(推荐)固相萃取基本原理与操作
固相萃取柱知识点
1、使用阳离子固相萃取柱前为什么要用甲醇和水活化要是使用的是高聚物基质的阳离子柱,可直接上样,不用活化,要是使用的是硅胶基质的阳离子柱,活化是为了打开键合在硅胶上的碳基团链,使之充分发生作用,甲醇是为了与碳链互溶,用水过度是为了能和样品溶液相溶。
2、固相萃取技术原理及应用一、固相萃取基本原理与操作1、固相萃取吸附剂与目标化合物之间的作用机理固相萃取主要通过目标物与吸附剂之间的以下作用力来保留/吸附的1)疏水作用力:如C18、C8、Silica、苯基柱等2)离子交换作用:SAX, SCX,COOH、NH2等3)物理吸附:Florsil、Alumina等2、p H值对固相萃取的影响pH值可以改变目标物/吸附剂的离子化或质子化程度。
对于强阳/阴离子交换柱来讲,因为吸附剂本身是完全离子化的状态,目标物必须完全离子化才可以保证其被吸附剂完全吸附保留。
而目标物的离子化程度则与pH值有关。
如对于弱碱性化合物来讲,其pH值必须小于其pKa值两个单位才可以保证目标物完全离子化,而对于弱酸性化合物,其pH值必须大于其pKa值两个单位才能保证其完全离子化。
对于弱阴/阳离子交换柱来讲,必须要保证吸附剂完全离子化才保证目标物的完全吸附,而溶液的pH值必须满足一定的条件才能保证其完全离子化。
3、固相萃取操作步骤及注意事项针对填料保留机理的不同(填料保留目标化合物或保留杂质),操作稍有不同。
1)填料保留目标化合物固相萃取操作一般有四步(见图1):Ø 活化---- 除去小柱内的杂质并创造一定的溶剂环境。
(注意整个过程不要使小柱干涸)Ø 上样---- 将样品用一定的溶剂溶解,转移入柱并使组分保留在柱上。
(注意流速不要过快,以1ml/min为宜,最大不超过5ml/min)Ø 淋洗---- 最大程度除去干扰物。
(建议此过程结束后把小柱完全抽干)Ø 洗脱---- 用小体积的溶剂将被测物质洗脱下来并收集。
固相萃取的基本原理
固相萃取的基本原理
固相萃取是一种常用的分离纯化技术,适用于从复杂的混合物中提取目标化合物。
其基本原理是利用化学吸附剂或吸附树脂对目标物质进行选择性吸附,而非目标物质则被排除。
以下是固相萃取的基本原理:
1. 选择合适的吸附剂:根据所要提取的目标物质的特性,选择合适的吸附剂,使其能够与目标物质发生强烈的吸附作用,而不吸附其他成分。
2. 准备固相材料:将选择的吸附剂装填到合适的固相材料中,如固相萃取柱或固相萃取片等。
3. 样品预处理:将待分离的混合样品进行预处理,通常包括样品萃取、溶剂调整、pH调整和过滤等步骤,以便提高目标物
质的分离效果。
4. 样品萃取:将预处理后的样品通过固相萃取柱等装置,使混合物中的目标物质与吸附剂发生相互作用,并实现吸附。
5. 不同洗脱步骤:使用不同的溶剂(洗脱剂)或调整洗脱条件,以实现目标物质与吸附剂之间的选择性解吸。
洗脱的条件可以根据目标物质的亲疏水性、极性或其他化学性质来选择。
6. 获取目标物质:通过洗脱步骤,将目标物质从吸附剂上解吸出来,然后适当地浓缩或纯化,最终得到所需的目标物质。
总的来说,固相萃取是通过选择性吸附和解吸的过程实现物质的分离纯化。
这一技术具有操作简便、分离效果好、消耗溶剂少等优点,在化学分析、环境监测、生物医学等领域得到了广泛应用。
固相萃取
固相萃取技术原理及应用一、固相萃取基本原理与操作1、固相萃取吸附剂与目标化合物之间的作用机理固相萃取主要通过目标物与吸附剂之间的以下作用力来保留/吸附的1)疏水作用力:如C18、C8、Silica、苯基柱等2)离子交换作用:SAX, SCX,COOH、NH2等3)物理吸附:Florsil、Alumina等2、p H值对固相萃取的影响pH值可以改变目标物/吸附剂的离子化或质子化程度。
对于强阳/阴离子交换柱来讲,因为吸附剂本身是完全离子化的状态,目标物必须完全离子化才可以保证其被吸附剂完全吸附保留。
而目标物的离子化程度则与pH值有关。
如对于弱碱性化合物来讲,其pH值必须小于其pKa值两个单位才可以保证目标物完全离子化,而对于弱酸性化合物,其pH值必须大于其pKa值两个单位才能保证其完全离子化。
对于弱阴/阳离子交换柱来讲,必须要保证吸附剂完全离子化才保证目标物的完全吸附,而溶液的pH值必须满足一定的条件才能保证其完全离子化。
3、固相萃取操作步骤及注意事项针对填料保留机理的不同(填料保留目标化合物或保留杂质),操作稍有不同。
1)填料保留目标化合物固相萃取操作一般有四步(见图1):Ø 活化---- 除去小柱内的杂质并创造一定的溶剂环境。
(注意整个过程不要使小柱干涸)Ø 上样---- 将样品用一定的溶剂溶解,转移入柱并使组分保留在柱上。
(注意流速不要过快,以1ml/min为宜,最大不超过5ml/min)Ø 淋洗---- 最大程度除去干扰物。
(建议此过程结束后把小柱完全抽干)Ø 洗脱---- 用小体积的溶剂将被测物质洗脱下来并收集。
(注意流速不要过快,以1ml/min为宜)如下图1:2)填料保留杂质固相萃取操作一般有三步(见图2):Ø 活化--除去柱子内的杂质并创造一定的溶剂环境。
(注意整个过程不要使小柱干涸)Ø 上样--将样品转移入柱,此时大部分目标化合物会随样品基液流出,杂质被保留在柱上,故此步骤要开始收集(注意流速不要过快)Ø 洗脱---用小体积的溶剂将组分淋洗下来并收集,合并收集液。
固相萃取和固相微萃取
固相萃取和固相微萃取一、概述固相萃取(SPE)和固相微萃取(SPME)是两种常见的样品前处理技术,它们可以用于分离和富集目标化合物。
SPE通常用于大样品量的分析,而SPME则适用于小样品量的分析。
二、固相萃取1. 原理固相萃取是一种样品前处理技术,通过将目标化合物从复杂的混合物中吸附到特定的固相材料上,然后再用洗脱剂将其洗脱出来。
