印刷电路板PCB及零件封装技术

合集下载

PCB元件封装PPT优秀课件

PCB元件封装PPT优秀课件
引脚形状:长引线直插->短引线或无引线 贴装->球状凸点; 装配方式:通孔插装->表面组装->直接 安装
PLCC封装 BGA
QFP封装
• 零件封装是指实际零件焊接到电路板时所指示的 外观和焊点的位置。是纯粹的空间概念因此不同
的元件可共用同一零件封装,同种元件也可有不
同的零件封装。像电阻,有传统的针插式,这种
• 衡量一个芯片封装技术先进与否的重要指 标是芯片面积与封装面积之比,这个比值 越接近1越好。封装时主要考虑的因素: 1、 芯片面积与封装面积之比为提高封装效 率,尽量接近1:1; 2、 引脚要尽量短以减少延迟,引脚间的距 离尽量远,以保证互不干扰,提高性能;
3、 基于散热的要求,封装越薄越好。
• 封装主要分封装知识
• 器件封装,就是指把硅片上的电路管脚,用导线接引 到外部接头处,以便与其它器件连接。封装形式是指 安装半导体集成电路芯片用的外壳。它不仅起着安 装、固定、密封、保护芯片及增强电热性能等方面 的作用,而且还通过芯片上的接点用导线连接到封 装外壳的引脚上,这些引脚又通过印刷电路板上的 导线与其他器件相连接,从而实现内部芯片与外部 电路的连接。因为芯片必须与外界隔离,以防止空 气中的杂质对芯片电路的腐蚀而造成电气性能下降。 另一方面,封装后的芯片也更便于安装和运输。由 于封装技术的好坏还直接影响到芯片自身性能的发 挥和与之连接的PCB(印制电路板)的设计和制造, 因此它是至关重要的。
电解电容
• 电位器:POT1,POT2;封装属性为VR-1到 VR-5。
• 二极管:封装属性为DIODE0.4-DIODE0.7 其中0.4-0.7指二极管长短,一般用DIODE0.4。 DIODE-0.4(小功率),DIODE-0.7(大功 率)。

PCB及layout简介

PCB及layout简介
参照原理图进行预布线,检查布线是否符合电路模块 要求,修改布线,并符合相应要求。
© 2014 天马微电子股份有限公司. All rights reserved

PCB layout 设计流程简介
PCB制作初步完成,“铺铜”与“补铜”,进行连线、 连通性、间距、“孤岛”、文字标识检查,并对其 进行修改,使其符合要求。 检查无误后,生成gerber底片,到此PCB板layout设 计完成。
基材:覆铜箔层压板(Copper Clad Laminates,简写为CCL),简称覆铜箔 板或覆铜板,是制造PCB的基板材料。由介电层(树脂Resin,玻璃纤维Glass fiber),及高纯度的导体铜箔二者构成的复合材料。
胶片或半固化片(PP):树脂与载体合成的一种片状粘结材料,压合铜箔与 CCL用。

PCB简介
PCB 的叠层构造剖面
VIA
典型的四层板PCB叠层构造
© 2014 天马微电子股份有限公司. All rights reserved
*

PCB简介
PCB的主要材料
铜箔:单位OZ,在PCB行业指厚度。1OZ的定义:一平方英尺面积单面覆盖 铜箔重量1OZ(28.35g)的铜层厚度,1OZ铜箔厚度为35um。一般薄铜箔指 0.5OZ(18um)以下厚度的铜箔。

PCB简介 PCB 按照层数分类:
单层板:单层走线
双层板:双层走线,通过导 通孔VIA实现上下两层线 路的导通
多层板:多层走线,可以通 过多种导通孔(通孔,盲 孔,埋孔)进行多层之间 的线路导通
© 2014 天马微电子股份有限公司. All rights reserved
天马微电子集团
PCB 及layout简介

PCB设计中封装规范及要求

PCB设计中封装规范及要求

PCB设计中封装规范及要求PCB(Printed Circuit Board,印刷电路板)是现代电子产品中常见的一种基础组成部分,用于连接电子元器件并传导电信号。

在进行PCB设计过程中,封装规范和要求是非常重要的,它们直接影响了PCB的性能、可靠性和生产效率。

本文将详细介绍PCB设计中的封装规范和要求。

1.封装规范在PCB设计中,封装规范是指PCB元件封装的几何形状、尺寸、引脚布局和连接方式等的标准化要求。

下面是一些常见的封装规范:(1)尺寸规范:首先,封装应符合原理图中所示的尺寸和轮廓要求。

其次,对于贴片组件封装,引脚的间距、封装的长宽比等也需要满足相关标准。

(2)引脚布局:引脚布局应考虑到元件的安装和焊接方便性,避免引脚之间的短路和其他不必要的问题。

引脚的顺序可以按照相对原点的位置、数字顺序或按照特定功能进行排序。

(3)焊盘规范:对于贴片元件,焊盘的形状和尺寸应与引脚匹配,并考虑焊接工艺的要求,如合适的焊接垫大小、间距和形状。

(4)三维模型规范:为了在PCB设计时进行三维可视化布局和冲突检查,每个封装都应有相应的三维模型,包括组件的外形、引脚、焊盘等。

2.封装要求在PCB设计中,封装要求是指在实际设计过程中需要满足的一些要求。

下面是一些常见的封装要求:(1)一致性:对于相同功能的元器件,应使用相同的封装,以确保板上的元件一致性,避免布局和焊接的问题。

(2)可靠性:封装应设计为可靠的,以确保电路的稳定性和长期可靠运行。

封装的外形和焊接足够牢固,焊盘和引脚的连接可靠。

(3)散热性能:对于功率较大的元器件(如功放器件、处理器等),封装要求应考虑到其散热性能。

为了降低元器件温度,应设计合适的热传导路径和散热装置。

(4)DRC检查规则:封装设计应符合设计规则检查(Design Rule Check,DRC)的要求,包括最小间距、最小径迹宽度、最小孔径等。

总之,封装规范和要求是PCB设计过程中必须要考虑的重要因素。

印刷电路板基础知识

印刷电路板基础知识

(3)同一级电路的接地点应尽量靠近,并且本级电
路的电源滤波电容也应接在该级接地点上。
(4)总线必须严格按高频—中频—低频逐级按弱电
到强电的顺序排列原则
(5) 强电流引线应尽可能宽一些
(6) 阻抗高的走线尽量短,阻抗低的走线可以长一

