2020年七年级数学期中试卷(7中)

合集下载

2023—2024学年人教版七年级上学期数学期中试卷(附答案)

2023—2024学年人教版七年级上学期数学期中试卷(附答案)

2023—2024学年人教版七年级上学期数学期中试卷及参考答案考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、2022的相反数是()A.B.﹣C.2022D.﹣20222、4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×1033、一条东西走向的道路上,小明先向西走3米,记作“﹣3米”,他又向西走了4米,此时小明的位置可记作()A.﹣2米B.+7米C.﹣3米D.﹣7米4、下列去括号,正确的是()A.a﹣(b+c)=a﹣b﹣c B.a+(b﹣c)=a+b+cC.a﹣(b+c)=a﹣b+c D.a﹣(b+c)=a+b﹣c5、已知3x m y2与﹣2x4y n为同类项,则m+n=()A.2B.4C.6D.86、若|x﹣1|+x=1,则x一定满足()A.x<1B.x>1C.x≤1D.x≥17、多项式x|n|﹣(n+2)x+7是关于x的二次三项式,则n的值是()A.2B.﹣2C.2或﹣2D.38、小明同学做一道数学题时,误将求“A﹣B”看成求“A+B”,结果求出的答案是3x2﹣2x+5,已知A=4x2﹣3x﹣6,请你帮助小明同学求出A﹣B应为()A.﹣x2+x+11B.3x2﹣4x﹣17C.5x2﹣4x﹣17D.5x2﹣2x+59、若x=﹣1时,ax5+bx3+cx+1=6,则x=1时,ax5+bx3+cx+1=()A.﹣3B.12C.﹣6D.﹣410、某种产品原价为100元,现因原料提价,因而厂家决定对产品进行提价,有以下两种方案;方案一,第一次提价10%,第二次提价30%;方案二,第一、二次提价均为20%.请问:哪种方案提价多()A.方案一B.方案二C.两种方案一样D.不能确定二、填空题(每小题3分,满分18分)11、比较大小:﹣﹣.12、若a与b互为倒数,m与n互为相反数,则(ab)2013+(m+n)2014的值为.13、已知|a+1|+(b﹣3)2=0,则a b=.14、在数轴上,与表示﹣3的点相距6个单位长度的点所表示的数是.15、若代数式x﹣2y=﹣2,则代数式9+2x﹣4y=.16、用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子枚.(用含n的代数式表示)三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(1);(2)×(﹣36).18、先化简,再求值:3(x2﹣xy+y2)﹣2(y2﹣3xy+x2),其中x=﹣2,y=3.19、有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:c﹣b0,a+b0,a﹣c0.(2)化简:|c﹣b|+|a+b|﹣|a﹣c|.20、某检修小组在东西向的马路上检修线路,从A地出发,需到达B地,约定向东为正方向,当天的行驶记录如下(单位:千米):﹣11,﹣9,+18,﹣2,+13,+4,+12,﹣7.(1)通过计算说明:B地在A地的什么方向,与A地相距多远?(2)在行驶过程中,最远处离出发点A地有多远?(3)若每千米耗油0.5升,油箱容量为29升,求途中还需补充多少升油?21、已知|x|=5,|y|=3.(1)若x﹣y>0,求x+y的值;(2)若xy<0,求|x﹣y|的值;(3)求x﹣y的值.22、已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(1)化简:2A﹣3B;(2)若,xy=1,求2A﹣3B的值;(3)若2A﹣3B的值与y的取值无关,求此时2A﹣3B的值.23、(1)如图1所示,阴影部分由两个直角三角形组成,用代数式表示图中阴影部分的面积S.(2)请你求出当a=2,b=6,h=4时,S的值.(3)在第(2)问的条件下,增加一个半圆的阴影,如图2所示,求整个阴影部分的面积S1的值.