黄浦区校级期中)已知:在四边形ABCD中,BC>BA,∠A+∠C=180°,且∠C=60°,BD平分∠ABC,求证:BC=AB+DC.【变式2-1】已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,试判断BE,CD,BC的数量关系,并说明理由.【变式2-2】(2019秋•邵阳期末)如图①,在△ABC中,∠ACB=2∠B,AD为∠BAC的角平分线,求证:AB=AC+CD小明同学经过思考,得到如下解题思路:在AB上截取AE=AC,连接DE,得到△ADE≌△ADC,从而易证AB=AC+CD(1)请你根据以上解思路写出证明过程;(2)如图②,若AD为△ABC的外角∠CAE平分线,交BC的延长线于点D,∠D=25°,其他条件不变,求∠B的度数.【变式2-3】(2019•长汀县校级模拟)观察、猜想、探究:在△ABC中,∠ACB=2∠B.(1)如图①,当∠C=90°,AD为∠BAC的角平分线时,求证:AB=AC+CD;(2)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想;(3)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.【考点3 延长垂线段构全等】【方法点拨】题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形;【例3】如图,在△ABC中,∠ABC=3∠C,AD平分∠BAC,BE⊥AD于E,求证:BE=(AC﹣AB).(提示:延长BE交AC于点F).【变式3-1】已知:如图,在△ABC中,∠ABC=3∠C,∠1=∠2,BE⊥AE.求证:AC﹣AB=2BE.【变式3-2】(2019秋•通州区期末)已知:∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD,垂足为E.求证:BD=2CE.【变式3-3】(2019•成都校级期中)如图,△ABC中,过点A分别作∠ABC,∠ACB的外角的平分线的垂线AD,AE.D,E为垂足,求证:(1)ED∥BC;(2)ED=(AB+AC+BC).【考点4 倍长中线法构全等】【方法点拨】遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形.【例4】(2019秋•津南区校级期中)已知:在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF.【变式4-1】(2019秋•闵行区期中)如图,在△ABC中,AE平分∠BAC,交BC于点E,D是BC边上点,且DE=CE,点F在AE上,联结DF,满足DF=AC,求证:DF∥AB.【变式4-2】(2019春•富阳市校级期中)如图,AD为△ABC的中线,∠ADB和∠ADC的平分线分别交AB、AC于点E、F.求证:BE+CF>EF.【变式4-3】(2019秋•启东市校级月考)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是A.6<AD<8 B.6≤AD≤8C.1<AD<7 D.1≤AD≤7【方法感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,已知:CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE.【考点5 作平行线构全等】【方法点拨】有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形.或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形.【例5】若两个三角形的一边及其对角对应相等,并有一对角互补(不是直角),则这两个三角形为友好三角形.如图1,点D在AB边上,CD=CB,则△ABC和△ACD就是友好三角形.(1)两个友好三角形全等.(从下面选择一个正确的填入)A.一定B.不一定C.一定不(2)如图2,在△ABC中,AB=AC,点D在AB上,点E在AC延长线上,连结DE交BC于其中BD≠BF,若△BDF和△CEF是友好三角形,求证:DF=EF.(3)如图3,CE是△ABC的中线,点D在AC上,BD与CE交于点F,CF=AE,DF=DC,图中与△ACE 成友好三角形的是.【变式5-1】(2019秋•建湖县期末)如图,在△ABC,AD平分∠BAC,E、F分别在BD、AD上,且DE=CD,EF=AC,求证:EF∥AB.【变式5-2】(2019春•河口区校级期中)如图所示,在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC 交BC于E,交CD于F,FG∥AB交BC于G.试判断CE,CF,GB的数量关系,并说明理由.【变式5-3】△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+BP=BQ+AQ.(有多种辅助线作法)【考点6 旋转法构全等】【方法点拨】对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形。

北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(6)

北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(6)

