2014届成都一诊理科数学试题及答案

合集下载

2014年全国高考四川省数学(理)试卷及答案【精校版】

2014年全国高考四川省数学(理)试卷及答案【精校版】

2014年普通高等学校招生全国统一考试理科(四川卷)参考答案第I 卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂= A .{1,0,1,2}- B .{2,1,0,1}-- C .{0,1} D .{1,0}- 【答案】A2.在6(1)x x +的展开式中,含3x 项的系数为A .30B .20C .15D .10 【答案】C3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动12个单位长度 B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度 【答案】A4.若0a b >>,0c d <<,则一定有A .a b c d >B .a bc d < C .a b d c > D .a b d c<【答案】D5.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为A .0B .1C .2D .3 【答案】C6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有 A .192种 B .216种 C .240种 D .288种 【答案】B7.平面向量a=(1,2), b=(4,2), c=ma+b (m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =A .2-B .1-C .1D .2 【答案】D8.如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。

设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是A .3[B .6[C .622[]D .22【答案】B9.已知()ln(1)ln(1)f x x x =+--,(1,1)x ∈-。

2014年四川省成都市高考数学一模试卷(理科)

2014年四川省成都市高考数学一模试卷(理科)

2014年四川省成都市高考数学一模试卷(理科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共50.0分)1.已知集合A={-2,3},B={x||x|=3},则A∩B=()A.{-2}B.{3}C.{-2,3}D.∅【答案】B【解析】解:由B中的方程|x|=3,得到x=3或-3,即B={-3,3},∵A={-2,3},∴A∩B={3}.故选B求出B中方程的解确定出B,找出A与B的交集即可.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.若复数z满足z(1-2i)=5(i为虚数单位),则复数z为()A. B.1+2i C.1-2i D.【答案】B【解析】解:∵复数z满足z(1-2i)=5,∴z(1-2i)(1+2i)=5(1+2i),∴z=1+2i.故选:B.利用复数的运算法则、共轭复数的定义即可得出.本题考查了复数的运算法则、共轭复数的定义,属于基础题.3.计算log5+所得的结果为()A.1B.C.D.4【答案】A【解析】解:原式===1.故选:A.利用指数幂的运算法则和对数的运算法则即可得出.本题考查了指数幂的运算法则和对数的运算法则,属于基础题.4.在等差数列{a n}中,a8=15,则a1+a7+a9+a15=()A.15B.30C.45D.60【答案】D【解析】解:由等差数列{a n}的性质可得:a1+a15=a7+a9=2a8.∵a8=15,∴a1+a7+a9+a15=4a8=4×15=60.故选:D.由等差数列{a n}的性质可得:a1+a15=a7+a9=2a8.即可得出.本题考查了等差数列的性质,属于基础题.5.已知m,n是两条不同的直线,α为平面,则下列命题正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊥α.则m⊥nC.若m⊥α,n∥α,则m⊥nD.若m与α相交,n与α相交,则m,n一定不相交【答案】C【解析】解:对A,m∥α,n∥α,则直线m、n位置关系不确定,故A错误;对B,m⊥α,n⊥α,∴m∥n,故B错误;对C,m⊥α,n∥α,过n的平面β,α∩β=b,∴n∥b,又b⊂α,∴m⊥b,∴m⊥n.故C正确;对D,若m与α相交,n与α相交,当交点重合时,m、n相交,故D错误.故选C.根据m∥α,n∥α,则直线m、n位置关系不确定,判断A错误;根据垂直于同一平面的两直线平行,判断B错误;利用线面平行的性质及异面直线所成角的定义判断C 正确;根据当交点重合时,两直线相交,判断D错误.本题考查了空间直线与直线、直线与平面的位置关系,考查了学生的空间想象能力.6.如图,在平面直角坐标系x O y中,角α,β的顶点与坐标原点重合,始边与x轴的非负半轴重合,它们的终边分别与单位圆相交于A,B两点,若点A,B的坐标为(,)和(-,),则cos(α+β)的值为()A.-B.-C.0D.【答案】A【解析】解:∵点A,B的坐标为(,)和(-,),∴sinα=,cosα=,sinβ=,cosβ=-,则cos(α+β)=cosαcosβ-sinαsinβ=×(-)-×=-.故选A根据A与B的坐标,利用任意角的三角函数定义求出sinα,cosα,sinβ,cosβ的值,原式利用两角和与差的余弦函数公式化简,将各自的值代入计算即可求出值.此题考查了两角和与差的余弦函数公式,以及任意角的三角函数定义,熟练掌握公式是解本题的关键.7.世界华商大会的某分会场有A,B,C,将甲,乙,丙,丁共4名“双语”志愿者分配到这三个展台,每个展台至少1人,其中甲、乙两人被分配到同一展台的不同分法的种数()A.12种B.10种C.8种D.6种【答案】D【解析】解:∵甲、乙两人被分配到同一展台,∴甲与乙捆在一起,看成一个人,然后将3个人分到3个展台上的全排列,即有种,∴甲、乙两人被分配到同一展台的不同分法的种数=6种.故选:D.该题要求甲、乙两人被分配到同一展台,故采取捆绑法进行求解,然后利用排列组合知识进行求解即可.本题考查排列、组合的运用,关键是根据“每个展台至少1人”的要求,属于基础题.8.一个长方体被一个平面截去一部分后所剩几何体的三视图如下图所示(单位:cm),则该几何体的体积为()A.120cm2B.80cm2C.100cm2D.60cm2【答案】C【解析】解:由三视图可判断几何体为一长方体削去一个角,其直观图如图:长方体的长、宽、高分别为5、4、6,∴长方体的体积为5×4×6=120,削去的三棱锥的体积为××5×4×6=20,∴该几何体的体积为120-20=100cm2.故选C.由三视图可判断几何体为一长方体削去一个角,画出直观图,标出三视图的数据对应的几何量,代入公式计算.本题考查了由三视图求几何体的体积,由三视图判断几何体的形状,画出其直观图是解题的关键.9.如图①,利用斜二侧画法得到水平放置的△ABC的直观图△A′B′C′,其中A′B′∥y′轴,B′C′∥x′轴.若A′B′=B′C′=3,设△ABC的面积为S,△A′B′C的面积为S′,记S=k S′,执行如图②的框图,则输出T 的值( )A.12B.10C.9D.6 【答案】 A【解析】解:∵在直观图△A ′B ′C ′中,A ′B ′=B ′C ′=3, ∴S ′=A ′B ′•B ′C ′•sin 45°=由斜二侧画法的画图法则,可得在△ABC 中,AB=6.BC=3,且AB ⊥BC ∴S=AB •BC=9则由S=k S ′得k =2 ,则T=T=(m -1)=2(m -1)故执行循环前,S=9,k =2 ,T=0,m =1,满足进行循环的条件,执行循环体后,T=0,m =2当T=0,m =2时,满足进行循环的条件,执行循环体后,T=2,m =3当T=2,m =3时,满足进行循环的条件,执行循环体后,T=6,m =4当T=6,m =4时,满足进行循环的条件,执行循环体后,T=12,m =5当T=12,m =5时,不满足进行循环的条件,退出循环后,T=12, 故输出的结果为12故选:A由斜二侧画法的画图法则,结合已知可求出S 及k 值,模拟程序的运行过程,分析变量T 的值与S 值的关系,可得答案.根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.10.已知f (x )=-2|2|x |-1|+1和g (x )=x 2-2|x |+m (m ∈R )是定义在R 上的两个函数,则下列命题正确的是( )A.关于x 的方程f (x )-k =0恰有四个不相等实数根的充要条件是k ∈(-1,0)B.关于x 的方程f (x )=g (x )恰有四个不相等实数根的充要条件是m ∈[0,1]C.当m =1时,对∀x 1∈[-1,0],∃x 2∈[-1,0],f (x 1)<g (x 2)成立D.若∃x 1∈[-1,1],∃x 2∈[-1,1],f (x 1)<g (x 2)成立,则m ∈(-1,+∞) 【答案】 D【解析】解:∵f (x )=-2|2|x |-1|+1, ∴f (-x )=f (x ),∴f (x )=-2|2|x |-1|+1是偶函数,x >0时,f (x )=-2|2x -1|+1= , >, < <,∴f (x )=-2|2|x |-1|+1的图象如图所示,∴关于x 的方程f (x )-k =0恰有四个不相等实数根的充要条件是k ∈(-1,1),即A 不正确; 函数g (x )=x 2-2|x |+m 是偶函数,与y 轴的交点坐标为(0,m ),显然m =-时,关于x 的方程f (x )=g (x )有四个不相等实数根,故B 不正确;∀x 1∈[-1,0],f (x 1)∈[-1,1],x 2∈[-1,0],g (x )=x 2+2x +1∈[0,1],∴当m =1时,对∀x 1∈[-1,0],∃x 2∈[-1,0],f (x 1)<g (x 2)不成立,即C 不正确;对于D,∀x1∈[-1,1],∀x2∈[-1,1],f(x1)≥g(x2)成立时,m≤-1,∴若∃x1∈[-1,1],∃x2∈[-1,1],f(x1)<g(x2)成立,则m∈(-1,+∞),故D 正确.故选D.分析f(x)=-2|2|x|-1|+1和g(x)=x2-2|x|+m的函数性质,对选项逐个判断即可.本题考查命题真假的判断,考查数形结合的数学思想,考查学生分析解决问题的能力,分析函数的性质是关键.二、填空题(本大题共5小题,共25.0分)11.若f(x)=x2+(a-1)x+1是定义在R上的偶函数,则实数a= ______ .【答案】1【解析】解:∵f(x)=x2+(a-1)x+1是定义在R上的偶函数,∴f(-x)=f(x),即f(-x)=x2-(a-1)x+1=x2+(a-1)x+1,∴-(a-1)=a-1,∴a-1=0,解得a=1.故答案为:1.根据函数奇偶性的定义建立方程f(-x)=f(x)即可求解a的值.本题主要考查函数奇偶性的应用,利用函数奇偶性的定义建立方程是解决本题的关键.12.已知(1+2x)6=a0+a1x+a2x2+…+a6x6,则a0+a1+…+a6= ______ .【答案】729【解析】解:在(1+2x)6=a0+a1x+a2x2+…+a6x6中,令x=1可得a0+a1+…+a6=36=729,故答案为:729.在(1+2x)6=a0+a1x+a2x2+…+a6x6中,令x=1可得a0+a1+…+a6的值.本题主要考查二项式定理的应用,是给变量赋值的问题,关键是根据要求的结果,选择合适的数值代入,属于中档题.13.设x1,x2是函数f(x)=x3-2ax2+a2x的两个极值点,若x1<2<x2,则实数a的取值范围是______ .【答案】(2,6)【解析】解:∵x1,x2是函数f(x)=x3-2ax2+a2x的两个极值点,∴x1,x2是方程的两个实数根,∴3×22-4a×2+a2<0,即a2-8a+12=(a-2)(a-6)<0,解得2<a<6,故答案为:(2,6).由题意可得x1,x2是方程3x2-4ax+a2=0的两个实数根,故有3×22-4a×2+a2<0,由此求得a的范围.本题主要考查函数的零点的定义,体现了转化的数学思想,属于基础题.14.