重庆市聚奎中学20112012学年九年级数学上册第一次月考调研检测试卷有答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
适用精选文件资料分享
重庆市聚奎中学2011-2012 学年九年级数学上册第一次月考调研检
测试卷(有答案)
重庆市聚奎中学2011-2012 学年九年级上学期第一次月考数学试题一、选择题(本大题共10 个小题,每题 4 分,共 40 分)每个小题的下边给出了代号为 A、B、C、D四个答案 , 此中只有一个答案是正确的,请将正确答案的代号填在括号内. 1.使二次根式有意义的 x 的取值范围是() A. x=1 B. x≠1 C. x >1 D.x ≥1 2 .以下方程是一元二次方程的是() A. B . C . D. 3.在以下图形中,既是中心对称又是轴对称的图形是()
4.关于的方程是一元二次方程的条件是()A.B. C. D. 5.成立,那么 x 的取值范围是 ( ) A. B. C. D. 6.以下计算中,正确的是() A. B. C. D. 7.用配方法解一元二次方程时可配方得()A.B.C.D. 8 .以下方程中,两根是 -2和-3 的方程是 ( )
9.一元二次方程k 有实数根,则 k 的取值范围是()A. k≥-1且 k≠0 B.k ≥ - 1 C.k ≤-1 且 k≠0 D.k ≥-1 或 k≠0
10.三角形的两边长分别是 3 和 6,第三边是方程的解,则这个三角形的周长是()A.11 B.13 C.11 或 13 D.11 和 13 二、填空题 ( 本大题共10 个小题,每题 4 分,共 40 分) 请将正确答案直接填在答
题卷上. 11 .的倒数是. 12 .化简
=________. 13 . ________=( ________ )2. 14.若则. 1 5.等边三角形最少旋转°才能与自己重合. 16 .一元二次方程的解为.
17. 写出一个无理数,使它与的积为有理数____ ____.18.已知,那么可化简为 . 19. 已知反比率函数, 当时, 随的增大而增大, 则关于的方程的解的状况是 . 20. 已知, 则___ . 三、解答题(本大题共3 个小题, 21、22 小题各 10 分,23 题 18 分,共 38 分) 21. (10 分)计算:(每题 5 分) (1) (2)( ? )÷
22.(10 分) 选择合适的方法解以下方程:(每题 5 分)(1)(2)
23.解答以下各题 (18 分): (1) (9 分)已知:关于的方程一个根是-1 ,求值及另一个根 .
(2)(9 分) 若关于的一元二次方程没有数根,求的解集(用含的式子表示)
四、解答(本大共 3 个小,第 24、25 小各 10 分,第 26 小
12 分,共 32 分) 24. (10 分)每个小方格都是 1 个位度的正方形,在建立平面直角坐系后,△ABC的点均在格点上,①把△ ABC向上平移 5 个位后获得的△ A1B1C1,画出△A1B1C1,②以原点 O称中心,再画出与△ A1B1C1关于原点 O 称的△ A2B2C2,。
25.(10 分)如,在矩形 ABCD中, AB=6cm,BC=12cm,点 P 从点
A开始沿 AB向点 B 以 1cm/s 的速度移,点 Q从点 B开始沿 BC 向点 C 以 2cm/s 的速度移.假如 P、Q分从 A、B 同出,出多少秒△ DPQ 的面等于 31cm2?
26.(12 分)某商店一种售成本每千克 40 元的水品,据市解析,若按
每千克 50 元售,一个月能售出 500? K,售价每 1 元,月售量就减少10? K,种水品,解答以下:⑴当售价定每千克 55 元,算售量与月售利。
⑵ 售价每千克元,月售利元,求与的关系式;⑶
当售价多少,月售利最大?最大利是多少?⑷商店想在售成本不超10000 元的状况下,使得月售利好达到
8000 元,售价多少?