北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(6)一、选择题1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为 ( ) A .10 B .12 C .14 D.162.在△ABC 中,AB =4a ,BC =14,AC =3a .则a 的取值范围是 ( ) A .a >2 B .2<a <14 C .7<a <14 D .a <14 3.一个三角形的三个内角中,锐角的个数最少为 ( ) A .0 B .1 C .2 D .3 4.下面说法错误的是 ( )A .三角形的三条角平分线交于一点B .三角形的三条中线交于一点C .三角形的三条高交于一点D .三角形的三条高所在的直线交于一点 5.能将一个三角形分成面积相等的两个三角形的一条线段是 ( ) A .中线 B .角平分线 C .高线 D .三角形的角平分线 6.如图5—12,已知∠ACB=90°,CD⊥AB,垂足是D ,则图中与∠A 相等的角是 ( )A.∠1 B .∠2 C .∠B D .∠1、∠2和∠B7.点P 是△ABC 内任意一点,则∠APC 与∠B 的大小关系是 ( ) A .∠APC>∠B B .∠APC=∠B C .∠APC<∠B D .不能确定 8.已知:a 、b 、c 是△ABC 三边长,且M =(a +b +c)(a +b -c)(a -b -c),那么 ( )A .M >0B .M =0C .M <0D .不能确定9.周长为P 的三角形中,最长边m 的取值范围是 ( )A .23P m P <≤B .23P m P <<C .23P m P ≤<D .23P m P ≤≤10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有( )A .5个B .4个C .3个D .2个 二、填空题1.五条线段的长分别为1,2,3,4,5,以其中任意三条线段为边长可以________个三角形.2.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是________,周长的取值范围是___________. 3.一个三角形的三个内角的度数的比是2:2:1,这个三角形是_________三角形. 4.一个等腰三角形两边的长分别是15cm 和7cm 则它的周长是__________. 5.在△ABC 中,三边长分别为正整数a 、b 、c ,且c≥b≥a>0,如果b =4,则这样的三角形共有_________个.6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________. 7.在△ABC 中,∠A-∠B=30°、∠C=4∠B,则∠C=________.8.如图5—13,在△ABC 中,AD⊥BC,GC⊥BC,CF⊥AB,BE⊥AC,垂足分别为D 、C 、F 、E ,则_______是△ABC 中BC 边上的高,_________是△ABC 中AB 边上的高,_________是 △ABC 中AC 边上的高,CF 是△ABC 的高,也是△_______、△_______、△_______、△_________的高.9.如图5—14,△ABC 的两个外角的平分线相交于点D ,如果∠A=50°,那么∠D=_____.10.如图5—15,△ABC 中,∠A=60°,∠ABC、∠ACB 的平分线BD 、CD 交于点D ,则∠BDC=_____. 11.如图5—16,该五角星中,∠A+∠B+∠C+∠D+∠E=________度.12.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是________.三、解答题1.如图5—17,点B、C、D、E共线,试问图中A、B、C、D、E五点可确定多少个三角形?说明理由.2.如图5—18,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.3.一个飞机零件的形状如图5—19所示,按规定∠A应等于90°,∠B,∠D应分别是20°和30°,康师傅量得∠BCD=143°,就能断定这个零件不合格,你能说出其中的道理吗?4.如图5—20,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.5.如图5—21,△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.6.如图5—22,在△ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的面积;(2)CD的长.7.已知:如图5—23,P是△ABC内任一点,求证:∠BPC>∠A.8.△ABC中,三个内角的度数均为整数,且∠A<∠B<∠C,4∠C=7∠A,求∠A的度数.9.已知:如图5—24,P是△ABC内任一点,求证:AB+AC>BP+PC.10.如图5—25,豫东有四个村庄A、B、C、D.现在要建造一个水塔P.请回答水塔P应建在何位置,才能使它到4村的距离之和最小,说明最节约材料的办法和理由.参考答案:一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C 9.A 10.C二、1.3; 2.32周长20,164<<<<BC ; 3.锐角(等腰锐角); 4.cm 37;5.10; 6.︒65和︒25; 7.︒100; 8.GAC FAC FGC BFC BE CF AD ∆∆∆∆,,,,,,;9.︒65; 10.︒120; 11.︒180; 12.126<<x . 三、1.可以确定6个三角形.理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,所以图中可以确定6个三角形.2.错误.因为AD 虽然是线段,但不符合三角形角平分线定义,这里射线AD 是BAC ∠的平分线. 3.假设此零件合格,连接BD ,则︒=︒-︒=∠+∠37143180CBD CDB ;可知()︒=︒+︒-︒=∠+∠40203090CBD CDB .这与上面的结果不一致,从而知这个零件不合格.4.∵ AD 是BC 边上的中线,∴ D 为BC 的中点,BD CD =.∵ ADC ∆的周长-ABD ∆的周长=5cm . ∴ cm AB AC 5=-. 又∵ cm AB AC 11=+, ∴ cm AC 8=.5.由三角形内角和定理,得︒=∠+∠+∠180BAC ACB B .∴ ︒=︒-︒-︒=∠4210434180BAC .又∵ AE 平分∠BAC .∴ ︒=︒⨯=∠=∠21422121BAC BAE . ∴ ︒=︒+︒=∠+∠=∠552134BAE B AED . 又∵ ︒=∠+∠90DAE AED ,∴ ︒=︒-︒=∠-︒=∠35559090AED DAE .6.(1)∵ 在△ABC 中,︒=∠90ACB ,cm AC 5=,cm BC 12=,().3012521212cm BCAC S ABC =⨯⨯=⋅=∴∆ (2)∵ CD 是AB 边上的高, ∴ CD AB S ABC ⋅=∆21. 即CD ⨯⨯=132130. ∴ ()cm CD 1360=. 7.如图,延长BP 交AC 于D ,∵ A PDC PDC BPC ∠>∠∠>∠,, ∴ A BPC ∠>∠. 8.∵ A C ∠=∠74, ∴ C A ∠=∠74, ∴C B C ∠<∠<∠74. 又∵ ︒=∠+∠+∠180C B A ,∴ ︒=∠+∠+∠18074C B C . ∴ C B ∠-︒=∠711180, ∵ C C C ∠<∠-︒<∠71118074, ∴ ︒<∠<︒8470C .又∵ C A ∠=∠74为整数, ∴ ∠C 的度数为7的倍数. ∴ ︒=∠77C ,∴ ︒=∠=∠4474C A . 9.如图,延长BP 交AC 于点D .在△BAD 中,BD AD AB >+, 即:PD BP AD AB +>+. 在△PDC 中,PC DC PD >+.①+②得PC PD BP DC PD AD AB ++>+++, 即PC BP AC AB +>+.10.如图,水塔P 应建在线段AC 和线段BD 的交点处.这样的设计将最节省材料.理由:我们不妨任意取一点P ',连结P A '、P B '、P C '、P D '、AB 、BC 、CD 、DA , ∵ 在C P A '∆中,CP AP AC P C P A +=>'+', ① 在D P B '∆中,DP BP BD P D P B +=>'+', ②①+②得DP+A+P+>'+'.+'+'BAPBPCPPPDCP∵点P'是任意的,代表一般性,∴线段AC和BD的交点处P到4个村的距离之和最小.。

北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(3)

北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(3)