这种技术可以有效地去除其他干扰物质,并提高目标化合物的浓度。
2. 步骤(1)选择适当的固相材料;(2)将样品加入到固相柱中;(3)用洗脱剂洗脱目标化合物;(4)将洗脱液收集并进行进一步分析。
3. 固相材料常见的固相材料包括C18、C8、Silica gel等。
不同的固相材料具有不同的亲水性和疏水性,因此可以选择适当的材料来富集不同类型的化合物。
4. 应用领域SPE广泛应用于环境、食品、药物等领域的样品前处理中。
例如,可以用SPE技术来富集水中的有机污染物、食品中的农药残留等。
三、固相微萃取1. 原理固相微萃取是一种无机溶剂的萃取技术,通过将特定的固相材料包裹在针头上,然后将其插入样品中进行吸附和富集目标化合物。
这种技术可以有效地去除其他干扰物质,并提高目标化合物的浓度。
2. 步骤(1)选择适当的固相材料;(2)将固相材料包裹在针头上;(3)将针头插入样品中进行吸附和富集目标化合物;(4)用洗脱剂洗脱目标化合物;(5)将洗脱液收集并进行进一步分析。
3. 固相材料常见的固相材料包括PDMS、CAR等。
不同的固相材料具有不同的亲水性和疏水性,因此可以选择适当的材料来富集不同类型的化合物。
4. 应用领域SPME广泛应用于环境、食品、药物等领域的样品前处理中。
例如,可以用SPME技术来富集水中的有机污染物、食品中的农药残留等。
四、比较1. 样品量SPE适用于大样品量的分析,而SPME则适用于小样品量的分析。
2. 富集效率SPE和SPME都可以有效地去除其他干扰物质,并提高目标化合物的浓度。
固相萃取基本原理与操作
一、固相萃取基本原理与操作1、固相萃取吸附剂与目标化合物之间的作用机理固相萃取主要通过目标物与吸附剂之间的以下作用力来保留/吸附的1)疏水作用力:如C18、C8、Silica、苯基柱等2)离子交换作用:SAX, SCX,COOH、NH2等3)物理吸附:Florsil、Alumina等2、p H值对固相萃取的影响pH值可以改变目标物/吸附剂的离子化或质子化程度。
对于强阳/阴离子交换柱来讲,因为吸附剂本身是完全离子化的状态,目标物必须完全离子化才可以保证其被吸附剂完全吸附保留。
而目标物的离子化程度则与pH值有关。
如对于弱碱性化合物来讲,其pH值必须小于其pKa值两个单位才可以保证目标物完全离子化,而对于弱酸性化合物,其pH 值必须大于其pKa值两个单位才能保证其完全离子化。
对于弱阴/阳离子交换柱来讲,必须要保证吸附剂完全离子化才保证目标物的完全吸附,而溶液的pH值必须满足一定的条件才能保证其完全离子化。
3、固相萃取操作步骤及注意事项针对填料保留机理的不同(填料保留目标化合物或保留杂质),操作稍有不同。
1)填料保留目标化合物固相萃取操作一般有四步(见图1):Ø活化---- 除去小柱的杂质并创造一定的溶剂环境。
(注意整个过程不要使小柱干涸)Ø上样---- 将样品用一定的溶剂溶解,转移入柱并使组分保留在柱上。
(注意流速不要过快,以1ml/min为宜,最大不超过5ml/m in)Ø淋洗---- 最大程度除去干扰物。
(建议此过程结束后把小柱完全抽干)Ø洗脱---- 用小体积的溶剂将被测物质洗脱下来并收集。
(注意流速不要过快,以1ml/min为宜)如下图1:2)填料保留杂质固相萃取操作一般有三步(见图2):Ø活化--除去柱子的杂质并创造一定的溶剂环境。
(注意整个过程不要使小柱干涸)Ø上样--将样品转移入柱,此时大部分目标化合物会随样品基液流出,杂质被保留在柱上,故此步骤要开始收集(注意流速不要过快)Ø洗脱---用小体积的溶剂将组分淋洗下来并收集,合并收集液。
固相萃取操作
固相萃取操作一、引言固相萃取是一种常用的分离纯化技术,在化学、生物学等领域广泛应用。
它通过固定相材料与待提取物质之间的相互作用,实现对目标物质的分离和富集。
本文将介绍固相萃取的原理、常用材料和操作步骤,以及其在实际应用中的重要性和局限性。
二、固相萃取原理固相萃取的原理基于吸附-解吸过程。
具体而言,固定相材料表面的功能基团与待提取物质之间发生吸附作用,将目标物质从混合物中分离出来。
而后,通过改变条件(如溶剂pH、温度等),使目标物质从固定相上解吸,得到纯净的目标物质。
三、常用固定相材料1. Silica gel:硅胶是一种常用的固定相材料,其具有较高的吸附能力和化学稳定性。
硅胶可以通过改变孔径和表面官能团来适应不同的提取需求。
2. Bonded silica:固定相硅胶的表面可以修饰为特定的官能团,如脂肪酸、芳香烃等,以增强对特定物质的选择性吸附。
3. Polymer-based materials:聚合物基固定相材料具有较高的机械强度和化学稳定性,常用于对大体积样品的提取。
4. Carbon-based materials:碳基固定相材料具有较高的吸附能力和选择性,常用于提取有机物质。
四、固相萃取操作步骤1. 准备固定相材料:根据待提取物质的性质选择合适的固定相材料,并将其制备成适当的形式(如固定相柱、片剂等)。
2. 条件预处理:根据待提取物质的特性,预处理样品。
例如,对于生物样品,可以通过蛋白酶消化、酸碱调节等步骤来提取目标物质。
3. 样品加载:将预处理后的样品与固定相材料接触,使目标物质吸附到固定相表面。
可以通过溶液滴加、样品注入等方式进行样品加载。
4. 杂质去除:将非目标物质从固定相上洗脱,以减少干扰。
可以使用纯溶剂或特定的洗脱溶液进行洗脱。
5. 目标物质洗脱:改变条件,使目标物质从固定相上解吸。
可以通过调节溶剂pH、温度等参数来实现目标物质的洗脱。
6. 浓缩和洗脱溶剂去除:将洗脱溶液进行浓缩,以得到目标物质的富集样品。
固相萃取柱知识点..