(π取3.14,结果精确到0.1)24、已知(2x﹣1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,其中a5表示的是x5的系数,a4表示的是x4,以此类推.当x=2时,35=25•a5+24•a4+23•a3+22•a2+2•a1+a0.(1)取x=0,则可知a0=.(2)利用特殊值法求﹣a5+a4﹣a3+a2﹣a1+a0的值.(3)探求a4+a2的值.25、如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是;点P表示的数是(用含t的代数式表示).(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒后与点Q相距4个单位长度?(3)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请用计算说明,并求出线段MN的长.2023—2024学年人教版七年级上学期数学期中试卷参考答案一、择题(每题只有一个正确选项,每小题3分,满分30分)1—10:DCDAC CBCDB二、填空题(每小题3分,满分18分)11、>12、1 13、-1 14、﹣9或3 15、5 16、(3n+1)三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解:(1)0 (2)﹣1118、解:﹣519、解:(1)答案为:>,<,<;(2)﹣2b20、解:(1)B地在A地的东边18千米;(2)最远处离出发点25千米;(3)需补充的油量为9升.21、解:(1)x+y的值为:8或2;(2)|x﹣y|的值为:8;(3)x﹣y=±2或±8.22、解:(1)=7x+7y﹣11xy;当x+y=﹣,xy=1时,2A﹣3B=﹣17;(3).23、解:(1)S=(b﹣a)h=bh﹣;(2)当a=2,b=6,h=4时,S=×6×4﹣×2×4=12﹣4=8;(3)S1=S+×=8+×3.14×1=8+1.57=9.57≈9.6.∴整个阴影部分的面积S1的值为9.6.24、解:故答案为:﹣1;(2)﹣243;(3)﹣120.25、解:(1)答案为:﹣5;7;12;(2)点P所对应的数为﹣1016;(3)﹣17和﹣1别是点P运动了第23次和第8次到达的位置.。

2020年湖北省武汉市汉阳区七年级(下)期中数学试卷

2020年湖北省武汉市汉阳区七年级(下)期中数学试卷
7.【答案】D
【解析】解:交换命题 A 的题设和结论,得到的新命题是内错角相等,两直线平行是真 命题,不合题意; 交换命题 B 的题设和结论,得到的新命题是若 a=b 时,则 a2=b2,是真命题,不合题意; 交换命题 C 的题设和结论,得到的新命题是对顶角相等是真命题,不合题意; 交换命题 D 的题设和结论,得到的新命题是无理数是无限小数,假命题,符合题意, 故选:D. 写出原命题的逆命题,根据相关的性质、定义判断即可. 本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命 题的真假关键是要熟悉课本中的性质定理.
8.【答案】A
【解析】解:由题意,得 ,
解得

(b-a)2017=(-1)2017=-1, 故选:A. 根据非负数的性质,可得 a,b 的值,根据 本题考查了解二元一次方程组,利用非负数的性质的出关于 a,b 的方程组是解题关键.
9.【答案】D
【解析】解:线段 MN 是由线段 EF 经过平移得到的,点 E(-1,3)的对应点 M(2,5 ),故各对应点之间的关系是横坐标加 3,纵坐标加 2, ∴点 N 的横坐标为:-3+3=0;点 N 的纵坐标为-2+2=0; 即点 N 的坐标是(0,0). 故选:D. 各对应点之间的关系是横坐标加 3,纵坐标加 2,那么让点 F 的横坐标加 3,纵坐标加 2 即为点 N 的坐标. 本题考查图形的平移变换,在平面直角坐标系中,图形的平移与图形上某点的平移相同 ,解决本题的关键是找到各对应点之间的变化规律.
3.【答案】C
【解析】【分析】在同一平面内不重合的两条直线,有两种位置关系:相交或平行,据 此解答即可. 本题考查了平行线和相交线.注意:同一平面内的两条直线,不排除重合的现象. 【解答】在同一个平面内,两条直线平行或相交. 观察选项,C 选项符合题意. 故选:C.