, 北师大版七年级数学下册第 3 章《三角形》单元测试试卷及答案(3)一、填空题(共 10 小题)1.一个等腰三角形的两边长分别是 3cm 和 7cm ,则它的周长是_________ cm .△2.若∠A=∠B=2∠C ,则 ABC 是 _________ 三角形.(填“钝角”、“锐角”或“直 角”)△3.如图, ABC≌△DEF ,△ABC 的周长为 25cm AB=6cm ,CA=8cm ,则 DE= _________ , DF= _________ ,EF= _________ .4.如图,AB=AD ,BC=DC ,要证∠B=∠D ,则需要连接 _________ ,从而可证 _________和 _________ 全等.5.如图,AD ,AE 分别是△ABC 的角平分线和高线,且∠B=50°,∠C=70°,则∠EAD= _________ .△6.如图,CA⊥BE ,且 ABC≌△ADE ,则 BC 与 DE 的关系是 _________ .7.如图,有一块边长为 4 的正方形塑料模板 ABCD ,将一块足够大的直角三角板的直角顶 点落在 A 点,两条直角边分别与 CD 交于点 F ,与 CB 延长线交于点 E .则四边形 AECF 的 面积是 _________ .8.如图,BA∥CD,∠A=90°,AB=CE,BC=ED,则△CED≌_________,根据是_________.△9.如图,ABC中,AB=AC,BC=8,BD是AC边上的中线,△ABD与△BDC的周长的差是2,则AB=_________.10.如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA,得到A B C,至点A,B,C,使得A B=2AB,B C=2BC,C A=2CA,顺次连接A,B,C△1 11111111111记其面积为S;第二次操作,分别延长A B,B C,C A至点A,B,C,使得A B=2A B,11111112222111,得到A B C,记其面积为S;…;按B C=2B C,C A=2C A,顺次连接A,B,C△221112111222222B C,则其面积S=_________.此规律继续下去,可得到A△5555二、选择题(共8小题)11.在下列四组线段中,能组成三角形的是()A.2,2,5B.3,7,10C.3,5,9D.4,5,7△12.(2011•宿迁)如图,已知∠1=∠2,则不一定能使ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 13.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形B.∠1=∠2C.∠1和∠B都是∠A的余角D.∠2=∠A14.如图,AC⊥BC,CD⊥AB,DE⊥BC,分别交B C,AB,BC于点C,D,E,则下列说法中不正确的是()A.AC是△ABC和△ABE的高B.DE,DC都是△BCD的高C.DE是△DBE和△ABE的高D.AD,CD都是△ACD的高15.角α和β互补,α>β,则β的余角为()A.α﹣βB.180°﹣α﹣βC.D.△16.根据下列已知条件,能唯一画出ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=6△17.下列各组条件中,能判定ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.AB=DE,BC=EF,△ABC的周长=△DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F△18.如图,DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是()A.3个B.2个C.1个D.0个三、解答题(共7小题)19.如图,在小河的同侧有A,B,C,D四个村庄,图中线段表示道路.邮递员从A村送信到B村,总是走经过C村的道路,不走经过D村的道路,这是为什么呢?请你用所学的数学知识说明其中的道理.20.如图,AB=AD,BC=DC,AC与BD相交于点E,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母.不写推理过程,只要求写出四个你认为正确的结论即可)21.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD 沿着角的两边放正,沿AC画一条射线AE,AE就是角平分线,请说明它的道理.22.如图,A、B两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF,且使BF⊥AB,在BF上截取BC=CD,过D点作DE⊥BF,使E、C、A在一条直线上,则DE的长就是A、B之间的距离,请说明理由..23.如图,公园有一条“Z”字形道路 ABCD ,其中 AB∥CD ,在 E 、M 、F 处各有一个小 石凳,且 BE=CF ,M 为 BC 的中点,请问三个小石凳是否在一条直线上?说出你推断的理 由.△24.如图, ABC 中,AB=BC=CA ,∠A=∠ABC=∠ACB ,在△ABC 的顶点 A ,C 处各有 一只小蚂蚁,它们同时出发,分别以相同速度由 A 向 B 和由 C 向 A 爬行,经过 t (s )后, 它们分别爬行到了 D ,E 处,设 DC 与 BE 的交点为 F .(△1)证明 ACD≌△CBE ;(2)小蚂蚁在爬行过程中,DC 与 BE 所成的∠BFC 的大小有无变化?请说明理由.25.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什 么情况下,它们会全等? (1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略) 对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知: ABC 、 A △1B C 均为锐角三角形,AB=A B ,BC=B C ,∠C=∠C .1 1 1 1 1 l l求证:ABC≌ A △1B C .1 1(请你将下列证明过程补充完整.)证明:分别过点 B ,B 作 BD⊥CA 于 D , 1B D ⊥C A 于D .1 11 11 则∠BDC=∠B D C =90°, 1 1 1∵BC=B C ,∠C=∠C , 1 11∴ BCD≌ B △1C D ,1 1∴BD=B D .1 1(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.参考答案与试题解析一、填空题(共10小题)1.一个等腰三角形的两边长分别是3cm和7cm,则它的周长是17cm.考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.解答:解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17cm.故答案为:17.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.△2.若∠A=∠B=2∠C,则ABC是锐角三角形.(填“钝角”、“锐角”或“直角”)考点:三角形内角和定理.专题:计算题.分析:根据三角形的内角和为180°和已知条件设未知数,列方程求解,再判断形状.解答:解:设三角分别是∠A=a°,∵∠A=2∠B=3∠C,∴∠B=a°,∠B=a°,则a+a+a=180°,解a≈98°.所以三角形是钝角三角形.故答案为钝角.点评:此题主要考查了三角形的内角和定理:三角形的内角和为180°.正确的设出一个角并表示出其他角是解决此题的关键.△3.如图,ABC≌△DEF,△ABC的周长为25cm,AB=6cm,CA=8cm,则DE=6cm,DF=8cm,EF=11cm.考点:全等三角形的性质.分析:根据△ABC的周长求出BC,然后根据全等三角形对应边相等解答即可.解答:解:∵△ABC的周长为25cm,AB=6cm,CA=8cm,∴BC=25﹣6﹣8=11cm,∵△ABC≌△DEF,∴DE=AB=6cm,DF=AC=8cm,EF=BC=11cm.故答案为:6cm;8cm;11cm.点评:本题考查了全等三角形对应边相等的性质,熟记性质并准确找出对应边是解题的关键.4.如图,AB=AD,BC=DC,要证∠B=∠D,则需要连接AC,从而可证△ABC和△ADC全等.考点:全等三角形的判定与性质.分析:连接AC,根据AB=AD,BC=DC,AC=AC即可证明△ABC≌△ADC,于是得到∠B=∠D.解答:解:连接AC,在△ABC和△ADC中,∵,∴△ABC≌△ADC(SSS),∴∠B=∠D.故答案为△AC,ABC,△ADC.点评:本题主要考查全等三角形的判定与性质的知识点,解答本题的关键是熟练掌握其判定定理,此题基础题,比较简单.5.如图,AD,AE分别是△ABC的角平分线和高线,且∠B=50°,∠C=70°,则∠EAD= 10°.考点:三角形内角和定理.分析:根据三角形的内角和等于180°求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠B AE,然后根据∠EAD=∠BAE﹣∠BAD代入数据进行计算即可得解.解答:解:∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵AD是△ABC的角平分线,∴∠BAD=∠BAC=×60°=30°,∵AE是△ABC的高线,∴∠BAE=90°﹣∠B=90°﹣50°=40°,∴∠EAD=∠BAE﹣∠BAD=40°﹣30°=10°.故答案为:10°.点评:本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,是基础题,准确识图找出各角度之间的关系是解题的关键.△6.如图,CA⊥BE,且ABC≌△ADE,则BC与DE的关系是相等且垂直.考点:全等三角形的性质.分析:根据全等三角形对应边相等可得BC=DE,全等三角形对应角相等可得∠C=∠E,根据垂直的定义求出∠BAC=90°,然后求出∠B+∠E=90°,从而得到∠BFE=90°,即BC⊥DE.