1、使用阳离子固相萃取柱前为什么要用甲醇和水活化要是使用的是高聚物基质的阳离子柱,可直接上样,不用活化,要是使用的是硅胶基质的阳离子柱,活化是为了打开键合在硅胶上的碳基团链,使之充分发生作用,甲醇是为了与碳链互溶,用水过度是为了能和样品溶液相溶。
2、固相萃取技术原理及应用一、固相萃取基本原理与操作1、固相萃取吸附剂与目标化合物之间的作用机理固相萃取主要通过目标物与吸附剂之间的以下作用力来保留/吸附的1)疏水作用力:如C18、C8、Silica、苯基柱等2)离子交换作用:SAX, SCX,COOH、NH2等3)物理吸附:Florsil、Alumina等2、p H值对固相萃取的影响pH值可以改变目标物/吸附剂的离子化或质子化程度。
对于强阳/阴离子交换柱来讲,因为吸附剂本身是完全离子化的状态,目标物必须完全离子化才可以保证其被吸附剂完全吸附保留。
而目标物的离子化程度则与pH值有关。
如对于弱碱性化合物来讲,其pH值必须小于其pKa值两个单位才可以保证目标物完全离子化,而对于弱酸性化合物,其pH值必须大于其pKa值两个单位才能保证其完全离子化。
对于弱阴/阳离子交换柱来讲,必须要保证吸附剂完全离子化才保证目标物的完全吸附,而溶液的pH值必须满足一定的条件才能保证其完全离子化。
3、固相萃取操作步骤及注意事项针对填料保留机理的不同(填料保留目标化合物或保留杂质),操作稍有不同。
1)填料保留目标化合物固相萃取操作一般有四步(见图1):Ø 活化---- 除去小柱内的杂质并创造一定的溶剂环境。
(注意整个过程不要使小柱干涸)Ø 上样---- 将样品用一定的溶剂溶解,转移入柱并使组分保留在柱上。
(注意流速不要过快,以1ml/min为宜,最大不超过5ml/min)Ø 淋洗---- 最大程度除去干扰物。
(建议此过程结束后把小柱完全抽干)Ø 洗脱---- 用小体积的溶剂将被测物质洗脱下来并收集。
固相微萃取原理及使用
固相微萃取原理及使用固相微萃取(SPME,Solid-Phase Microextraction)是一种新型的样品前处理技术,通过固定在纤维上的固相吸附剂从气态、液态或固态样品中萃取目标分析物,并将其直接转移到气相色谱仪(GC)或液相色谱仪(LC)进行定性和定量分析。
固相微萃取的原理基于固相吸附剂对目标分析物的亲合性。
通常使用的固相吸附剂是聚二甲基硅氧烷(PDMS)或其他官能化的聚合物。
PDMS 纤维富含非极性表面,能够吸附疏水性的目标分析物。
在样品中,目标分析物与固相吸附剂表面发生吸附作用,达到平衡后,可以将纤维直接放入分析仪器进行进一步分析。
固相微萃取的使用步骤包括样品处理、纤维曝气和分析步骤。
样品处理通常涉及样品的预处理,如溶解、稀释、搅拌等,以便将目标分析物从样品基质中释放出来。
然后将固相吸附剂纤维插入样品中,使其与目标分析物接触,并允许吸附达到平衡。
曝气步骤是将纤维暴露在空气或惰性气体中,以去除吸附在纤维上的水分和挥发性杂质。
最后,将纤维放入色谱仪进行分析。
固相微萃取的优点包括简便、快速、高效、灵敏、环境友好以及无需有机溶剂等。
相比于传统的样品前处理方法,如液-液萃取和固相萃取,固相微萃取不需要大量的溶剂、操作步骤和设备,大大简化了样品前处理的流程。
此外,由于固相微萃取仅使用微量吸附剂,其分析结果更具可重复性和可比性。
同时,固相微萃取可以在不破坏或减少样品中目标分析物含量的情况下实现富集,避免了样品基质对分析结果的干扰。
固相微萃取在环境、食品、生物、医药等领域中得到了广泛应用。
例如,可以用于食品和饮料中残留农药和有害物质的分析,环境水样中的挥发性有机物的监测,空气中的挥发性有机物的测定,以及生物样品中药物或代谢物的分析等。
此外,固相微萃取还可以与其他技术结合,如气相色谱质谱联用、高效液相色谱质谱联用等,以实现更高的分析灵敏度和选择性。
总之,固相微萃取是一种新颖的样品前处理技术,具有简便、高效、灵敏且环境友好的特点,被广泛应用于各种样品的分析和监测,并为分析化学领域带来了极大的便利。
固相萃取仪及其操作
(二) 操作程序
1、插上电源,打开开关,此时开关蓝色指示灯发亮,降温风扇转动, LED显示数字。 2、按 键,电机按出厂设定的速度运转,再一次按 键,电机停止运转。 3、按 键,切换到时间调节状态,时间指示灯发亮,转速指示灯灭,按 或 键,时间以秒为单位,可从00′00″—99′59″任意设定每一个固相萃取操作 步骤的时间,再一次按 键,又可切换到转速调节状态;当转速显示小于 30 rpm时,每按一次 或 键,转速显示跳动0.1/次;当转速显示大于30 rpm时,每按一次 或 键,转速显示跳动1/次。 4、对照下表,根据固相萃取操作标准的流速要求,调节本机转速和设定 时间: 转速rpm 1 5 10 15 20 50 100 流速ml/min 0.07 0.35 0.7 1.05 1.4 3.5 7.0 5、应先设转速,再设定时,最后按 键,所设定的转速和时间被储存到芯 片上并开始运行,LED显示倒计时,直至00′00″,电机停止运行。 6、下一次开机时,本机默认关机前最后一次设定的转速和时间,也可根 据需要,从新进行设定。
(三)维护保养
1、保持环境整洁,灰尘过多、高温高湿环境会影响本机寿命 2、油脂、非极性溶剂等可能对数控泵管造成损害,应避免其 接触; 3、请按下表定期检查数控泵管是否出现粘连的情况及磨损程 度,特别是在液体过柱流速下降的时候。 4、清洁本机前,请从交流电源插座上拔下电源插头。请使用 略湿的抹布清洁本机。清洁时勿使用液体清洁剂或喷雾清洁剂。 5、请把本机放置在水平的实验台上或通风橱内使用,请勿让 本机接近热源,不要让物品遮盖正面板和底板的通风孔; 6、停用时间较长时,请拔掉电源线,并把机箱内泵头管夹上 的压管竿向下扳,放松数控泵管,避免管的粘连;重新使用时请 检查数控泵管是否老化,必要时需要更换。
固相萃取基本原理与操作
固相萃取基本原理与操作固相萃取(Solid Phase Extraction,SPE)是一种常用的样品前处理技术,用于从复杂的样品基质中富集和纯化目标化合物。
它在环境监测、食品安全、药物分析等领域得到广泛应用。
固相萃取的基本原理是利用固定在固相材料上的吸附剂选择性地吸附目标化合物,然后通过洗脱过程将目标化合物从吸附剂上解吸下来。
固相萃取操作一般包括以下几个步骤:1.准备固相柱:将固相柱安装在固相萃取仪器上,并根据需要装填合适的固相填料(如吸附剂)。
常用的吸附剂有C18矽胶、环烷基、聚合物和细碳纤维等。
2.样品预处理:将样品通过一系列的预处理方法,如过滤、离心浓缩、酸碱调节、转化、净化等,进行初步的处理,以去除杂质和提高目标化合物的浓度。
