数学七年级第一学期期末总复习.doc

合集下载

七年级上册数学全册期末复习资料

七年级上册数学全册期末复习资料

七年级上册数学全册期末复习资料精典专题一有理数课本-中考-奥数一、单元典型题例1.有理数的分类易错题(1)π不是有理数;(2)0既不是正数,也不是负数;(3)-a是负数吗?2.有理数的大小比较3.利用绝对值的定义求值已知|a|=3,|b|=5,且a<b,求a-b的值4.逆用数学公式、法则若x+y<0,xy<0,x>y,则有()A x>0,y<0,x的绝对值较大;B x>0,y<0,y的绝对值较大;C x<0,y>0,x的绝对值较大;D x<0,y>0,y的绝对值较大.5.利用绝对值的非负性求值若|x-1|+|y+3|=0,求x+y的值6.有理数混合运算计算|-15|+15(-1)2013-52(-0.2)3二. 单元基础检测得分1.(济宁)在数轴上到原点距离等于2的点所表示的数为()A 2B -2C D不能确定2.若|a-2|+(b+3)2=0,则(a+b)2013的值为()A -1B 1CD 520133.下列说法:(1)绝对值等于与它本身的数是正数;(2)近似数2.34万精确到百分位;(3)-a+b与a-b 互为相反数;(4)一个数的倒数等于它的本身,这样的有理数有两个;(5)a2=(-a)2;(6)若|a|>b,则a2>b2,其中正确的个数有()A 2个 B 3个 C 4个 D 5个4.5.(盐城中考)6. 计算 -(-1)+32-21)(⨯+|-2|= 7.(永州)已知0=+bba a ,则ab ab 的值为 。

8. 2(-3)2-4×(-2)+10 9. (-30)×)1036531(--10 ])1(4[41)25.2(134--⨯⨯---11 若ab>0,a+b<0,且|a|=5,|b|=2,,则a 3+b 2的值是多少?12.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克? (2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数)三、有理数的计算提高版例1.求和2012...3211...432113211211++++++++++++++例2.已知a 、b 、c 都不等于0,且||||||||abc abc c c b b a a +++的最大值为m ,最小值为n ,求2012(m+n+1)的值。

七年级数学期末复习——第一章

七年级数学期末复习——第一章

七年级上册数学期末复习—有理数一、正确判断正、负数1. 叫做正数, 叫做负数。

(注0既不是正数,也不是负数)。

正负数的意义是 。

2.如果收入20元记作+20元,那么-75元表示 .-30%表示 .3.某地最高气温为6℃,比最低气温-3℃高________4.某零件内径的标准取值为(20±0.2)mm ,若工厂制得五个零件的内径分别为20.19,20.3,19.78,18.82,19.9(单位:mm),则合格的零件有_____个二、有理数的分类1.按定义分:2.按性质分:3.π是属于( ) A.有理数; B.正分数; C.自然数; D.正数4. 把下列各数填在相应的大括号里。

32,763-,7.7,24-,08.0-,1415.3-,0,85,π5 正数集合:{}⋯ ;负数集合:{}⋯ ;整数集合: {}⋯ ;负分数集合:{}⋯ 。

三、数轴的理解1.数轴的三要素是 ;若是a 一个正数,则表示数a 的点在原点的 边,表示数-a 的点在原点的 边,与原点的距离是 个单位长度。

2.在数轴上表示下列各数及它们的相反相数,并根据数轴上点的位置把它们按从小到大的顺序排列。

213-,2--,3,0,2113.在数轴上,与表示-1的点的距离为3的点所表示的数是 。

4.在数轴上与数-1所对应的点相距2个单位长度的点表示的数为 .5.在数轴上,把表示-4的点移动2个单位长度后,所得到的对应点表示的数是( )A.-1B.-6C.-2或-6D.无法确定四、相反数1. 叫做互为相反数,互为相反数的两个数在数轴上的特点为 ,相反数是它本身的数是 .2.满足a a =-的数有 个,他们是 ;3.若3m -4与-11互为相反数,则m=______;4.若34m -的相反数是—11,则231m m -+的值为________;5.若2x+5与3-x 互为相反数,则x 2+3x -1的值为________五、绝对值1. -2.5的相反数是 ;绝对值是 。

七年级数学上册期末复习资料(Word版)

七年级数学上册期末复习资料(Word版)

七年级数学上册期末复习资料(2021最新版)作者:______编写日期:2021年__月__日-----------3.1一元一次方程及其解法①方程是含有未知数的等式。

②方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的整式方程叫做一元一次方程。

③注意判断一个方程是否是一元一次方程要抓住三点:1)未知数所在的式子是整式(方程是整式方程);2)化简后方程中只含有一个未知数;(系数中含字母时不能为零)3)经整理后方程中未知数的次数是1.④解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

方程的解代入满足,方程成立。

⑤等式的性质:1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等)。

a=b得:a+(-)c=b+(-)c2)等式两边同时乘以或除以同一个不为零的数,等式不变。

a=b得:a×c=b×c或a÷c=b÷c(c≠0)注意:运用性质时,一定要注意等号两边都要同时+、-、×、÷;运用性质2时,一定要注意0这个数。

⑥解一元一次方程一般步骤:去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个步骤不一定完全用上,或有些步骤还需要重复使用.因此,解方程时,要根据方程的特点,灵活选择方法.在解方程时还要注意以下几点:⑴去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;注意:去分母(等式的基本性质)与分母化整(分数的基本性质)是两个概念,不能混淆;⑵去括号:遵从先去小括号,再去中括号,最后去大括号不要漏乘括号的项;不要弄错符号(连着符号相乘);⑶移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(以=为界限),移项要变号;⑷合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式.⑸系数化1:(两边同除以未知数的系数)把方程化成ax=b (a≠0)的形式,字母及其指数不变系数化成1在方程两边都除以未知数的系数a,得到方程的解不要分子、分母搞颠倒(一步一步来)--------3.2一次方程的应用:(一)、概念梳理⑴列一元一次方程解决实际问题的一般步骤是:审题,特别注意关键的字和词的意义,弄清相关数量关系,注意单位统一,注意设未知数;①解:设出未知数(注意单位),②根据相等关系列出方程,③解这个方程,④答(包括单位名称,检验)。

初中七年级数学上册期末专项复习4套含答案

初中七年级数学上册期末专项复习4套含答案

A. 2.2 104
B. 22 103
C. 2.2 103
8.对于用四舍五入法得到的近似数4.609万,下列说法正确的是( )
D. 0.22 105
A.它精确到千分位
B.它精确到0.01
C.它精确到万位
D.它精确到十位
9. 1 3 5 2 013 2 015 2 4 6 2 014 2 016 = ( )
么位置时,他们两家相距最远,最远是多少?处在什么位置时,他们两家相距最近,最近是多少?
23.(6分)草履虫可以吞食细菌使污水得到净化.1个草履虫每小时大约能形成60个食物泡,每个食物泡大 约吞食30个细菌,那么1个草履虫每天(以24小时计算)大约能吞食多少个细菌?100个草履虫呢?(用科 学记数法表示)
【解析】1 3 5 2013 2015 2 4 6 2014 2016 1 2 3 4 2015 2016
1 1 1 1008 .故选D.
10.【答案】B
二、
11.【答案】 7 或 9 12.【答案】713.【答案】 2 , 4 2 , 0.83 3.7 , 2
(2)计算:①
1 1 2
2
1
3
1 3
4
2
019
1
2
020

② 1 1 1
1

13 35 5 7
2 017 2 019
期末专项复习—有理数
答案解析
一、
1.【答案】C 【解析】由题意,得 8℃ 表示下降 8℃ .故选C.
2.【答案】A【解析】 1 的相反数是 1 .故选A.
2020
2020
(3)若巡逻车每一百千米耗油12升,求该晚巡逻车共耗油多少升.

七年级(上)数学期末总复习

七年级(上)数学期末总复习
(1)单程花 20 分钟这一数据的频数最大 (2)小于20分钟的人数占总人数的40%
等于20分钟的人数占总人数的40% 大于20分钟的人数占总人数的20% (3)老师随机地问一个同学,最可能得到 的答案是20分钟.
课后练习 一、填空题 1.数一数,在图中,共有_2_2_条线段.
2.如图 ( 1 ) 如 果 AD//BC , 那 么 根 据两__直__线__平__行__同__位__角__相__等__ ,
例6.下面是某班30学生每天上学单程所到时间(分钟)
(1)在这个统计表中,单程花_______分钟这一数 据的频数最大.
(2)若把这些数据分成小于20分钟,等于20分钟, 和大于20分钟这三档,则各档人数各占总人数的多少.
(3)Байду номын сангаас如老师随机地问一个同学,你认为老师最可 能得到的答案是几分钟
答:
(2)线段、射线、直线等简单平面图形的有关概念,特 征和表示法,三者的区别和联系,及线段中点概念,和进 行有关的简单计算.
(3)角的有关概念.表示法,度、分、秒、间的 换算及简单的计算.会比较角的大小及分类.
(4)平行线,相交线,了解了有关平行线垂线 的特征及识别.
4.数据的收集 通过解决简单的实际问题,体会大千世界的 不确定性,熟悉收集,整理数据,学会根据 不同问题选择适当统计图描述数据得到较明 显的结论,理解频数、频率,不可能发生, 可能发生和必然发生的概念.
二、典型例题分析 例1.把下面各数填入表示它所在数集里.
-3,11, 2 ,0,2003,0.414,-0.618,-7% 5
解:
例2.有理数a、b、c在数轴上的位置如图所示: 化简|a+b|-|c-b|
解:由a、b、c在数轴上所处的 位置可知:a<0、b>0、c<0, 且|a|<|b|<|c|.a+b>0,c-b<0 所以|a+b|=a+b,|c-b|=b-c. |a+b|-|c-b|=a+b-(b-c)=a+c.