印刷电路板基础知识
(7)电位器安装位置应当满足整机结构安装及面板 布局的要求,尽可能放在PCB的边缘。 (8)IC座,设计PCB图样时,在使用IC座的场合下, 一定特别注意IC座上定位槽的放置的方位是否正 确。 (9)在对进出接线端布置时,相关联的两条引线端 的距离不要太大。 (10)在保证电路性能要求的前提下,设计时应力求 合理走线。 (11) 设计应按一定顺序方向进行。
印刷电路板基础知识
5.9 板边 PCB板的板边也有一些特殊的要求。板边是PCB
的裸露的界面,他必须可以和外界有绝缘安全 距离
印刷电路板基础知识
6.PCB的叠层设计 PCB板的叠层设计常常是由PCB的目标成本、
制造技术和所要求的布线通道数所决定。
镀锡通孔的只要作用如下: 1) 增强外层焊盘的强度,从而可以使用较小尺寸
的焊盘。 2) 焊接时可以散热,从而焊盘可以较小 3) 连接顶层和底层的信号 4) 从顶层到底层铺上焊锡流,从而不用在两侧进
行焊接
印刷电路板基础知识
印刷电路板基础知识
5.8 不镀层的通孔 不镀层的通孔也就是指在孔中没有镀锡。
印刷电路板基础知识
印刷电路板基础知识
印刷电路板基础知识
3.3 焊盘大小 焊盘的直径和内孔尺寸:通常以金属引脚直径
加0.2mm作为焊盘内孔直径。
(1)当焊盘直径为1.5mm时,为了增加焊盘的抗剥 强度,可以采用长小于1.5mm,宽为1.5mm和长 圆形焊盘。 1)直径小于0.4mm的孔:D/d=0.5~3 2)直径大于2mm的孔:D/d=1.5~2 D---焊盘直径 d----内孔直径

PCB板的安装技术

PCB板的安装技术
对于电源、地的层数以及信号层数确定后,它们之间的相对排布位置是每一个 PCB 工
程师都不能回避的话题; 层的排布一般原则: 元件面下面(第二层)为地平面,提供器
件屏蔽层以及为顶层布线提供参考平面; 所有信号层尽可能与地平面相邻; 尽量避免两
信号层直接相邻; 主电源尽可能与其对应地相邻; 兼顾层压结构对称。
以上原则的基础上,根据实际单板的需求,如:是否需要一关键布线层、电源、地平面的分
割情况等,确定层的排布,切忌生搬硬套,或抠住一点不放。 以下为单板层的排布的具体
探讨: *四层板,优选方案 1,可用方案 3
方案
电源层数
地层数
信号层
数 1 2 3 41 1 1 2 S G P S2 1 2 2 G S S P
流程:上板→除油→水洗二次→微蚀→水洗→酸洗→镀铜→水洗→浸酸→镀锡→水洗 →下板
七、退膜 目的:用 NaOH 溶液退去抗电镀覆盖膜层使非线路铜层裸露出来. 流程:水膜:插架→浸碱→冲洗→擦洗→过机;干膜:放板→过机 八、蚀刻 目的:蚀刻是利用化学反应法将非线路部位的铜层腐蚀去. 九、绿油 目的:绿油是将绿油菲林的图形转移到板上,起到保护线路和阻止焊接零件时线路上 锡的作用 流程:磨板→印感光绿油→锔板→曝光→冲影;磨板→印第一面→烘板→印第二面→ 烘板 十、字符 目的:字符是提供的一种便于辩认的标记 流程:绿油终锔后→冷却静置→调网→印字符→后锔 十一、镀金手指 目的:在插头手指上镀上一层要求厚度的镍\金层,使之更具有硬度的耐磨性 流程:上板→除油→水洗两次→微蚀→水洗两次→酸洗→镀铜→水洗→镀镍→水洗→ 镀金 镀锡板 (并列的一种工艺) 目的:喷锡是在未覆盖阻焊油的裸露铜面上喷上一层铅锡,以保护铜面不蚀氧化,以 保证具有良好的焊接性能. 流程:微蚀→风干→预热→松香涂覆→焊锡涂覆→热风平整→风冷→洗涤风干 十二、成型 目的:通过模具冲压或数控锣机锣出客户所需要的形状成型的方法有机锣,啤板,手 锣,手切 说明:数据锣机板与啤板的精确度较高,手锣其次,手切板最低具只能做一些简单的 外形. 十三、测试 目的:通过电子 100%测试,检测目视不易发现到的开路,短路等影响功能性之缺陷. 流程:上模→放板→测试→合格→FQC 目检→不合格→修理→返测试→OK→REJ→报 废 十四、终检 目的:通过 100%目检板件外观缺陷,并对轻微缺陷进行修理,避免有问题及缺陷板 件流出. 具体工作流程:来料→查看资料→目检→合格→FQA 抽查→合格→包装→不合格→处 理→检查 OK