2020-2021学年辽宁省沈阳市沈河区七年级(下)期中数学试卷

2020-2021学年辽宁省沈阳市沈河区七年级(下)期中数学试卷

2020-2021学年辽宁省沈阳市沈河区七年级(下)期中数学试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题2分,共20分)1.(2分)计算230的结果是()A.23B.1C.0D.322.(2分)如图,下列说法正确的是()A.∠2与∠3是同旁内角B.∠1与∠2是同位角C.∠1与∠3是同位角D.∠1与∠2是内错角3.(2分)下列运算正确的是()A.a5÷a2=a3B.a2•a3=a6C.3a2﹣2a=a2D.(a+b)2=a2+b24.(2分)下列各组线段能组成一个三角形的是()A.2cm,3cm,6cm B.6cm,8cm,10cmC.5cm,5cm,10cm D.4cm,6cm,10cm5.(2分)如图,某单位要在河岸l上建一个水泵房引水到C处,他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是()A.两点之间,线段最短B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.两点确定一条直线D.直线外一点与直线上所有点的连线中,垂线段最短6.(2分)华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A.7×10﹣9B.7×10﹣8C.0.7×10﹣9D.0.7×10﹣8 7.(2分)如果将一副三角板按如图方式叠放,那么∠1的度数是()A.90°B.100°C.105°D.135°8.(2分)二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关,如图是一年中部分节气所对应的白昼时长示意图.则夏至与秋分白昼时长相差()A.2小时B.3小时C.2.5小时D.4小时9.(2分)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,添加的一组条件不正确的是()A.BC=DC,∠A=∠D B.BC=EC,AC=DCC.∠B=∠E,∠BCE=∠ACD D.BC=EC,∠B=∠E10.(2分)研究表明,当每公顷钾肥和磷肥的施用量一定时,氮肥施用量与土豆的产量有如表所示的关系:氮肥施用量/千克03467101135202259336404471土豆产量/吨15.1821.3625.7232.2934.0539.4543.1543.4640.8330.75下列说法错误的是()A.氮肥施用量是自变量,土豆产量是因变量B.当氮肥的施用量是101千克/公顷时,土豆的产量是32.29吨/公顷C.如果不施氮肥,土豆的产量是15.18吨/公顷D.氮肥施用量404千克/公顷比氮肥施用量336千克/公顷时的土豆的产量更高二、填空题(每小题3分,共18分)11.(3分)已知a m=3,a n=2,则a m+n=.12.(3分)如图,一张宽度相等的长方形纸条,如图所示折叠一下,那么∠1=°.13.(3分)将长为23cm、宽为10cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为2cm,设x张白纸粘合后的总长度为ycm,y与x的函数关系式为.14.(3分)如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC 于点E.若∠C=26°,则∠DAE的度数为.15.(3分)如图的瓶子中盛满了水,则水的体积是.(用代数式表示)16.(3分)如图,∠CAD和∠CBD的平分线相交于点P.请写出∠C、∠D、∠P的数量关系.三、解答题(第17小题16分,18小题6分,19小题6分,20小题8分,共36分)17.(16分)计算:(1)(﹣3)0﹣2×23﹣()﹣2;(2)(﹣2a)3﹣(﹣a)•(3a)2;(3)(x+1)(2x﹣3);(4)199×201+1.(利用乘法公式)18.(6分)先化简,再求值:[(2x+y)(2x﹣y)﹣(2x﹣y)2]÷2y,其中x=﹣1,y=2.19.(6分)如图,在△ABC中,D是AB边上的一点.请用尺规作图法,在△ABC内,作出∠ADE,使∠ADE=∠B,DE交AC于点E.(保留作图痕迹不写作法)20.(8分)完成推理填空如图,已知∠B=∠D,∠BAE=∠E.将证明∠AFC+∠DAE=180°的过程填写完整.证明:∵∠BAE=∠E,∴∥().∴∠B=∠().又∵∠B=∠D,∴∠D=∠(等量代换).