七年级上册数学期末复习资料

七年级上册数学期末复习资料

七年级上册数学期末复习资料七年级上册数学期末复习资料1有理数★有理数的分类1.如果按定义分,有理数可以分为整数(正整数;负整数;0)和分数(正分数,负分数)。

如果按正、负分,有理数可以分为正有理数(正整数;正分数)、0、负有理数(负整数;负分数)。

2.所有的有理数都可以用分数表示,π不是有理数。

数轴★1.数轴的定义:规定了原点、正方向、单位长度的直线叫做数轴。

相反数1.只有符号不同的两个数叫做互为相反数。

(0的相反数是0)绝对值1.数轴上一点a到原点的距离表示a的绝对值。

★2.绝对值的性质:非负性。

3.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

有理数的大小1.正数大于0,负数小于0,正数大于负数。

2.两个负数,绝对值大的反而小。

有理数的加法1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0。

一个数同0相加,仍得这个数。

3.在有理数的加法中,加法交换率:两个数相加,交换加数的位置,和不变。

加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

有理数的减法减去一个数,等于加这个数的相反数。

★有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘后得0。

倒数:乘积是1的两个数互为倒数。

乘法交换律:乘法交换律两个数相乘,交换因数的位置,积不变。

乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。

乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

★有理数的除法除以某个不为0数等于乘与这个数的倒数两数相除同号为正,异号为负,并把绝对值相除0除以任何一个不等于0的数,都等于0。

有理数的混合运算1.运算顺序:先算乘方,再算乘除,最后算加减。

如果是同级运算,则按从左到右的运算顺序计算。

如果有括号,先算小括号,再算中括号,最后算大括号。

七年级数学北师大版总复习资料.doc

七年级数学北师大版总复习资料.doc

七年级数学北师大版总复习资料七年级数学北师大版总复习资料一第一章有理数一、知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。

有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。

有理数的运算是全章的重点。

在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

基础知识:1、正数(position number):大于0的数叫做正数。

2、负数(negation number):在正数前面加上负号“-”的数叫做负数。

3、0既不是正数也不是负数。

4、有理数(rational number):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

5、数轴(number axis):通常,用一条直线上的点表示数,这条直线叫做数轴。

数轴满足以下要求:在直线上任取一个点表示数0,这个点叫做原点(origin);通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度。

6、相反数(opposite number):绝对值相等,只有负号不同的两个数叫做互为相反数。

7、绝对值(absolute value)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

记做|a|。

由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

8、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数。

加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。

表达式:a+b=b+a。

加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。

人教版七年级上册数学 压轴题 期末复习试卷及答案

人教版七年级上册数学 压轴题 期末复习试卷及答案

人教版七年级上册数学 压轴题 期末复习试卷及答案.docdoc一、压轴题1.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.2.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________. (2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.3.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.4.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。

点A 表示的数为—2,点B 表示的数为1,动点P 从点B 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设点P 运动时间为t (t>0)秒.(1)长方形的边AD 长为 单位长度;(2)当三角形ADP 面积为3时,求P 点在数轴上表示的数是多少;(3)如图2,若动点Q 以每秒3个单位长度的速度,从点A 沿数轴向右匀速运动,与P 点出发时间相同。

北师大七年级上册期末数学压轴题总复习(一)(word解析版)

北师大七年级上册期末数学压轴题总复习(一)(word解析版)