3.样品加载:将经过预处理的样品通过进样装置加载到固相柱中,将目标化合物以及其他可能的干扰物吸附在固相填料上。
4.洗脱:根据目标化合物和干扰物的亲水性和疏水性差异,选择适当的洗脱溶液进行洗脱,将目标化合物从固相填料上洗脱下来。
洗脱过程中通常使用有机溶剂,如乙腈、甲醇等。
5.浓缩和回溶:将洗脱液浓缩到一定体积,以提高目标化合物的浓度。
通常使用氮气吹扫、蒸发浓缩等方法进行浓缩。
浓缩后,可以选择适当的溶剂进行回溶,以获得满足实验要求的样品溶液。
固相萃取的基本原理包括如下几点:1.吸附选择性:固相柱上所选用的吸附剂可以根据目标化合物的亲水性或疏水性选择,从而将目标化合物吸附在固相填料上,不同的吸附剂对目标化合物和干扰物的选择性有所差异。
2.大体相分离:固相柱中的固相填料具有较大的比表面积,可以有效地与待吸附化合物进行物质交换,并将目标化合物从溶液中吸附到固相填料上,实现目标化合物和其他组分的分离。
3.清洗淋洗:通过选择适当的洗脱溶液,可以有效地去除吸附剂上非目标化合物的残留,提高目标化合物的纯度。
4.吸附静态平衡:吸附剂对目标化合物的吸附速度和平衡时的吸附量是固相萃取过程的一个重要参数,需要通过实验调整吸附时间和洗脱溶剂的体积,以达到最佳的吸附效果。
固相萃取基本原理与应用
固相萃取基本原理与应用固相萃取(Solid-Phase Extraction,SPE)是一种常用的样品前处理技术,用于分离和富集目标物质。
固相萃取基于样品中不同成分的物理化学性质的差异,通过选择或调整萃取剂和固相材料,实现对目标物质的选择性富集和净化。
固相萃取广泛应用于环境监测、食品安全、药物分析、生物医学等领域,其原理和应用如下:1.基本原理固相萃取的基本原理是通过液相萃取的方式将待分析样品中的目标化合物以固相吸附剂的形式富集在其表面,而非直接溶解在溶剂中。
固相吸附剂通常为固体颗粒,其表面具有一定的化学性质,使其可以选择性吸附目标物质。
固相吸附剂选择应根据目标物质的化学性质、样品基质的复杂性以及目标物质与基质之间的亲疏水性等因素进行合理选择。
固相萃取通常包括以下几个步骤:样品预处理、样品加载、洗脱和目标物质的Elution。
首先,在样品处理之前需要对样品进行预处理,如固体样品的研磨和溶液样品的过滤。
然后,将样品与固相吸附剂接触,目标物质由样品基质中被吸附在固相吸附剂上。
洗脱步骤是为了去除干扰物质,保留目标物质。
最后,目标物质以合适的溶剂进行洗脱,得到净化的目标物质。
2.应用领域固相萃取广泛应用于不同领域的样品前处理和分析中。
以下是一些常见的应用:2.1环境监测固相萃取在环境监测中扮演了重要角色。
它可以应用于水体、土壤、大气等样品中有机污染物的富集和分离。
比如,对于水样品,固相萃取通常用于分离和测定有机污染物如农药、药物残留、挥发性有机物等。
2.2食品安全固相萃取在食品安全领域中也有广泛应用。
食品中的农药残留、有害物质和食品添加剂等可通过固相萃取富集和分离。
固相萃取的优点在于其选择性、灵敏度和高效性,可以满足对食品安全的严格监测要求。
2.3药物分析固相萃取在药物分析领域也有重要应用。
药物在生物样品中的富集和分离可通过固相萃取实现。
例如,对于尿液样品,固相萃取被广泛应用于药物代谢产物、毒性物质和药物残留的分析。
固相萃取的概念、步骤和操作
固相萃取的概念、步骤和操作概念:利用固体吸附剂将样品中的目标分析物吸附,与样品的基质和干扰物分离,然后再用有机溶剂或加热解吸附,达到分离、纯化及浓缩目标物的目的。
固相萃取(SPE)是利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰化合物分离,然后再用洗脱液洗脱,达到分离和富集的目的。
先使液体样品通过一装有吸附剂(固相)小柱,保留其中某些组分,再选用适当的溶剂冲洗杂质,然后用少量溶剂迅速洗脱,从而达到快速分离净化与浓缩的目的。
SPE可以用于所有类型样品的处理,但是液体样品是最容易处理的与液液萃取(LLE)相比,固相萃取具有如下优点:①回收率和富集倍数高;②有机溶剂消耗量低,减少对环境的污染;③更有效的将分析物与干扰组分分离;④无相分离操作过程,容易收集分析物;⑤能处理小体积试样;⑥操作简便、快速,费用低,易于实现自动化及与其他分析仪器联用。
固相萃取的基本原理:吸附剂上的活性部分对目标物和样品基质的分子作用力存在差异固相萃取保留或洗脱的机制取决于被分析物与吸附剂表面的活性基团,以及被分析物与液相之间的分子作用力。
洗脱模式:一种是目标化合物比干扰物与吸附剂之间的亲和力更强,因而被保留,洗脱时采用对目标化合物亲和力更强的溶剂;另一种是干扰物比目标化合物与吸附剂之间的亲和力更强,则目标化合物被直接的洗脱。
通常采用前一种洗脱方式。
一、固相萃取的分离模式:反相固相萃取、正相固相萃取、离子交换萃取、免疫亲和1、反相固相萃取:吸附剂(固定相)是非极性或弱极性的,如硅胶键合C18, C8, C4,C2,-苯基等。
流动相为极性(水溶液)或中等极性样品基质。
吸附剂的极性小于洗脱液的极性。
应用:可以从强极性的溶剂中(如水样)萃取非极性或弱极性的化合物。
作用机理:非极性-非极性相互作用(疏水作用),如范德华力或色散力。
例如水中PAHs,利用C18柱,甲醇洗脱剂洗脱。
2、正相固相萃取:(1)吸附剂:极性键合相,如硅胶键合氨基-NH2、氰基-CN,-Diol(二醇基);(2)极性吸附剂,如silica、Florisil、(A-,N-,B-)alumina、硅藻土等。
固相萃取的基本原理和方法
固相萃取的基本原理和方法
固相萃取仪是利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰化合物分离,然后再用洗脱液洗脱或加热解吸附,达到分离和富集目标化合物的目的(即样品的分离,净化和富集),目的在于降低样品基质干扰,提高检测灵敏度,其应用于各类食品安全检测、农产品残留监控、医药卫生、环境保护、商品检验、自来水及化工生产实验室。
固相萃取技术基于液-固相色谱理论,采用选择性吸附、选择性洗脱的方式对样品进行富集、分离、纯化,是一种包括液相和固相的物理萃取过程;也可以将其近似的看作一种简单的色谱过程。
固相萃取是利用选择性吸附与选择性洗脱的液相色谱法分离原理。
较常用的方法是使液体样品通过一吸附剂,保留其中被测物质,再选用适当强度溶剂冲去杂质,然后用少量良溶剂洗脱被测物质,从而达到快速分离净化与浓缩的目的。
也可选择性吸附干扰杂质,而让被测物质流出;或同时吸附杂质和被测物质,再使用合适的溶剂选择性洗脱被测物质。