PCB电路板PCB常见封装形式

PCB电路板PCB常见封装形式

PCB电路板PCB常见封装形式PCB常见封装形式1、BGA(ballgridarray)球形触点陈列,表面贴装型封装之一。

在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配LSI芯片,然后用模压树脂或灌封方法进行密封。

也称为凸点陈列载体(PAC)。

引脚可超过200,是多引脚LSI常用的一种封装。

封装本体也可做得比QFP(四侧引脚扁平封装)小。

例如,引脚中心距为1.5mm的360引脚BGA仅为31mm见方;而引脚中心距为0.5mm的304引脚QFP为40mm见方。

而且BGA不用担心QFP那样的引脚变形问题。

该封装是美国Motorola公司开发的,首先在便携式电话等设备中被采用,今后有可能在个人计算机中普及。

最初,BGA的引脚(凸点)中心距为1.5mm,引脚数为225。

现在也有一些LSI 厂家正在开发500引脚的BGA。

BGA的问题是回流焊后的外观检查。

现在尚不清楚是否有效的外观检查方法。

有的认为,由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。

美国Motorola公司把用模压树脂密封的封装称为OMPAC,而把灌封方法密封的封装称为GPAC(见OMPAC和GPAC)。

2、BQFP(quadflatpackagewithbumper)带缓冲垫的四侧引脚扁平封装。

QFP封装之一,在封装本体的四个角设置突起(缓冲垫)以防止在运送过程中引脚发生弯曲变形。

美国半导体厂家主要在微处理器和ASIC等电路中采用此封装。

引脚中心距0.635mm,引脚数从84到196左右(见QFP)。

3、BJPGA(buttjointpingridarray)碰焊表面贴装型,PGA的别称(见表面贴装型PGA)。

4、C-(ceramic)表示陶瓷封装的记号。

例如,CDIP表示的是陶瓷DIP。

是在实际中经常使用的记号。

5、Cerdip用玻璃密封的陶瓷双列直插式封装,用于ECLRAM,DSP(数字信号处理器)等电路。

PCB板器件封装设计规范

PCB板器件封装设计规范

PCB板器件封装设计规范一、目的:本规范规定公司产品PCB板器件封装设计中要求与注意事项,保证公司产品所有PCB板设计、器件使用的统一性,便于公司对产品PCB设计要求与可靠性的监控,及便于对产品PCB审核与归档。

本文档规定元器件封装库设计中需要注意的一些事项,目的是使设计规范化,并通过将经验固化为规范的方式,避免设计过程中错误的发生,最终提高产品质量。

发点是为了培养硬件开发人员严谨、务实的工作作风和严肃、认真的工作态度,增强他们的责任感和使命感,提高工作效率和开发成功率,保证电路设计的可靠性。

二、范围:本规范适用于公司产品中所有PCB板器件封装设计规范。

三、设计软件规定:统一采用Altium公司PCB电子电路设计软件,版本为Altium 20软件。

四、概述:1、技术开发人员在涉及公司已规范PCB板封装库中未有的器件时,自行设计PCB板器件封装需遵从本设计规范;2、公司产品PCB板设计时,器件选用尽量选用公司PCB板器件封装库中的器件,不得自行设计。

若对公司元件封装有异议或有更好的建议,请告知项目管理员或上级领导;3、公司PCB板器件封装库:①公司按PCB板器件封装设计规范设计组建公司通用器件封装库,内应有电容的电阻、电感、变压器、集成电路、端子、外加工器件、焊线焊盘、MARK点、安装孔等器件的封装;②电容元件封装内应有无极性电容、电解电容、表贴电解电容等电容器件的封装;③封装库的日常补充和完善归项目管理员管理。

五、器件封装设计原则:1、公司封装库中没有的器件,设计者遵从本设计原则自行设计,也可向研发总监提出设计要求,对于可预料今后长期使用的元件封装由研发总监安排人员进行封装库补充;2、遵从器件型号命名原则,系列器件具有标准封装的采用封装形式命名,如表贴电容或表贴电阻0805或1206;3、相同尺寸封装可以有不同器件型号,如电解电容,以避免借用封装;4、器件封装设计时主要考虑的因素:①器件面积与封装面积之比为提高封装效率,尽量接近1:1;②引脚要尽量短以减少延迟,引脚间的距离尽量远,以保证互不干扰,提高能;③基于散热的要求,封装越薄越好。

PCB常见封装形式

PCB常见封装形式

PCB常见封装形式PCB(Printed Circuit Board,印刷电路板)是电子产品中不可或缺的组成部分,封装形式是指将电子器件(如芯片、电阻、电容等)封装成特定形状和尺寸的封装类型。

不同的封装形式适用于不同的应用领域和设计需求。

在这篇文章中,我将介绍一些常见的PCB封装形式。

1. Dual in-line package (DIP):DIP是最常见的封装形式之一,适用于通过插针连接到PCB上的组件。

DIP封装通常由带有引脚的塑料外壳组成,可以手动或机器插入插座或焊接到PCB上。

2. Small outline integrated circuit (SOIC):SOIC封装是一种小型封装形式,适用于表面组装技术。

它有一个窄长的塑料外壳,引脚排列在两侧。

SOIC封装相较于DIP封装更适合高密度的电路设计。

3. Quad flat package (QFP):QFP封装是一种常用的表面安装技术封装形式。

它具有四个平面引脚和一个中央孔,在PCB上占用较小的空间,并且适用于高密度的设计。

QFP封装还可以分为不同的尺寸和引脚数量,如QFP32、QFP64等。

4. Ball grid array (BGA):BGA封装是一种高密度表面安装技术封装形式,适用于需要更高引脚密度和更好的散热性能的大功率应用。

BGA封装的引脚以小球形状布局在封装的底部,通过液体焊接技术连接到PCB 上。

5. Chip scale package (CSP):CSP封装是一种非常小型的封装形式,封装尺寸接近芯片本身的尺寸。

CSP封装通常用于移动设备和微型电子器件,它可以有效地减小电路板的尺寸,并提高集成度。

6. Plastic leaded chip carrier (PLCC):PLCC封装是一种塑料外壳的封装形式,具有J形引脚布局。

PLCC封装适用于高密度电路设计,它支持通过插座或表面贴装技术与PCB连接。

7. QFN封装(Quad Flat No-lead Package):QFN封装是一种无引脚的表面贴装封装形式。

SMT、PCB、PCBA和DIP概念一文搞清楚

SMT、PCB、PCBA和DIP概念一文搞清楚

SMT、PCB、PCBA和DIP概念一文搞清楚
一、SMT是电子元器件的基础元件之一,称为表面组装技术(或是表面贴装技术),分为无引脚或短引线,是通过回流焊或浸焊加以焊接组装的电路装连技术,也是目前电子组装行业里最流行的一种技术和工艺。