期末压轴题总复习(一)学校:___________姓名:___________班级:___________考号:___________一、解答题1.用长方形硬纸板做长方体盒子,底面为正方形.(1)每个长方形盒子有________个侧面,有________个底面;(2)长方形硬纸板以如图两种方法裁剪.A方法:剪3个侧面;B方法:剪2个侧面和2个底面.现有35张硬纸板,裁剪时x张用A方法,其余用B方法.①用含x的代数式分别表示裁剪出的侧面和底面的个数;②若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?2.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,PQ=12AB;(3)当点P运动到点B的右侧时,PA的中点为M,N为PB的三等分点且靠近于P点,求PM﹣34BN的值.3.已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发速度为每秒1个单位长度,点N从点B出发速度为点M的3倍,点P从原点出发速度为每秒0.5个单位长度.(1)求A、B两点的距离为个单位长度.(2)若点M向右运动,同时点N向左运动,求经过多长时间点M与点N相距30个单位长度?(3)若点M、N同时向右运动,求经过多长时间点M、N相遇?并求出此时点N对应的数.(4)若点M、N、P同时都向右运动,当点M与点N相遇后,点M、P继续以原来的速度向右运动,点N改变运动方向,以原来的速度向左运动,求从开始运动后,经过多长时间点P到点M、N的距离相等?4.某超市第一次用3600元购进了甲、乙两种商品,其中甲种商品80件,乙种商品120件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为20元/件,乙种商品售价为30元/件.(注:获利=售价﹣进价)(1)该超市第一次购进甲、乙两种商品每件各多少元?(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得多少利润?(3)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少3元;甲种商品按原售价提价a%销售,乙种商品按原售价降价a%销售,如果第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多260元,那么a的值是多少?5.某省公布的居民用电阶梯电价听证方案如下:第一档电量第二档电量第三档电量月用电量210度以下,每度价格0.52元月用电量210度至350度,每度比第一档提价0.05元月用电量350度以上,每度比第一档提价0.30元例:若某户月用电量400度,则需交电费为210×0.52+(350﹣210)×(0.52+0.05)+(400﹣350)×(0.52+0.30)=230(元)(1)以此方案请你回答:若小华家某月用电量是300度,则这个月的电费为元?(2)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量.6.某商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共60件,恰好总进价为2800元,求购进甲种商品多少件?(3)在国庆期间,该商场只对甲乙两种商品进行如下的优惠促销活动:打折前一次性购物总金额优惠措施少于等于450元不优惠超过450元,但不超过600元按售价的九折其中600元部分八点二折优惠,超过600元超过600元的部分打三折优惠.按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?7.点A、B、C在数轴上表示的数a、b、c满足2(3)|12|0++-=,且a是绝对值最小b c的有理数.(1)a的值为,b的值为,c的值为;(2)已知点P、点Q是数轴上的两个动点,点P从点B出发,以3个单位/秒的速度向右运动,点Q从点C出发,速度为2个单位/秒.①若在点P出发的同时点Q向左运动,几秒后点P和点Q在数轴上相遇?②若点P运动到点A处,动点Q再出发也向右运动,则P运动几秒后这两点之间的距离为2个单位?8.现象感知如图1,在数轴上,线段AB的中点为E,点E表示的数与点A、点B表示的数关系存在:482+=6;线段CD的中点为F,点F表示的数与点C、点D表示的数的关系也存在:512-+=﹣2归纳性质如图2,在数轴上,线段GH的中点为P.(1)如图2,在数轴上,点G、H、P表示的数分别为a,b,c,请猜想a,b,c的等量关系,请写出一等量关系式.小宇同学为了说明a,b,c的等量关系是正确的,采用了字母表示数的方法,设PG=PH=m,从而表示出G、H两点的数(含c和m).请完成小宇的说理过程.拓展应用(2)如图,点A,B,C在数轴上对应的数分别为﹣3,1,9,它们分别以每秒2个单位长度、1个单位长度和4个单位长度的速度在数轴上同时向左做匀速运动,设同时运动的时间为t秒.若A,B,C三点中,有一点恰为另外两点所连线段的中点,求t的值.9.为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:档次每户每月用电量(度)执行电价(元/度)第一档小于等于2000.55第二档大于200小于4000.6第三档大于等于4000.85某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?10.如图,一块长为5厘米,宽为2厘米的长方形纸板,一块长为4厘米,宽为1厘米的长方形纸板与一块边长为a厘米的正方形纸板以及另外两块长方形纸板,(1)用含a的式子表示图形左上角长方形的长AG= 厘米,宽AE= 厘米.(2)用含a的式子表示大图形边AD= 厘米,边AB= 厘米,若恰好拼成一个大正方形,问大正方形的面积是多少?参考答案1.(1)4,2;(2)①侧面(x +70)个,底面(70-2x )个②21个. 【分析】(1)根据长方体的性质求得答案; (2)①根据题意列出代数式即可;②根据题意列出一元一次方程,解方程求解即可. 【详解】(1)每个长方形盒子有4个侧面,有2个底面; 故答案为:4,2;(2)①A 方法剪3x 个侧面,B 方法剪()235x -个侧面和()235x -个底面32(35)70x x x +-=+,()235702x x -=-∴共有侧面()70x +个,底面()702x -个②根据已知条件可得7070242x x+-= 解得14x =1470=214+∴答:裁剪出的侧面和底面恰好全部用完,能做21个盒子. 【点睛】本题考查了一元一次方程的应用,正确的找出题中的等量关系是解题的关键. 2.(1(①10(3(②(2+3t(8(2t((2(t=1或3((3(5 【分析】(1((根据点A 表示的数为﹣2,点B 表示的数为8,即可得到A 、B 两点间的距离以及线段AB 的中点表示的数;(依据点P ,Q 的运动速度以及方向,即可得到结论; (2)由t 秒后,点P 表示的数﹣2+3t ,点Q 表示的数为8﹣2t ,于是得到PQ=|((2+3t(((8(2t(|=|5t(10|,列方程即可得到结论;(3)依据PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,运用线段的和差关系进行计算,即可得到PM ﹣34BN 的值.【详解】解:(1(①8(((2(=10((2+12×10=3(②由题可得,点P表示的数为﹣2+3t,点Q表示的数为8(2t((2(∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8(2t(∴PQ=|((2+3t(((8(2t(|=|5t(10|(又PQ=12AB=12×10=5(∴|5t(10|=5(解得:t=1或3(∴当t=1或3时,PQ=12AB((3(∵PA的中点为M(N为PB的三等分点且靠近于P点,∴MP=12AP=12×3t=32t(BN=23BP=23(AP(AB(=23×(3t(10(=2t(203(∴PM(34BN=32t(34(2t(203(=5(【点睛】本题考查了实数和数轴以及一元一次方程的应用应用,解题的关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程求解.3.(1)14;(2)4;(3)7秒,此时N点对应的数是13;(4)23秒或7秒或403秒【分析】(1)由题意根据两点间的距离公式即可求出A、B两点的距离;(2)根据题意设经过x秒点M与点N相距30个单位,由点M从A点出发速度为每秒1个单位,点N从点B出发速度为M点的3倍,得出x+3x+14=30求解即可;(3)由题意根据追及问题即时间等于路程除以速度差求出点M、N相遇时间,进而代入时间得出点N对应的数;(4)根据题意设从开始运动后,相遇前经过t秒点P到点M、N的距离相等,或相遇后经过t秒点P到点M、N的距离相等,根据PM=PN列出方程,进而求解即可.【详解】解:(1)∵数轴上两点A、B对应的数分别是6,-8,∴A、B两点的距离为6-(-8)=14.故答案为:14;(2)设经过x秒点M与点N相距30个单位.依题意可列方程为:x+3x+14=30,解方程,得x=4.答:经过4秒点M与点N相距30个单位;;(3)点M与点N相遇的时间为14÷(3﹣1)=7秒,此时N点对应的数是﹣8 + 7×3=13;(4)点M与点N相遇的时间为14÷(3﹣1)=7秒,设从开始运动后,相遇前经过t秒点P到点M、N的距离相等.依题意可列方程为:0.5t-(-8+3t)=6+t-0.5t,解得t=23,设从开始运动后,相遇后经过t秒点P到点M、N的距离相等.依题意可列方程为:(t+6)-0.5t=0.5t-[13-3(t-7)],解得t=403.所以23秒或7秒或403秒,点P到点M、N的距离相等.【点睛】本题主要考查数轴上的动点问题和一元一次方程的应用,利用行程问题的基本数量关系,以及数轴直观解决问题即可.4.(1)该超市第一次购进甲种商品每件15元,乙种商品每件20元;(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得1600元的利润;(3)a的值是5.【分析】(1)设该超市第一次购进甲种商品每件x元,乙种商品每件(x+5)元,根据题意列出方程求解即可.(2)根据利润公式求出总利润即可.(3)根据题意列出方程求解即可.【详解】(1)设该超市第一次购进甲种商品每件x元,乙种商品每件(x+5)元.由题意得80x+120(x+5)=3600,解得:x=15,x+5=15+5=20.答:该超市第一次购进甲种商品每件15元,乙种商品每件20元.(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得的利润=80×(20﹣15)+120×(30﹣20)=1600元.答:该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得1600元的利润.(3)由题意得80×[20(1+a%)﹣15]+120×[30(1﹣a%)﹣(20﹣3)]=1600+260,解得:a=5.答:a的值是5.【点睛】本题考查了一元一次方程的销售问题,掌握解一元一次方程的方法是解题的关键.5.(1)160.5;(2)小华家5月份的用电量为262度.【分析】(1)根据300度在第二档列式计算即可得解;(2)根据第二档的电费求法列方程计算即可得解.【详解】解:(1)小华家8月用电量为300度,需交电费210×0.52+(300-210)×(0.52+0.05)=160.5(元).故需交电费160.5元;故答案为:160.5;(2)月用电量为210度时,需交电费210×0.52=109.2(元)月用电量为350度时,需交电费210×0.52+(350-210)×(0.52+0.05)=189(元),所以小华家5月份的用电量在第二档.设小华家5月份的用电量为x度,则210×0.52+(x-210)×(0.52+0.05)=138.84,解得x=262.答:小华家5月份的用电量为262度.【点睛】本题考查了一元一次方程的应用,读懂题目信息,理解阶梯电价的收费方法和电费的计算方法是解题的关键.6.(1)40,60%;(2)20件;(3)7件或8件【分析】(1)设甲的进价为x元/件,根据甲的利润率为50%,求出x的值;(2)设购进甲种商品x件,则购进乙种商品(500−x)件,再由总进价是2800元,列出方程求解即可;(3)分两种情况讨论,①打折前购物金额超过450元,但不超过600元,②打折前购物金额超过600元,分别列方程求解即可.【详解】解:(1)设甲的进价为x元/件,则(60−x)=50%x,解得:x=40.故甲的进价为40元/件;乙商品的利润率为(80−50)÷50=60%.故答案是:40;60%;(2)设购进甲种商品x件,则购进乙种商品(500−x)件,由题意得,40x+50(60-x)=2800,解得:x=20.即购进甲商品20件.(3)设小华打折前应付款为y元,(若打折前购物金额超过450元,但不超过600元,由题意得0.9y=504,解得:y=560,560÷80=7(件),(若打折前购物金额超过600元,600×0.82+(y-600)×0.3=504,解得:y=640,640÷80=8(件),综上可得小华在该商场购买乙种商品件7件或8件.【点睛】本题考查了一元一次方程的应用,解答本题的关键是仔细审题,找到等量关系,利用方程思想求解.7.(1)0,-3,12;(2)①3秒;②11或15秒【分析】(1)根据非负数的性质即可求出bc 的值,根据a 是绝对值最小的有理数即可求出a 的值; (2)①设t s 后P 和Q 相遇,根据两人相遇一共走的路程即为BC 的长,即可得到答案; ②分P 在追上Q 前和P 在超过Q 后两种情况进行求解即可.【详解】解:(1)∵a 是绝对值最小的有理数,(a =0,∵()23120b c ++-=,()230b +≥,120c -≥,∴30b +=,120c -=,∴3b =-,12c =;故答案为:0,-3,12;(2)(设t s 后P 和Q 相遇,由题意得(3+2)t =12-(-3),解得t =3,∴3秒后点P 和点Q 在数轴上相遇(设P 点运动ts ,后这两点之间的距离为2个单位,∵B 表示的数是-3,A 表示的数是0,(AB =3,∴P 运动到A 的时间为1s ,即Q 在P 出发1s 后再出发,若P 在追上Q 前:3t +2=2(t -1)+12-(-3),解得t =11,若P 在超过Q 后:3t -2=2(t -1)+12-(-3),解得t =15,∴P 运动11秒或15后这两点之间的距离为2个单位.【点睛】本题主要考查了非负数的性质,绝对值的意义,数轴上的动点问题,解题的关键在于能够根据题意求出a 、b 、c 的值.8.(1)2a b c +=,见解析;(2)1秒或4秒或16秒 【分析】(1)用c m 、表示出点G H 、,然后求解即可;(2)分三种情况讨论求解即可,当点B 是线段AC 的中点、点C 是线段AB 的中点、点A 是线段BC 的中点时,分别求解即可.【详解】(1)2a b c +=;理由:H 点:b =c +m ,G 点:a =c -m , 2222a b c m c m c c +-++===,即2a b c +=. (2)运动t 秒后A 、B 、C 三点表示的数分别为A :-3-2t ,B :1-t ,C :9-4t ①当点B 是线段AC 的中点时:32941,12t t t t --+-=-= ②当点C 是线段AB 的中点时:32194,42t t t t --+-=-= ③当点A 是线段BC 的中点时:94132,162t t t t -+-=--= 综上所述,t 的值为1秒或4秒或16秒.【点睛】此题考查了数轴的有关应用,涉及了用数轴表示数,数轴上的动点问题,中点公式,解题的关键是掌握数轴的有关性质,正确求解.9.五月份用电190度,六月份用电310度.【分析】根据两个月份用电量共是500度,可知每个月用电量不可能都在第一档,根据题意用电量又都小于400度,且六月份用电量大于五月份用电量.分两种情况来讨论.(1)五月份用电量小于200度(2)五月份用电量大于200度,分别列出方程求解即可.【详解】设五月份用电量为x ,则六月份用电量为500-x ,且500-x >x .(1)当五月份用电量x <200时,六月份用电量500-x 一定大于200.根据题意可列方程:0.55x +0.6(500-x )=290.5解得x =190,所以五月份用电量为190度.所以六月份用电量为500-190=310度.(2)当五月份用电量x >200,且六月份用电量为500-x >200.根据题意可列方程:0.6x +0.6(500-x )=290.5方程无解,不符合题意.【点睛】本题考察了利用分类讨论的方法,列出一元一次方程来解决实际问题,总价=单价×数量是解决本题的关键.10.(1)(1+a),(5-a);(2)(9-a),(3+a),36平方厘米【分析】(1)根据图形可得AE=GH=NG-NH=BQ-NH=5-a,AG=EH=EF+FH=1+a;(2)根据图形可得AD=AE+ED=5-a+4=9-a,AB=AG+2=3+a,由AD=AB求出a的值,从而可得大正方形的面积.【详解】解:如图所示,∵四边形NMFH是正方形,∴NH=FH=a,又EF=1,∴AG=EH=EF+FH=1+a,AE=GH=NG-NH=BQ-NH=5-a,故答案为:(1+a),(5-a);(2)根据图形可得AD=AE+ED=5-a+4=9-a,AB=AG+2=3+a,∵AD=AB,∴9-a=3+a,解得,a=3,∴大正方形的边长为6厘米,∴大正方形的面积是6×6=36(平方厘米),答:大正方形的面积是36平方厘米.故答案为:(9-a),(3+a).【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.。