固相萃取
固相萃取(Solid Phase Extraction SPE)就是利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰化合物分离,然后再用洗脱液洗脱或加热解吸附,达到分离和富集目标化合物的目的。
与液-液萃取相比固相萃取有很多优点:固相萃取不需要大量互不相溶的溶剂,处理过程中不会产生乳化现象,它采用高效﹑高选择性的吸附剂(固定相),能显著减少溶剂的用量,简化样品于处理过程,同时所需费用也有所减少。
一般说来固相萃取所需时间为液-液萃取的1/2,费用为液-液萃取的1/5。
其缺点是:目标化合物的回收率和精密度要低于液-液萃取。
一.固相萃取的模式及原理固相萃取实质上是一种液相色谱分离,其主要分离模式也与液相色谱相同,可分为正相(吸附剂极性大于洗脱液极性),反相(吸附剂极性小于洗脱液极性),离子交换和吸附。
固相萃取所用的吸附剂也与液相色谱常用的固定相相同,只是在粒度上有所区别。
正相固相萃取所用的吸附剂都是极性的,用来萃取(保留)极性物质。
在正相萃取时目标化合物如何保留在吸附剂上,取决于目标化合物的极性官能团与吸附剂表面的极性官能团之间相互作用,其中包括了氢键,π—π键相互作用,偶极-偶极相互作用和偶极-诱导偶极相互作用以及其他的极性-极性作用。
正相固相萃取可以从非极性溶剂样品中吸附极性化合物。
反相固相萃取所用的吸附剂通常是非极性的或极性较弱的,所萃取的目标化合物通常是中等极性到非极性化合物。
目标化合物与吸附剂间的作用是疏水性相互作用,主要是非极性-非极性相互作用,是范德华力或色散力。
离子交换固相萃取所用的吸附剂是带有电荷的离子交换树脂,所萃取的目标化合物是带有电荷的化合物,目标化合物与吸附剂之间的相互作用是静电吸引力。
固相萃取中吸附剂(固定相)的选择主要是根据目标化合物的性质和样品基体(即样品的溶剂)性质。
目标化合物的极性与吸附剂的极性非常相似的时,可以得到目标化合物的最佳保留(最佳吸附)。
两者极性越相似,保留越好(即吸附越好),所以要尽量选择与目标化合物极性相似的吸附剂。
固相萃取基本原理与操作
固相萃取基本原理与操作固相萃取是一种常用的分析前样品处理技术,通过固定相材料吸附溶液中的目标分析物,实现其在溶液中的富集和净化。
本文将详细介绍固相萃取的基本原理和操作步骤。
固相萃取的基本原理:固相萃取基于分离剂表面的吸附作用,通过控制样品的通入和流出来实现对目标化合物的选择富集。
常用的固相萃取材料包括固体吸附剂(如固相萃取柱)和固相萃取薄膜。
其基本原理是:样品中的目标分析物与固相材料发生相互作用,使其从样品中吸附到固定相上,其他杂质被排除。
然后,用适宜的溶剂洗脱固定相,使目标物从固定相上截获并得到富集。
这样可以有效去除干扰物质,提高分析物的浓度。
固相萃取的操作步骤如下:1.选择合适的固相萃取材料:根据目标分析物的性质,选择合适的固相材料。
常用的固相萃取材料有聚合物、硅胶、炭等。
2.预处理样品:将待测样品进行必要的预处理,如过滤、稀释、酸碱调节等。
这取决于样品的性质和目标分析物的特性。
3.装填样品:将预处理后的样品滴入固相萃取柱或涂覆在固相萃取薄膜上。
4.吸附:根据目标分析物的亲和性,可以调整萃取样品的pH值、温度和离子强度等条件,使目标分析物与固相材料发生吸附反应。
吸附时间一般为10-30分钟。
5.洗脱:用适宜的洗脱溶剂冲洗固相材料,将目标分析物从固相材料上洗脱出来。
洗脱溶剂的选择应根据目标分析物的亲和性来确定。
6.浓缩:将洗脱液收集到滴管或集装器中,并用氮气吹干或浓缩至所需体积。
这样可以提高目标分析物的浓度。
7.分析:用适宜的方法对洗脱液进行分析,如色谱法、光谱法等,以获得目标分析物的定性和定量结果。
固相萃取的注意事项:1.样品的处理和质量控制非常重要,应避免污染和杂质的干扰。
2.选择合适的固相材料和洗脱溶剂,保证目标分析物的选择性富集和净化。
3.操作过程中注意避免固相材料的破裂和溢出,应小心操作。
4.操作时要保持清洁和规范,避免交叉污染。
5.固相萃取后的洗脱液应妥善处理,不要直接排放,以免对环境造成污染。
固相萃取操作
固相萃取操作一、引言固相萃取是一种常用的样品净化和富集技术,广泛应用于化学分析、环境监测、生物医药等领域。
本文将介绍固相萃取的原理、操作步骤以及常见的应用领域。
二、原理固相萃取是利用固定在固相材料上的吸附剂对目标分析物进行吸附,然后通过洗脱步骤将目标物质从固相材料上解吸出来的过程。
吸附剂一般为具有一定亲和性的材料,如活性炭、硅胶、聚合物等。
三、操作步骤1. 准备样品:将待分析的样品制备成适当的溶液,通常需要进行前处理步骤,如溶解、稀释、过滤等。
2. 选择固相材料:根据目标分析物的性质选择适合的固相材料。
不同的固相材料具有不同的亲合性和选择性,需根据分析目的进行选择。
3. 装填固相材料:将选择好的固相材料装填到萃取柱中,注意保持固相材料的均匀分布和适当的压实度。
4. 样品进样:将样品溶液通过萃取柱,使样品与固相材料接触,目标分析物被固相材料吸附下来。
5. 洗脱:通过洗脱剂将目标物质从固相材料上解吸出来。
洗脱剂的选择要考虑到目标物质与固相材料的亲和性差异,通常使用极性溶剂或酸碱溶液进行洗脱。
6. 浓缩:将洗脱得到的溶液进行浓缩,通常使用旋转蒸发仪或氮吹仪等设备进行。
7. 分析:浓缩后的样品可以进行进一步的分析,如色谱分析、质谱分析等。
四、应用领域1. 环境监测:固相萃取常被用于水样、土壤样品中有机污染物的富集和分析,如挥发性有机物、多环芳烃等。
2. 食品安全:固相萃取可以用于食品中农药、重金属、残留物等的检测。
3. 生物医药:固相萃取在生物样品前处理中起到重要作用,可以用于血液、尿液等生物样品中药物、代谢产物的富集和分析。
4. 化学分析:固相萃取可以用于有机合成反应过程中产物的纯化和富集,提高分析的灵敏度和准确度。
五、总结固相萃取作为一种常用的样品净化和富集技术,具有操作简便、效果稳定、适用范围广等优点,在化学分析、环境监测和生物医药等领域得到广泛应用。
掌握固相萃取的原理和操作步骤,可以提高分析效率和准确度,为科学研究和工程实践提供有力支持。
固相萃取基本原理与操作
一、固相萃取基本原理与操作1、固相萃取吸附剂与目标化合物之间的作用机理固相萃取主要通过目标物与吸附剂之间的以下作用力来保留/吸附的1)疏水作用力:如C18、C8、Silica、苯基柱等2)离子交换作用:SAX, SCX,COOH、NH2等3)物理吸附:Florsil、Alumina等2、p H值对固相萃取的影响pH值可以改变目标物/吸附剂的离子化或质子化程度。