∴AD∥BC().∴∠AFC+∠DAE=180°().四、(本题8分)21.(8分)如图,BE⊥AE,CF⊥AE,垂足分别为E、F,D是EF的中点,CF=AF.(1)请说明CD=BD;(2)若BE=6,DE=3,请直接写出△ACD的面积.五、(本题8分)22.(8分)小明家距离学校8千米.一天早晨,小明骑车上学途中自行车出现故障,他于原地修车,车修好后,立即在确保安全的前提下以更快的速度匀速骑行到达学校.如图反映的是小明上学过程中骑行的路程(千米)与他所用的时间(分钟)之间的关系,请根据图象,解答下列问题:(1)小明骑行了千米时,自行车出现故障;修车用了分钟;(2)自行车出现故障前小明骑行的平均速度为千米/分,修好车后骑行的平均速度为千米/分;(3)若自行车不发生故障,小明一直按故障前的速度匀速骑行,与他实际所用时间相比,将早到或晚到学校多少分钟?六、(本题8分)23.(8分)劳动是财富的源泉,也是幸福的源泉.沈河区某中学对劳动教育进行积极探索和实践,创建学生劳动教育基地,让学生参与农耕劳作.如图,现计划利用校园围墙的一段MN(MN最长可用25m),用40m长的篱笆,围成一个长方形菜园ABCD.设AB 的长为xm(7.2≤x>20).(1)BC的长度为m(用含x的代数式表示),长方形菜园的面积S(m2)与AB的长x(m)的关系式为S=;(2)根据(1)中的关系式完成如表:AB的长x(m)89101112131415……菜园的面积S(m2)192198182168150……(3)请根据表中数据分析,S如何随x的变化而变化?(写出一个结论即可)七、(本题10分)24.(10分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例.这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1、2、1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1、3、3、1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.(1)根据上面的规律,(a+b)4展开式的各项系数中最大的数为;(2)求出25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5的值;(3)若(x﹣1)2020=a1x2020+a2x2019+a3x2018+……+a2019x2+a2020x+a2021,求出a1+a2+a3+……+a2019+a2020的值.八、(本题12分)25.(12分)已知直线MN∥PQ,点A在直线MN上,点B、C为平面内两点,AC⊥BC于点C.(1)如图1,当点B在直线MN上,点C在直线MN上方时,延长CB交直线PQ于点D,则∠CAB和∠CDP之间的数量关系是.(2)如图2,当点C在直线MN上且在点A左侧,点B在直线MN与PQ之间时,过点B作BD⊥AB交直线PQ于点D.为探究∠ABC与∠BDP之间的数量关系,小明过点B 作BF∥MN.请根据他的思路,写出∠ABC与∠BDP的关系,并说明理由;(3)如图3,在(2)的条件下,作∠ABD的平分线交直线MN于点E,当∠AEB=2∠ABC时,直接写出∠ABC的度数.(4)如图4,当点C在直线MN上且在点A左侧,点B在直线PQ下方时,过点B作BD⊥AB交直线PQ于点D.作∠ABD的平分线交直线MN于点E,当∠BDP=2∠BEN 时,请补充图形并直接写出∠ABC的度数.2020-2021学年辽宁省沈阳市沈河区七年级(下)期中数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题2分,共20分)1.(2分)计算230的结果是()A.23B.1C.0D.32【分析】根据零指数幂的运算法则进行计算即可得出答案.【解答】解:230=1.故选:B.2.(2分)如图,下列说法正确的是()A.∠2与∠3是同旁内角B.∠1与∠2是同位角C.∠1与∠3是同位角D.∠1与∠2是内错角【分析】根据同位角,内错角,同旁内角的定义逐个判断即可.【解答】解:A、∠2和∠3是同旁内角,故本选项符合题意;B、∠1和∠2不是同位角,故本选项不符合题意;C、∠1和∠3是内错角,不是同位角,故本选项不符合题意;D、∠2和∠3是同旁内角,不是内错角,故本选项不符合题意;故选:A.3.(2分)下列运算正确的是()A.a5÷a2=a3B.a2•a3=a6C.3a2﹣2a=a2D.