新人教版七年级数学上册期末专题总复习资料

新人教版七年级数学上册期末专题总复习资料

新人教版七年级数学上册期末专题总复习资料人教版七年级数学上册期末专题总复资料类比归纳专题:有理数加、减、乘、除中的简便运算——灵活变形,举一反三类型一加减混合运算的技巧一、相反数相结合或同号结合1.计算:【方法2】515-3;1-(+6)-3+(-1.25)- 48/82.3+(-1.7)+6.2+(-2.2)-1.1.二、同分母或凑整结合2.计算:【方法2】6.82)+3.78+(-3.18)-3.78;311/-5 + (-9)/8 - 1.25.三、计算结果成规律的数相结合3.计算1+2-3-4+5+6-7-8+…+2013+2014-2015-2016的结果是()A。

B。

-1 C。

2016 D。

-20164.★阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥时,|a|=a;当a<0时,|a|=-a.根据以上阅读完成下列问题:1)|3.14-π|=________;1/1-1/11+1/111-1/1111+…-1/2013+1/2014-1/2015-1/2016 2)计算:2/3-3/2+4/3-9/8+10/9类型二运用分配律解题的技巧一、正用分配律5.计算.131/2-4+8×(-24);39×(-14).二、逆用分配律666/(-3)-3×(-3)-6×3.6.计算:4×7/7.三、除法变乘法,再利用分配律122/6-7+3÷(-42).参考答案与解析1.解:(1)原式=1+(-1.25)-6+4/8= -4.75.2)原式=2.3+6.2-(-1.7-2.2-1.1)= 3.5.2.解:(1)原式=[(-6.82)+(-3.18)]+(3.78-3.78)= -10.2)原式=19+8/4-9/8-1.25= 3.3.D4.解:(1)π-3.14=π-3.14.2)原式=1-1/2-1/10= 3/5.5.解:(1)原式=-12+18-3=3.2)原式=2/3-3/2+4/3-9/8+10/9= 55/72.1.下列说法正确的是()A。

七年级上期数学期末总复习题

七年级上期数学期末总复习题

七年级数学上期期末总复习题一、选一选。

1、下列四个图中的线段(或直线、射线)能相交的是( )1()CDBA2()CD BA3()C D BA4()CDBAA.(1)B.(2)C.(3)D.(4) 2、下列图中角的表示方法正确的个数有( )A .1个B .2个C .3个 D .4个3、如图所示,要把角钢(1)弯成120°的钢架(2),则在直钢(1)截取的缺口是( )A .45°B .60°C .90°D .120°4、如图①是一些大小相同的小正方体组成的几何体,其主视图如图②所示,则其俯视图是( )5、一个几何体是由一些大小相同的小正方块摆成的,其俯视图、主视图如图所示,则组成这个几何体的小正方块最多..有( ) A. 4个 B. 5个 C. 6个 D. 7个图① 图② A B C D俯视图主视图6、已知线段AB=6厘米,在直线AB 上画线段AC=2厘米,则BC 的长是( ) A .8厘米 B .4厘米 C .8厘米或4厘米 D .不能确定7、如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是( )8、下列说法中正确的是( )A.若AP=21AB ,则P 是AB 的中点 B.若AB =2PB ,则P 是AB 的中点 C .若AP =PB ,则P 为AB 的中点 D.若AP =PB=21AB ,则P 是AB 的中点9、甲看乙的方向为北偏东30°,那么乙看甲的方向是( )A .南偏东60°B .南偏西60°C .南偏东30°D .南偏西30° 10、如右图,AB 、CD 交于点O ,∠AOE=90°,若∠AOC :∠COE=5:4,则∠AOD 等于 ( ) A .120° B .130°C .140°D .150°11、下列各组数中,不相等...的一组是 ( ) A .()23-与23- B .-23-与23- C . -33-与 33- D .()33- 与33-12、《广东省重点建设项目计划(草案)》显示,港珠澳大桥工程估算总726亿元,用科学记数法表示正确的是( ) A .107.2610⨯ 元 B .972.610⨯ 元 C .110.72610⨯ 元 D .117.2610⨯元 13、国家体育场“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学记数法(四舍五入保留2个有效数字)表示约为( )A .42610⨯平方米B .42.610⨯平方米 C .52.610⨯平方米D .62.610⨯平方米14、如果ab <0,那么下列判断正确的是( ).A .a <0,b <0B . a >0,b >0C . a ≥0,b ≤0D . a <0,b >0或a >0,b <0 15、实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误的是( ) A .0ab > B .0a b +< C .ba<0 D .0a b -< 16、下列运算正确的是( )A .b a b a --=--2)(2B .b a b a +-=--2)(2C .b a b a 22)(2--=--D .b a b a 22)(2+-=--17、已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )ab 0A B C DA .51x --B .51x +C .131x --D .131x +18、下列变形中,正确的是( )A 、若ac=bc ,那么a=b 。

苏科版七年级数学第一学期期末复习三 :一元一次方程(有答案)