对于强阳/阴离子交换柱来讲,因为吸附剂本身是完全离子化的状态,目标物必须完全离子化才可以保证其被吸附剂完全吸附保留。
而目标物的离子化程度则与pH值有关。
如对于弱碱性化合物来讲,其pH值必须小于其pKa值两个单位才可以保证目标物完全离子化,而对于弱酸性化合物,其pH值必须大于其pKa值两个单位才能保证其完全离子化。
对于弱阴/阳离子交换柱来讲,必须要保证吸附剂完全离子化才保证目标物的完全吸附,而溶液的pH值必须满足一定的条件才能保证其完全离子化。
3、固相萃取操作步骤及注意事项针对填料保留机理的不同(填料保留目标化合物或保留杂质),操作稍有不同。
1)填料保留目标化合物固相萃取操作一般有四步(见图1):Ø 活化---- 除去小柱内的杂质并创造一定的溶剂环境。
(注意整个过程不要使小柱干涸)Ø 上样---- 将样品用一定的溶剂溶解,转移入柱并使组分保留在柱上。
(注意流速不要过快,以1ml/min为宜,最大不超过5ml/min)Ø 淋洗---- 最大程度除去干扰物。
(建议此过程结束后把小柱完全抽干)Ø 洗脱---- 用小体积的溶剂将被测物质洗脱下来并收集。
(注意流速不要过快,以1ml/min为宜)如下图1:2)填料保留杂质固相萃取操作一般有三步(见图2):Ø 活化--除去柱子内的杂质并创造一定的溶剂环境。
(注意整个过程不要使小柱干涸)Ø 上样--将样品转移入柱,此时大部分目标化合物会随样品基液流出,杂质被保留在柱上,故此步骤要开始收集(注意流速不要过快)Ø 洗脱---用小体积的溶剂将组分淋洗下来并收集,合并收集液。
固相萃取基本原理与操作
一、固相萃取基本原理与操作1、固相萃取吸附剂与目标化合物之间的作用机理固相萃取主要通过目标物与吸附剂之间的以下作用力来保留/吸附的1)疏水作用力:如C18、C8、Silica、苯基柱等2)离子交换作用:SAX, SCX,COOH、NH2等3)物理吸附:Florsil、 Alumina等2、p H值对固相萃取的影响pH值可以改变目标物/吸附剂的离子化或质子化程度。
对于强阳/阴离子交换柱来讲,因为吸附剂本身是完全离子化的状态,目标物必须完全离子化才可以保证其被吸附剂完全吸附保留。
而目标物的离子化程度则与pH值有关。
如对于弱碱性化合物来讲,其pH值必须小于其pKa值两个单位才可以保证目标物完全离子化,而对于弱酸性化合物,其pH值必须大于其pKa值两个单位才能保证其完全离子化。
对于弱阴/阳离子交换柱来讲,必须要保证吸附剂完全离子化才保证目标物的完全吸附,而溶液的pH值必须满足一定的条件才能保证其完全离子化。
3、固相萃取操作步骤及注意事项针对填料保留机理的不同(填料保留目标化合物或保留杂质),操作稍有不同。
1)填料保留目标化合物固相萃取操作一般有四步(见图1):Ø活化---- 除去小柱的杂质并创造一定的溶剂环境。
(注意整个过程不要使小柱干涸)Ø上样---- 将样品用一定的溶剂溶解,转移入柱并使组分保留在柱上。
(注意流速不要过快,以1ml/min为宜,最大不超过5ml/min)Ø淋洗---- 最大程度除去干扰物。
(建议此过程结束后把小柱完全抽干)Ø洗脱---- 用小体积的溶剂将被测物质洗脱下来并收集。
(注意流速不要过快,以1ml/min为宜)如下图1:2)填料保留杂质固相萃取操作一般有三步(见图2):Ø活化--除去柱子的杂质并创造一定的溶剂环境。
(注意整个过程不要使小柱干涸)Ø上样--将样品转移入柱,此时大部分目标化合物会随样品基液流出,杂质被保留在柱上,故此步骤要开始收集(注意流速不要过快)Ø洗脱---用小体积的溶剂将组分淋洗下来并收集,合并收集液。
固相萃取仪的原理是怎样的
固相萃取仪的原理是怎样的固相萃取仪是一种化学分离技术,它利用固相材料与待分离物质之间的相互作用来分离和富集化合物。
接下来,我们将深入介绍固相萃取仪的原理和工作原理。
固相萃取的原理固相萃取的基本原理是固相材料将待分离物质吸附在表面上,然后通过不同的洗脱步骤将固相材料与待分离物质分离。
它利用了化合物与固相材料之间的亲和力和疏水性,以便提高化合物的富集程度和分离效率。
这种吸附作用可以通过硅胶、活性炭、脱水剂或其他材料来实现。
固相萃取涉及的主要参数是吸附剂的种类、吸附剂用量、样品处理方法和洗脱条件。
这些因素都必须考虑到分析需求和样品复杂性的特定要求,以便选择最佳固相材料和实现最高的萃取效率。
固相萃取仪的原理固相萃取仪是一种专门用于化学分离的工具,其原理基于对液态样品中的�目标分子进行富集。
它使用高质量的固态吸附剂来吸附异构体,替代物和其他非目标化合物。
经过几个步骤后,固相萃取仪可以从混合物中高效地分离出目标化合物。
下面是固相萃取仪的一般原理:1.采用样品溶液将柱填充材料打湿;2.样品进入固相填料,其中目标分子被吸附;3.通过使用洗脱剂,非目标化合物从填充材料中洗脱出来;4.采用其他溶剂或气流停止吸附并收集萃取目标分子。
工作原理例如,对于非极性混合物,可以使用吸附剂作为柱充填材料和溶剂进行分离。
吸附剂具有特异性表面积和化学亲和力,在吸附后可以用洗脱剂反向移动吸附分子并分离非极性混合物。
这种技术的最初发展使得对药物和有机化合物进行分离和富集成为可能。
随着技术的进步和使用范围的扩大,其他新的应用领域也已经开发出来。
常用的固相萃取技术包括反相固相萃取、分子印迹固相萃取和吸附树脂固相萃取。
各种方法之间的差异在于固相材料的选择、样品前处理和操作方法等方面。
总之,固相萃取仪的工作原理是利用固态吸附剂对待分离物质进行富集和分离的过程。
具体的工作过程取决于所选择的固相材料和样品类型。
固相萃取技术因其高效性和可靠性在许多化学实验室中得到广泛应用。
全自动固相萃取仪的工作原理及分类的方式
全自动固相萃取仪的工作原理及分类的方式1.准备工作:样品经过前处理(如酸化、碱化、稀释等)后,被注入到装有固相萃取柱的样品架中。
2.目标化合物的吸附:样品中的目标化合物进入固相萃取柱,并与固相材料表面发生吸附作用。
3.杂质的去除:通过流动相(溶剂或水)的不断通过,固相萃取柱内非目标化合物被洗脱出来,达到杂质去除的目的。
4.目标化合物的解吸:改变流动条件(如溶剂的种类、温度等),使固相萃取柱中的目标化合物从固相材料上解吸下来。
5.气相或液相分析:经过目标化合物解吸后,在进一步分析之前,可以进行样品的浓缩、洗脱以及进一步净化处理。
1. 根据萃取方式的不同,可以将全自动固相萃取仪分为液相固相萃取(Liquid-phase microextraction,LPME)和固相微萃取(Solid-phase microextraction,SPME)两种。