数学参照答案一、(本大共10 个小,每小 4 分,共 40 分)每个小的下边出了代号 A、B、C、D四个答案 , 此中
只有一个答案是正确的,将正确答案的代号填在括号内.DBCDB DBDAB二、填空 ( 本大共 10 个小,每小 4 分,共 40 分)将正确答案直接填在答卷上. 11 .;12 ..;13 .25 ,5 ;14 .3 ;
15.120; 16 .; 17. 答案不独一,写出一个即可; 18. ; 19. 有两个不相等的数根; 20. 4 .三、解答(本大共 3 个小, 21、22 小各 10 分, 23 18 分,共 38 分) 21. (10 分)
算:(每小 5 分) (1)⋯⋯⋯⋯⋯2分
= ⋯⋯⋯⋯⋯ 4 分 = ⋯⋯⋯⋯⋯ 5 分(2)( ? )÷ 解: 原式= ÷ - ÷ =⋯⋯⋯⋯⋯ 2分=5 ? C2 ⋯⋯⋯⋯⋯ 4分 =3 ⋯⋯⋯⋯⋯
5分
22.(10 分) 合适的方法解以下方程:(每小 5 分)(1)
解: ⋯⋯⋯⋯⋯ 1 分⋯⋯⋯⋯⋯ 2 分⋯⋯⋯⋯⋯ 3 分⋯⋯⋯⋯⋯
5 分(2) ( 解法不独一 , 解正确即可 )解:⋯⋯⋯⋯⋯ 2
分⋯⋯⋯⋯⋯ 3 分⋯⋯⋯⋯⋯ 5 分 23. 解答以下各 (18 分): (1)(9 分)已知:关于的方程一个根是 -1 ,求及另一个根 . 解: 把代入原方程得⋯⋯⋯⋯⋯ 2 分解得⋯⋯⋯⋯⋯ 4 分方程 : ⋯⋯⋯⋯⋯ 5 分解之得⋯⋯⋯⋯⋯ 8 分∴ 1, 方程的另一个根 . ⋯⋯⋯⋯⋯ 9 分
(2)(9 分) 若关于的一元二次方程没有数根,求的解集(用含的式子表示)解:由意知:⋯⋯⋯⋯⋯ 2分⋯⋯⋯⋯⋯ 3分解
得⋯⋯⋯⋯⋯5分由得⋯⋯⋯⋯⋯6分∵⋯⋯⋯⋯⋯7分
∴ ⋯⋯⋯⋯⋯ 9 分四、解答(本大共 3 个小,第 24、25 小
各 10 分,第 26 小 12 分,共 32 分) 24. (10 分)每个小方格
都是 1 个位度的正方形,在建立平面直角坐系后,
△ABC的点均在格点上,① 把△ ABC向上平移5个位后获得
的△ A1B1C1,画出△ A1B1C1,②以原点 O称中心,再画出与
△A1B1C1关于原点 O称的△A2B2C2,。
( 画正确一个得 5 分)
25.(10 分)如,在矩形 ABCD中, AB=6cm,BC=12cm,点 P 从点
A开始沿 AB向点 B 以 1cm/s 的速度移,点 Q从点 B开始沿 BC 向点 C 以 2cm/s 的速度移.假如 P、Q分从 A、B 同出,出多少秒△ DPQ 的面等于 31cm2? 解: 出秒△ DPQ的面等于 31cm2.. ∵S矩形ABCDS-△APD- S△BPQ-S△CDQ= S△DPQ
⋯⋯⋯⋯⋯1分∴⋯⋯⋯⋯⋯5分化整理得⋯⋯⋯⋯⋯7分解
得⋯⋯⋯⋯⋯9分均吻合意答:出1秒或5秒△ DPQ的面等于
31cm2.⋯⋯⋯⋯⋯10分
26.(12 分)某商店一种售成本每千克 40 元的水品,据市解析,若按每千克 50 元售,一个月能售出 500? K,售价
每 1 元,月售量就减少 10? K,种水品,解答以下:⑴当售价定每千克 55 元,算售量与月售利;⑵ 售价每千克元,月售利元,求与的关系式;⑶
当售价多少,月售利最大?最大利是多少?⑷商店想在售成本不超10000 元的状况下,使得月售利好达到 8000 元,售价多少?解(1) ⋯⋯⋯⋯⋯ 1 分⋯⋯⋯⋯⋯ 2 分答: 当售价定每千克 55 元,月售量 450kg, 月售利 6750 元. ⋯3分 (2) 由意得⋯⋯⋯⋯⋯ 5 分
即⋯⋯⋯⋯⋯ 6 分 (3) 由(2) 得⋯⋯⋯⋯⋯ 8 分∴当月售价每千克 70元 , 月售利最大 , 最大利 9000 元. ⋯⋯ 9 分 (4) 当 , 由(3) 得整理得解之得⋯⋯⋯⋯⋯10 分又由售成本不超 10000 元得解之得故舍去 , ⋯⋯⋯⋯⋯ 11 分答: 售价定每千克 80 元. ⋯⋯⋯⋯⋯ 12 分。