特点:我们的基板,可用于电源供应,讯号传输、散热、提供结构的作用。

特性:能够承受固化和焊接的温度和时间。

平整度符合制造工艺的要求。

适合返修工作。

适合基板的制造工艺。

低介质数和高电阻。

我们的产品基板常用的材料为健康环保的环氧树脂和酚醛树脂,有较好的防燃特性,温度特性、机械和电介质性能及低成本。

以上说到的是刚性基板为固态化。

我们的产品还有柔性基板,有节省空间,折叠或转弯,移动的用途,采用非常薄的绝缘片制成,有良好的高频性能。

缺点为组装工艺较难,不适合微间距应用。

我认为基板的特性是细小的引线和间距,大的厚度和面积,较好的热性传导,较坚硬的机械特性,较好的稳定性。

我认为基板上的贴装技术是电气性能,有可靠性,标准件。

我们不仅有全自动一体化的运作,还有通过人工一层一层的审核,机审人工审的双重保障,产品的合格率高达百分之九十九点九八。

二、PCB是电子元器件中最重要的,没有之一。

通常把在绝缘材上,按预定设计,制成印制线路、印制元件或两者组合而成的导电图形称为印制电路。

而在绝缘基材上提供元器件之间电气连接的导电图形,称为印刷电路板(或是印制线路板),它是电子元器件的重要支撑体,能够承载元器件的载体。

我认为我们通常打开电脑键盘就能看到一张软性薄膜(挠性的绝缘基材),印上有银白色。

PCB封装图文并解

PCB封装图文并解

自从美国Intel公司1971年设计制造出4位微处理器芯片以采,在20多年时间内,CPU从Intel4004,80286,80386,80486发展到Pentium和Pentium4从4位、8位、16位,32位发展到64位。

CPU芯片里集成的晶体管数由2000个跃升到500万个以上。

半导体制造技术的规模由SSI,MSI,LSI,VLSI达到ULSI。

封装的输入/输出(I/0)引脚从几十根,渐增加到几百根,在今后的10年内可能达两千根。

这一切是一个翻天覆地的变化。

所谓元件的封装,是指安装半导体集成电路芯片用的外壳,具有实际的电子元件或集成电路的外型尺寸、管脚排列方式、管脚直径、管脚间距等参数,它是使实际元件引脚与印制电路板上的焊盘保持一致的依据。

它不仅起着安放、固定、密封、保护芯片和增强电热性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁———芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印制板上的导线与其他器件建立连接。

不同的元件可能有相同的封装,相同的元件可能有不同的封装。

所以在设计印制电路板时,不仅要知道元件的名称、型号,还要知道元件的封装。

芯片的元件的封装技术已经历了好几代的变迁,从DIP,OFP,PGA,BGA到CSP, 再到MCM,技术指标一代比一代先进,包括芯片面积与封装面积之比越来越接近于1,适用频率越来越高,耐温性能越来越好,引脚数增多,引脚间距减小,重量减小,可靠性提高,使用更加方便等等。

二、插针式封装和表贴式封装元件的封装分为插针式封装和表面粘贴式(SMT)封装两大类。

插针式封装与表面粘贴式封装相比体积稍大,在印制电路板上所占的面积也大一些,但是元件焊接方式上比较灵活,既可以手工焊接也可以使用设备自动焊接。

表面粘贴封装在印制电路板上所占的空间和面积都比较小,但是手工焊接比较困难,元器件的更换也有一定难度。

1 插针式封装插针式封装元件的PCB封装外观如图1-11所示。

电子封装技术专业认识

电子封装技术专业认识

电子封装技术专业认识概述电子封装技术是电子工程领域中的重要学科之一,它涉及到对电子器件的封装和保护。

电子器件通常是微小而脆弱的,需要通过封装技术来提供保护和连接。

在现代电子产品中,电子封装技术起着至关重要的作用,它不仅决定了电子产品的可靠性和稳定性,还影响着产品的性能和成本。

封装技术的分类封装技术根据封装材料和封装形式的不同,可以分为多种类型。

其中,常见的封装技术包括以下几种:1. 表面贴装技术(SMT)表面贴装技术是一种广泛应用于电子工业的封装技术,它通过将电子器件直接粘贴到PCB(Printed Circuit Board,印刷电路板)上,实现电路连接和封装。