苏科版七年级数学第一学期期末复习三 :一元一次方程(有答案)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯苏科版七年级数学第一学期期末复习三一元一次方程一、选择题1. 在①2x+1;②1+7=15-8+1;③1- x=x-1;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个2. 下列方程是一元一次方程的是()A.-2=0B.2x=1C.x+2y=5D.-1=2x3.某制衣店现购买蓝色、黑色两种布料共138m,共花费540元.其中蓝色布料每米3元,黑色布料每米5元,两种布料各买多少米?设买蓝色布料x米,则依题意可列方程()A.3x+5(138-x)=540B.5x+3(138-x)=540C.3x+5(138+x)=540D.5x+3(138+x)=5404. 若关于x的一元一次方程m(x+4)-3m-x=5的解为x=3,则m的值是()A.-2B.2C.D.-5. 如果与互为倒数,那么x的值为()A.x=B.x=10C.x=-6D.x=6.若方程3x+6=12的解也是方程6x+3a=24的解,则a的值为()A. B.4 C.12 D.27. 方程|2x+1|=7的解是()A.x=3B.x=3或x=-3C.x=3或x=-4D.x=-48. 下列解方程过程正确的是()A.2x=1系数化为1,得x=2B.x-2=0解得x=2C.3x-2=2x-3移项得3x-2x=-3-2D.x-(3-2x)=2(x+1)去括号得x-3-2x=2x+19.解一元一次方程-2= - ,去分母正确的是()A.5(3x+1)-2=(3x-2)-2(2x+3)B.5(3x+1)-20=(3x-2)-2(2x+3)C.5(3x+1)-20=(3x-2)-(2x+3)D.5(3x+1)-20=3x-2-4x+610.某组织去乡村慰问留守儿童,为他们送去一些图书,每人分8本图书,还少5本,每人分7本图书,还多6本,则该村留守儿童有()A.10名B.11名C.12名D.13名11.一艘轮船在A、B两港口之间匀速行驶,顺水航行需要6h,逆水航行需要8h,水流速度为5km/h,则A、B两地之间的路程是()A.200kmB.240kmC.300kmD.320km12.一项工作,甲单独做要20天完成,乙独做要12天完成.若先由甲做若干天,然后由乙继续做完,从开始到完成共用14天,则这项工作由甲先做()天.A. B.5 C.4 D.613. 某市出租车收费标准是:起步价8元(即行驶距离不超过3km,付8元车费),超过3km,每增加1km收1.6元(不足1km按1km计),小梅从家到图书馆的路程为xkm,出租车车费为24元,那么x的值可能是()A.10B.13C.16D.18二、填空题14. 已知5+3=1是关于x的一元一次方程,则m=_____.15.x的3倍与4的和等于x的5倍与2的差,方程可列为_____.16. 某件商品,以原价的出售,现售价是300元,则原价是_____元.17. 有一列数,按一定的规律排列成,-1,3,-9,27,-81,….若其中某三个相邻数的和是-567,则这三个数中第一个数是_____.18. 由3x=2x-1得3x-2x=-1,在此变形中,方程两边同时_____.19. 当x=_____时,代数式2x+1与5x-6的值互为相反数.20.已知关于x的方程2x+a=x-1的解和方程2x+4=x+1的解相同,则a=_____.21.若x=2是方程3x-4=-a的解,则+的值是_____.22.已知方程|2x-1|=2-x,那么方程的解是_____.23.某项工程,甲单独完成要12天,乙单独完成要18天,甲先做了7天后乙来支援,由甲乙合作完成剩下的工程,则甲共做了_____天.24.小张有三种邮票共18枚,它们的数量之比为1:2:3,则最多的一种邮票有_____枚.三、解答题25. 解方程:(1)2x+3=11-6x;(2)(3x-6)=x-3.26. 已知代数式M=3(a-2b)-(b+2a).(1)化简M;(2)如果(a+1)+4-3=0是关于x的一元一次方程,求M的值.27.列方程解应用题:某商场第一季度销售甲、乙两种冰箱若干台,其中乙种冰箱的数量比甲种冰箱多销售40台,第二季度甲种冰箱的销量比第一季度增加10%,乙种冰箱的销量比第一季度增加20%,且两种冰箱的总销量达到554台.求:(1)该商场第一季度销售甲种冰箱多少台?(2)若每台甲种冰箱的利润为200元,每台乙种冰箱的利润为300元,则该商场第二季度销售冰箱的总利润是多少元?28. 列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服.下面是某服装厂给出的运动服价格表:购买服装数量(套)1~3536~6061及61以上每套服装价格(元)605040已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元.问七年级一班和七年级二班各有学生多少人?29. (2分)已知点A在数轴上对应的数为a,点B对应的数为b,且(a+4+|b-11|=0,G为线段AB上一点,M,N两点分别从G,B点沿BA方向同时运动,设M点的运动速度为1cm/s,N点的运动速度为2cm/s,运动时间为ts.(1)A点对应的数为_____,B点对应的数为_____;(2)若AB=2AG,试求t为多少s时,M,N两点的距离为2.5cm;(3)若AB=mAG,点H为数轴上任意一点,且AH-BH=GH,请直接写出的值.期末复习三答案1、B2、B3、A4、B5、B6、B7、C8、 B9、B10、B11、B12、B13、B14、-115、3x+4=5x-216、37517、设这三个数中的第⼀个数为x,则另外两个数分别为-3x,9x,依题意,得:x-3x+9x=-567,解得:x=-8118、减2X519、720、2x+4=x+1, 2x-x=1-4, x=-3,把x=-3代入解得:a=1021、-222、解:由|2x-1|=2-x,可得:2-x=±(2x-1),当2-x=2x-1,解得:x=1,当2-x=-2x+1,解得:x=-1,所以方程的解为x=±123、1024、解:设数量最少的邮票有x枚,则另两种分别有2x枚和3x枚,依题意,得:x+2x+3x=18,解得:x=3,∴3x=9故答案为:925、(1)2x+3=11-6x,移项,得2x+6x=11-3,合并同类项,得8x=8,系数化1,得x=127、(1)设第⼀季度甲种冰箱销量为x台,根据题意得:(1+10%)x+(1+20%)(x+40)=554解之得:x=220答:第⼀季度甲种冰箱的销量为220台.(2)第⼀季度甲种冰箱的利润为:220×(1+10%)×200=48400(元)第⼀季度⼀种冰箱的利润为:(220+40)×(1+20%)×300=93600(元)所以第⼀季度的总利润为48400+93600=142000(元)28、解:∵67×60=4020(元),4020>3650,∴⼀定有⼀个班的人数大于35人.设大于35人的班有学生x人,则另⼀班有学生(67-x)⼀,依题意,得:50x+60(67-x)=3650,解得:x=37,∴67-x=3029、解:(1)∵(a+4)2+|b-11|=0,∴a+4=0,b-11=0,∴a=-4,b=11,故答案为:-4;11;∴M点对应的数为:3.5-t,N点对应的数为11-2t,∴MN=|(3.5-t)-(11-2t)|=|t-7.5|=2.5,∴t=5或10,答:t为5或10s时,M,N两点的距离为2.5cm(3)①当H在A与B之间时,若H点不在G点左边,如图,∵AH-BH=GH,∴AG+GH-BG+GH=GH,∴AG-BG+GH=0,∴AG-AB+AG+GH=0,∵AB=mAG,∴GH=(m-2)AG若H点在G点左边,如图,∵AH-BH=GH,∴AG-GH-BG-GH=GH,∴AG-BG-3GH=0,∴AG-AB+AG-3GH=0,∵AB=mAG,②当H与B重合时,则BH=0,∵AH-BH=GH,∴AH=GH,即A与G重合,∵AB=mAG=0,与已知AB=15相⼀盾,不合题意,应舍去;③当H在AB的延长线上时,∵AH-BH=GH,∴AB=GH,此时G与B重合一天,毕达哥拉斯应邀到朋友家做客。

新人教版七年级上册数学总复习知识点和练习题

新人教版七年级上册数学总复习知识点和练习题

新人教版七年级上册数学总复习知识点和练习题新人教版数学七年级上期末总复期末复一有理数的意义一、双基回顾1、前进8米的相反意义的量是;盈利50元的相反意义的量是。

2、向东走5m记作+5m,则向西走8记作,原地不动用表示。

正数{…};负数{…};分数{…};整数{…};非负整数{…};非正数{…}。

4、与表示-1的点距离为3个单位的点所表示的数是。

5、数轴上到原点的距离为2的点所表示的数是。

6、3的相反数的倒数是。

7、最小的自然数是;最小的正整数是;绝对值最小的数是;最大的负整数是。

8、相反数等于它本身的数是,绝对值等于它本身的数是,平方等于它本身的数是,,倒数即是它自己的数是。

9、如图,如果a<,b>0,那么a、b、-a、-b的大小关系是.10、已知︱a+2︱+(3- b)2=0,则a b =。

ab二、例题导引例1(1)大于-3且小于2.1的整数有哪些?(2)绝对值大于1小于4.3的整数的和是多少?例2已知a、b互为相反数,m、n互为倒数,︱x︱=3,求(a+b)2-3mn+2x的值。

例3(1)若a<,a2=4,b3=-8,求a+b的值。

(2)已知︱a︱= 2,︱b︱=5,求a-b的值;3、操演升华1、判断下列叙述是否正确:①零上6℃的相反意义的量是零下6℃,而不是零下8℃()②如果a是负数,那末-a就是正数()③正数与负数互为相反数()④一个数的相反数长短正数,那末这个数肯定长短负数()⑤若a=b,则︱a︱=︱b︱;若︱a︱=︱b︱,则a=b()2、一种零件标明的要求是Ф10(单位:mm)表示这种零件的标准尺寸是10mm,加工零件要求最大直径不超过mm,最小直径不小于mm.。

3、某天气温上升了-2℃的意义是。

5、12的相反数与-7的绝对值的和是。

6、若a<0,b<0,则下列各式正确的是( )A、a-b<0 B、a-b>0 C、a-b=0 D、(-a)+(-b)>07、两个非零有理数的和是,它们的商是()A、0B、-1C、1D、不能确定8、若|x|=-x,则x=_____;若︱x-2︱=3,则x= .9、古希腊科学家把数1,3,6,10,15,21,……叫做三角形数它有一定的规律性,第个三角形数为_______。