已知α∈[-,],则cos2α的概率为______ .【答案】【解析】解:∵cos2α,α∈[-,],∴2α∈[-,],即α∈[-,],∴α∈[-,],则cos2α的概率为=.故答案为:.先在区间[-,]上解不等式cos2α,然后利用几何概型的概率公式进行求解,这里的几何测度是区间长度.本题主要考查了三角不等式的解法,以及几何概型的概率计算,同时考查了分析问题的能力,属于基础题.15.设⊙O为不等边△ABC的外接圆,△ABC内角A,B,C所对边的长分别为a,b,c,P是△ABC所在平面内的一点,且满足=•+(P与A不重合).Q为△ABC所在平面外一点,QA=QB=QC.有下列命题:①若QA=QP,∠BAC=90°,则点Q在平面ABC上的射影恰在直线AP上;②若QA=QP,则;③若QA>QP,∠BAC=90°,则;④若QA>QP,则P在△ABC内部的概率为(S△ABC,S⊙O分别表示△ABC与⊙O的面积).其中不正确的命题有______ (写出所有不正确命题的序号).【答案】①③④【解析】解:∵=•+,∴-=(•-),∴,∴||c•cos∠PAB=∠PAC,∴∠PAB=∠PAC,∴AP是∠BAC的平分线,∵QA=QB=QC,∴Q在平面ABC上的射影是△ABC的外心O,∵∠BAC=90°,△ABC是不等边三角形,∴点Q在平面ABC上的射影恰在直线AP上不正确;∵QA=QP,∴P为的中点,∴OP⊥BC,∵OP是QP在平面ABC上的射影,∴QP⊥BC,∴,故②正确;③QA>QP,则P在圆内,∠BAC=90°,则BC为直径,若,则AP为∠BPC的平分线且AP经过点O,与△ABC是不等边三角形矛盾,故③不正确;④若QA>QP,∵AP是∠BAC的平分线,所以P在△ABC内部的概率应该以长度为测度,故④不正确.故答案为:①③④.根据=•+,可得AP是∠BAC的平分线,利用QA=QB=QC,可得Q在平面ABC上的射影是△ABC的外心O,由QA=QP,可知P为的中点,由QA>QP,则P在圆内,再对选项判断,即可得出结论.本题考查向量知识的运用,考查命题真假的判断,综合性强,难度大.三、解答题(本大题共6小题,共75.0分)16.已知向量=(cos,cos2),=(2sin,2),设函数f(x)=.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)在△ABC中,角A,B,C所对边的长分别为a,b,c,且f(2B-)=,a=3,b=3,求A的大小.【答案】解:(Ⅰ)∵向量=(cos,cos2),=(2sin,2),∴f(x)=•=2sin cos+2cos2=sin+cos+1=2sin(+)+1,∵ω=,∴函数f(x)的最小正周期为4π;(Ⅱ)f(2B-)=2sin B+1=+1,即sin B=,∵a=3,b=3,sin B=,∴由正弦定理=得:sin A===,∵a<b,∴A<B,∴A=30°.【解析】(Ⅰ)由两向量的坐标,利用平面向量的数量积运算法则列出关系式,再利用二倍角的正弦、余弦函数公式化简,利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式即可确定出函数f(x)的最小正周期;(Ⅱ)由第一问f(x)解析式,根据已知等式求出sin B的值,再由a,b的值,利用正弦定理求出sin A的值,即可确定出A的度数.此题考查了正弦定理,平面向量的数量积运算,两角和与差的正弦函数公式,以及三角函数的周期性及其求法,熟练掌握定理及公式是解本题的关键.17.已知数列{a n}的前n项和为S n,且S n=2n+2-2,n∈N*.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数{a n}满足b n=,求数列{b n}的前n项和T n.【答案】解:(Ⅰ)当n≥2时,a n=S n-S n-1=2n+1,又当n=1时,a1=S1=6,不符合上式,∴a n=,,(n∈N*).(Ⅱ)b1=1,当n≥2时,b n==2(1-),∴T n=b1+b2+…+b n=2[(1-)+(1-)+…+(1-)] =2[n-(++…+)]=2[n-]=2n-1+.∴T n=,,.【解析】(Ⅰ)依题意,易求当n≥2时,a n=S n-S n-1=2n,当n=1时,a1=2,从而可得数列{a n}的通项公式;(Ⅱ)由(Ⅰ)可知b n=2(1-),从而利用分组求和法即可求得数列{b n}的前n项和T n.本题考查数列的求和,着重考查知S n求a n型问题的解法,突出考查分组求和法的应用,属于中档题.18.某种特色水果每年的上市时间从4月1号开始仅能持续5个月的时间.上市初期价格呈现上涨态势,中期价格开始下跌,后期价格在原有价格基础之上继续下跌.现有三种价格变化的模拟函数可选择:①f(x)=p•q x;②f(x)=px2+qx+7;③f(x)=log q (x+p).其中p,q均为常数且q>1.(注:x表示上市时间,f(x)表示价格,记x=0表示4月1号,x=1表示5月1号,…,以此类推,x∈[0,5])(Ⅰ)在上述三个价格模拟函数中,哪一个更能体现该种水果的价格变化态势,请你选择,并简要说明理由;(Ⅱ)对(I)中所选的函数f(x),若f(2)=11,f(3)=10,记g(x)=,经过多年的统计发现,当函数g(x)取得最大值时,拓展外销市场的效果最为明显,请预测明年拓展外销市场的时间是几月1号?【答案】解:(Ⅰ)根据题意,该种水果价格变化趋势是先单调递增后一直单调递减,基本符合开口向下的二次函数的变化趋势,故应该选择②f(x)=px2+qx+7;(Ⅱ)∵f(2)=11,f(3)=10,∴,解得:,∴f(x)=-x2+4x+7,则g(x)==,∴g(x)=-[+(x+1)-4]≤-(2-4)=-2,当且仅当x+1=3即x=2时等号成立,∴预测明年拓展外销市场的时间是6月1号.【解析】(Ⅰ)欲找出能较准确体现该种水果的价格变化态势的模拟函数,主要依据是该种水果价格变化趋势,故可从三个函数的单调上考虑;(Ⅱ)由题中条件:f(2)=11,f(3)=10得方程组,求出p,q即可,从而得到g(x)的解析式即可求出x取何值时函数g(x)取得最大值,得到所求.本小题主要考查函数模型的选择与应用,属于基础题.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.属于中档题.19.如图①,四边形ABCD为等腰梯形,AE⊥DC,AB=AE=DC,F为EC的中点,现将△DAE沿AE翻折到△PAE的位置,如图②,且平面PAE⊥平面ABCE.(Ⅰ)求证:平面PAF⊥平面PBE;(Ⅱ)求直线PF与平面PBC所成角的正弦值.【答案】(I)证明:∵EF∥AB,AB=EF=CD,∴四边形AEFB为平行四边形,又AE=AB,AE⊥CD,∴四边形AEFB为正方形,∴BE⊥AF,∴平面PAE⊥平面ABCE,PE⊥AE,平面PAE∩平面ABCE=AE,∴PE⊥平面ABCE,∴PE⊥AF,又PE∩BE=E,∴AF⊥平面PBE,∵AF⊂平面PAF,∴平面PBE⊥平面PAF;(Ⅱ)解:建立如图所示的装不下,设AB=4,则P(0,0,4),A(0,4,0),B(4,4,0),C(8,0,0),F(4,0,0),∴,,,,,,,,,设=(x,y,z)为平面PBC的一个法向量,则,∴可去=(1,1,2),∴sinα==,∴直线PF与平面PBC所成角的正弦值为.【解析】(I)先证明四边形AEFB为正方形,可证得BE⊥AF;再利用面面垂直的性质,证得线面垂直,再得PE⊥AF,由此可证AF⊥平面PBE,从而证明面面垂直;(Ⅱ)求出,平面PBC的一个法向量,利用向量的夹角公式,可求直线PF与平面PBC所成角的正弦值.本题考查了面面垂直的证明,考查线面角,考查向量知识的运用,正确求出平面的法向量是关键.20.我国采用的PM2.5的标准为:日均值在35微克/立方米以下的空气质量为一级;在35微克/立方米一75微克/立方米之间的空气质量为二级;75微克/立方米以上的空气质量为超标.某城市环保部门随机抽取该市m天的PM2.5的日均值,发现其茎叶图和频率分布直方图都受到不同程度的破坏,可见部分如下图所示.请据此解答如下问题:(Ⅰ)求m的值,并分别计算:频率分布直方图中的[75,95)和[95,115]这两个矩形的高;(Ⅱ)通过频率分布直方图估计这m天的PM2.5日均值的中位数(结果保留分数形式);(Ⅲ)从这m天的PM2.5日均值中随机抽取2天,记X表示抽到PM2.5超标的天数,求X的分布列和数学期望.【答案】解:(Ⅰ)∵,∴m=20,矩形[75,95)的高为=0.0225,矩形[95,115)的高为0.01.(Ⅱ)根据频率分布直方图可以估计这m天的PM2.5日均值的中位数为75+=81.(Ⅲ)∵P(X=0)==,P(X=1)==,P(X=2)==,∴X的分别列为∴E(X)=1×+2×=.【解析】(Ⅰ)根据第一组的数据,建立方程即可求出m的值,然后分别计算:频率分布直方图中的[75,95)和[95,115]这两个矩形的高;(Ⅱ)根据茎叶图中的数据以及频率分布直方图来估计这m天的PM2.5日均值的中位数;(Ⅲ)求出X的相应的概率,可求X的分布列和数学期望.本题主要考查频率分布直方图的应用,以及概率的计算,考查分布列和数学期望,考查学生的计算能力,正确求概率是关键.21.已知函数f(x)=aln(x+1),g(x)=x-x2,a∈R.(Ⅰ)若a=-1,求曲线y=f(x)在x=3处的切线方程;(Ⅱ)若对任意的x∈[0,+∞),都有f(x)≥g(x)恒成立,求a的最小值;(Ⅲ)设p(x)=f(x-1),a>0,若A(x1,y1),B(x2,y2)为曲线y=p(x)的两个不同点,满足0<x1<x2,且∃x3∈(x1,x2),使得曲线y=f(x)在x3处的切线与直线AB平行,求证:x3<.【答案】解:(I)当a=-1时,f(x)=-ln(x+1),得出切点(3,-ln4).∵′,∴切线的斜率k=′.∴曲线y=f(x)在x=3处的切线方程为:y+ln4=-(x-3),化为x+4y+8ln2-3=0.(II)对任意的x∈[0,+∞),都有f(x)≥g(x)恒成立⇔aln(x+1)-x+.令h(x)=aln(x+1)-x+(x≥0).′=.①当a≥1时,h′(x)≥0恒成立,∴函数h(x)在x∈[0,+∞)上单调递增,∴h(x)≥h(0)=0,∴a≥1时符合条件.②当a<1时,由h′(x)=0,及x≥0,解得.当x∈,时,h′(x)<0;当x∈,∞时,h′(x)>0.∴=< ,这与h(x)≥0相矛盾,应舍去.综上可知:a≥1.∴a的最小值为1.(III)p(x)=f(x-1)=alnx,k AB=.∵′,∴′.∵曲线y=f(x)在x3处的切线与直线AB平行,∴.由′,a>0,可知其在定义域内单调递减.要证:x3<.即证明′>′.即证明>.变形可得>,令,则t>1.要证明的不等式等价于>⇔(t+1)lnt>2(t-1).构造函数q(t)=(t+1)lnt-2(t-1),(t>1).′=(t>1).令u(t)lnt+-1,(t>1).则u′(t)=>0,∴q′(t)在t>1时单调递增.∴q′(t)>q′(1)=0,∴函数q(t)在区间(1,+∞)上单调递增,∴q(t)>q (1)=0,∴q(t)>0在(1,+∞)上恒成立.∴(t+1)lnt>2(t-1)在(1,+∞)上恒成立,即x3<成立.【解析】(I)当a=-1时,f(x)=-ln(x+1),得出切点(3,-ln4).利用导数的几何意义即可得出切线的斜率,进而得到切线方程;(II)对任意的x∈[0,+∞),都有f(x)≥g(x)恒成立⇔aln(x+1)-x+.令h(x)=aln(x+1)-x+(x≥0).利用导数的运算法则可得h′(x)=.分类讨论:当a≥1时,当a<1时,只要验证最小值是否大于0即可得出.(III)p(x)=f(x-1)=alnx,k AB=.利用导数的运算法则可得′.由于曲线y=f(x)在x3处的切线与直线AB平行,可得.利用p′(x)在定义域内单调性质要证:x3<.即证明′>′.即证明>.变形可得>,令,则t>1.要证明的不等式等价于>⇔(t+1)lnt>2(t-1).构造函数q(t)=(t+1)lnt-2(t-1),(t>1).利用导数研究其单调性即可证明.本题考查了利用导数研究函数的单调性极值与最值、构造函数法、换元法、恒成立问题的等价转化、分类讨论等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.。