解答:解:∵△ABC≌△ADE,∴BC=DE,∠C=∠E,∵CA⊥BE,∴∠BAC=90°,∵∠B+∠C=180°﹣∠BAC=180°﹣90°=90°,∴∠B+∠E=90°,∴∠BFE=180°﹣(∠B+∠E)=180°﹣90°=90°,∴BC⊥DE,故BC与DE的关系是相等且垂直.故答案为:相等且垂直.点评:本题考查了全等三角形的性质,主要利用了全等三角形对应边相等,全等三角形对应角相等,垂直的定义,熟记性质是解题的关键.7.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是16.△S AEB =S△=S△ , 考点: 正方形的性质;全等三角形的判定与性质.分析: 由四边形 ABCD 为正方形可以得到∠D=∠B=90°,AD=AB ,又∠ABE=∠D=90°,而∠EAF=90°由此可以推出∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,进一步得到∠DAF=∠BAE ,所以可以证明△AEB≌△AFD ,所以 AFD ,那么它们 都加上四边形 ABCF 的面积,即可四边形 AECF 的面积=正方形的面积,从而求出 其面积.解答: 解:∵四边形 ABCD 为正方形,∴∠D=∠ABC=90°,AD=AB , ∴∠ABE=∠D=90°, ∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°, ∴∠DAF=∠BAE , ∴△AEB≌△AFD ,△∴S AEB AFD∴它们都加上四边形 ABCF 的面积,可得到四边形 AECF 的面积=正方形的面积=16.故答案为:16.点评: 本题需注意:在旋转过程中一定会出现全等三角形,应根据所给条件找到.8.如图,BA∥CD ,∠A=90°,AB=CE ,BC=ED ,则△CED≌ △ABC ,根据是HL .考点: 全等三角形的判定.分析: 根据两直线平行,同旁内角互补求出∠DCE=90°,然后利用“HL”证明△CED 和△ABC 全等.解答: 解:∵BA∥CD ,∠A=90°,∴∠DCE=180°﹣∠A=180°﹣90°=90°, ∵在 Rt△CED 和 Rt△ABC 中,,∴ CED≌ ABC (△HL ). 故答案为: ABC ,△HL .点评: 本题考查了全等三角形的判定,平行线的性质,求出∠DCE=90°是解题的关键.△9.如图, ABC 中,AB=AC ,BC=8,BD 是 AC 边上的中线,△ABD 与△BDC 的周长的 差是 2,则 AB= 10 .考点: 等腰三角形的性质.分析: 根据三角形中线的定义可得 AD=CD ,然后求出△ABD 与△BDC 的周长的差=AB﹣BC ,再代入数据进行计算即可得解.解答: 解:∵BD 是 AC 边上的中线,∴AD=CD ,∴△ABD 与△BDC 的周长的差=(AB+AD+BD )﹣(BC+CD+BD )=AB ﹣BC , ∵△ABD 与△BDC 的周长的差是 2,BC=8, ∴AB ﹣8=2, ∴AB=10.故答案为:10.点评: 本题考查了等腰三角形腰上的中线的定义,求出△ABD 与△BDC 的周长的差=AB﹣BC 是解题的关键,也是本题的难点.10.如图,对面积为 1 的△ABC 逐次进行以下操作:第一次操作,分别延长 AB ,BC ,CA 至点 A ,B ,C ,使得 A B=2AB ,B C=2BC ,C A=2CA ,顺次连接 A ,B ,C △1,得到 A B C ,111111111 1 1记其面积为 S ;第二次操作,分别延长 A B ,B C ,C A 至点 A ,B ,C ,使得 A B =2A B , 11 11 11 12222 1 1 1B C =2B C ,C A =2C A ,顺次连接 A ,B ,C △2,得到 A B C ,记其面积为 S ;…;按 2 11 12 11 1222 2 22此规律继续下去,可得到A △5BC ,则其面积 S = 195 .5 5 5考点: 三角形的面积. 专题: 压轴题;操作型.分析: 根据高的比等于面积比推理出A △1BC 的面积是 A △1BC 面积的 2 倍,则 A △1B B 的11面积是A △1BC 面积的 3 倍…,以此类推,得出 A △2BC 的面积.2 2解答: 解:连接 A C ,根据 A B=2AB ,得到:AB :A A=1:3,111因而若过点 B ,A 作△ABC 与 AA △1C 的 AC 边上的高,则高线的比是 1:3, 1因而面积的比是 1:△3,则 A BC 的面积是△ABC 的面积的 2 倍,1设△ABC 的面积是 △a ,则 A BC 的面积是 2a , 1同理可以得到A △1BC 的面积是 A △1BC 面积的 2 倍,是 4a ,1则 A △1B B 的面积是 6a ,1同理B △1C C 和 A △1C A 的面积都是 6a ,11△A B C 的面积是 19a ,1 1 1即 A △1B C 的面积是△ABC 的面积的 19 倍, 1 1同理A △2BC 的面积是 A △1B C 的面积的 19 倍,2 21 1即 A △1B C 的面积是 △19, A B C 的面积 192,1 12 2 2依此类推,AB C的面积是S=195=2476099.△5555点评:正确判断相邻的两个三角形面积之间的关系是解决本题的关键,本题的难度较大.二、选择题(共8小题)11.在下列四组线段中,能组成三角形的是()A.2,2,5B.3,7,10C.3,5,9D.4,5,7考点:三角形三边关系.分析:根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.解答:解:A、∵2+2=4<5,∴2,2,5不能组成三角形,故本选项错误;B、∵3+7=10,∴3,7,10不能组成三角形,故本选项错误;C、∵3+5=8<9,∴3,5,9不能组成三角形,故本选项错误;D、4,5,7能组成三角形,故本选项正确.故选D.点评:本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解题的关键.△12.(2011•宿迁)如图,已知∠1=∠2,则不一定能使ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 考点:全等三角形的判定.专题:压轴题.分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解答:解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故本选项正确,不合题意.B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故本选项错误,符合题意.C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故本选项正确,不合题意.D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故本选项正确,不合题意.故选B.点评:此题主要考查学生对全等三角形判定定理的理解和掌握,此题难度不大,属于基础题.13.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形C.∠1和∠B都是∠A的余角B.∠1=∠2 D.∠2=∠A考点:直角三角形的性质.专题:证明题.分析:在△ABC中,∠ACB=90°,CD⊥AB,因而△ACD∽△CBD∽△ABC,根据相似三角形的对应角相等,就可以证明各个选项.解答:解:∵∠ACB=90°,CD⊥AB,垂足为D,∴△ACD∽△CBD∽△ABC.A、∴图中有三个直角三角形Rt△ACD、Rt△CBD、Rt△ABC;故本选项正确;B、应为∠1=∠B、∠2=∠A;故本选项错误;C、∴∠1=∠B、∠2=∠A,而∠B是∠A的余角,∴∠1和∠B都是∠A的余角;故本选项正确;D、∴∠2=∠A;故本选项正确.故选B.点评:本题主要考查了直角三角形的性质,直角三角形斜边上的高,把这个三角形分成的两个三角形与原三角形相似.14.如图,AC⊥BC,CD⊥AB,DE⊥BC,分别交B C,AB,BC于点C,D,E,则下列说法中不正确的是()A.AC是△ABC和△ABE的高C.DE是△DBE和△ABE的高B.DE,DC都是△BCD的高D.AD,CD都是△ACD的高考点:三角形的角平分线、中线和高.分析:三角形的高即从三角形的一个顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解答:解:A、AC是△ABC和△ABE的高,正确;B、DE,DC都是△BCD的高,正确;C、DE不是△ABE的高,错误;D、AD,CD都是△ACD的高,正确.故选C.点评:考查了三角形的高的概念.15.角α和β互补,α>β,则β的余角为()A.α﹣βB.180°﹣α﹣βC.D.考点:余角和补角.分析:根据互为补角的两个角的和等于180°表示出α+β,再根据互为余角的两个角的和等于90°列式整理即可得解.解答:解:∵角α和β互补,∴α+β=180°,∴β的余角为:90°﹣β=(α+β)﹣β=(α﹣β).故选C.点评:本题考查了余角和补角,利用90°和180°的倍数关系消掉常数是解题的关键.△16.根据下列已知条件,能唯一画出ABC的是()A.AB=3,BC=4,AC=8C.∠A=60°,∠B=45°,AB=4B.AB=4,BC=3,∠A=30°D.∠C=90°,AB=6考点:全等三角形的判定.专题:作图题;压轴题.分析:要满足唯一画出△ABC,就要求选项给出的条件符合三角形全等的判定方法,不符合判定方法的画出的图形不一样,也就是三角形不唯一,而各选项中只有C选项符合ASA,是满足题目要求的,于是答案可得.解答:解:A、因为AB+BC<AC,所以这三边不能构成三角形;B、因为∠A不是已知两边的夹角,无法确定其他角的度数与边的长度;C、已知两角可得到第三个角的度数,已知一边,则可以根据ASA来画一个三角形;D、只有一个角和一个边无法根据此作出一个三角形.故选C.