新人教版七年级上册数学总复习知识点和练习题

新人教版七年级上册数学总复习知识点和练习题

新人教版七年级上册数学总复习知识点和练习题新人教版数学七年级上期末总复期末复一:有理数的意义一、双基回顾1.前进8米的相反数是后退8米,盈利50元的相反数是亏损50元。

2.向东走5m记作+5m,则向西走8m记作-8m,原地不动用0表示。

3.把下列各数填入相应的大括号中:正数{7,11/2,0.25};负数{-9.25,-301,-7/3};分数{11/2,-7/3,0};整数{7,-9,-301,0};非负整数{0,7,11/2};非正数{-9.25,-301,-7/3,0}。

4.与表示-1的点距离为3个单位的点所表示的数是-4.5.数轴上到原点的距离为2的点所表示的数是±2.6.3的相反数的倒数是-1/3.7.最小的自然数是1;最小的正整数是1;绝对值最小的数是0;最大的负整数是-1.8.相反数等于它本身的数是0,绝对值等于它本身的数是0,平方等于它本身的数是1,立方等于它本身的数是0,倒数等于它本身的数是1.9.如图,如果a0,那么-a>b>-b>a。

10.已知|a+2|+(3-b)²=0,则a=-2,b=3/2.二、例题导引例11) 大于-3且小于2.1的整数有-2,-1,0,1.2) 绝对值大于1小于4.3的整数的和是-3+2+1+3+4=7.例2由a、b互为相反数可得a+b=0,由m、n互为倒数可得mn=1,代入(a+b)²-3mn+2|x|的式子中得(-6)²-3+6=33.例31) 由a²=4得a=±2,由b³=-8得b=-2,故a+b=0.2) 由|a|=2,|b|=5得a=-2,b=5,故a-b=-7.三、练升华1.判断下列叙述是否正确:①零上6℃的相反数是零下6℃,而不是零下8℃。

(错误)②如果a是负数,那么-a就是正数。

(正确)③正数与负数互为相反数。

(正确)④一个数的相反数是非正数,那么这个数一定是非负数。

人教版七年级上册数学期末综合复习解答题专题训练(含答案)

人教版七年级上册数学期末综合复习解答题专题训练(含答案)