四川省成都市2014届高三数学第一次诊断性考试试题 文

四川省成都市2014届高三数学第一次诊断性考试试题 文

四川省成都市2014届高三数学第一次诊断性考试试题 文本试卷分选择题和非选择题两部分。

第I 卷(选择题)1至2页,第Ⅱ卷(非选择题)2至4页,共4页,满分150分,考试时间120分钟。

注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,只将答题卡交回。

第I 卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.已知集合{}{}2,3,|0A B x x =-=≥,则A ∩B =(A){一2) (B){3) (C)(-2,3} (D)∅2.若复数z 满足(12)5z i -=(i 为虚数单位),则复数z 为(A) 12i + (B)2-i (C)12i - (D)2+i3.在等比数列{}n a 中,若181564a a a =,则8a =(A)16 (B)8 (C)4.计算125log 4-所得的结果为(A) 524.在等差数列{口。

)中.a8 =15,则al+a7+a9+a15一(A)15 (B)30 (C)45 (D) 605.已知m ,n 是两条不同的直线,α为平面,则下列命题正确的是(A) //,////m n m n αα若则(B),,m n m n αα⊥⊥⊥若则(C),//,m n m n αα⊥⊥若则(D)若m 与α相交,n 与α相交,则m,n 一定不相交6.如图,在平面直角坐标系xOy 中,角,αβ的顶点与坐标原点重合,始边与x 轴的非负半轴重合,它们的终边分别与单位圆相交于A ,B两点.若点A,B 的坐标分别为34,55⎛⎫ ⎪⎝⎭和43,55⎛⎫- ⎪⎝⎭,则cos()αβ+的值为 (A) 2425- (B)725- (C)0 (D)24257.已知,22a ππ⎡⎤∈-⎢⎥⎣⎦,则的概率为 (A)13 (B)12(C)23 (D)348.一个长方体被一个平面截去一部分后所剩几何体的三视图如图所示(单位:cm),则该几何体的体积为(A)1202cm (B) 1002cm(C) 802cm (D)602cm9.某种特色水果每年的上市时间从4月1号开始仅能持续5个月的时间.上市初期价格呈现上涨态势,中期价格开始下跌,后期价格在原有价格基础之上继续下跌.若用函数[]2()47(0,5,)f x x x x x N =-++∈∈进行价格模拟.(注:x=0表示4月1号,x=1表示5月1号,…,以此类推.)过多年的统计发现:当函数()213()1f x xg x x --=+取得最大值时,拓展外销市场的效果最为明显,请你预测明年拓展外销市场的时间为(A)5月1日 (B) 6月1日(C)7月1日 (D) 8月1日 10.已知函数ln , 14()12ln , 14x x f x x x ≤≤⎧⎪⎨-≤<⎪⎩,若函数()()F x f x kx =-在区间1,44⎡⎤⎢⎥⎣⎦上恰有一个零点,则k 的取值范围为 (A){}1,16ln 20e⎛⎤ ⎥⎝⎦ (B){}1,0e ⎡⎫+∞⎪⎢⎣⎭ (C){}ln 2,16ln 202⎡⎫⎪⎢⎣⎭ (D){}ln 2,16ln 202⎛⎤ ⎥⎝⎦第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.若2()(1)1f x x a x =+-+是定义在R 上的偶函数,则实数a=________.12.某公司生产A .B .C 三种型号的轿车,产量分别是600辆,1200辆和1800辆,为检验产品质量.现从这三种型号的轿车中,用分层抽样的方法抽取n 辆作为样本进行检验,若B 型号轿车抽取了2辆,,则样本容量n=_________.13.已知向量a,b 夹角为60,2,1a b ==,则b a -=_________.14.设12,x x 是函数322()2f x x ax a x =-+的两个极值点,若122x x <<,则实数a 的取值范围是________.15.已知()2|2||1|1f x x =--+和2()2()g x x x m m R =-+∈是定义在R 上的两个函数,则下列命题正确的是(A)函数()f x 的图象关于直线x=0对称;(B)关于x 的方程()0f x k -=恰有四个不相等实数根的充要条件是(1,1)k ∈-(C)当m=l 时,对[][]12121,0,1,0,()()x x f x g x ∀∈-∃∈-<成立(D)若[][]12121,1,1,1,()()x x f x g x ∃∈-∃∈-<成立,则(1,)m ∈-+∞其中正确的例题有______________(写出所有正确例题的序号)。

成都市2014届高中毕业班摸底考试数学试题(理科)参考答案及评分意见 word版

成都市2014届高中毕业班摸底考试数学试题(理科)参考答案及评分意见 word版

成都市2011级高中毕业班摸底测试数学(理工类)参考答案及评分意见第Ⅰ卷(选择题,共50分)一、选择题(每小题5分,共50分)1.D ; 2.C ; 3.B ;4.A ;5.D ;6.B ;7.C ;8.A ;9.D ;10.C .第Ⅱ卷(非选择题,共100分)二、填空题(本大题共5个小题,每小题5分,共25分) 11.1; 1213.9; 14.2437; 15.①②④. 三、解答题(本大题共6个小题,共75分) 16.解:(Ⅰ)设数列{}n a 的公差为d .∵12a =,且2a 是1a 、4a 的等比中项,∴2(2)2(23)d d +=+. ……………………………………………………2分 解得2d =或0d =(不合题意,舍去).∴2d =. …………………………………………………………………4分 ∴1(1)2n a a n d n =+-=.即数列{}n a 的通项公式为.2n a n = ………………………………6分(Ⅱ)由题意,得2(22)2n n n S n n +==+. ……………………7分 ∴211111(1)1n S n n n n n n ===-+++. …………………………9分 ∴1231111+n nT S S S S =+++1111111(1)()()()223341n n =-+-+-++-+ 111n =-+. …………………………………………………11分∵*n ∈N ,∴1n T <. …………………………………………………………12分17.解:(Ⅰ)1cos sin 32cos 2)(2-+=x x x x f ………………………………………1分 x x 2sin 32cos += ……………………………………………………2分 )2sin 232cos 21(2x x +=2sin(2)6x π=+. ………………………………………………………4分由222()26236k x k k x k k ππππππ-≤+≤π+⇒π-≤≤π+∈Z .∴函数)(x f 的单调递增区间为,()36k k k ππ⎡⎤π-π+∈⎢⎥⎣⎦Z .……………………6分(Ⅱ)∵()2sin()226C f C π=+=,∴sin()16C π+=. ………………………7分又0C <<π, ∴7666C πππ<+<. ∴62C ππ+=. ∴3C π=. …………………………………………………9分又由cos cos a B b A =,即sin()0A B -=,又2233A B ππ-<-<∴A B =. …………………………… 11分 ∴ △ABC 为等边三角形. ………………………………………12分 (说明:本题也可由余弦定理得到a b =)18.解:(Ⅰ)由甲组技工在单位时间内加工的合格零件平均数=x 甲1(78101210)105m +++++=,解得3m =. ……………………2分由乙组技工在单位时间内加工的合格零件平均数=x 乙1(9101112)105n ++++=,解得8n =.……………………………4分 (Ⅱ)甲组的方差2222221=[(710)(810)(1010)(1210)(1310)] 5.25s -+-+-+-+-=甲.…5分乙组的方差2222221=[(810)(910)(1010)(1110)(1210)]25s -+-+-+-+-=乙.……6分∵=x x 甲乙,22ss >甲乙,…………………………………………………………7分∴两组技工水平基本相当,乙组更稳定些.……………………………………8分 (Ⅲ)从甲、乙两组中各随机抽取一名技工,加工的合格零件个数包含的基本事件为 (7,8),(7,9),(7,10),(7,11),(7,12), (8,8),(8,9),(8,10),(8,11),(8,12), (10,8),(10,9),(10,10),(10,11),(10,12), (12,8),(12,9),(12,10),(12,11),(12,12), (13,8),(13,9),(13,10),(13,11),(13,12).∴基本事件总数有25个. ………………………………………………………10分 若记车间“质量合格”为事件A ,则事件A 包含的基本事件为(7,8),(7,9),(7,10),(8,8),(8,9),共5个.……11分∴51()255P A ==. ∴14()155P A =-=.即该车间“质量合格”的概率为45.………………………………………………12分 19.解:(Ⅰ)连结AC ,设AC BD F = . ∵ABCD 为正方形,F 为AC 中点,E 为PC∴在CPA ∆中,EF //PA .……………………2分而PA ⊂平面PAD ,EF ⊄平面PAD , ∴//EF 平面PAD . ……………………………4 19.解:(Ⅰ)连结AC ,设AC BD F = . ∵ABCD 为正方形,F 为AC 中点,E 为PC ∴在CPA ∆中,EF //PA .……………………2分而PA ⊂平面PAD ,EF ⊄平面PAD ,∴//EF 平面PAD . ……………………………4分 (Ⅱ)如图,取AD 的中点O , 连结OP ,OF . ∵PA PD =, ∴PO AD ⊥.∵侧面PAD ⊥底面ABCD ,面PAD 面ABCD AD =,∴PO ⊥平面ABCD .易知,,OA OF OP 三线两两垂直.分别以,,OA OF OP 所在直线为,,x y z 轴建立空间直角坐标系O xyz -如图所示…6分 则有(1,0,0)A ,(1,0,0)D -,(0,0,1)P ,(1,1,0)G∵平面PAD ⊥平面ABCD ,且CD AD ⊥,则CD ⊥平面PAD . ∴CD PA ⊥在PAD ∆中,∵PA PD ==2AD =,∴222PA PD AD +=,∴PA PD ⊥.且PD CD D = ,∴PA ⊥面PDC .∴平面PDC 的一个法向量为(1,0,1)PA =-.……………………………………8分 设平面PGD 的一个法向量为(,,)x y z =n .且(1,0,1),(2,1,0)DP GD ==--.由0DP DG ⎧⋅=⎪⇒⎨⋅=⎪⎩ n n 020x z x y +=⎧⎨--=⎩.令2y =-,则1,1x z ==-.∴(1,2,1)=--n . ………………………………………………10分∵cos ,PA PA PA⋅<>===n n n ∴二面角C PD G --……………………………………………12分C20.解:(Ⅰ)设动点B (,)x y .当2x ≠±时,由条件可得12222222BA BA y y y k k m x x x ⋅=⋅==+--. 即224(2)mx y m x -=≠±. ……………………………………………3分又1(2,0)A -、2(2,0)A 的坐标满足224mx y m -=.∴曲线C 的方程为224mx y m -=.当1m <-时,曲线C 的方程为22144x y m+=-,曲线C 是焦点在y 轴上的椭圆;…4分当1m =-时,曲线C 的方程为224x y +=,曲线C 是圆心在原点的圆; ………5分 当10m -<<时,曲线C 的方程为22144x y m+=-,曲线C 是焦点在x 轴上的椭圆.……6分(Ⅱ)由(Ⅰ),知曲线C 的方程为22143x y +=. ………………………7分 依题意,直线1l 的方程为(1)y k x =-.由22(1)143y k x x y =-⎧⎪⇒⎨+=⎪⎩2222(34)84120k x k x k +-+-=.设11(,)M x y ,22(,)N x y .则2122834k x x k +=+,212241234k x x k -=+.∴ 弦MN 的中点为22243(,)3434k kP k k-++. ∴MN === 2212(1)43k k +=+. …………………………………………………………9分直线2l 的方程为222314()4343k k y x k k k +=--++. 由0y =,得2243k x k =+.则22(,0)43k D k +.∴PQ =. …………………………………………………10分∴224312(1)43PQ k k MN k +==++=. ………………………11分 又∵211k +>,∴21011k <<+.∴104<.∴PQ MN的取值范围是1(0,)4. …………………………13分21.解:(Ⅰ)当1a =时,2()(21)e x f x x x =-+.……………………………………1分 ∴22()(22)e (21)e (1)e x x x f x x x x x '=-+-+=-. ………………………2分 令()0f x '=,得1x =±. ………………………………………………3分 当x 变化时,()f x '、()f x 的变化情况如下表:∴()=f x 极大值(1)ef -=;()=f x 极小值(1)0f =. ………………………5分 (Ⅱ)2()[2(1)]e [(1)1]e x x f x ax a ax a x '=-++-++2[(1)]e x ax a x a =+--. ………………………………6分 由函数()f x 在区间[]0,1上单调递减,则()0f x '≤对[0,1]x ∈恒成立.即2(1)0ax a x a +--≤对[0,1]x ∈恒成立. …………………………………………7分 令2()(1)g x ax a x a =+--,[0,1]x ∈ ①当0a =时,()0g x x =-≤对一切[0,1]x ∈恒成立.∴0a =,符合题意. ………………………………………………8分②当0a >时,∵函数2()(1)g x ax a x a =+--过点(0,)a -,∴要使()0g x ≤对一切[0,1]x ∈恒成立,则(1)0g ≤,即1a ≤.此时,01a <≤. ……………………………………………9分 ③当0a <时,∵函数2()(1)g x ax a x a =+--过点(0,)a -,且函数()y g x =开口向下.∴此时()0g x ≤在[]0,1上不可能恒成立.∴0a <不符合题意,舍去. ……………………………………………10分 综上,若函数()f x 在区间[]0,1上单调递减,则a 的取值范围[0,1].……………11分(Ⅲ)由(Ⅰ),知当1a =时,2()(1)e x f x x =-,2()(1)e x f x x '=-.假设当1x >时,存在[,]m n 使()f x 在[,]a b 上的值域也是[,]m n , 由1x >时,()0f x '>,∴()f x 单调递增.故有()()f m m f n n =⎧⎨=⎩,即22(1)(1)mnm e mn e n⎧-=⎪⎨-=⎪⎩. 也就是说,方程2(1)e x x x -=有两个大于1的不等实根. …………………………12分 设2()(1)e x x x x ϕ=-- (1)x >,则2()(1)e 1x x x ϕ'=--. 再设2()(1)e 1x k x x =--(1)x >,则2()e (21)x k x x x '=+-. 当1x >时,()0k x '>,即()k x 在(1,)+∞单调递增. 又(1)10k =-<,2(2)3e 10k =->.因此在(1,2)上存在唯一0x ,使得0()0k x =,即存在唯一0x ,使得0()0x ϕ'=.(),()x x ϕϕ'随x 的变化如下表由上表可知,0()(1)10x ϕϕ<=-<又2(2)e 20ϕ=->,故()y x ϕ=因此()x ϕ在(1,)+∞只能有一个零点. 这与()0x ϕ=有两个大于1的不等实根相矛盾.∴不存在区间[,]m n 满足题意. ……………………………………14分 (说明:第(Ⅲ)问也可转化为求()y f x =与y x =的图象的交点个数,但需验证存在01x >,满足00()f x x >)。