该技术具有尺寸小、可靠性高、适应性强等优点,逐渐取代了传统的通过插针连接的插件式封装技术。

2. 晶圆级封装技术晶圆级封装技术主要用于集成电路芯片的封装,它将芯片和封装基板连接在一起,并提供必要的保护和电路连接。

在晶圆级封装技术中,常见的封装形式包括裸片封装(CSP)、背散热封装(BGA)等。

3. 组装封装技术组装封装技术主要用于电子产品的组装,它将多个已封装的集成电路、被动元件等组合在一起,形成一个完整的电子设备。

该技术涉及到电路设计、电路布局、元件安装、连接线路等多个方面。

封装技术的重要性电子封装技术在现代电子工业中具有重要的意义,它对电子产品的性能和可靠性有着直接的影响。

1. 保护电子器件封装技术可以提供对电子器件的保护,防止其受到外界环境的损害。

例如,封装材料可以提供对潮湿、腐蚀、热量等因素的防护,确保电子器件的正常工作。

2. 提供电路连接封装技术可以实现不同器件之间的电路连接,确保信号的传输和处理。

通过封装技术,可以将不同的电子器件连接在一起,形成一个完整的电路系统。

3. 提高电子产品的可靠性和稳定性封装技术可以提高电子产品的可靠性和稳定性,减少故障和失效的概率。

通过合适的封装材料和封装形式,可以有效降低电子器件的温度、振动、电磁干扰等对其影响,提高产品的寿命和稳定性。

PCB设计中封装规范及要求

PCB设计中封装规范及要求

PCB设计中封装规范及要求在PCB设计中,封装规范及要求是确保电子元器件正确安装和连接的关键。

封装规范包括封装类型、封装尺寸、引脚排列和标识等方面的要求。

下面将详细介绍PCB设计中的封装规范及要求。

1.根据电子元器件的类型和功能,选择合适的封装类型。

常见的封装类型有直插式、表面贴装式(SMD)、塑料封装、芯片级封装等。

2.封装类型要与印刷电路板的制造工艺兼容,确保正常安装和焊接。

1.了解电子元器件的封装尺寸,包括长、宽、高和引脚间距等参数。

2.封装尺寸要与印刷电路板的尺寸和布局相匹配,确保元器件能够正确安装在PCB上。

1. 引脚排列要符合标准封装规范,如DIP封装的引脚间距为2.54mm,SMD的引脚间距为0.8mm、0.65mm或0.5mm等。

2.引脚排列要与电子元器件的引脚布局相匹配,确保引脚能够正确连接到PCB上的焊盘。

1.引脚标识要清晰可见,便于用户正确安装和连接。

2.引脚标识要与元器件封装图和PCB布局图相匹配,确保标识正确对应于相应的引脚。

1.直插式封装的引脚要与PCB上的焊盘间距相匹配,确保准确插入。

2.插入力度要适中,既能保证稳固连接,又不会损坏焊盘。

3.如果需要永久固定直插式封装,可使用焊接或者固定夹具等方式。

1.表面贴装式封装的引脚要与PCB上的焊盘精确对位,确保正确焊接。

2.焊盘要选用适合封装尺寸的大小和形状,确保焊点质量。

3.在布局时要留出合适的间距,以便于元器件的正确安装和热释放。

1.芯片级封装的引脚要与PCB的布线规则相符,包括最小间距和宽度等。

2.引脚与PCB的连接方式可以是焊接、插接或者压装等。

3.必要时可添加热敷插座或散热片等附加散热元件,确保芯片的正常工作温度。

总结:在PCB设计中,封装规范及要求是确保电子元器件正确安装和连接的关键。

封装规范不仅包括封装类型、封装尺寸、引脚排列和标识等方面的要求,还需要根据具体的电子元器件类型和功能进行合理选择。

仔细遵循封装规范,可以大大提高PCB的可靠性和稳定性。

印制电路板的设计和制作工艺

印制电路板的设计和制作工艺

铜箔覆盖在整个板子上的,在制 或是棕色的阻焊
造过程中部份被蚀刻处理掉,留 层,它是绝缘的
下来的部份就变成网状的细小线 防护层,可以保
路了。这些线路被称作导线或称 护铜线,也可以
布线,并用来提供PCB上零件的 防止零件被焊到
电路连接。
不正确的地方。
在阻焊层上还会印 刷上一层丝网印刷 面,在这上面会印 上文字与符号(大 多是白色的),以 标示出各零件在板 子上的位置。
印制电路板制作生产工艺流程
制造印制电路板 最简单的一种方法是印 制—蚀刻法,或称为铜 箔腐蚀法,即用防护性 抗蚀材料在敷铜箔层压 板上形成正性的图形, 那些没有被抗蚀材料防 护起来的不需要的铜箔 随后经化学蚀刻而被去 掉,蚀刻后将抗蚀层除 去就留下由铜箔构成的 所需的图形。
印制电路板的设计和制作工艺
参照国标GB4588《印制板技术条件》、GB4677~GB4825《印制板 测试方法》 、GB5489 《印制板制图》等国家标准。
印制板不仅应该保证元器件之间准确无误的连接,工作中无自身干 扰,还要尽量做到元器件布局合理、装焊可靠、维修方便、整齐美观。
印制电路板的设计和制作工艺
1、设计准备 进入印制板设计阶段时我们认为整机结构、电路原理、主要元器
印制电路板的设计和制作工艺
在电子设备中,印制电路板通常起三个作用: ⑴为电路中的各种元器件提供必要的机械支撑。 ⑵提供电路的电气连接。 ⑶用标记符号将各个元器件标注出来,便于插装、检查及调试。
更为重要的是,使用印制电路板有四大优点: ⑴具有重复性。 ⑵板的可预测性。 ⑶所有信号可沿导线任一点直接进行测试,不会因导线接触引起
印制板种类很多,根据导电层数目的不同,可以将印制板分为单面电路板(简称 单面板)、双面电路板(简称双面板)和多层电路板;根据覆铜板基底材料的不同, 又可将印制板分为纸质覆铜箔层压板和玻璃布覆铜箔层压板两大类。此外,采用挠 性塑料作基底的印制板称为挠性印制板,常用做印制电缆。

pcb元器件最全的封装详细介绍

pcb元器件最全的封装详细介绍

史上最全的芯片封装介绍芯片封装,简单点来讲就是把Foundry生产出来的集成电路裸片(Die)放到一块起承载作用的基板上,再把管脚引出来,然后固定包装成为一个整体。

它可以起到保护芯片的作用,相当于是芯片的外壳,不仅能固定、密封芯片,还能增强其电热性能。

因此,封装对CPU和其他LSI集成电路而言,非常重要。

封装的类型,大致可以分为DIP双列直插和SMD贴片封装两种。

从结构方面,封装经历了最早期的晶体管TO(如TO-89、TO92)封装发展到了双列直插封装,随后由PHILIP公司开发出了SOP小外型封装,以后逐渐派生出SOJ (J型引脚小外形封装)、TSOP(薄小外形封装)、VSOP(甚小外形封装)、 SSOP (缩小型SOP)、TSSOP(薄的缩小型SOP)及SOT(小外形晶体管)、SOIC(小外形集成电路)等。

从材料介质方面,包括金属、陶瓷、塑料、塑料,很多高强度工作条件需求的电路如军工和宇航级别仍有大量的金属封装。

以下为小编整理的主流封装类型:常见的10大芯片封装类型1、DIP双列直插式封装DIP是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。