人教版七年级上册数学期末综合复习解答题专题训练一、有理数的计算:1.计算:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9).(2).(3).(4)﹣24+3×(﹣1)6﹣(﹣2)3.2.计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)4﹣8×(﹣)3(3)(4)3.计算(1);(2);(3);(4).4.为庆祝端午节,和平加油站开展了加油每满10L返现金5元(不足10L不返现金)的活动.出租车司机王师傅只在东西走向的路上开车接送乘客,他7:00从甲地出发(向东行驶的里程数记作正数),到8:00为止,他所行驶的里程记录如下(单位:公里)+4,﹣3,﹣6,+13,﹣10,﹣4,+5.(1)计算到8:00时,王司机在甲地的哪个方向,距甲地多远?(2)若王师傅当日工作10小时,每小时行驶的里程相同,该车每百公里耗油6L,每升油5元,则王师傅当日在该加油站加油共花费多少元?5.已知13=1=×12×22,13+23=9=×22×32,13+23+33=36=×32×42,…,按照这个规律完成下列问题:(1)13+23+33+43+53==×2×2.(2)猜想:13+23+33+…+n3=.(3)利用(2)中的结论计算:(写出计算过程)113+123+133+143+153+163+…+393+403.6.定义新运算“@”与“⊕”:a@b=,a⊕b=.(1)计算3@(﹣2)﹣(﹣2)⊕(﹣1)的值;(2)若A=3b@(﹣a)+a⊕(2﹣3b),B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b),比较A 和B的大小.二、解一元一次方程:7.解方程:(1)4x﹣3=7﹣x;(2)4x﹣2(3x﹣2)=2(x﹣1);(3);(4).8.解方程:(1)5x﹣4=2(2x﹣3);(2)﹣=1;(3)﹣=1+;(4)﹣=0.75.9.解方程(1)3x﹣5=8;(2)﹣2x+3=4x﹣9;(3)3(x+2)﹣2(x+2)=2x+4;(4).10.解下列方程.(1)2(x﹣2)﹣3(4x﹣1)=9(1﹣x);(2)﹣=﹣2;(3)﹣=1+(4)=0.75三、整式的加减11.若多项式2mx2﹣x2+5x+8﹣(7x2﹣3y+5x)的值与x无关,求m2﹣[2m2﹣(5m﹣4)+m]的值.12.先化简,再求值:(1)(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a),其中.(2),其中13.先化简再求值:3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)],其中.14.化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.15.先化简,再求值:2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣2,y=2.16.先化简,再求值:4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣)],其中x=﹣1,y=2.17.a、b、c三个数在数轴上位置如图所示,且|a|=|b|(1)求出a、b、c各数的绝对值;(2)比较a,﹣a、﹣c的大小;(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.18.有理数a、b、c在数轴上的位置如图.(1)判断正负,用“>”或“<”填空:c﹣b0,a+b0,﹣a+c0(2)化简:|c﹣b|+|a|.19.化简已知a,b,c在数轴上的位置如图所示:(1)化简:|a+b|﹣|c﹣b|+|b﹣a|(2)若a的绝对值的相反数是﹣2,﹣b的倒数是它本身,c2=4,求﹣a+2b+c﹣(a+b﹣c)的值.20.已知有理数a、b、c在数轴上的位置,(1)a+b0;a+c0;b﹣c0;(用“>,<,=”填空)(2)试化简|a+b|﹣|a+c|+|b﹣c|.四、几何图形初步:21.如图,C是线段AB上一点,M,N分别是AC,BC的中点.(1)若AC=6cm,BC=4cm,求线段MN的长;(2)若线段CM与线段CN的长度之比为2:1,且线段CN=2cm,求线段AB的长.22.如图,C、D是线段AB上的点,AD=7cm,CB=7cm.(1)线段AC与BD相等吗?请说明理由.(2)如果M是CD的中点,MD=2cm,求线段AB的长.23.如图,延长线段AB到点F,延长线段BA到点E,若点M、N分别是线段AE、BF的中点,若AE:AB:BF=1:2:3,且EF=24cm,求线段MN的长.24.如图,点C在线段AB上,点M、N分别是线段AC,BC的中点.线段AB=14cm.(1)求线段MN的长;(2)若点C在线段AB的延长线上,求线段MN的长;(3)若点C在直线AB上,求线段MN的长.25.如图,AB:BC:CD=2:3:4,AB的中点M与CD的中点N的距离是3cm,则线段BC的长度.26.如图,直线AB、CD相交于点O,OE平分∠BOD,OF⊥CD,若∠BOC比∠DOE大75o.求∠AOD和∠EOF的度数.27.如图,直线AB,CD相交于点O,EO⊥CD于点O,FO⊥AB于点O.若∠AOE=50°,求∠BOC和∠COF.28.如图,直线AB,CD相交于点O,EO⊥AB,垂足为O.(1)若∠EOC=35°,求∠AOD的度数;(2)若∠BOC=2∠AOC,求∠DOE的度数.参考答案1.解:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9)=﹣5﹣4﹣101+9=﹣101.(2)=﹣18﹣1÷(﹣16)=﹣18﹣(﹣)=﹣17.(3)=(5﹣5×)×(﹣4)=(5﹣)×(﹣4)=×(﹣4)=﹣15.(4)﹣24+3×(﹣1)6﹣(﹣2)3=﹣16+3×1﹣(﹣8)=﹣16+3+8=﹣5.2.解:(1)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)原式=4﹣8×(﹣)=4+1=5;(3)原式=(﹣﹣+)×36=﹣×36﹣×36+×36=﹣27﹣20+21=﹣26;(4)原式=÷﹣×16=×﹣=﹣=﹣.3.解:(1)=++﹣=﹣+=﹣=﹣;(2)=(﹣)×÷(﹣6)2﹣1=(﹣)×÷36﹣1=(﹣)××﹣1=﹣1=﹣;(3)=﹣1×(﹣9×﹣2)×(﹣)=﹣1×(﹣4﹣2)×(﹣)=﹣1×(﹣6)×(﹣)=﹣9;(4)=×(﹣25)﹣49×(﹣+)=(﹣1)﹣49×+49×﹣49×=(﹣1)﹣42+﹣1=﹣33.4.解:(1)4﹣3﹣6+13﹣10﹣4+5=﹣1(公里),∴王师傅在甲地的西1公里位置;(2)10×(4+3+6+13+10+4+5)=450(公里),450÷100×6=27(L),27×5﹣2×5=125(元).∴王师傅当日在该加油站加油共花费125元.5.解:(1)13+23+33+43+53=225=×52×62(2)猜想:13+23+33+…+n3=×n2×(n+1)2(3)利用(2)中的结论计算:113+123+133+143+153+163+…+393+403.解:原式=13+23+33+...+393+403﹣(13+23+33+ (103)=×402×412﹣×102×112=672400﹣3025=6693756.解:(1)3@(﹣2)﹣(﹣2)⊕(﹣1)=﹣=+=1;(2)A=3b@(﹣a)+a⊕(2﹣3b)=+=3b﹣1,B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b)=+=3b+1,则A<B.7.解:(1)∵4x﹣3=7﹣x,∴4x+x=7+3.∴5x=10.∴x=2.(2)∵4x﹣2(3x﹣2)=2(x﹣1),∴4x﹣6x+4=2x﹣2.∴4x﹣6x﹣2x=﹣2﹣4.∴﹣4x=﹣6.∴x=.(3)∵,∴6x﹣3(3x+2)=18﹣2(5x﹣2).∴6x﹣9x﹣6=18﹣10x+4.∴6x﹣9x+10x=18+4+6.∴7x=28.∴x=4.(4)∵,∴30(0.6x+0.5)﹣100(0.03x+0.2)=2(x﹣9).∴18x+15﹣3x﹣20=2x﹣18.∴18x﹣3x﹣2x=﹣18+20﹣15.∴13x=﹣13.∴x=﹣1.8.解:(1)5x﹣4=2(2x﹣3),5x﹣4=4x﹣6,x=﹣2.(2)﹣=1,5(x﹣3)﹣2(4x+1)=10,5x﹣15﹣8x﹣2=10,﹣3x=10+15+2,x=﹣9;(3)﹣=1+,6x﹣2(5x+11)=12+4(2x﹣4),6x﹣10x﹣22=12+8x﹣16,6x﹣10x﹣8x=12﹣16+22,﹣12x=18,x=﹣;(4)﹣=0.75,﹣=0.75,2(30+2x)﹣4(20+3x)=3,60+4x﹣80﹣12x=3,4x﹣12x=3﹣60+80,﹣8x=23,x=﹣.9.解:(1)3x﹣5=8移项,3x=8+5.合并同类项,3x=13.x的系数化为1,x=.∴这个方程的解为x=.(2)﹣2x+3=4x﹣9移项,﹣2x﹣4x=﹣9﹣3.合并同类项,﹣6x=﹣12.x的系数化为1,x=2.∴这个方程的解为x=2.(3)3(x+2)﹣2(x+2)=2x+4去括号,3x+6﹣2x﹣4=2x+4.移项,3x﹣2x﹣2x=4+4﹣6.合并同类项,﹣x=2.x的系数化为1,x=﹣2.∴这个方程的解为x=﹣2.(4)去分母,3(3y﹣1)﹣12=2(5y﹣7).去括号,9y﹣3﹣12=10y﹣14.移项,9y﹣10y=﹣14+12+3.合并同类项,﹣y=1.y的系数化为1,y=﹣1.∴这个方程的解为y=﹣1.10.解:(1)去括号得:2x﹣4﹣12x+3=9﹣9x,移项合并得:﹣x=10,解得:x=﹣10;(2)去分母得:4x﹣2﹣5x﹣2=3﹣6x﹣12,移项合并得:5x=﹣5,解得:x=﹣1;(3)去分母得:3x﹣5x﹣11=6+4x﹣8,移项合并得:﹣6x=9,解得:x=﹣1.5;(4)方程整理得:﹣=0.75,即15+x﹣20﹣3x=0.75,移项合并得:﹣2x=5.75,解得:x=﹣.11.解:原式=2mx2﹣x2+5x+8﹣7x2+3y﹣5x=(2m﹣8)x2+3y+8,因为此多项式的值与x无关,所以2m﹣8=0,解得:m=4.m2﹣[2m2﹣(5m﹣4)+m]=m2﹣(2m2﹣5m+4+m)=﹣m2+4m﹣4,当=4时,原式=﹣42+4×4﹣4=﹣4.12.解:(1)∵(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a)=5a2+2a+1﹣12+32a﹣8a2+3a2﹣a=33a﹣11,∴当a=时,原式=33a﹣11=33×﹣11=0;(2)∵=2x2﹣2x2﹣2+5x2﹣3=5x2﹣5,∴x=﹣时,原式=5x2﹣5=5×(﹣)2﹣5=﹣.13.解:原式=3x2﹣6xy﹣[3x2﹣2y+2xy+2y]=3x2﹣6xy﹣(3x2+2xy)=3x2﹣6xy﹣3x2﹣2xy=﹣8xy当时原式=﹣8×(﹣)×(﹣3)=﹣12.14.解:(1)原式=4x﹣6y﹣3x﹣2y﹣1=x﹣8y﹣1,将x=2,y=﹣0.5代入,得原式=x﹣8y﹣1=2﹣8×(﹣0.5)﹣1=2+4﹣1=5;(2)原式=﹣3a2+4ab+a2﹣4a﹣4ab=﹣2a2﹣4a,当a=﹣2时,原式=﹣8+8=0.15.解:原式=2x2y+2xy2﹣2x2y+2x﹣2xy2﹣2y=2x﹣2y,当x=﹣2,y=2时,原式=﹣4﹣4=﹣8.16.解:原式=4xy﹣(x2+5xy﹣y2﹣2x2﹣6xy+y2)=4xy﹣(﹣x2﹣xy)=5xy+x2,因为x=﹣1,y=2,所以原式=5×(﹣1)×2+(﹣1)2=﹣9.17.解:(1)∵从数轴可知:c<b<0<a,∴|a|=a,|b|=﹣b,|c|=﹣c;(2)∵从数轴可知:c<b<0<a,|c|>|a|,∴﹣a<a<﹣c;(3)根据题意得:a+b=0,a﹣b>0,a+c<0,b﹣c>0,则|a+b|+|a﹣b|+|a+c|+|b﹣c|=0+a﹣b﹣a﹣c+b﹣c=﹣2c.18.解:由图可知,a<0,b>0,c>0,且|b|<|a|<|c|,(1)c﹣b>0,a+b<0,﹣a+c>0;(2)原式=c﹣b﹣a.故答案为:>,<,>.19.解:(1)∵a+b>0,c﹣b<0,b﹣a<0,∴原式=a+b+c﹣b﹣b+a=2a﹣b+c;(2)由题意,得a=2,b=﹣1,c=﹣2,∴﹣a+2b+c﹣(a+b﹣c)=﹣a+2b+c﹣a﹣b+c=﹣2a+b+2c=﹣4﹣1﹣4=﹣9.20.解:(1)由数轴可得:c<a<0<b,∴a+b<0,a+c<0,b﹣c>0,(2)∵a+b<0,a+c<0,b﹣c>0,∴|a+b|﹣|a+c|+|b﹣c|=﹣a﹣b+a+c+b﹣c=0.故答案为:(1)<;<;>;(2)原式=0.21.解:(1)因为M,N分别是AC,BC的中点,所以,,所以MN=CM+CN=3+2=5(cm).(2)因为线段CM与线段CN的长度之比为2:1,CN=2cm,所以线段CM=4cm.因为M,N分别是AC,BC的中点,所以AC=2CM=8cm,BC=2CN=4cm,所以AB=AC+BC=8+4=12(cm).22.解:(1)相等,因为AD=7cm,CB=7cm.所以AD=CB,因为AC=AD﹣CD,BD=CB﹣CD,所以AC=BD;(2)因为M是CD的中点,所以CM=MD,由(1)得,AC=BD,所以AC+CM=BD+MD,所以AM=MB,因为AD=7cm,MD=2 cm,所以AM=7﹣2=5(cm),所以AB=2AM=10(cm).23.解:设EA=xcm,则AB=2xcm,BF=3xcm,EF=6xcm.∵点M,N分别是线段EA,BF的中点,∴EM=MA=xcm,BN=NF=xcm.∵AB=2xcm,∴MN=MA+AB+BN=4xcm.∵EF=24cm,∴6x=24,解得:x=4,∴MN=4x=16cm.24.解:(1)∵点M,N分别是线段AC,BC的中点.∴MC=AC,CN=BC.∴MN=MC+CN=AC+BC=AB=7cm.(2)当点C在线段AB的延长线上时,如下图:∵点M,N分别是线段AC,BC的中点.∴MC=AC,CN=BC.∴MN=MC﹣NC==AC﹣BC=AB=7cm.(3)由(1)、(2)小题知,当点C在线段AB上或点C在线段AB的延长线上时,MN=AB=7cm.当点C在线段AB的反向延长线上时,如下图:点M,N分别是线段AC,BC的中点.∴MC=AC,CN=BC.∴MN=NC﹣MC=BC﹣AC=AB=7cm.综上:当点C在直线AB上时MN=7cm.25.解:设AB=2xcm,BC=3xcm,CD=4xcm,∵M是AB的中点,N是CD的中点,∴MB=xcm,CN=2xcm,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm.26.解:设∠BOD=2x,∵OE平分∠BOD,∴∠DOE=∠EOB==x,∵∠BOC=∠DOE+75°=x+75°.∴x+75°+2x=180°,解得:x=35°,∴∠BOD=2×35°=70°,∴∠AOD=180°﹣∠BOD=180°﹣70°=110°,∵FO⊥CD,∴∠BOF=90°﹣∠BOD=90°﹣70°=20°,∴∠EOF=∠FOB+∠BOE=20°+35°=55°.所以∠AOD和∠EOF的度数分别为:110°、55°.27.解:∵EO⊥CD于点O,∴∠DOE=90°,∴∠AOD=∠DOE﹣∠AOE=90°﹣50°=40°,∵∠BOC和∠AOD为对顶角,∴∠BOC=∠AOD=40°,∵FO⊥AB于点O,∴∠BOF=90°,∴∠COF=∠BOF+∠BOC=90°+40°=130°.28.解:(1)∵EO⊥AB,∴∠BOE=90°,∵∠EOC=35°,∴∠BOC=∠BOE+∠EOC=125°.∴∠AOD=∠BOC=125°,答:∠AOD的度数为125°;(2)∵∠AOC+∠BOC=180°,∠BOC=2∠AOC,∴∠AOC+2∠AOC=180°∴∠AOC=60°,∴∠BOD=∠AOC=60°,∴∠EOD=∠BOE+∠BOD=90°+60°=150°,答:∠DOE的度数为150°.。