成都市 届高中毕业班第一次诊断性检测数学 理科 试卷和参考答案

成都市 届高中毕业班第一次诊断性检测数学 理科 试卷和参考答案
������ ������ ������ ������4 分
(II)由f(x)<0,得 (x +1)a >xln(x +1)+ 1 2x +2.
当x
≥ 0 时 ,上 式 等 价 于a

xln(x
+1)+
1 2x
x +1
+2

������ ������ ������ ������5 分
xln(x 令h(x)=
∴g′(x)=ln(x +1)+2-a .
������ ������ ������ ������1 分
∴ 当2-a ≥0,即a ≤2时,g′(x)>0对x ∈ (0,+ ∞)恒成立.
此时,g(x)的单调递增区间为 (0,+ ∞),无单调递减区间.
������ ������ ������ ������2 分
������ ������ ������ ������1 分
∴PD ⊥ 平面 PEF .
������ ������ ������ ������3 分
在图1中,∵E,F 分别是AB,BC 的中点,∴EF ∥ AC .∴GB =2GH .
又 ∵G 为BD 的中点,∴DG =2GH .
在图

中 ,∵
PR RH
∴ 甲、乙两校的合格率均为96%.
������ ������ ������ ������5 分
(II)样本中甲校 C 等级的学生人数为0.012×10×50=6.
而乙校 C 等级的学生人数为4.
∴ 随机抽取3人中,甲校学生人数 X 的可能取值为0,1,2,3.
∴P(X
=0)=CC31340
1 =30

x1
+x2
10k2 =4+5k2
,x1x2

2014届四川省成都外国语学校高三开学检测理科数学试卷(带解析)

2014届四川省成都外国语学校高三开学检测理科数学试卷(带解析)

……○…………学校:__________……○…………绝密★启用前2014届四川省成都外国语学校高三开学检测理科数学试卷(带解析)试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.下列函数中,既是奇函数又是增函数的为( ) A 、1y x =+ B 、||y x x = C 、1y x= D 、2y x =-2.设,则( )A .B .C .D .3.设 是定义在 上的周期为 的周期函数,如图表示该函数在区间 上的图像,则 + =( )A .3B .2C .1D .0 4.设全集U R =,,则()R C A B =( ) A 、 B 、 C 、 D 、5.定义两种运算:22b a b a -=⊕,2)(b a b a -=⊗,则函数2)2(2)(-⊗⊕=x xx f {,A x y =={}2,x B y y x R ==∈{}0x x <{}01x x <≤{}12x x ≤<{}2x x >○………○…………装……………订………○…………线……※※请※※不※※要※※订※※线※※内※※题※※○………○…………装……………订………○…………线……为( )A 、奇函数B 、偶函数C 、既奇且偶函数D 、非奇非偶函数6.下列4个命题: (1)若[1,1]-,则;(2) “”是“对任意的实数,成立”的充要条件; (3)命题“,”的否定是:“,”;(4)函数的值域为.其中正确的命题个数是( ) A .1B .2C .3D .07.已知函数是R 上的增函数,则的取值范围是( )A .≤<0B .≤≤C .≤D .<08.方程083492sin sin =-+⋅+⋅a a a x x 有解,则a 的取值范围( ) A 、0>a 或8-≤a B 、0>a C 、3180≤<a D 、2372318≤≤a 9.已知函数()23420131 (2342013)x x x x f x x =+-+-++,()23420131 (2342013)x x x x g x x =-+-+--,设函数,且函数的零点均在区间内,则的最小值为( )A .11B .10C .9D .8第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题10.函数的定义域为____.…外…内11.已知2)(x x f y +=是奇函数,且1)1(=f .若2)()(+=x f x g ,则=-)1(g _______ .12.若不等式2|1|-≥-kx x 对一切实数恒成立,则实数k 的取值范围是 .13.设实数满足约束条件,若目标函数的最大值为9,则d =的最小值为__ ___.三、解答题14.已知向量m =(sin()A B -,sin()2A π-),n =(1,2sin B ),且m ⋅n =sin 2C -,其中A 、B 、C 分别为ABC ∆的三边a 、b 、c 所对的角. (Ⅰ)求角C 的大小; (Ⅱ)若3s i n s i n2A B C +=,且()()()222214422222121x ax a x a a f x x x a ax ax ⎡⎤+--+⎣⎦'=+--=++,求边2x =的长.15.甲,乙,丙三位学生独立地解同一道题,甲做对的概率为,乙,丙做对的概率分别为 ,且三位学生是否做对相对独立.记 为这三位学生中做对该题的人数,其分布列为:(Ⅰ)求至少有一位学生做对该题的概率; (Ⅱ)求 的值; (Ⅲ)求 的数学期望。