点评:此题主要考查了全等三角形的判定及三角形的作图方法等知识点;能画出唯一三角形的条件一定要满足三角形全等的判定方法,不符合判定方法的画出的三角形不确定,当然不唯一.△17.下列各组条件中,能判定ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.AB=DE,BC=EF,△ABC的周长=△DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F考点:全等三角形的判定.分析:根据全等三角形的判定(三组对应边分别相等的两个三角形全等(简称SSS))可得当AB=DE,BC=EF,AC=DF可判定△ABC≌△DEF,做题时要对选项逐个验证.解答:解:A、满足SSA,不能判定全等;B、AC=EF不是对应边,不能判定全等;C、符合SSS,能判定全等;D、满足AAA,不能判定全等.故选C.点评:本题考查了全等三角形的判定方法,在应用判定方法做题时找准对应关系,对选项逐一验证,而AAA,SSA不能作为全等的判定方法.△18.如图,DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是()A.3个B.2个C.1个D.0个考点:全等三角形的判定与性质;等边三角形的性质.分析:根据等边三角形性质得出AC=CD,BC=CE,∠ACD=∠BCE=60°,求出∠ACE=∠BCD,根据SAS证△ACE≌△BCD,推出∠NDC=∠CAM,求出∠DCE=∠ACD,证△ACM≌△DCN,推出CM=CN,AM=DN,即可判断各个结论.解答:解:∵△DAC和△EBC均是等边三角形,∴AC=CD,BC=CE,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠BCD,在△ACE和△BCD中∴△ACE≌△BCD(SAS);∴①正确;∵∠ACD=∠BCE=60°,∴∠DCE=180°﹣60°﹣60°=60°=∠ACD,∵△ACE≌△BCD,∴∠NDC=∠CAM,在△ACM和△DCN中∴△ACM≌△DCN(ASA),∴CM=CN,AM=DN,∴②正确;∵△ADC是等边三角形,∴AC=AD,∠ADC=∠ACD,∵∠AMC>∠ADC,∴∠AMC>∠ACD,∴AC>AM,即AC>DN,∴③错误;故选B.点评:本题考查了等边三角形的性质和全等三角形的性质和判定的应用,主要考查学生的推理能力和辨析能力.三、解答题(共7小题)19.如图,在小河的同侧有A,B,C,D四个村庄,图中线段表示道路.邮递员从A村送信到B村,总是走经过C村的道路,不走经过D村的道路,这是为什么呢?请你用所学的数学知识说明其中的道理.考点:三角形三边关系.分析:延长AC交BD于E,根据三角形的任意两边之和大于第三边可得AD+DE>AC+CE,CE+BE>BC,然后整理得到AD+BD>AC+BC,从而得解.解答:解:如图,延长AC交BD于E,在△ADE中,AD+DE>AC+CE,在△CBE中,CE+BE>BC,∴AD+DE+CE+BE>AC+CE+BC,∴AD+BD>AC+BC,因此,邮递员由A村到B村送信,经过C村路程近些,所以,他总是走经过C村的道路,不走经过D村的道路.点评:本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解题的关键.20.如图,AB=AD,BC=DC,AC与BD相交于点E,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母.不写推理过程,只要求写出四个你认为正确的结论即可)考点:全等三角形的判定与性质.专题:开放型.分析:由AB=AD,BC=DC知,AC是BD的中垂线,∴DE⊥AC,可由SSS证得△ABC≌△ADC及AC平分∠BAD等.解答:解:由已知得,AC垂直平分BD,即直线AC为四边形ABCD的对称轴,由对称性可知:DE=BE,DE⊥AC于△E,ABC≌ADC,△AC平分∠BAD等.点评:本题考查了三角形全等的判定和性质.做题时要从已知开始思考,结合全等的判定方法进行取舍.21.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD 沿着角的两边放正,沿AC画一条射线AE,AE就是角平分线,请说明它的道理.考点:全等三角形的应用.专题:证明题.分析:AC为公共边,其中AB=AD,BC=DC,利用SSS判断两个三角形全等,根据全等三角形的性质解题.解答:证明:△ABC与△ADC中,∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.即AE平分∠BAD.不论∠DAB是大还是小,始终有AE平分∠BAD.点评:本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.22.如图,A、B两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF,且使BF⊥AB,在BF上截取BC=CD,过D点作DE⊥BF,使E、C、A在一条直线上,则DE的长就是A、B之间的距离,请说明理由.考点:全等三角形的应用.分析:可以沿河岸作射线BF,且使BF⊥AB,在BF上截取BC=CD,过D点作DE⊥BF,使E、C、A在一条直线上,证明出这两个三角形全等,从而可得到结论.解答:解:∵∠ACB=∠DCE,BC=CD,∠B=∠EDC=90°,∴△ACB≌△ECD,∴AB=DE.点评:本题考查全等三角形的应用,关键是证明三角形全等,从而得到线段相等,得到结论.23.如图,公园有一条“Z”字形道路ABCD,其中AB∥CD,在E、M、F处各有一个小石凳,且BE=CF,M为BC的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.考点:全等三角形的应用.分析:首先连接EM、△MF,再证明BEM≌△CFM可得∠BME=∠FMC,再根据∠BME+∠EMC=180°,可得∠FMC+∠EMC=180,进而得到三个小石凳在一条直线上.解答:解:连接EM、MF,∵AB∥CD,∴∠B=∠C,又∵M为BC中点,∴BM=MC.,∴在△BEM和△CFM中∴△BEM≌△CFM(SAS),∴∠BME=∠FMC,∵∠BME+∠EMC=180°,∴∠FMC+∠EMC=180°,∴三个小石凳在一条直线上.点评:此题主要考查了全等三角形的应用,证明△BEM≌△CFM,证明出∠FMC+∠EMC=180°是解决问题的关键.△24.如图,ABC中,AB=BC=CA,∠A=∠ABC=∠ACB,在△ABC的顶点A,C处各有一只小蚂蚁,它们同时出发,分别以相同速度由A向B和由C向A爬行,经过t(s)后,它们分别爬行到了D,E处,设DC与BE的交点为F.(△1)证明ACD≌△CBE;(2)小蚂蚁在爬行过程中,DC与BE所成的∠BFC的大小有无变化?请说明理由.考点:全等三角形的应用.分析:(1)根据小蚂蚁的速度相同求出AD=CE,再利用“边角边”证明△ACD和△CBE 全等即可;(2)根据全等三角形对应角相等可得∠EBC=∠ACD,然后表示出∠BFC,再根据等边三角形的性质求出∠ACB,从而得到∠BFC.解答:(1)证明:∵小蚂蚁同时从A、C出发,速度相同,∴t(s)后两只小蚂蚁爬行的路程AD=CE,∵在△ACD和△CBE中,,∴△ACD≌△CBE(SAS);(△2)解:∵ACD≌△CBE,∴∠EBC=∠ACD,∵∠BFC=180°﹣∠EBC﹣∠BCD,∴∠BFC=180°﹣∠ACD﹣∠BCD,=180°﹣∠ACB,∵∠A=∠ABC=∠ACB,∴∠ACB=60°,∴∠BFC=180°﹣60°=120°,∴∠BFC无变化.点评:本题考查了全等三角形的应用,主要利用了全等三角形对应角相等的性质,等边三角形的性质,根据小蚂蚁的速度相同求出AD=CE是证明三角形全等的关键.25.(2006•绍兴)我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?.△1B △1(1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略) 对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知: ABC 、 A △1B C 均为锐角三角形,AB=A B ,BC=B C ,∠C=∠C .1 1 1 1 1 l l 求证:ABC≌ A △1B C . 1 1 (请你将下列证明过程补充完整.) 证明:分别过点 B ,B 作 BD⊥CA 于 D ,1 B D ⊥C A 于 D . 1 1 1 1 1则∠BDC=∠B D C =90°,1 1 1 ∵BC=B C ,∠C=∠C ,1 1 1 ∴ BCD≌ B △1C D ,1 1 ∴BD=B D . 1 1 (2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.考点: 全等三角形的判定.专题: 压轴题;阅读型.分析: 本题考查的是全等三角形的判定,首先易证得 ADB≌ A △1B C 然后易证出 1 1 ABC≌ A C .1 1解答: 证明:(1)证明:分别过点 B ,B 作 BD⊥CA 于 D ,1 B D ⊥C A 于 D . 1 1 1 1 1 则∠BDC=∠B D C =90°,1 1 1∵BC=B C ,∠C=∠C ,1 1 1 ∴ BCD≌ B △1C D ,1 1 ∴BD=B D . 1 1 补充:∵AB=A B ,∠ADB=∠A D B =90°.1 1 1 1 1 ∴ ADB≌ A △1D B (HL ),1 1 ∴∠A=∠A , 1又∵∠C=∠C ,BC=B C ,1 1 1 在△ABC 与 A △1B C 中,1 1∵,∴ ABC≌ A △1B C (AAS );1 1(△2)解:若两三角形( ABC 、 AB C )均为锐角三角形或均为直角三角形或均 1 1为钝角三角形,则它们全等(AB=A B,BC=B C,∠C=∠C△1,则ABC≌A△1B C).111111点评:命题立意:考查三角形全等的判定,阅读理解能力及分析归纳能力.做题时要认真读题,明白题意,然后按要求答题.。