采用DIP封装的IC有两排引脚,需要插入到具有DIP结构的芯片插座上。

当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。

DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。

DIP封装图DIP封装具有以下特点:1、适合在PCB(印刷电路板)上穿孔焊接,操作方便。

2、芯片面积与封装面积之间的比值较大,故体积也较大。

DIP是最普及的插装型封装,应用范围包括标准逻辑IC,存储器和微机电路等。

2、QFP/ PFP类型封装QFP/PFP封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式。

用这种形式封装的芯片必须采用SMD(表面安装设备技术)将芯片与主板焊接起来。

PCB元件封装总结(超好)

PCB元件封装总结(超好)

PCB元件封装总结(超好)元器件封装⼀、定义:零件封装是指实际零件焊接到电路板时所指⽰的外观和焊点的位置。

是纯粹的空间概念因此不同的元件可共⽤同⼀零件封装,同种元件也可有不同的零件封装。

⼆、分类:THT插⼊式封装技术;SMT表⾯粘帖式封装技术。

三、SMT的标准元器件:电阻(R)、电感(L)、陶瓷电容(C)、排电阻(RA或RN)、钽电容(C)、⼆极管(D)、晶体管(Q)等1、电阻电容的元件规格1in=25.4mm四、IC类元器件封装1、双列直插式封装(DIP):陶瓷双列直插封装(CDIP),陶瓷-玻璃双列直插式封装(CERIP),塑料双列直插式封装(PDIP)使⽤最⼴范;引脚数不超过100个。

1、⼩尺⼨封装(SOP):J型⼩尺⼨封装(SOJ),薄⼩尺⼨封装(TSOP)常⽤在内存芯⽚SDRAM的封装,缩⼩型⼩尺⼨封装(SSOP),薄的缩⼩型⼩尺⼨封装(TSSOP),甚⼩尺⼨封装(VSOP),⼩尺⼨晶体管封装(SOT),⼩尺⼨集成电路封装(SIOC)。

2、塑料⽅形扁平封装(PQFP):常⽤在⼤规模或者超⼤规模的集成电路和⾼频电路。

CFP陶瓷扁平封装、TQFP扁平簿⽚⽅形封装、CQFP陶瓷四边引线扁平3、塑料有引线芯⽚载体(PLCC):尺⼨⼩,可靠性⾼。

LCC⽆引线⽚式载体4、球栅阵列封装(BGA):⾼档CPU等⾼密度、⾼性能、多功能、多引脚、的元器件的最佳选择。

CBGA陶瓷焊球阵列封装、PBGA塑料焊球阵列封装5、芯⽚缩放式封装(CSP):芯⽚⾯积/封装⾯积=1:1.5。

WLCSP晶圆⽚级芯⽚规模封装6、引脚⽹格阵列(PGA):⽤在CPU。

CPGA陶瓷针栅阵列封装7、COB板上芯⽚贴装8、FCOB板上倒装⽚9、COC瓷质基板上芯⽚贴装10、 MCM多芯⽚模型贴装11、 CERDIP陶瓷熔封双列五、部分有极性元器件的极性识别1、⼆极管(D)(1)Green LED:表⾯⿊点为正极或正三⾓形所指⽅向为负极。