7 四川省成都市2014届高中毕业班第一次诊断性检测数学(理)试题

7 四川省成都市2014届高中毕业班第一次诊断性检测数学(理)试题

成都市2014届高中毕业班第一次诊断性检测数学(理工类)本试卷分选择题和非选择题两部分。

满分150分,考试时间120分钟。

注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用 橡皮擦擦干净后,再选涂其它答案标号。

礼答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,只将答题卡交回。

第工卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.已知集合}3,2{-=A ,}1ln |{>=x x B ,则AB=( )(A ){-2} (B){3} (C){-2,3} (D )∅ 答案 B解析 由 1ln >x ,e x >∴,∴}3{=B A .2.若复数z 满足5)21(=-i z (i 为虚数单位),则复数z 为( )(A)1255i + (B)i 21+ (C) i 21- (D)1255i- 答案 B解析 )R ,(∈+=b a bi a z ,5)21)((=-+∴i bi a ,⎩⎨⎧=-=+∴0252a b b a ,解得⎩⎨⎧==21b a ,i z 21+=∴.3.计算21545log -+所得的结果为( )(A)1 (B) 52 (C) 72 (D) 4答案 A解析 原式12121=+=.4. 在等差数列}{n a 中,158=a ,则=+++15971a a a a ( )(A) 15 (B)30 (C) 45 (D)60答案 D 解析 数列}{n a 是等差数列,158=a ,601544815971=⨯==+++a a a a a .5.已知m ,n 是两条不同的直线,α为平面,则下列命题正确的是: (A)若m ∥α,n ∥α,则m ∥n (B)若m ⊥α,n ⊥α.则m ⊥n (C)若m ⊥α,n ∥α,则m ⊥n(D)若m 与α相交,n 与α相交,则m ,n 一定不相交( ) 答案 C解析 对(A)直线m 、n 还可能相交或异面;故 (A)是假命题; 对 (B)垂直于同一个平面的两条直线平行,故 (B)时假命题; 对 (C)真命题;对 (D)直线m 、n 可能相交、平行或异面. 故真命题是(C).6.如图,在平面直角坐标系xoy 中,角βα,的顶点与坐标原点重合,始边与x 轴的非负半轴重合,它们的终边分别与单位圆相交于A ,B 两点,若点A ,B 的坐标为)54,53(和)53,54(-,则)cos(βα+的值为( )(A) 2524-(B)257-(C)0 (D)2524答案 A解析 依题意,53cos =α,54sin =α,54cos -=β,53sin =β, 25245354)54(53sin sin cos cos )cos(-=⨯--⨯=-=+∴βαβαβα.7、世界华商大会的某分会场有A ,B ,C ,将甲,乙,丙,丁共4名“双语”志愿者分配到这三个展台,每个展台至少1人,其中甲,乙两人被分配到同一展台的不同分法的种数( )(A )12种 (B )10种 (C )8种 (D ) 6种 答案 D解析 把甲乙看作一人再与丙丁分到三个展台有633=A 种方法. 8一个长方体被一个平面截去一部分后所剩几何体的三视图如下图所示(单位:cm),则该几何体的体积为( )(A) 120 3cm (B)80 3cm (C)1003cm (D)60 3cm答案 C解析 意图以,原几何体的体积1006542131654-=⨯⨯⨯⨯-⨯⨯==三棱锥长方体V V V 3cm . 9.如图①,利用斜二侧画法得到水平放置的ABC ∆的直观图C B A '''∆,其中y B A '''//轴,x C B '''//轴.若3=''=''C B B A ,设ABC ∆的面积为S ,C B A '''∆的面积为S ',记S k S '=,执行如图②的框图,则输出T 的值( )(A) 12 (B) 10 (C) 9 (D) 6答案 A解析 在直观图C B A '''∆中,3=''=''C B B A ,42945sin 21=⋅''⋅''⋅='∴ C B B A S , 由斜二侧画法的画图法则,可得在ABC ∆中,6=AB ,3=BC ,且BC AB ⊥,9362121=⨯⨯=⋅⋅=∴BC AB S ,由S k S '=得22=k ,则)1(2)1(22-=-=m m k T ,故执行循环前,9=S ,22=k ,0=T ,1=m ,满足循环的条件,执行循环体后0=T ,2=m ,当0=T ,2=m ,满足循环条件,执行循环体后2=T ,3=m ; 当2=T ,3=m ,满足循环条件,执行循环体后6=T ,4=m ; 当6=T ,4=m ,满足循环条件,执行循环体后12=T ,5=m ; 当12=T ,5=m ,不满足循环条件,退出循环体后12=T . 故输出的结果为12.10.已知1|1||2|2)(+--=x x f 和)R (||2)(2∈+-=x m x x x g 是定义在R 上的两个函数,则下列命题正确的的是( )(A )关于x 的方程0)(=-k x f 恰有四个不相等的实数根的充要条件是)0,1(-∈k (B )关于x 的方程)()(x g x f =恰有四个不相等的实数根的充要条件是]1,0[∈k (C )当1=m 时,对]0,1[1-∈∀x ,]0,1[2-∈∃x ,)()(21x g x f <成立 (D )若]1,1[1-∈∃x ,]1,1[2-∈x ,)()(21x g x f <成立,则),1(+∞-∈m 答案 D解析 函数⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>+-≤<-≤≤----<+=+--=21,34210,14021,1421,341|1||2|2)(x x x x x x x x x x f 的图象如图所示,故函数)(x f 的图象关于直线0=x 对称,即①正确;由图象知,关于x 的方程)()(x g x f =恰有四个不相等的实数根的充要条件是]1,0[∈k ,故②正确;当1=m 时,1||2)(2+-=x x x g ,]0,1[-∈x 时,1)21()(=-=f x f Max ,]0,1[-∈x 时,]1,0[121||2)(22∈++=+-=x x x x x g , 故211-=x 时,不存在]0,1[2-∈x ,使得)()(21x g x f <成立,故③错误;]1,1[-∈x 时,],1[)1(12||2)(22m m m x x m x x x g -∈-+++=+-=,若]1,1[1-∈∃x ,]1,1[2-∈∃x ,)()(21x g x f <成立,则1->m ,故④正确. 故正确的命题是D.第II 卷(非选择题,共 100分)二、填空题:本大题共5小题,每小题5分,共25分.11. 若1)1()(2+-+=x a x x f 是R 上的偶函数,则实数=a . 答案 1解析 依题意,021=--a ,即1=a .12. 已知6622106)21(x a x a x a a x +⋅⋅⋅+++=+,则=+⋅⋅⋅+++6210a a a a . 答案 729(或63)解析 令1=x ,则729366210==+⋅⋅⋅+++a a a a . 13、设1x ,2x 是函数x a ax x x f 2232)(+-=的两个极值点,若212x x <<,则实数a 的 取值范围是 . 答案 )6,2(解析 ))(3(23)(22a x a x a ax x x f --=+-=' ,令0)(='x f ,即3ax =或a ,要函数)(x f 有两个极值点,212x x <<,则⎪⎩⎪⎨⎧<>232a a ,62<<∴a ,故实数a 的取值范围是)6,2(.14. 已知]2,2[ππα-∈,则212cos ≥α的概率为 .答案 31解析 由]2,2[ππα-∈,则212cos ≥α,∴66παπ≤≤-,由几何概型公式,所求的概率31)2(2)6(6=----=ππππP .15.设⊙O 为不等边ABC ∆的外接圆,ABC ∆内角A ,B ,C 所对边的长分别为a ,b ,c ,p是ABC ∆所在平面内的一点,且满足2b cb bc -+∙=∙(P 与A 不重合),Q 为ABC ∆所在平面外一点,QC QB QA ==.有下列命题:①若QP QA =,90=∠BAC ,则点Q 在平面ABC 上的射影恰在直线AP 上;②若QP QA =,则PC QP PB QP ∙=∙;③若QP QA >, 90=∠BAC ,则AC ABCP BP =;④若若QP QA >,则P 在ABC ∆内部的概率为OABCS S 圆∆(ABC S ∆、O S 圆分别表示ABC ∆与圆O 的面积).其中不正确的命题有 (写出所有不正确命题的序号). 答案 ①③④解析 2PA b c b PC PA b c PB PA -+∙=∙,∴)(22PA PC PA b cPA PB PA -∙=-∙,AC PA b c AB PA ∙=∙∴,PAC b PA b cPAB c PA ∠⋅⋅⋅=∠⋅⋅∴cos ||cos ||,PAC PAB ∠=∠∴,即AP 是BAC ∠的平分线,QC QB QA == ,Q ∴在平面ABC 上的射影是ABC ∆的外心O ,90=∠BAC ,ABC ∆是不等边三角形,∴点Q 在平面ABC 上的射影恰在直线AP 上不正确,故①错误;QP QA = ,P ∴为BC 弧的中点,BC OP ⊥∴, OP 是QP 在平面ABC 上的射影,BC QP ⊥∴,∙=∙∴,故②正确;由于QP QA >,则点P 在圆内, 60=∠BAC ,则BC 为直径,若AC ABCP BP =,则AP 为BPC ∠的角平分线,且AP 经过点O ,与ABC ∆是不等边三角形矛盾,故③不正确;若QP QA >,AP 是BAC ∠的平分线,P ∴在ABC ∆内部的概率应该为长度的测度,故④不正确.故不正确的为 ①③④.三、解答题:本大题6小题,共75分.16.(本题满分12分)已知向量)4cos ,4cos 3(2x x =,)2,4sin 2(x=,设函数x f ∙=)(.(Ⅰ)求函数)(x f 的最小正周期;(Ⅱ)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且13)32(+=-πB f ,3=a ,33=b ,求A 的大小.解析 (Ⅰ) b a x f ∙=)(,1)62sin(212cos 2sin 24cos 24cos 4sin 32)(2++=++=+=∴πx x x x x x x f ,又||2ωπ=T ,π4=∴T . (5分)(Ⅱ)131sin 2)32(+=+=-B B f π ,23sin =∴B , (8分)由正弦定理,可得B b A a sin sin =,即b Ba A sin sin =,又3=a ,33=b , 2133333sin =⨯=∴A ,由题意知A 识锐角,6π=∴A . (12分)17. (本题满分12分)已知数列}{n a 的前n 项和为n S ,且*+∈-=N ,221n S n n .(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{b b 满足n nn a S b =,求数列}{n b 的前n 项和n T .解析 (Ⅰ)当2≥x 时,1--=n n n S S a ,n n a 2=∴,*∈≥N ,2n n , 又当1=n 时,211==S a ,*∈=∴N ,2n a n n . (6分)(Ⅱ))211(22)12(2nn n n b -=-=,)211(2)211(2)211(2)211(232321n n n b b b b T -+⋅⋅⋅+-+-+-=+⋅⋅⋅+++=∴ 2212)]211([2)]21212121([2132-+=---=+⋅⋅⋅+++-=-n n n n n n . (12分)(本题满分12分)某种特色水果每年的上式时间从4月1号开始仅能持续5个月的时间.上式初期价格呈现上涨态势,中期价格开始下跌,后期价格在原价格基础上继续下跌.现有三种价格变化的模拟函数可选择:①x q p x f ⋅=)(;②7)(2++=qx px x f ;③)(log )(p x x f q +=,其中q p ,均为常数且1>q (注:x 表示上式时间,)(x f 表示价格,记0=x 表示4月1号,1=x 表示5月1号,⋅⋅⋅,依次类推,]5,0[∈x ).(Ⅰ)在上述三种价格模拟函数中,哪个更能体现该种水果的价格变动态势,请你选择,并简要说明理由;(Ⅱ)对(Ⅰ)所选的函数)(x f ,若11)2(=f ,10)3(=f ,记1132)()(+--=x x x f x g ,经过多年的统计发现,当函数)(x g 取得最大值时,拓展外销市场的效果最为明显,请预测明年拓展外销市场的时间是几月1号?解析 (Ⅰ)根据题意,该种水果的价格变化趋势是先单调递增后一直单调递减,基本符合开口向下的二次函数的变化趋势,故应选择②7)(2++=qx px x f , (4分)(Ⅱ)由11)2(=f ,10)3(=f ,代入7)(2++=qx px x f 得⎩⎨⎧=++=++1073911724q p q p ,解得⎩⎨⎧=-=41q p ,即74)(2++-=x x x f ,1621132)()(2++--=+--=∴x x x x x x f x g , (8分) 2]4)1(19[)(-≤-+++-=∴x x x g ,当且仅当31=+x 即2=x 时取等号.故明年拓展外销的事件应为6月1号. (12分) (本题满分12分)如图①,四边形ABCD 为等腰梯形,DC AE ⊥,DC AE AB 31==,F 为EC 的中点,先将DAE ∆沿AE 翻折到PAE ∆的位置,如图②,且平面⊥PAE 平面ABCD .(Ⅰ)求证:平面⊥PAF 平面PBE ; (Ⅱ)求直线PF 与平面PBC 所成角的正弦值.解析 (Ⅰ)AB EF // 且ABCD EF ==31,∴四边形AEFB 为平行四边形,又AB AE = 且EC AE ⊥,∴四边形AEFB 为正方形,BE AF ⊥∴. (3分)平面⊥PAE 平面ABCE ,又AE PE ⊥,平面 PAE 平面AE ABCE =,⊥∴PE 平面ABCE ,AE PE ⊥∴,又E PE BE = ,∴平面⊥PAF 平面PBE . (6分)(Ⅱ)以E 为坐标原点,EC 、EA 、EP 所在的直线分别为x 轴、y 轴、z 轴,建立如图的空间直角坐标系xyz E -,设4=AB ,易知)4,0,0(P ,)0,4,0(A ,)0,4,4(B ,)0,0,8(C ,)0,0,4(F ,)4,0,4(-=∴PF ,)0,4,4(-=BC ,)4,4,4(-=PB , (8分)设),,(z y x n =为平面PBC 的一个法向量,⎪⎩⎪⎨⎧=∙=∙∴00PB n ,∴⎩⎨⎧=-∙=-∙0)4,4,4(),,(0)0,4,4(),,(z y x z y x , 即⎩⎨⎧=-+=-0444044z y x y x ,令1=x ,∴)2,1,1(=, 63|211)4(4)2,1,1()4,0,4(|||||||sin 22222=++⋅-+∙-=⋅=n PF α ,∴直线PF 与平面PBC 所成角的正弦值为63. (12分)20.(本题满分13分)我国采用的5.2PM 的标准为:日均值在35微克/立方米以下的空气为一级;在35微克/立方米-75微克/立方米之间的空气质量为二级;75微克/立方米以上的空气质量为超标.某城市环保部门随即抽取该市m 天的5.2PM 日均值,发现其茎叶图和频率分布直方图都受到不同程度的破坏,可见部分如下图所示:请据此解答如下问题:(Ⅰ)求m 的值,并分别计算:频率分布直直方图中的)95,75[和)115,95[这两个矩形的高;(Ⅱ)通过频率分布直方图估计这m 天的5.2PM 日均值的中位数(结果保留分数形(Ⅲ)从这m 天的5.2PM 日均值中随机抽取2天,记X 表示抽到的5.2PM 超标天数,求X 的分布列和数学期望.解析 (Ⅰ)200025.01⨯=m,20=∴m ,易知矩形)95,75[的高为0225.04009=,矩形]115,95[的高为01.0. (5分)(Ⅱ)其中位数为328132075=+. (8分)(Ⅲ)10021)0(22023===C C X P ,10091)1(22011313===C C C X P ,10039)2(220213===C C X P ,X ∴的分布列为:1013100393100912100211)(=⨯+⨯+⨯=∴X E . (13分)21.(本题满分14分)已知函数)1ln()(+=x a x f ,R ,21)(2∈-=a x x x g . (Ⅰ)若1-=a ,求曲线)(x f y =在3=x 出的切线方程;(Ⅱ)若对任意的),0[+∞∈x 都有)()(x g x f ≥恒成立,求a 的最小值;(Ⅲ)设)1()(-=x f x P ,0>a ,若),(11y x A ,),(22y x B 为曲线)(x P y =上的两个不同点满足210x x <<,且),(213x x x ∈,使得曲线)(x f y =在0x 处的切线与直线AB 平行,求证2213x x x +<.解析 (Ⅰ)41)3(-='=f k ,)3(212ln 2--=+∴x y ,2ln 24341-+-=∴x y .(Ⅱ)由221)1ln(x x x a -≥+恒成立等价于021)1ln(2≥+-+x x x a 恒成立, 令221)1ln()(x x x a x h +-+=,0≥x ,)0(1111)(2≥+-+=+-+='∴x x a x x x a x h ,①若1≥a ,则0)(≥'x h 恒成立.∴函数)(x h 在),0[+∞上是增函数,)0()(h x h ≥∴恒成立,又0)0(=h ,1≥∴a 符合条件.②若1<a ,由0)(='x h 可得a x -=12,解得a x -=1或a x --=1(舍去), 当)1,0(a x -∈时,0)(<'x h ;当),1(+∞-∈a x 时,0)(>'x h ,)1()(a h x h -=∴最小值,0)1()1(=<-∴h a h ,这与0)(≥x h 恒成立矛盾. 综上所述,1≥a ,a 的最小值为1. (9分)(Ⅲ)x a a f x P ln )()(=-=,1212ln ln x x x a x a k AB --=, 又x a x P =')( ,33)(x a x P ='∴,∴31212ln ln x ax x x a x a =--, 由x ax P =')( ,易知其定义域内为单调减函数, 欲证2213x x x +<,即证明)2()(213x x P x P +'>',即证明2112122ln ln x x a x x x a x a +=--,变形可得12122112121)1(2)(2x x xx x x x x x x +-=+->,令tx x =12,1>t , 则1)1(2ln +->t t t 等价于)1(2ln )1(->+t t t ,构造函数)1(2ln )1()(--+=t t t x q ,1>t , 则1,11ln )(>-+='t t t x q ,令1,11ln )(>-+=t t t t r ,当1>t 时,0111)(22>-=-='t t t t t r ,)(t q '∴在),1(+∞上为单调增函数,0)1()(='>'q t q ,0)1()(=>∴q t q ,0)(>∴t q 在),1(+∞上恒成立, )1(2ln )1(->+∴t t t 成立,∴2213x x x +<. (14分)。