七年级下册数学三角试卷

七年级下册数学三角试卷

一、选择题(每题4分,共20分)1. 在直角三角形ABC中,∠C=90°,AC=3,BC=4,则sinA的值为:A. 3/4B. 4/3C. 3/5D. 5/32. 若一个角的余弦值为1/2,则这个角是:A. 30°B. 45°C. 60°D. 90°3. 在直角坐标系中,点P(2,3)与原点O的距离是:A. √13B. 5C. 2D. 34. 若sinθ=1/2,且θ是锐角,则cosθ的值为:A. √3/2B. 1/2C. √2/2D. 2/√25. 在直角三角形中,若∠A=30°,∠B=60°,则∠C的度数是:A. 90°B. 120°C. 30°D. 60°二、填空题(每题5分,共25分)6. 在直角三角形中,若∠A=45°,∠B=45°,则sinA的值为______。

7. 若cosθ=√3/2,则θ是______角的余弦值。

8. 在直角坐标系中,点A(-2,3)与点B(4,-5)之间的距离是______。

9. 若sinθ=3/5,且θ是锐角,则cosθ的值为______。

10. 在直角三角形中,若∠A=90°,∠B=30°,则三角形ABC的面积是______。

三、解答题(每题10分,共30分)11. 在直角三角形ABC中,∠C=90°,AC=6,BC=8,求sinA、cosA、tanA的值。

12. 已知一个角的正弦值为√2/2,求这个角的度数。

13. 在直角坐标系中,点A(2,3),点B(-4,-5),求线段AB的中点坐标。

四、应用题(10分)14. 一根绳子从地面垂直拉起,绳子的长度为10米,绳子顶端离地面的高度为6米,求绳子与地面形成的角度。

---答案:一、选择题:1. A2. C3. A4. A5. A二、填空题:6. 1/√27. 锐角8. √459. 4/5 10. 12三、解答题:11. sinA=√2/2,cosA=√2/2,tanA=112. 45°13. 中点坐标为(-1,-1)四、应用题:14. 绳子与地面形成的角度约为63.43°。