芯片贴装的4种主要方式

芯片贴装的4种主要方式

芯片贴装的4种主要方式芯片贴装是电子设备生产过程中的关键步骤之一,它将芯片与印刷电路板(PCB)连接起来,实现电路的正常运行。

在现代电子技术迅速发展的背景下,芯片贴装方式也在不断演进和改进,以满足不同需求和适应新的技术进步。

本文将介绍芯片贴装的四种主要方式,分别是表面贴装技术(SMT)、插装技术(THT)、倒装焊接技术和球栅阵列(BGA)。

一、表面贴装技术(SMT)表面贴装技术(SMT)是目前使用最广泛的芯片贴装方式之一。

它通过将芯片直接安装在PCB的表面上,然后通过焊接过程来固定芯片。

SMT所使用的芯片通常具有小尺寸、高密度和轻量化的特点。

在SMT 中,芯片的引脚通过涂有焊膏的PCB上的焊盘与PCB连接。

然后,将芯片放置在正确的位置上,并通过回流焊接将其固定在PCB上。

SMT 技术具有高效、高精度和低成本的优点,因此广泛应用于电子设备的生产中。

二、插装技术(THT)插装技术(THT)是一种通过将芯片的引脚插入PCB上的预先设计好的孔位来固定芯片的方式。

与SMT不同,THT所使用的芯片通常具有大尺寸或高功率的特点,例如电源模块、电位器等。

THT需要在PCB上钻孔并进行导线插孔和印刷贴装。

通过手工或自动化设备将芯片的引脚插入孔位中,然后焊接固定。

尽管THT相对于SMT来说成本较高,并且无法实现高密度的芯片布局,但其在一些特定的应用领域仍然被广泛使用。

三、倒装焊接技术倒装焊接技术是一种将芯片倒置安装在PCB上的方式。

这种方式常见于一些特殊封装的芯片,例如芯片级封装(CSP)和无机光学器件等。

倒装焊接技术通过将芯片背面与PCB焊接,使芯片的引脚与PCB连接。

与SMT相比,倒装焊接技术在芯片贴装过程中需要更高的精度和更小的尺寸,因此对技术要求更高。

倒装焊接技术在手机、平板电脑等小型电子设备中得到广泛应用,其具有高集成度和高可靠性的优点。

四、球栅阵列(BGA)球栅阵列(BGA)是一种通过焊接芯片底部的焊球将芯片安装在PCB上的封装方式。

电路中的电力电子器件与器件封装技术

电路中的电力电子器件与器件封装技术

电路中的电力电子器件与器件封装技术在现代电力系统中,电力电子器件在电路中起着至关重要的作用。

这些器件能够将电能转换为其他形式的能量,并将其有效地传输和控制。

而电力电子器件的封装技术则是保证其正常运行和长期稳定性的重要一环。

本文将就电力电子器件的种类和常用封装技术展开探讨。

一、电力电子器件的种类电力电子器件根据其工作原理和功能不同,可以分为多个种类,如晶闸管、功率MOSFET、大功率IPM、IGBT等。

这些器件在电力系统中广泛应用,例如变流器、逆变器、驱动器、电源等。

不同的电力电子器件在封装技术上也存在差异。

二、器件封装技术概述电力电子器件的封装技术旨在提供器件的物理保护、导热性能、电气连接和机械固定等功能。

常见的器件封装技术包括直插式(DIP)封装、表面贴装(SMD)封装、球栅阵列(BGA)封装等。

1. 直插式(DIP)封装直插式封装是较早期常用的封装技术之一。

其特点是器件引脚伸出,通过插装到印刷电路板(PCB)上实现连接。

这种封装技术适用于大功率器件,如功率MOSFET和IGBT等,具有较好的散热性能和电气连接性能。

2. 表面贴装(SMD)封装表面贴装封装是目前电力电子器件中最常见的封装技术之一。

器件引脚直接焊接在PCB的表面上,而不需要插装到孔中。

这种封装技术具有尺寸小、重量轻、适应性强等优点,被广泛应用于电源、电驱动、通信等领域。

3. 球栅阵列(BGA)封装球栅阵列封装属于高级封装技术,其引脚通过焊接在PCB底部的球形焊点上实现连接。

这种封装技术适用于高密度、高功率应用,具有良好的导热性和电气连接性能。

三、器件封装技术的发展趋势随着电力电子器件性能的提高和应用领域的拓宽,器件封装技术也在不断发展。

未来几年内,可预见以下几个趋势:1. 高温封装技术随着电力电子器件功率密度的提升,对器件封装散热性能的要求也越来越高。

因此,研究人员将致力于开发更高温度下可靠性更好的封装技术,以适应高功率应用的需求。

印刷电路板

印刷电路板

印刷电路板1、单面板(Single-Sided Boards)2、双面板(Double-Sided Boards)3、多层板(Multi-Layer Boards)二、PCB设计中的差不多概念1、层(Layer)2、过孔(Via)3、丝印层(Overlay)4、SMD的专门性5、网格状填充区(External Plane )和填充区(Fill)6、焊盘( Pad)7、各类膜(Mask)8、飞线飞线有两重含义0欧阻值作用1、模拟地和数字地单点接地只要是地,最终都要接到一起,然后入大地。

如果不接在一起确实是"浮地",存在压差,容易积存电荷,造成静电。

地是参考0电位,所有电压差不多上参考地得出的,地的标准要一致,故各种地应短接在一起。

人们认为大地能够吸取所有电荷,始终坚持稳固,是最终的地参考点。

尽管有些板子没有接大地,但发电厂是接大地的,板子上的电源最终依旧会返回发电厂入地。

如果把模拟地和数字地大面积直截了当相连,会导致互相干扰。

不短接又不妥,理由如上有四种方法解决此咨询题:1、用磁珠连接;2、用电容连接;3、用电感连接;4、用0欧姆电阻连接。

磁珠的等效电路相当于带阻限波器,只对某个频点的噪声有明显抑制作用,使用时需要预先估量噪点频率,以便选用适当型号。

关于频率不确定或无法预知的情形,磁珠不合。

电容隔直通交,造成浮地。

电感体积大,杂散参数多,不稳固。

0欧电阻相当于专门窄的电流通路,能够有效地限制环路电流,使噪声得到抑制。

电阻在所有频带上都有衰减作用(0欧电阻也有阻抗),这点比磁珠强。

2、跨接时用于电流回路当分割电地平面后,造成信号最短回流路径断裂,现在,信号回路不得不绕道,形成专门大的环路面积,电场和磁场的阻碍就变强了,容易干扰/被干扰。

在分割区上跨接0欧电阻,能够提供较短的回流路径,减小干扰。

3、配置电路一样,产品上不要显现跳线和拨码开关。

有时用户会乱动设置,易引起误会,为了减少爱护费用,应用0欧电阻代替跳线等焊在板子上。

ipc7251标准(一)

ipc7251标准(一)

ipc7251标准(一)IPC7251标准什么是IPC7251标准?IPC7251标准是全球公认的PCB设计标准。

它包括声学一致性技术(SMT)、印刷电路板(PCB)布局和元器件安装等方面的规范。

该标准详细说明了元器件封装的标准化尺寸和PCB板上布局的标准化尺寸,使得PCB板的质量和可靠性得到了提高。

IPC7251标准的历史IPC7251标准是由IPC制定的,IPC成立于1957年,是全球PCB (Printed Circuit Board)行业的领先组织。

IPC7251标准的前身是IPC-SM-782A规范,该规范于2001年发布。

2010年,IPC正式发布了IPC7251B标准版本。

现在,IPC7251C正在研发过程中,预计将于2022年发布。

IPC7251标准的应用在PCB设计过程中,IPC7251标准可以起到重要的指导作用。

根据该标准,设计师可以选择预定的封装大小和尺寸,从而避免元器件的误差和损失。

同时,符合IPC7251标准的PCB板具有更好的可靠性和性能。

因此,多数PCB设计公司都采用IPC7251标准。

IPC7251标准的特点IPC7251标准的特点主要由以下几个方面组成:•公认性:IPC7251标准是全球公认的PCB设计标准,得到了全球PCB行业的认可。

•规范性:IPC7251标准详细规定了封装和PCB布局的标准化尺寸,使得PCB板的质量和可靠性得到了提高。

•长期性:IPC7251标准更新周期稳定,可以长期应用于PCB设计中。

•高可靠性:符合IPC7251标准的PCB板具有更好的可靠性和性能,能够满足大部分应用需求。

IPC7251标准的优势IPC7251标准具有以下优势:•提高设计效率:IPC7251标准能够为设计师提供标准化的尺寸和布局,从而提高PCB设计的效率。

•提高设计精度:遵循IPC7251标准可以避免设计过程中的错误,提高设计精度。

•提高产品质量:符合IPC7251标准的PCB板具有更好的可靠性和性能,能够提高产品的质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