2014年高考理科数学四川卷答案及解析(word版)

2014年高考理科数学四川卷答案及解析(word版)

2014四川理科卷一、选择题1. 答案:A解析:{|12},{1,0,1,2}A x x AB =-≤≤∴=-,选A.【考点定位】集合的基本运算.2. 答案:C 解析:623456(1)(161520156)x x x x x x x x x +=++++++,所以含3x 项的系数为15.选C【考点定位】二项式定理.3. 答案:A 解析:1sin(21)sin 2()2y x x =+=+,所以只需把sin 2y x =的图象上所有的点向左平移12个单位.选A. 【考点定位】三角函数图象的变换.4. 答案:D 解析:110,0,0c d c d d c <<∴->->->->,又0,0,a b a b a b d c d c>>∴->->∴<.选D 【考点定位】不等式的基本性质.5. 答案:C解析:该程序执行以下运算:已知001x y x y ≥⎧⎪≥⎨⎪+≤⎩,求2S x y =+的最大值.作出001x y x y ≥⎧⎪≥⎨⎪+≤⎩表示的区域如图所示,由图可知,当10x y =⎧⎨=⎩时,2S x y =+最大,最大值为202S =+=.选C.【考点定位】线性规划6. 答案:B解析:最左端排甲,有5!120=种排法;最左端排乙,有44!96⨯=种排法,共有12096216+=种排法.选B.【考点定位】排列组合.7. 答案: D.解析:由题意得:25c ac bc ac bm c a c b a b ⋅⋅⋅⋅=⇒=⇒=⇒=⋅⋅,选D.【考点定位】向量的夹角及向量的坐标运算.8. 答案:B解析:设正方体的棱长为1,则11111,,A C A C A O OC ==,所以1111332122cos ,sin 3322AOC AOC +-∠==∠=⨯,11313cos AOC AOC +-∠==∠=.所以sin α的范围为3,选B. 【考点定位】空间直线与平面所成的角.9. 答案:C解析:对①,()ln(1)ln(1)()f x x x f x -=--+=-,成立;对②,左边的x 可以取任意值,而右边的(1,1)x ∈-,故不成立;对③,作出图易知③成立【考点定位】1、函数的奇偶性;2、对数运算;3、函数与不等式.10. 答案:B 解析:据题意得1(,0)4F ,设1122(,),(,)A x y B x y ,则221122,x y x y ==,221212122,2y y y y y y +==-或121y y =,因为,A B 位于x 轴两侧所以.所以122y y =-两面积之和为12211111224S x y x y y =-+⨯⨯111218y y y =++⨯112938y y =+≥. 【考点定位】1、抛物线;2、三角形的面积;3、重要不等式.二、填空题11. 答案:2i -. 解析:2222(1)21(1)(1)i i i i i i --==-++-. 【考点定位】复数的基本运算.12. 答案:1 解析:311()()421224f f =-=-⨯+=. 【考点定位】周期函数及分段函数.13. 答案:60解析:92AC =,46cos 67AB =,sin 37,60sin 30sin 37sin 30AB BC AB BC =∴=≈. 【考点定位】解三角形.14. 答案:解析:易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以2||||||52AB PA PB ⨯≤=. 法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.【考点定位】1、直线与圆;2、重要不等式.15. 答案:①③④解析:对①,若对任意的b R ∈,都a D ∃∈,使得()f a b =,则()f x 的值域必为R ;反之,()f x 的值域为R ,则对任意的b R ∈,都a D ∃∈,使得()f a b =.故正确.对②,比如函数()(11)f x x x =-<<属于B ,但是它既无最大值也无最小值.故错误. 对③正确,对④正确.【考点定位】命题判断。

四川省成都石室中学2014届高三数学上学期“一诊”模拟试题 理 新人教A版

四川省成都石室中学2014届高三数学上学期“一诊”模拟试题 理 新人教A版

石室中学高2014届2013~2014学年度上期“一诊”模拟考试(一)数学(理科)试题一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.设集合}1,0,1{-=M ,},{2a a N =则使M ∩N =N 成立的a 的值是( ) A .1B .0C .-1D .1或-12.复数i i (113-为虚数单位)的共轭复数在复平面上对应的点的坐标是 ( ) A .(1,1) B .(1,1)- C .(1,1)- D .(1,1)--3.已知函数,0,)21(0,)(21⎪⎩⎪⎨⎧≤>=x x x x f x则=-)]4([f f ( ) A .4- B . 41- C . 4 D . 6 4.函数ln ||||x x y x =的图像可能是( )5.实数y x ,满足条件⎪⎩⎪⎨⎧≥≥≥+-≤-+0,002204y x y x y x ,则yx -2的最小值为( )A .16B .4C .1D .126.下列说法中正确的是( ) A .“5x >”是“3x >”必要条件B .命题“x R ∀∈,210x +>”的否定是“x R ∃∈,210x +≤”C .R m ∈∃,使函数)()(2R x mx x x f ∈+=是奇函数D .设p ,q 是简单命题,若p q ∨是真命题,则p q ∧也是真命题 7.阅读程序框图,若输入4m =,6n =,则输出i a ,分别是( ) A .12,3a i == B .12,4a i == C .8,3a i == D . 8,4a i ==8.设函数)22,0)(sin(3)(πφπωφω<<->+=x x f 的图像关于直线32π=x 对称,它的周期是π,则( )A .)(x f 的图象过点)21,0( B .)(x f 的一个对称中心是)0,125(πC .)(x f 在]32,12[ππ上是减函数 D .将)(x f 的图象向右平移||φ个单位得到函数x y ωsin 3=的图象9. 设三位数10010n a b c =++,若以,,{1,2,3,4}a b c ∈为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n 有( )A .12种B .24种C .28种D .36种10. 定义在R 上的函数1ln )(2++=x ex f x,且)()(x f t x f >+在()∞+-∈,1x 上恒成立,则关于x 的方程(21)()f x f t e -=-的根的个数叙述正确的是( ).A .有两个B .有一个C .没有D .上述情况都有可能二、填空题:本大题共5小题,每小题5分,共25分.11.已知向量a 、b满足(1,0),(2,4)a b ==,则=+→→||b a .12.45)1)(1(x x x 展开式中-+的系数是 (用数字作答).13. 在数列}a {n 中,)N n (a a a ,a ,a n n n *∈-===++122151,则2014a = .14.已知二次函数)R (4)(2∈+-=x c x ax x f 的值域为)0[∞+,,则ac 91+的最小值为 . 15. 已知D 是函数],[),(b a x x f y ∈=图象上的任意一点,B A ,该图象的两个端点, 点C 满足0=⋅=→→→→i DC AB AC ,λ,(其中→<<i ,10λ是x 轴上的单位向量),若T DC ≤→||(T 为常数)在区间],[b a 上恒成立,则称)(x f y =在区间],[b a 上具有 “T 性质”.现有函数: ①12+=x y ; ②12+=xy ; ③2x y =; ④x x y 1-=.则在区间]2,1[上具有“41性质”的函数为 .三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤16. (本小题满分12分)设{}n a 是公差大于零的等差数列,已知12a =,23210a a =-.(Ⅰ)求{}n a 的通项公式;(Ⅱ)设{}n b 是以函数24sin y x π=的最小正周期为首项,以3为公比的等比数列,求数列{}n n a b -的前n 项和n S .17. (本小题满分12分) 已知ABC ∆ 的内角A 、B 、C 所对的边为,,a b c , (sin ,cos )m b A a a B =-,(2,0)n =,且m 与n 所成角为3π. (Ⅰ)求角B 的大小;(Ⅱ)求C A sin sin +的取值范围.18. (本小题满分12分)某高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座。

成都高2014届高三数学10月阶段性考试(理科) Word版含答案

成都高2014届高三数学10月阶段性考试(理科) Word版含答案

成都高2014届高三数学10月阶段性考试(理科)考试时间:2013年10月4日15:00—17:00第Ⅰ卷 (选择题 共50分)一、选择题: (本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知集合{}12<<-=x x M ,{}2,1,0,1,2,3---=N ,则=N M ( ▲ )A .{}1,0,1,2--B .{}0,1-C .{}1,0,1-D .{}1,0 2、若命题“p 或q ”是真命题,“p 且q ”是假命题,则( ▲ ) A.命题p 和命题q 都是假命题 B.命题p 和命题q 都是真命题 C.命题p 和命题“q ⌝”的真值不同 D.命题p 和命题q 的真值不同 3、设函数f (x )是连续可导函数,并且='=∆-∆+→∆)(,22)()(lim 0000x f xx f x x f x 则( ▲ )A .21 B .2-C .4D .24、对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的( ▲ )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要5、命题“若0>m ,则02=-+m x x 有实数根”与其逆命题、否命题、逆否命题这四个命题中,假命题的个数是( ▲ )A .0B .1C .2D .36、定义在实数集R 上的函数()f x ,对一切实数x 都有)()(x f x f -=+21成立,若()f x =0仅有101个不同的实数根,那么所有实数根的和为( ▲ ) A .101B .151C .303D .23037、已知函数⎩⎨⎧≥+-<=)0(4)3(),0()(x a x a x a x f x 满足对任意0)()(,212121<--≠x x x f x f x x 都有成立,则a 的取值范围是( ▲ ) A .]41,0( B .)1,0( C .)1,41[D .)3,0(8、方程1log )11(2+=+-x xx的实根0x 在以下那个选项所在的区间范围内( ▲)A.)21,85(--B.)83,21(--C.)41,83(--D.)81,41(--9、设1>a ,若仅有一个常数c 使得对于任意的]2,[a a y ∈,都有],[2a a x ∈满足方程c y x a a =+log log ,这时c a +的取值为( ▲ )A .3B .4C .5D .610、定义][x 表示不超过x 的最大整数,记{}][x x x -=,其中对于3160≤≤x 时,函数1}{sin ][sin )(22-+=x x x f 和函数{}13][)(--⋅=xx x x g 的零点个数分别为.,n m 则(▲) A .313,101==n m B .314,101==n m C .313,100==n m D .314,100==n m第Ⅱ卷 ( 非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在后面的答题卷的相应地方. 11、设集合102M x x ⎧⎫=-<⎨⎬⎩⎭,{}210N x x =+>,则M N =I▲ (用集合表示)12、命题“012,2≥+-∈∀x x R x ”的否定为▲ 13、函数)12(log )(221--=x x x f 单调递减区间为▲14、已知函数0≤x 时,x x f 2)(=,0>x 时,13()log f x x =,则函数1)]([-=x f f y 的零点个数有▲ 个.15、下列命题是真命题的序号为:▲①定义域为R 的函数)(x f ,对x ∀都有)1()1(x f x f -=-,则)1(-x f 为偶函数 ②定义在R 上的函数)(x f y =,若对R x ∈∀,都有2)1()5(=-+-x f x f ,则函数)(x f y =的图像关于)2,4(-中心对称③函数)(x f 的定义域为R ,若)1(+x f 与)1(-x f 都是奇函数,则)1949(+x f 是奇函数 ④函数)0()(23≠+++=a d cx bx ax x f 的图形一定是对称中心在图像上的中心对称图形。