人教版七年级上册数学期末总复习题

人教版七年级上册数学期末总复习题

第一章 有理数第一课 有理数 数轴 相反数 绝对值 倒数知识构造图⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎪⎪⎬⎫数轴倒数绝对值大小比较相反数有理数的分类热身练习:1.如果+20%表示增加20%,那么-6%表示( ). A .增加14% B .增加6% C .减少6% D .减少26%2.如果2()13⨯-=,那么“〞内应填的实数是〔 〕 A .32B .23C .23-D .32-3.-213的相反数是___ ____,—2的倒数是,|—311|=。

4.假设||2,3,x y x y ==+=则。

典例分析:1.把以下各数填入表示它所在的数集中:16,0.618, 3.14,260,2008,,0.21,5%37-----。

整数有 分数有 负数有 有理数有2.如果a ,b 是互为相反数,c ,d 是互为倒数,x 的绝对值等于2,那么b a cdx x 24--+ 的值是;3.假设23(2)0m n -++=,那么2m n +的值为〔 〕 A .4- B .1-C .0D .4点评:一个数的绝对值是指数轴上表示这个数的点到的距离,所以某数的绝对值是非负数。

几个非负数的和等于零,那么这几个非负数同时为零。

4.实数a 、b 在数轴上的位置如图1所示,那么a 与b 的大小关系是〔 〕A .a > bB . a = bC . a < bD . 不能判断点评:有理数大小比拟:正数零负数,两个负数,大的反而小;数轴上表示的两个数边的数总比边的数大。

o图1ba5.某工厂在上一星期的星期日生产了100台彩电,下表是本星期的生产情况:比前一天的产量多的记为正数,比前一天产量少的记为负数。

请算出本星期最后一天星期日的产量是台,本星期的总产量是台,星期的产量最多,星期的产量最少。

反应练习:1.如果水位升高3m 时水位变化记作+3m ,那么水位下降5米时水位变化记作:2.大于–3且不大于2的所有整数写出来是3.将有理数0,722-,2.7,-4,0.14按从小到大的顺序排列,用“<〞号连接起来应为_____________ ______.4.有理数a 、b 在数轴上的位置如下图,以下结论正确的选项是〔〕 A 、b <a B 、ab <0 C 、b —a >0 D 、a +b >0 5.与a-b 互为相反数的是( )A .a+bB .a-bC .-a-bD .b-a6.假设0>a ,0<b ,且b a <,试用“<〞号连接a ,b ,-a ,-b 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学七年级第一学期期末总复习
(广州市第二十七中学初一数学备课组编于2005年12月) 班别:____________姓名:____________学号:______
一、选择题(每小题3分,共30分)
1、一个数等于它自身的平方,这个数只能是( )
(A )0或1 (B )0或-1 (C )1± (D )0或1±
2、单项式3
2
2yz x -的系数和次数分别是 ( )
(A )-3,2 (B )-3,4 (C )31-,2 (D )3
1
-,5
3、绝对值大于3而不大于8的所有整数有( )
(A )4个 (B )5个 (C )8个 (D )10个 4、已知02)3(2=-++a b ,则a b 的值是( )
(A )-6 (B )6 (C )-9 (D )9
5、为鼓励节约用电,某地对用户用电收费标准作如下规定:如果每月每户用电不超过100度,那么每度电价按a 元收费;如果超过100度,那么超过部分每度加倍收费。

某户居民在一个月内用电180度,它这个月应缴纳电费( ) (A )180a 元 (B )260a 元 (C )280a 元 (D )360a 元
6、下图所示立体图形的正视图是( )
(A) (B) (C) (D)
7、
8、灯塔位于一艘船的北偏东40°,那么这艘船位于这个灯塔的( )
(A )南偏西50° (B )南偏西40° (C )北偏东50° (D )北偏东40° 9、如图,AC =10cm ,AB =6cm ,M 、N 分别为AC 与AB 的中点,则MN =( ) (A )8cm (B )4cm (C )3cm (D )2cm
C
A B N M
10、如右图,按角的位置,下列的判断错误的是( ) (A )∠8与∠5是同位角 (B )∠2与∠8是对顶角 (C )∠1与∠6是同旁内角 (D )∠3与∠8是内错角
二、填空题(每小题3分,共24分)
11、若m 、n 互为相反数,a 、b 互为倒数,则2(m +n )2-3ab =__________ 12、2003年5月19日,国家邮政局特别发行“万众一心,抗击非典”邮票,收入全部捐赠给卫生部门,用以支持抗击“非典”斗争,其邮票的发行量为0.1250亿枚,0.1250亿精确到_____位,有效数字为_______________,用科学记数法表示为______________。

13、观察下列各式:
1×3=12+2×1 2×4=22+2×2 3×5=32+2×3
将你猜想到的规律用自然数n (n ≥1)表示出来_______________________ 14、如图所示,若∠1=∠2,则______∥_______, ∠BAD +_______=180°.
15、若一个角的余角是53°16',则这个角的大小为____________. 16、同一个平面内3个点可以确定的直线条数为________________.
2
1
D
C
B
A
17、对某班的一次数学测验成绩进行统计分析中,各分数段的人数如图所示(分数取正整数,满分100分),通过观察图形,可得:
(1) 若60分以上为及格等
次,则该班及格等次的频数是______,频率是______.
(2) 若80分以上为优秀等
次,则该班优秀等次的频数是______,频率是
______.
18、我国成人身份证的号码为18位数,从最高位起,44表示广东,01表示广州,21表示花都区,接下来8位数表示出生的年、月、日,最后4位数表示编号。

有一人的身份证号码为440121************,你可以看出这是哪里人?年纪有多大?(按周岁计算)
答:______________________________________________________________. 三、解答题:
19、计算。

(第(1)~(4)小题,每小题5分,第(5)小题8分,共28分) (1) (-5.28)+(-3.14)+5+5.28
(2) ()÷-64()98
3
322-÷+
(3) ()5324836143122005
+-÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛----
(4)()()()
3
333222y xyz xyz y x xyz x -++---
(5)先化简,后求值:
()()
⎥⎦

⎢⎣
⎡-----22
2
4963
1
523a a a a a ,其中a =41-
20、画图题(8分)
如图,已知△ABC ,完成下列画图:
(1) 画线段BC 的中点D ,并连结AD ; (2) 过点A 画BC 的垂线,垂足为E ;
(3) 过点E 画AB 的平行线,交AC 于点F ; (4) 画∠ABC 的平分线,交AC 于点G .
C
21、为了提高汉字输入速度,王彦同学在家利用电脑刻苦练习,六个星期里每
一个适当的统计图。

(8分)
22、如图,已知DE∥BC,BE平分∠DBC,∠D=2∠DBC,求∠DEB的度数。

(8分)
23、观察下列两组算式:
①21=2,22=4,23=8,24=16
25=32,26=64,27=128,28=256
…………
②43=(22)3=22×3=26=64
通过观察,用你所发现的规律,分别把88、169、327写成2n的形式,并分别指出它们的末位数字是几。

(6分)
24、中国联通推出两种移动电话业务:
a、每月缴纳50元月租,手机通话费为0.40元/分;
b、不缴纳月租,手机通话费0.60元/分;
(1)设一个月的通话时间为x分钟,试表示出选择a、b两种业务该月各需要缴纳的手机费用。

(2)小王估计每月的通话时间在5小时左右,请你帮助选择哪种业务合算,并说明理由。

(8分)。

相关文档
最新文档