(精选)北师大版七年级数学下册第3章《三角形》单元测试试题及答案(1)

(精选)北师大版七年级数学下册第3章《三角形》单元测试试题及答案(1)

北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(1)一、选择题1.以下列各组长度的线段为边,能构成三角形的是().A.6 cm,8 cm,15 cm B.7 cm,5 cm,12 cmC.4 cm,6 cm,5 cm D.8 cm,4 cm,3 cm2.如图,△AOB≌△COD,A和C,B和D是对应顶点,若BO=6,AO=3,AB=5,则CD的长为().A.10 B.8C.5 D.不能确定3.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是().A.∠ADB=∠ADC B.∠B=∠CC.DB=DC D.AB=AC4.要使五边形木架不变形,则至少要钉上()根木条.A.1 B.2 C.3 D.45.下列语句:①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合.其中错误的说法有().A.4个B.3个C.2个D.1个6.如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是().A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形7.图中全等的三角形是().A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ8.如图,△ABC中,∠ACB=90°,把△ABC沿AC翻折180°,使点B落在B′的位置,则关于线段AC的性质中,正确的说法是().A.是边BB′上的中线B.是边BB′上的高C.是∠BAB′的平分线D.以上三种性质都有二、填空题9.在△ABC中,若∠A∶∠B∶∠C=1∶3∶5,这个三角形为__________三角形.(按角的分类)10.一木工师傅有两根长分别为5 cm,8 cm的木条,他要找第三根木条,将它们钉成一个三角形框架,现有长分别为3 cm,10 cm,20 cm的三根木条,他可以选择长为__________cm 的木条.11.如图,如果AD=BC,∠1=∠2,那么△ABC≌△CDA,根据是__________.12.如图,已知∠ABC=∠DCB,现要说明△ABC≌△DCB,则还要补加一个条件是______.13.如图,△ABC中,AB=AC,AD是∠BAC的平分线,则∠ABD__________∠ACD(填“>”“<”或“=”).14.如图,长方形ABCD中(AD>AB),M为CD上一点,若沿着AM折叠,点N恰落在BC上,则∠ANB+∠MNC=__________度.三、解答题15.如图,在△ABC中,∠BAC是钝角,完成下列画图,并用适当的符号在图中表示AC边上的高.16.已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°,求∠AEC的度数.17.如图,已知AB=AC,BD=CE,请说明△ABE≌△ACD.18.请你找一张长方形的纸片,按以下步骤进行动手操作:步骤一:在CD上取一点P,将角D和角C向上翻折,这样将形成折痕PM和PN,如图①所示;步骤二:翻折后,使点D,C落在原长方形所在的平面内,即点D′和C′,细心调整折痕PN,PM的位置,使PD′,PC′重合,如图②,设折角∠MPD′=∠α,∠NPC′=∠β.(1)猜想∠MPN的度数;(2)若重复上面的操作过程,并改变∠α的大小,猜想:随着∠α的大小变化,∠MPN 的度数怎样变化?参考答案1.C点拨:此题考查了三角形的三边关系.A.6+8<15,不能组成三角形;B.7+5=12,不能组成三角形;C.4+5>6,能够组成三角形;D.4+3<8,不能组成三角形.2.C点拨:因为△AOB≌△COD,A和C,B和D是对应顶点,所以AB=CD.因为AB=5,所以CD=5.3.C点拨:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS,ASA,SAS,SSS,而“SSA”无法证明三角形全等.4.B5.B点拨:错误的说法有①②④,共3个.6.C点拨:通过三角形的形状可以判断三角形高线的位置,反之,通过三条高线交点的位置可以判断三角形的形状.7.D点拨:A选项中条件不满足“SAS”,不能判定两三角形全等;B选项中条件对应边不相等,不能判定两三角形全等;C选项中条件不满足“SAS”,不能判定两三角形全等;D选项中条件满足“SAS”,能判定两三角形全等.8.D点拨:本题考查的是图形的翻折变换及全等三角形的性质,熟知图形翻折变换的性质是解答此题的关键.9.钝角点拨:因为∠A∶∠B∶∠C=1∶3∶5,∠A+∠B+∠C=180°,所以∠A=20°,∠B=60°,∠C=100°.因为∠C>90°,所以这个三角形是钝角三角形.10.10点拨:已知三角形的两边长分别是5 cm和8 cm,则第三边长一定大于3 cm 且小于13 cm.故他可以选择其中长为10 cm的木条.11.SAS点拨:因为AD=BC,∠1=∠2,AC=CA,所以△ABC≌△CDA(SAS).12.∠A=∠D或AB=CD或∠ACB=∠DBC13.=点拨:因为△ABC中,AB=AC,AD是∠BAC的平分线,所以∠BAD=∠CAD.又因为AD=AD,所以△ABD≌△ACD(SAS).所以∠ABD=∠ACD.14.90点拨:根据折叠的性质,有∠ANM=∠ADM=90°,故∠ANB+∠MNC=180°-∠ANM=90°.15.解:如图,BE即为AC边上的高.16.解:因为AD⊥BC,∠B=60°,∠BAC=80°,所以∠BAD=30°,∠DAC=50°,∠C=40°.因为AE平分∠DAC,所以∠DAE=∠EAC=25°,所以∠AEC=180°-∠C-∠EAC=180°-25°-40°=115°.17.解:因为AB=AC,BD=CE,所以AD=AE.又因为∠A=∠A,所以△ABE≌△ACD(SAS).18.解:(1)因为∠α=∠MPD,∠β=∠NPC,又因为∠α+∠β+∠MPD+∠NPC=180°,所以∠α+∠β=90°,即∠MPN=90°.(2)∠MPN的度数不变,仍为90°.。

北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(4)

北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(4)