(优辅资源)四川省成都市高三一诊考试试卷 理科数学 Word版含答案

(优辅资源)四川省成都市高三一诊考试试卷 理科数学 Word版含答案

成都市2014级高中毕业班第一次诊断性检测数学(理科)本试卷分选择题和非选择题两部分。

第1卷(选择题)1至2页,第Ⅱ卷(非选择题)2至4页,共4页,满分150分,考试时间120分钟。

第I 卷(选择题,共60分)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合U=R ,A={x|x2-x-2>0).则(A)(-∞,-1) ⋃(2,+∞) (B)[-1,2] (C)(-∞,-1] ⋃[2,+∞) (D)(-1,2) (2)命题“若a>b ,则a+c>b+c"的否命题是 (A)若a ≤6,则a+c ≤b+c (B)若a+c ≤b+c ,则a ≤6 (C)若a+c>b+c ,则a>b (D)若a>b ,则a+c ≤b+c(3)执行如图所示的程序框图,如果输出的结果为0,那么输 入的x 为(B) -1或1 (C)l (D)一1(4)已知双曲线2222-1(0x y a b a b=>>)的左,右焦点分别为F 1,F 2,双曲线上一点P 满足PF 2⊥x 轴,若 |F 1F 2|=12,|PF 2|=5,则该双曲线的离心率为 (A)1312 (B) 125 (C)32 (D)3 (5)已知α为第二象限角,且sin2α=2425,则cos α -sin α的值为(A) 75 (B) 一75 (C) 15 (D) 一15(6)(x+1)5(x-2)的展开式中x 2的系数为 (A) 25 (B)5 (C) - 15 (D) - 20(7)如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三 视图,则该四棱锥的外接球的表面积为 (A) 136π (B) 34π (C) 25π (D) 18π(8)将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将图象上所有点向右平移6π个单位长度,得到函数g (x)的图象,则g(x)图象的一条对称轴方程是 (A)x=一6π (B)x=6π (C)x=2425π (D)x= 3π (9)在直三棱柱ABC-A1BlC1中,平面口与棱AB ,AC ,A 1C 1,A 1B 1分别交于点E ,F ,G , H ,且直线AA 1∥平面d .有下列三个命题:①四边形EFGH 是平行四边形;②平面α∥平面BCC 1B 1;③平面α上平面BCFE .其中正确的命题有 (A)①② (B)②③ (C)①③ (D)①②③ (10)已知A,B 是圆O:x 2+y 2=4上的两个动点,若M 是线段AB的中点,则的值为(A)3(D) -3(11)已知函数f(x)是定义在R 上的偶函数,且f (-x-1)=f (x-1),当x ∈[-1,0]时,f(x)= 一x 3.则关于x 的方程f(x ) =|cos πx|在[一52,12]上的所有实数解之和为 (A) -7 (B) -6 (C) -3 (D) -1 (12)已知曲线C 1:y 2 =tx (y>0,t>0)在点M(4t,2)处的切线与曲线C 2:y=e x+l —1也相切,则tln 24e t的值为(A) 4e 2 (B) 8e (C)2 (D)8第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分. (13)若复数z=1aii+(其中a ∈R ,i 为虚数单位)的虚部为-1,则a= .(14)我国南北朝时代的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容 异”.“势’’即是高,“幂”是面积.意思是:如果两等高的几何体在同高处截得两几何体的截面积恒等,那么这两个几何体的体积相等,类比祖暅原理,如图所示,在平面直角坐标系中,图1是一个形状不规则的封闭图形,图2是一个上底为l 的梯形,且当实数t 取[0,3]上的任意值时,直线y=t 被图l和图2所截得的两线段长始终相等,则图l 的面积为 .(15)若实数x ,y 满足约束条件,则的最小值为(16)已知△ABC 中,ABC BA 的延长线上存在点D ,使∠CD = .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)已知数列{a n }满足a l = -2,a n+1 =2a n +4. (I)证明数列{a n +4)是等比数列; (Ⅱ)求数列{|a n |}的前n 项和S n . (18)(本小题满分12分)某省2016年高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等级划分标准为:85 分及以上,记为A 等;分数在[70,85)内,记为B 等;分数 在[60,70)内,记为C 等;60分以下,记为D 等.同时认 定A ,B ,C 为合格,D 为不合格,已知甲,乙两所学校学生 的原始成绩均分布在[50,100]内,为了比较两校学生的 成绩,分别抽取50名学生的原始成绩作为样本进行统 计,按照[50,60), [60,70), [70,80), [80,90),[90 ,100] 的分组作出甲校的样本频率分布直方图如图1所示,乙 校的样本中等级为C ,D 的所有数据的茎叶图如图2所示. (I)求图中x 的值,并根据样本数据比较甲乙两校的合 格率;(II)在选取的样本中,从甲,乙两校C 等级的学生中随 机抽取3名学生进行调研,用X 表示所抽取的3名学生中 甲校的学生人数,求随机变量X 的分布列和数学期望.(19)(本小题满分12分)如图1,在正方形ABCD 中,点E ,F 分别是 AB ,BC 的中点,BD 与EF 交于点H ,G 为BD 中 点,点R 在线段BH 上,且BRRH=λ(λ>0).现将 △AED ,△CFD ,△DEF 分别沿DE ,DF ,EF 折起,使点A ,C 重合于点B (该点记为P ),如图2所示.(I)若λ=2,求证:GR ⊥平面PEF ;(Ⅱ)是否存在正实数λ,使得直线FR 与平面DEF 求出λ的值;若不存在,请说明理由. (20)(本小题满分12分)已知椭圆22:154x y E +=的右焦点为F ,设直线l :x=5与x 轴的交点为E ,过点F 且斜率为k 的直线l 1与椭圆交于A ,B 两点,M 为线段EF 的中点. (I)若直线l 1的倾斜角为4π,求△ABM 的面积S 的值; (Ⅱ)过点B 作直线BN ⊥l 于点N ,证明:A ,M ,N 三点共线 (21)(本小题满分12分) 已知函数f(x)=xln(x+1)+(12一a )x+2一a ,a ∈R . (I)当x>0时,求函数g(x)=f(x)+ln(x+1)+12x 的单调区间; (Ⅱ)当a ∈Z 时,若存在x ≥0,使不等式f(x)<0成立,求a 的最小值. 请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一题计分. (22)(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,倾斜角为α(α≠2π)的直线l 的参数方程为1cos ,sin ,x t y t αα=+⎧⎨=⎩(t 为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是ρcosx θ - 4sin θ=0.(I)写出直线l 的普通方程和曲线C 的直角坐标方程; (Ⅱ)已知点P(1,0).若点M 的极坐标为(1,2π),直线l 经过点M 且与曲线C 相交于A ,B 两点,设线段AB 的中点为Q ,求|PQ|的值. (23)(本小题满分10分)选修4-5:不等式选讲 已知函数f(x )=x +1+ |3 -x|,x ≥-1.(I)求不等式f(x)≤6的解集;(Ⅱ)若f(x)的最小值为n,正数a,b满足2nab =a+2b,求2a+b的最小值.。