- 液相固相萃取:样品溶液与固相材料直接接触,并通过固相材料表面的吸附作用将目标化合物萃取出来。
可以进一步分为固相萃取柱(Solid-phase extraction,SPE)和分散固相萃取(Dispersive solid-phase extraction,DSPE)。
-固相微萃取:在样品中插入含有固相材料的微量针尖,通过静电力或液体吸引力等原理将目标化合物吸附在针尖表面。
2.根据分析方式的不同,全自动固相萃取仪可分为气相和液相分析两种。
- 气相分析:通过将目标化合物从固相材料解吸后,进一步通过气相色谱(Gas chromatography,GC)进行分析。
- 液相分析:通过将目标化合物从固相材料解吸后,进一步通过液相色谱(Liquid chromatography,LC)进行分析。
3.根据使用的固相材料的不同,全自动固相萃取仪可分为C18、C8、C2、强阳离子固相材料、强阴离子固相材料等。
总之,全自动固相萃取仪通过自动化地实现样品前处理,提高了分析效率和准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、固相萃取基本原理与操作1、固相萃取吸附剂与目标化合物之间的作用机理固相萃取主要通过目标物与吸附剂之间的以下作用力来保留/吸附的1)疏水作用力:如C18、C8、Silica、苯基柱等2)离子交换作用:SAX, SCX,COOH、NH2等3)物理吸附:Florsil、Alumina等2、p H值对固相萃取的影响pH值可以改变目标物/吸附剂的离子化或质子化程度。
对于强阳/阴离子交换柱来讲,因为吸附剂本身是完全离子化的状态,目标物必须完全离子化才可以保证其被吸附剂完全吸附保留。
而目标物的离子化程度则与pH值有关。
如对于弱碱性化合物来讲,其pH值必须小于其pKa值两个单位才可以保证目标物完全离子化,而对于弱酸性化合物,其pH 值必须大于其pKa值两个单位才能保证其完全离子化。
对于弱阴/阳离子交换柱来讲,必须要保证吸附剂完全离子化才保证目标物的完全吸附,而溶液的pH值必须满足一定的条件才能保证其完全离子化。
3、固相萃取操作步骤及注意事项针对填料保留机理的不同(填料保留目标化合物或保留杂质),操作稍有不同。
1)填料保留目标化合物固相萃取操作一般有四步(见图1):Ø 活化---- 除去小柱内的杂质并创造一定的溶剂环境。
(注意整个过程不要使小柱干涸)Ø 上样---- 将样品用一定的溶剂溶解,转移入柱并使组分保留在柱上。
(注意流速不要过快,以1ml/min为宜,最大不超过5ml/mi n)Ø 淋洗---- 最大程度除去干扰物。
(建议此过程结束后把小柱完全抽干)Ø 洗脱---- 用小体积的溶剂将被测物质洗脱下来并收集。
(注意流速不要过快,以1ml/min为宜)如下图1:2)填料保留杂质固相萃取操作一般有三步(见图2):Ø 活化--除去柱子内的杂质并创造一定的溶剂环境。
(注意整个过程不要使小柱干涸)Ø 上样--将样品转移入柱,此时大部分目标化合物会随样品基液流出,杂质被保留在柱上,故此步骤要开始收集(注意流速不要过快)Ø 洗脱---用小体积的溶剂将组分淋洗下来并收集,合并收集液。
(注意流速不要过快)此种情况多用于食品或农残分析中去除色素。
如下图2:二、固相萃取方法的建立与优化固相萃取技术使用起来虽然比液液萃取简单,但建立一个固相萃取的方法并无快捷方式可走。
建立固相萃取方法必须考虑与萃取过程相关的多种因素,归纳起来可通过下图来了解:方法建立如下图片1.jpg:方法建立如下图片2.jpg:1、初步固相萃取方法的建立建立初步的萃取方法要考虑:·选择合适的SPE柱·选择合适的固相萃取方法·方法的优化2、固相萃取柱的选择<1)柱填料的选择首选根据目标化合物与干扰物的差异,如极性,分子量,pka值等,选择合适的填料。
固相萃取柱的选择如下图片.jpg:2)固相萃取柱规格的选择对于反相、正相和吸附型固相萃取柱来说,被萃取样品的质量不超SPE柱填料的5%(参考值,同一种SPE柱对不同的目标物选择性不同,吸附容量不同);<P 0cm="0cm" 0cm? 0pt?>离子交换型的固相萃取柱,必须考虑离子交换的容量。
不同厂家的小柱离子交换容量稍有差异。
下表附SPE小柱的容量和洗脱参数SPE柱上样容量和洗脱体积的选择规格最大上样量最小洗脱体积100mg/1mL5mg250µL200mg/3mL10mg500µL500mg/6mL25mg 1.2mL1g/6mL50mg 2.4mL3、选择合适的固相萃取方法固相萃取的保留机制可分为两种:·吸附剂(填料)保留目标化合物:绝大多数化合物应用此机制,填料保留其目标组分及少量杂质,通过淋洗步骤去除吸附在柱上的少量杂质,最后选择合适的(洗脱)溶剂把目标组分洗脱下来。
根据吸附剂的保留机理可进一步分为:(1)反相(C18,C8,CN,Phenyl,C4,C1)· 分析物:非极性至中等极性· 基质:水溶性· 方法:a.活化:通常用水溶性有机溶剂如甲醇活化,然后用水平衡b.淋洗:含0-50%极性溶剂的缓冲溶液淋洗杂质c.洗脱:极性或非极性溶剂洗脱目标物(2)正相(Silica, Florisil,Diol,NH2)·分析物:中等极性到强极性·基质:非极性至中等极性·方法:a.活化:非极性有机溶剂b.洗脱:非极性有机溶剂如下图片:(3)阳离子交换(SCX,PRS,COOH)u 分析物:阳离子(碱性)化合物u 方法:1.活化:用于非极性有机溶剂中的样品时,可用样品溶剂来活化;在用于极性溶剂中的样品时,可用水溶性有机溶剂过柱后,然后用水平衡,最后再用适当pH值的缓冲溶液进行平衡。
2.上样:样品溶液pH值要小于其pKa两个单位(以保证其带电荷)3.洗脱:洗脱溶液pH值要大于其pKa两个单位(中和分析物的电荷)(4)阴离子交换(SAX,PSA,NH2,PAX/MAX )u 分析物:阴离子(酸性)化合物u 方法:1.活化:用于非极性有机溶剂中的样品时,可用样品溶剂来活化;在用于极性溶剂中的样品时,可用水溶性有机溶剂活化后,然后用水平衡,最后再用适当pH值的缓冲溶液进行平衡。
2.上样:样品溶液pH值要大于其pKa两个单位(以保证其带电荷)。
3.洗脱:洗脱溶液pH值要小于其pKa两个单位(中和分析物的电荷)。
u 吸附剂(填料)保留杂质:食品中色素等杂质的去除多用此机制。
填料保留杂质而不保留或只保留极少量的目标组分,所以上样后即开始收集目标组分,最后用目标物所在的溶剂进一步洗脱。
合并两部分收集液。