印刷电路板(Printed circuit board,PCB)
PCB(Printed Circuie Board)印制线路板的简称,通常把在绝缘材上,按预定设计,制成印制线路、印制元件或两者组合而成的导电图形称为印制电路。

而在绝缘基材上提供元器件之间电气连接的导电图形,称为印制线路。

这样就把印制电路或印制线路的成品板称为印制线路板,亦称为印制板或印制电路板。

标准的PCB上头没有零件,也常被称为“印刷线路板Printed Wiring Board(PWB)”.
为了将零件固定在PCB上面,我们将它们的接脚直接焊在布线上。

在最基本的PCB(单面板)上,零件都集中在其中一面,导线则都集中在另一面。

这么一来我们就需要在板子上打洞,这样接脚才能穿过板子到另一面,所以零件的接脚是焊在另一面上的。

因为如此,PCB的正反面分别被称为零件面(Component Side)与焊接面(Solder Side)。

如果PCB上头有某些零件,需要在制作完成后也可以拿掉或装回去,那么该零件安装时会用到插座(Socket)。

由于插座是直接焊在板子上的,零件可以任意的拆装。

下面看到的是ZIF(Zero I ertion Force,零拨插力式)插座,它可以让零件(这里指的是CPU)可以轻松插进插座,也可以拆下来。

插座旁的固定杆,可以在您插进零件后将其固定。

如果要将两块PCB相互连结,一般我们都会用到俗称「金手指」的边接头(edge co ector)。

金手指上包含了许多裸露的铜垫,这些铜垫事实上也是PCB 布线的一部份。

通常连接时,我们将其中一片PCB上的金手指插进另一片PCB 上合适的插槽上(一般叫做扩充槽Slot)。

在计算机中,像是显示卡,声卡或是其它类似的界面卡,都是借着金手指来与主机板连接的。

PCB上的绿色或是棕色,是阻焊漆(solder mask)的颜色。

这层是绝缘的防护层,可以保护铜线,也可以防止零件被焊到不正确的地方。

在阻焊层上另外会印刷上一层丝网印刷面(silk screen)。

通常在这上面会印上文字与符号(大多是白色的),以标示出各零件在板子上的位置。

丝网印刷面也被称作图标面(legend)。

单面板(Single-Sided Boards)
我们刚刚提到过,在最基本的PCB上,零件集中在其中一面,导线则集中在另一面上。

因为导线只出现在其中一面,所以我们就称这种PCB叫作单面板(Single-sided)。

因为单面板在设计线路上有许多严格的限制(因为只有一面,布线间不能交叉而必须绕独自的路径),所以只有早期的电路才使用这类的板子。

双面板(Double-Sided Boards)
这种电路板的两面都有布线。

不过要用上两面的导线,必须要在两面间有适当的电路连接才行。

这种电路间的「桥梁」叫做导孔(via)。

导孔是在PCB上,充满或涂上金属的小洞,它可以与两面的导线相连接。

因为双面板的面积比单面板大了一倍,而且因为布线可以互相交错(可以绕到另一面),它更适合用在比单面板更复杂的电路上。

多层板(Multi-Layer Boards)
为了增加可以布线的面积,多层板用上了更多单或双面的布线板。

多层板使用数片双面板,并在每层板间放进一层绝缘层后黏牢(压合)。

板子的层数就代表了有几层独立的布线层,通常层数都是偶数,并且包含最外侧的两层。

大部分
的主机板都是4到8层的结构,不过技术上可以做到近100层的PCB板。

大型的超级计算机大多使用相当多层的主机板,不过因为这类计算机已经可以用许多普通计算机的集群代替,超多层板已经渐渐不被使用了。

因为PCB中的各层都紧密的结合,一般不太容易看出实际数目,不过如果您仔细观察主机板,也许可以看出来。

我们刚刚提到的导孔(via),如果应用在双面板上,那么一定都是打穿整个板子。

不过在多层板当中,如果您只想连接其中一些线路,那么导孔可能会浪费一些其它层的线路空间。

埋孔(Buried vias)和盲孔(Blind vias)技术可以避免这个问题,因为它们只穿透其中几层。

盲孔是将几层内部PCB与表面PCB 连接,不须穿透整个板子。

埋孔则只连接内部的PCB,所以光是从表面是看不出来的。

在多层板PCB中,整层都直接连接上地线与电源。

所以我们将各层分类为信号层(Signal),电源层(Power)或是地线层(Ground)。

如果PCB上的零件需要不同的电源供应,通常这类PCB会有两层以上的电源与电线层。

零件封装技术
插入式封装技术(Through Hole Technology)
将零件安置在板子的一面,并将接脚焊在另一面上,这种技术称为「插入式(Through Hole Technology,THT)」封装。

这种零件会需要占用大量的空间,并且要为每只接脚钻一个洞。

所以它们的接脚其实占掉两面的空间,而且焊点也比较大。

但另一方面,THT零件和SMT(Surface Mounted Technology,表面黏着式)零件比起来,与PCB连接的构造比较好,关于这点我们稍后再谈。

像是排线的插座,和类似的界面都需要能耐压力,所以通常它们都是THT封装。

表面黏贴式封装技术(Surface Mounted Technology)
使用表面黏贴式封装(Surface Mounted Technology,SMT)的零件,接脚是焊在与零件同一面。

这种技术不用为每个接脚的焊接,而都在PCB上钻洞。

表面黏贴式的零件,甚至还能在两面都焊上。

SMT也比THT的零件要小。

和使用THT零件的PCB比起来,使用SMT技术的PCB板上零件要密集很多。

SMT封装零件也比THT的要便宜。

所以现今的PCB上大部分都是SMT,自然不足为奇。

因为焊点和零件的接脚非常的小,要用人工焊接实在非常难。

不过如果考虑到目前的组装都是全自动的话,这个问题只会出现在修复零件的时候吧。

相关文档
最新文档