(a+b)2=a2+b2【分析】分别根据同底数幂的除法法则,同底数幂的乘法法则,合并同类项法则以及完全平方公式逐一判断即可.【解答】解:A、a5÷a2=a3,故本选项符合题意;B、a2•a3=a5,故本选项不合题意;C、3a2与﹣2a不是同类项,所以不能合并,故本选项不合题意;D、(a+b)2=a2+2ab+b2,故本选项不合题意;故选:A.4.(2分)下列各组线段能组成一个三角形的是()A.2cm,3cm,6cm B.6cm,8cm,10cmC.5cm,5cm,10cm D.4cm,6cm,10cm【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、2+3<6,不能组成三角形,不符合题意;B、6+8=14>10,能组成三角形,符合题意;C、5+5=10,不能组成三角形,不符合题意;D、4+6=10,不能组成三角形,不符合题意;故选:B.5.(2分)如图,某单位要在河岸l上建一个水泵房引水到C处,他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是()A.两点之间,线段最短B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.两点确定一条直线D.直线外一点与直线上所有点的连线中,垂线段最短【分析】根据垂线段最短进行判断.【解答】解:因为CD⊥l于点D,根据垂线段最短,所以CD为C点到河岸l的最短路径.故选:D.6.(2分)华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A.7×10﹣9B.7×10﹣8C.0.7×10﹣9D.0.7×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:数0.00 000 0007用科学记数法表示为7×10﹣9.故选:A.7.(2分)如果将一副三角板按如图方式叠放,那么∠1的度数是()A.90°B.100°C.105°D.135°【分析】直接利用一副三角板的内角度数,再结合三角形外角的性质得出答案.【解答】解:如图所示:由题意可得,∠2=90°﹣45°=45°,则∠1=∠2+60°=45°+60°=105°.故选:C.8.(2分)二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关,如图是一年中部分节气所对应的白昼时长示意图.则夏至与秋分白昼时长相差()A.2小时B.3小时C.2.5小时D.4小时【分析】根据图象,可以得出夏至与秋分白昼时长,然后即可解答本题.【解答】解:由图可得,夏至白昼时长15小时,秋分白昼时长12小时,15﹣12=3(小时).故选:B.9.(2分)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,添加的一组条件不正确的是()A.BC=DC,∠A=∠D B.BC=EC,AC=DCC.∠B=∠E,∠BCE=∠ACD D.BC=EC,∠B=∠E【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A.AB=DE,BC=DC,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEC,故本选项符合题意;B.AC=DC,AB=DE,BC=EC,符合全等三角形的判定定理SSS,能推出△ABC≌△DEC,故本选项不符合题意;C.∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,即∠ACB=∠DCE,∵∠B=∠E,AB=DE,∴△ABC≌△DEC(AAS),故本选项不符合题意;D.AB=DE,∠B=∠E,BC=EC,符合全等三角形的判定定理SAS,能推出△ABC≌△DEC,故本选项不符合题意;故选:A.10.(2分)研究表明,当每公顷钾肥和磷肥的施用量一定时,氮肥施用量与土豆的产量有如表所示的关系:03467101135202259336404471氮肥施用量/千克土豆产量/吨15.1821.3625.7232.2934.0539.4543.1543.4640.8330.75下列说法错误的是()A.氮肥施用量是自变量,土豆产量是因变量B.当氮肥的施用量是101千克/公顷时,土豆的产量是32.29吨/公顷C.如果不施氮肥,土豆的产量是15.18吨/公顷D.氮肥施用量404千克/公顷比氮肥施用量336千克/公顷时的土豆的产量更高【分析】根据图表数据可得,土豆产量随氮肥施用量的变化而变化,并且氮肥施用量在小于或等于336千克/公顷时,土豆的产量是逐渐增加的,而氮肥施用量在大于或等于404千克/公顷时,土豆的产量是逐渐减少的,据此解对各选项分析判断即可.