2014年四川省成都市石室中学高三理科一模数学试卷

2014年四川省成都市石室中学高三理科一模数学试卷

2014年四川省成都市石室中学高三理科一模数学试卷一、选择题(共10小题;共50分)1. 已知全集,集合,,则集合A. B. C. D.2. 复数(为虚数单位)的模是A. B. C. D.3. 下列命题的否定为假命题的是A. ,B. ,C. 所有能被整除的整数都是奇数D. ,4. 已知的面积为,在所在的平面内有两点,,满足,,则的面积为A. B. C. D.5. 将名学生分配到甲、乙两个宿舍,每个宿舍至少安排名学生,那么互不相同的安排方法的种数为A. B. C. D.6. 如图是某几何体的三视图,则该几何体的体积为A. B. C. D.7. 执行如图所示的程序框图(其中表示不超过的最大整数),则输出的值为A. B. C. D.8. 将函数的图象向右平移个单位长度后得到函数的图象,若,的图象都经过点,则的值可以是A. B. C. D.9. 已知,若向量与向量共线,则的最大值为A. B. C. D.10. 定义域为的函数满足,当时,,若时,恒成立,则实数的取值范围是A. B.C. D.二、填空题(共5小题;共25分)11. 已知,且,则的值为.12. 在区间上随机取一个实数,则事件“”发生的概率为.13. 已知等比数列的第项是二项式展开式的常数项,则.14. 已知函数,则关于的不等式的解集是.15. 若直线与曲线恰有四个公共点,则的取值集合是.三、解答题(共6小题;共78分)16. 设函数.(1)求的最小正周期;(2)当时,求实数的值,使函数的值域恰为,并求此时在上的对称中心.17. 在三棱柱中,,侧棱面,,分别是棱,的中点,点在棱上,且.(1)求证: 平面;(2)求二面角的余弦值.18. 设等差数列的前项和为,且,.(1)求数列的通项公式;(2)设数列前项和为,且,令.求数列的前项和.19. 年“双节”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔辆就抽取一辆的抽样方法抽取名驾驶员进行询问调查,将他们在某段高速公路的车速分成六段:,得到如图的频率分布直方图.问:(1)某调查公司在采样中,用到的是什么抽样方法?(2)求这辆小型车辆车速的众数和中位数的估计值.(3)若从车速在的车辆中任抽取辆,求抽出的辆车中速车在的车辆数的分布列及其均值(即数学期望).20. 已知函数,.(1)当时,若函数存在零点,求实数的取值范围并讨论零点个数;(2)当时,若对任意的,总存在,使成立,求实数的取值范围.21. 已知函数.(1)当时,求函数在上的最大值;(2)令,若在区间上不单调,求的取值范围;(3)当时,函数的图象与轴交于两点,,且,又是的导函数.若正常数,满足条件,.证明.答案第一部分1. C 【解析】由,集合,所以,又,所以.2. A 【解析】因为,所以.3. D 【解析】要使命题的否定为假命题,则原命题为真命题即可.A.因为,所以A 为假命题.B.当时,,所以 B 为假命题.C.当数为时,满足能被整除,但不是奇数,所以C为假命题.D.根据同角的三角函数关系式可知,,,成立,所以D为真命题.4. B 【解析】由题意可知,为的中点,,可知为的一个三等分点,如图:因为.所以.5. B【解析】根据题意,将个人分到个宿舍,每个宿舍至少安排名学生,先将人分为组,一组人,另一组人,有种情况,再将组对应个宿舍,有种情况,则互不相同的安排方法的种数为.6. B 【解析】由三视图知几何体是一个四棱锥,四棱锥的底面是一个平行四边形,有两个等腰直角三角形,直角边长为组成的平行四边形,四棱锥的一条侧棱与底面垂直,且侧棱长为,所以四棱锥的体积是.7. A 【解析】由程序框图得:第一次运行,;第二次运行,;第三次运行,;第四次运行,;第五次运行,;第六次运行,;满足结束运行,输出.8. B 【解析】提示:,.代入各选项得结果.9. A 【解析】因为向量与向量共线,所以,化为.因为,所以当且仅当,,即,时取等号.所以的最大值为.10. D【解析】当时,,当时,,所以当时,的最小值为,又因为函数满足,当时,的最小值为,当时,的最小值为,若时,恒成立,所以,即,即且,解得:.第二部分11.【解析】因为,且,所以,则.12.【解析】由得:,因为在区间上随机取实数,每个数被取到的可能性相等,所以事件“”发生的概率为.13.14.【解析】函数的定义域为,且,故函数为奇函数.又因为,且在区间上和为增函数,为减函数,所以函数在区间上为增函数.则不等式可化为:,即,即,解得.故不等式的解集是.15.【解析】设,①若,则,所以;②若,则,所以;③若,则,所以;④若,则,所以.所以,画出函数图象如图:因为直线过定点,当过点的直线与曲线相切时,直线与曲线有四个公共点,设切点坐标为,则,所以,解得:,所以;同理,当直线与曲线相切时,直线与曲线有四个公共点,求得直线的斜率为;当过点的直线轴,即其斜率为时,直线与曲线有四个公共点;综上,实数的取值集合是.第三部分16. (1)因为所以函数的最小正周期.(2)因为,所以,所以,所以,又,所以,令,解得,所以函数在上的对称中心为.17. (1)取的中点,连接,因为.所以为的中点,又因为为的中点,所以,在三棱柱中,,分别为棱,的中点,所以,且,则四边形为平行四边形,所以,所以,又因为平面,平面,所以 平面.(2)连接,分别以,,所在直线为轴,轴,轴,建立如图空间直角坐标系,则,,,,所以,,.设面的一个法向量为,面的一个法向量为,则由得取,又由得取,则,故二面角的余弦值为.18. (1)设等差数列的公差为,因为,.所以,,解得,,所以数列的通项公式;(2)因为,当时,,当时,,且时满足,所以数列的通项公式为.又,所以,所以,即,两式相减得:所以.19. (1)由题意知这个抽样是按进服务区的先后每间隔辆就抽取一辆的抽样方法抽取名驾驶员进行询问调查,是一个具有相同间隔的抽样,并且总体的个数比较多,这是一个系统抽样.故调查公司在采样中,用到的是系统抽样.(2)众数的估计值为最高的矩形的中点,即众数的估计值等于.设图中虚线所对应的车速为,则中位数的估计值为:,解得,即中位数的估计值为.(3)从图中可知,车速在的车辆数为:(辆),车速在的车辆数为:(辆),所以,,,,的分布列为:数学期望.20. (1)令,因为,所以函数图象的对称轴为直线,要使在上有零点,则即所以.所以所求实数的取值范围是,当时,个零点;当或,个零点.(2)当时,,所以当时,,记.由题意,知,当时,在上是增函数,所以,记.由题意,知,所以解得.当时,在上是减函数,所以,记.由题意,知,所以解得.综上所述,实数的取值范围是.21. (1)因为函数,可得当时,,故函数在是增函数,在是减函数,所以.(2)因为,所以.因为在区间上不单调,所以在上有实数解,且无重根,由,有综上可得,.(3)由题意可得,,又有两个实根,,所以两式相减,得,所以.于是因为,所以,所以.要证:,只需证:,只需证:令,所以化为,只证即可.因为又因为,,所以,所以,所以在上单调递增,故有,所以,即.所以.。

四川省成都市高三数学一诊模拟试题 理 新人教A版

四川省成都市高三数学一诊模拟试题 理 新人教A版

2014届高三数学(理科)考试试题命 题: 审 核:本试卷分第一部分(选择题)、第二部分(填空题)和第三部分(解答题)三部分。

考试结束后,将本试题卷交回。

第一部分(选择题 共50分 每题5分)1、复数()21i i -等于( )A.4B.-4C.4iD.4i -2、设全集U=R ,{}{}43,16A x x x B x x =<-≥=-<<或,则集合{}13x x -<<是( ) A.()()U UA B U痧 B.()U A B U ð C.()U A B I ð D.A B I3、给出如下四个命题:①若“P q 且”为假命题,则,p q 均为假命题 ②命题“若a b >,则221a b >-”的否命题为“若a b ≤,则2221b ≤-”③“2,11x R x ∀∈+≥”的否定是“2,11x R x ∃∈+<”④命题“若cos cos x y =,则x y =”的逆否命题为真命题 其中正确的命题的个数是( ) A.4 B.3 C.2 D.14、已知正方体1111ABCD ABC D -的棱长为a ,112AM MC =u u u u r u u u u r ,点N 为1B B 的中点,则MN =( )5、已知圆C 的方程为222210x y x y ++-+=,当圆心C 到直线40kx y ++=的距离最大时,k 的值为( )A.15B.15- C.5- D.56、已知正六棱柱的底面边长和侧棱长相等,体积为则其左视图的面积是( )A.4B.7、铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的2CO 的排放量b 及每万吨铁矿石的价格c 如表。

某冶炼厂至少要生产1.9(万吨)铁,若要求2CO 排放量不超过2(万吨),则购买铁矿石的最少费用为( ) A.12百万元 B.13百万元 C.14百万元 D.15百万元8.已知函数231(),2()24log ,02x x f x x x ⎧⎪+≥=⎨<<⎪⎩,若函数()()g x f x k =-有两个不同的零点,则实数k 的取值范围是( )A.()3,14B.()30,4 C.(),1-∞ D.()0,1 9.如果存在正整数ω和实数ϕ,使得函数()2()cos f x x ωϕ=+的图象如图所示,且图象经过点(1,0),那么ω的值为( ) A.4 B.3 C.2 D.110.定义方程()()f x f x '=(()f x '是()f x 的导函数)的实数根0x 叫做函数的f 若函数()3(),()ln 1,()1g x x h x x x x ϕ==+=-的“新驻点”分别为,,αβγ,则,,αβγ的大小关系为()A.αβγ>>B.βαγ>>C.βγα>>D.γαβ>> 第二部分(填空题 共25分 每题5分)11、若()12nx x -展开式中各项的二项式系数之和为32,则该展开式中含3x 的项的系数为12、执行如图所示的程序框图,若输入2x =,则输出y 的值为 13、设点M 是半径为R 的圆周上一个定点,其中O 为圆心,连接OM ,在圆周上等可能地取任意一点N ,连接MN ,则弦MN 的概率为 14、在平面直角坐标系中,以点(1,0)为圆心,r 为半径作圆,依次与抛物线2y x =交于A 、B 、C 、D 四点,若AC 与BD 的交点F 恰好为抛物线的焦点,则r =15、设集合X 是实数集R 上的子集,如果0x R ∈满足:对0a ∀>,都x X ∃∈,使得00x x a <-<,那么称0x 为集合X 的聚点,用Z 表示整数集,则给出下列集合:①{},01n n Z n n ∈≥+;②{}\0R (R 中除去元素0);③{}1,0n Z n n∈≠;④整数集Z 其中以0为聚点的集合的序号有 (写出所有正确集合的序号)第三部分(解答题 共75分)16、(12分)已知向量()()2sin(),cos(),cos(),2sin()12121212a x xb x x ππππ=+-=+-r r ,函数2()2cos f x a b x =⋅-r r;(1)求()f x 的最小正周期;(2)若函数()y g x =的图象是由()y f x =的图象向左平移4π个单位长度,再向下平移1个单位长度得到的,当0,2x π⎡⎤∈⎣⎦时,求()y g x =的最大值和最小值。

2014届成都市高中毕业班零诊模拟数学试题

2014届成都市高中毕业班零诊模拟数学试题

2014届高中毕业班零诊模拟数学试题一、选择题(本大题共10小题,每小题5分,共50分.)1.(13湖北理2) 已知全集为R ,集合112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则R A C B = ( )A.{}|0x x ≤B. {}|24x x ≤≤C. {}|024x x x ≤<>或D.{}|024x x x <≤≥或2. (13广东2)定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4B .3C .2D .13. (13福建理7)在四边形ABCD 中,(1,2)A C = ,(4,2)B D =-,则四边形的面积为( )AB. C .5 D .104. (2013广东理5)某四棱台的三视图如图所示,则该四棱台的体积是 ( )A . 4B .143C .163D .65. (13安徽理4)"0"a ≤“是函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的( )(A ) 充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件6. (13山东理8)函数y=xcosx + sinx 的图象大致为 ( )(A ) (B )(C)(D)俯视侧视7.(13辽宁理8)执行如图所示的程序框图,若输入10,nS ==则输出的( )A .511B .1011C .3655D .72558.(13重庆7)已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则P M P N +的最小值为( ) A 、4 B1 C、6- D9. (13全国新课标I 理11)已知函数()f x =22,0ln (1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是( )A .(,0]-∞B .(,1]-∞C .[-2,1]D .[-2,0]10.(13北京理8) 设关于x,y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点P(x 0,y 0)满足x 0-2y 0=2,求得m 的取值范围是 ( )A.4,3⎛⎫-∞-⎪⎝⎭ B. 1,3⎛⎫-∞⎪⎝⎭C. 2,3⎛⎫-∞- ⎪⎝⎭D. 5,3⎛⎫-∞- ⎪⎝⎭二、填空题(本大题有5小题,每小题5分,共25分.把答案填在答题卷的相应位置.)11. (13福建理11)利用计算机产生0~1之间的均匀随机数a ,则时间“310a ->”发生的概率为________12.(13广东理12)在等差数列{}n a 中,已知3810a a +=,则573a a +=_____.13.(13江苏8)如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADEF -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .ABC1ADE F1B1C14. (13江西理14)抛物线22(0)x py p =>的焦点为F ,其准线与双曲线22133x y-=相交于,A B 两点,若A B F ∆为等边三角形,则P =15. (13湖北理14)古希腊毕达哥拉斯学派的数学家研究过各种多边形数。

2014年四川高考理科数学试题含答案(Word版)

2014年四川高考理科数学试题含答案(Word版)

2014年普通高等学校招生全国统一考试理科参考答案(四川卷)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}- 【答案】A【解析】{|12}A x x =-≤≤,B Z =,故A B ⋂={1,0,1,2}- 2.在6(1)x x +的展开式中,含3x 项的系数为 A .30 B .20 C .15 D .10 【答案】C【解析】含3x 项为24236(1)15x C x x ⋅=3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动12个单位长度B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度【答案】A【解析】因为1sin(21)sin[2()]2y x x =+=+,故可由函数sin 2y x =的图象上所有的点向左平行移动12个单位长度得到 4.若0a b >>,0c d <<,则一定有A .a b c d >B .a b c d <C .a b d c >D .a b d c<【答案】D【解析】由1100c d d c <<⇒->->,又0a b >>,由不等式性质知:0a bd c->->,所以a bd c< 5.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为 A .0 B .1 C .2 D .3 【答案】C【解析】当001x y x y ≥⎧⎪≥⎨⎪+≤⎩时,函数2S x y =+的最大值为2,否则,S 的值为1.6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能拍甲,则不同的排法共有A .192种B .216种C .240种D .288种 【答案】B【解析】当最左端为甲时,不同的排法共有55A 种;当最左端为乙时,不同的排法共有14C 44A 种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档