(1)活化:以样品所在的有机溶剂进化活化,1-2柱管体积(2)上样:提取液转移至柱内,并收集流出液(3)洗脱:用样品所在的有机溶剂进一步洗脱,收集流出液。
合并上样和洗脱流出液。
4、固相萃取方法的优化1)影响萃取效率的因素(1)填料(固定相)----- 核心选择合适的SPE柱是保证理想结果的前提。
(2)洗脱溶剂的强度:Ø采用正相固定相时,溶剂强度随其极性增强而增加;Ø采用反相固定相时,溶剂强度随极性减弱而增强。
(3)pH值:离子交换固定相、被分析物和干扰物质的pKa各不相同。
通过调节pH大小,可以使固定相带电荷,被分析物带相反电荷,而使干扰物质不带电荷;或者反过来,使固定相带电荷,干扰物质带相反电荷,而使被分析物不带电荷。
(4)操作:控制合适的流速、活化的时不要让柱干涸等2)常见问题及解决方法·分析物回收率低·萃取重现性差·洗脱馏分中含有干扰物·SPE柱流速降低或阻塞具体解决方案如下:A.分析物回收率低•未保留?•被淋洗?•未被洗脱或部分洗脱?首先要把上样液、淋洗液、洗脱液均收集,进样分析,确定问题来源回收率差如下图片:重现性差如下图片:相关图片如下:相关图片如下:举例说明1. 参考文献方法用C18柱做相关药物的净化,过柱方法如下:分别用乙酸乙酯、甲醇和水活化小柱,然后把处理过的样品过柱(溶剂为具一定pH值得缓冲溶液),水淋洗小柱后,用乙酸乙酯洗脱目标物。
结果:接受液混浊状,回收率和重现性都不理想,可能是什么原因呢?答案:正确的做法是要在淋洗过程结束后把小柱完全抽干。
原因有二,其一因为淋洗溶剂(水)与洗脱溶剂(乙酸乙酯)不互溶,如果不抽干洗脱溶剂与目标物不能充分作用,所以造成回收率和重现性都没有保证,同时从外观上看接受液是液混浊液;其二如果淋洗过程不抽干小柱,洗脱溶剂里会引入水(淋洗剂),对下一步浓缩造成很大的困难。
相关图片如下:2、水中的灭草松前处理方法取500ml水样过滤,待过Cleanert PEP柱(相当于Waters HLB)净化1)用5mL四氢呋喃洗柱子,除掉杂质2)用5mL甲醇1mL/min活化柱子3)用5mL纯水1mL/min活化柱4)500mL的水样以5mL/min的速度过柱5)5mL纯水2mL/min淋洗6)小柱真空抽干20min7)0.9mL的甲醇1mL/min淋洗,弃去淋洗液8)3mL四氢呋喃1mL/min的速度洗脱柱子,收集洗脱液浓缩定容至3mL液相检测。
结果:回收率不理想,请问此方法有何问题?答案:因为目标物灭草松呈酸性,pKa=3.3,而选择的小柱PEP是极性的。
所以正确的做法是样品在过柱之前一定要调节水样的pH值小于等于3,使目标物分子化,以保证目标物能被小柱充分保留,否则在上柱的过程中容易造成“漏”的现象,从而造成回收率差。
三、固相技术应用实例解析1、食品领域应用1)动物组织中盐酸克仑特罗等4种β-激动剂药物残留检测(Cleanert PCX, P/N: CX150 6)1.实验材料1.1 固相萃取小柱:PCX(150mg/6mL)1.2 四种β-激动剂药物:盐酸克仑特罗、沙丁胺醇、西马特罗、莱克多巴胺等4种β-激动剂药物。
2. 试样的制备取猪肝空白样品,经过液液萃取初步处理后,添加适宜浓度的标准溶液作为空白添加试样。
3. 净化依次用甲醇5mL、水5mL和30mmol/L盐酸5mL润洗固相萃取小柱,将上述备用液过柱,依次用水5mL、甲醇5mL淋洗,真空抽干,用4%氨化甲醇5mL洗脱PCX小柱,收集洗脱液于具塞玻璃试管中,50℃下氮气吹干。
在样液过柱和洗脱过程中流速控制在1mL/min左右。
4. 衍生化及检测将上述盛有残渣的具塞玻璃试管放入50℃烘箱中加热片刻,除去水分后,加入甲苯100mL 和双三甲基硅基三氟乙酰胺(BSTFA)100mL,涡旋振荡20s,密封玻璃塞,置于80℃恒温烘箱中加热1小时,冷却后加入300mL甲苯,作为试样溶液,供气相色谱-质谱分析(色谱柱:DA-5MS, 30m×0.25mm×0.25µm,P/N:1525-3002)。
5. 结果5.1 回收率实验(精密度和准确度)将猪肝空白样品经过液液萃取初步处理后,分别添加一定量的标准溶液,配制1μg/L、2μg/L、5μg/L、10μg/L和100μg/L五个浓度的试样溶液,每批次内同一浓度做5次平行实验,共4个批次(样品典型回收率色谱图见附图)。
猪肝中实验结果列表如下添加浓度(μg/L)回收浓度(μg/L)平均回收值(μg/L)平均回收率(%)相对标准偏差(%)10.750.7272.40 5.93 0.670.720.700.7821.621.6381.30 1.23 1.661.601.611.6454.024.2484.80 4.16 4.104.274.384.43108.248.4584.45 2.81 8.358.778.628.2510090.249.1291.15 2.86 87.1591.7792.6293.955.2重复性实验(批间误差实验):猪肝中实验结果列表如下批间添加浓度(μg/L)12510100平均回收率%RSD%平均回收率%RSD%平均回收率%RSD%平均回收率%RSD%平均回收率%RSD%172.40 5.9381.30 3.4984.80 6.1684.45 3.5991.15 2.86275.37 6.1280.47 5.3784.747.5587.46 4.6890.05 3.86 370.097.8580.80 6.5783.108.1783.21 5.3989.53 4.16 476.73 4.9078.508.3582.90 5.1185.95 5.7288.27 5.93平均值73.65 6.2080.25 5.9583.88 6.7585.27 4.8489.75 4.20RSD%12.9510.799.437.00 5.75附图:猪肝中0.5μg/L、1μg/L、2μg/L、5μg/L、10μg/L和100μg/L六个浓度检测结果总离子流图(TIC)代表图谱:猪肝+1ppb(PCX)相关图片如下2)鸡蛋中三聚氰胺的检测(Cleanert PCX, P/N: CX0603)1 材料和方法1.1 主要仪器和试剂,色谱柱(Venusil ASB C8,4.6*250mm,5μm,艾杰尔科技),混合型阳离子交换固相萃取柱(Cleanert PCX,60mg/3mL,艾杰尔科技),12位固相萃取装置(艾杰尔科技),高效液相色谱仪;高速离心机;超声波震荡仪;涡旋混合器;分析天平(万分之一);溶剂过滤器(带0.45μm有机、水系过滤膜和真空泵);乙腈(HPLC级);三聚氰胺标准品(≥99. 0%);柠檬酸(分析纯);庚烷磺酸钠(色谱级);水(二次蒸馏水以上)。