级数学下册第3章《三角形》单元测试试卷及答案(4)1.一定在△ABC 内部的线段是( )A .锐角三角形的三条高、三条角平分线、三条中线B .钝角三角形的三条高、三条中线、一条角平分线C .任意三角形的一条中线、二条角平分线、三条高D .直角三角形的三条高、三条角平分线、三条中线2.下列说法中,正确的是( )A .一个钝角三角形一定不是等腰三角形,也不是等边三角形B .一个等腰三角形一定是锐角三角形,或直角三角形C .一个直角三角形一定不是等腰三角形,也不是等边三角形D .一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC 中,D 、E 分别为BC 上两点,且BD =DE =EC ,则图中面积相等的三角形有( )A .4对B .5对C .6对D .7对(注意考虑完全,不要漏掉某些情况)4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )A .锐角三角形B .钝角三角形C .直角三角形D .无法确定5.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是( )A .18B .15C .18或15D .无法确定6.两根木棒分别为5cm 和7cm ,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有( )种A .3B .4C .5D .6A .180°B .360°C .720°D .540°7.如图:(1)AD ⊥BC ,垂足为D ,则AD 是________的高,∠________=∠________=90°;(2)AE 平分∠BAC ,交BC 于点E ,则AE 叫________,∠________=∠________=21∠________,AH 叫________; (3)若AF =FC ,则△ABC 的中线是________;(4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线.8.在等腰△ABC 中,如果两边长分别为6cm 、10cm ,则这个等腰三角形的周长为________.9.如图,△ABC 中,∠ABC 、∠ACB 的平分线相交于点I .(1)若∠ABC =70°,∠ACB =50°,则∠BIC =________;(2)若∠ABC +∠ACB =120°,则∠BIC =________;(3)若∠A =60°,则∠BIC =________;(4)若∠A =100°,则∠BIC =________;(5)若∠A =n °,则∠BIC =________.10.如图,在△ABC 中,∠BAC 是钝角.画出:(1)∠ABC 的平分线;(2)边AC上的中线;。

专题03《三角形的面积与底的正比关系》(原卷)

专题03《三角形的面积与底的正比关系》(原卷)

2022-2023学年专题卷小升初数学几何问题精选真题汇编强化训练(提高)专题03 三角形的面积与底的正比关系考试时间:100分钟;试卷满分:100分姓名:___________班级:___________考号:___________题号一二三四总分得分评卷人得分一.选择题(共7小题,满分14分,每小题2分)1.(2分)(2020秋•清江浦区期末)如图,三角形ABC和三角形CDE都是直角三角形,阴影部分正好是正方形,三角形ABC与三角形CDE的面积比是()A.9:8 B.8:9 C.13:112.(2分)(2020秋•溧阳市期末)如图,三角形的高把底分成2:5两段,原来大三角形和三角形①的面积比是()A.5:2 B.7:5 C.7:23.(2分)(2019•松山区)如图,平行四边形中甲、乙、丙三个三角形面积的比是()A.1:2:3 B.2:3:5 C.5:2:3 D.无法确定4.(2分)(2021秋•河西区期末)三角形ABC(如图),D是AB边的中点,E是AC边的中点,阴影部分的面积是三角形ABC的面积的()A.B.C.D.5.(2分)(2021•浦东新区)如图,两个正方形中阴影部分面积比是3:1,空白部分的面积比是()A.6:1 B.9:1 C.12:1 D.15:16.(2分)(2021•清丰县)在如图等边三角形ABC中,D、E分别是AB、AC、的中点,阴影部分的面积是三角形ABC的面积的()A.B.C.D.无法确定7.(2分)(2021秋•如皋市期中)如图,在平行四边形ADFG中,AB=BC=CD,DE=EF,则甲、乙两个三角形面积的比是()A.3:2 B.2:3 C.3:5 D.5:3评卷人得分二.填空题(共7小题,满分14分,每小题2分)8.(2分)(2020秋•江干区期末)如图,三角形ABC和三角形ADE形状完全相同,在数学上把这样的两个三角形叫做“相似三角形”。

已知DE:BC=1:2,h1:h2=1:2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题03 三角形
专题测试
学校:___________姓名:___________班级:___________考号:___________
一、选择题(共8小题,每题5分,共计40分)
1.给出下列说法:(1)等边三角形是等腰三角形;(2)三角形按边的相等关系分类可分为等腰三角形、等边三角形和不等边三角形;(3)三角形按角的大小分类可分为锐角三角形、直角三角形和钝角三角形.其中,正确的有( )个.
A .1
B .2
C .3
D .0
2.在ABC ∆中,如果290B C C ∠-∠=︒-∠,那么ABC ∆是( )
A .直角三角形
B .钝角三角形
C .锐角三角形
D .锐角三角形或钝角三角形
3.(2019春•徐州校级月考)现有两根木棒,它们长分别是40cm 和50cm ,若要钉成一个三角形木架,则下列四根木棒应选取( )
A .10cm 的木棒
B .40cm 的木棒
C .90cm 的木棒
D .100cm 的木棒 4.如图,图中三角形的个数共有( )
A .3个
B .4个
C .5个
D .6个
5.(2019春•东台市期中)下列说法正确的是( )
A .三角形的三条高至少有一条在三角形内
B .直角三角形只有一条高
C .三角形的角平分线其实就是角的平分线
D .三角形的角平分线、中线、高都在三角形的内部
6.(2019春•东台市校级月考)画ABC ∆的边AB 上的高,下列画法中,正确的是( )
A .
B .
C .
D .
7.如图,在ABC ∆中,BC 边上的高为( )
A .BF
B .CF
C .B
D D .AE
8.如图,已知ABC ∆中,B α∠=,C β∠=,()AD αβ>是BC 边上的高,AE 是BAC ∠的平分线,则DAE ∠的度数为( )
A .αβ-
B .2()αβ-
C .2αβ-
D .1()2
αβ-
二、填空题(共4小题,每小题6分,共计24分)
9.如图,在ABC ∆中,120ACB ∠=︒,CD 平分ACB ∠,作//AE DC ,交BC 的延长线于点E ,则ACE ∆是 三角形.
10.在ABC ∆中,2AB =,3BC =,AC 的长为x ,则x 的取值范围是 . 11. ABC ∆中,若4AB =,6AC =,BC 的长为偶数,则BC 的取值为 .
12.(2018春•南京校级期中)如图,过A 、B 、C 、D 、E 五个点中任意三点画三角形,
(1)其中以AB 为一边可以画出 个三角形;
(2)其中以C 为顶点可以画出 个三角形.
三、解答题(共3小题,每小题12分,共计36分)
13.如图所示,BD 是ABC ∆的中线,2AD =,5AB BC +=,求ABC ∆的周长.
14.(2019春•吴江区期中)已知ABC ∆中,三边长a 、b 、c ,且满足2a b =+,1b c =+
(1)试说明b 一定大于3;
(2)若这个三角形周长为22,求a 、b 、c .
15.(2019春•东台市校级月考)如图,在ABC

B
∠=︒,CD是AB边上的高;CE是ACB
∆中,40
A
∠=︒,72
的平分线,DF CE
∠的度数.
∠和CDF
⊥于F,求BCE。

相关文档
最新文档