【解答】解:A、氮肥施用量是自变量,土豆产量是因变量,原说法正确,故选项不符合题意;B、当氮肥的施用量是101千克/公顷时,土豆的产量是32.29吨/公顷,原说法正确,故选项不符合题意;C、如果不施氮肥,土豆的产量是15.18吨/公顷,原说法正确,故选项不符合题意;D、氮肥施用量404千克/公顷比氮肥施用量336千克/公顷时的土豆的产量更低,原说法错误,故选项符合题意.故选:D.二、填空题(每小题3分,共18分)11.(3分)已知a m=3,a n=2,则a m+n=6.【分析】根据同底数幂的乘法,可得答案.【解答】解:a m+n=a m•a n=3×2=6,故答案为:6.12.(3分)如图,一张宽度相等的长方形纸条,如图所示折叠一下,那么∠1=65°.【分析】根据两直线平行,内错角相等与翻折的性质求出∠1.【解答】解:如图所示,∵AB∥CD,∴∠BEG=130°,由折叠可得,∠1=∠GEF=∠BEG=65°.故答案为|:65.13.(3分)将长为23cm、宽为10cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为2cm,设x张白纸粘合后的总长度为ycm,y与x的函数关系式为y=21x+2.【分析】等量关系为:纸条总长度=25×白纸张数﹣(白纸张数﹣1)×2,把相关数值代入即可求解.【解答】解:每张长方形白纸的长度是23cm,x张应是23xcm,由图中可以看出4张白纸之间有3个粘合部分,那么x张白纸之间有(x﹣1)个粘合,应从总长度中减去.∴y与x的函数关系式为:y=23x﹣(x﹣1)×2=21x+2.故答案为:y=21x+2.14.(3分)如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC 于点E.若∠C=26°,则∠DAE的度数为14°.【分析】利用垂直的定义得到∠ADC=90°,再根据三角形内角和计算出∠CAD=64°,接着利用角平分线的定义得到∠CAE=50°,然后计算∠CAD﹣∠CAE即可.【解答】解:∵AD⊥BC,∴∠ADC=90°,∴∠CAD=180°﹣∠ADC﹣∠C=180°﹣90°﹣26°=64°,∵AE平分∠BAC,∴∠CAE=∠BAC=×100°=50°,∴∠DAE=∠CAD﹣∠CAE=64°﹣50°=14°.故答案为14°.15.(3分)如图的瓶子中盛满了水,则水的体积是.(用代数式表示)【分析】水的体积等于两个容器的体积之和,根据圆柱体积公式即可求解.【解答】解:瓶子的体积为:+=,故答案为:.16.(3分)如图,∠CAD和∠CBD的平分线相交于点P.请写出∠C、∠D、∠P的数量关系2∠P=∠D+∠C.【分析】根据三角形的外角性质、角平分线的定义得到∠CAD+∠P=∠CBD+∠C,∠CAD+∠D=∠CBD+∠P,两式相减得到答案.【解答】解:∵∠BF A=∠P AC+∠P,∠BF A=∠PBC+∠C,∴∠P AC+∠P=∠PBC+∠C,∵∠CAD和∠CBD的平分线相交于点P,∴∠P AC=∠CAD,∠PBC=∠CBD,∴∠CAD+∠P=∠CBD+∠C①,同理:∠CAD+∠D=∠CBD+∠P②,①﹣②,得∠P﹣∠D=∠C﹣∠P,整理得,2∠P=∠D+∠C,故答案为:2∠P=∠D+∠C.三、解答题(第17小题16分,18小题6分,19小题6分,20小题8分,共36分)17.(16分)计算:(1)(﹣3)0﹣2×23﹣()﹣2;(2)(﹣2a)3﹣(﹣a)•(3a)2;(3)(x+1)(2x﹣3);(4)199×201+1.(利用乘法公式)【分析】(1)根据零指数幂,负指数幂的公式计算即可;(2)根据积的乘方公式计算;(3)根据多项式乘以多项式的法则计算;(4)根据平方差公式计算.【解答】解:(1)原式=1﹣2×8﹣=1﹣16﹣4=﹣19;(2)原式=﹣8a3﹣(﹣a)•9a2=﹣8a3﹣(﹣9a3)=﹣8a3+9a3=a3;(3)原式=2x2﹣3x+2x﹣3=2x2﹣x﹣3;(4)原式=(200﹣1)(200+1)+1=2002﹣1+1=40000.18.(6分)先化简,再求值:[(2x+y)(2x﹣y)﹣(2x﹣y)2]÷2y,其中x=﹣1,y=2.【分析】直接利用乘法公式以及整式的混合运算法则化简,再把已知数据代入得出答案.【解答】解:原式=(4x2﹣y2﹣4x2+4xy﹣y2)÷2y=(﹣2y2+4xy)÷2y=﹣y+2x,当x=﹣1,y=2时,原式=﹣2+2×(﹣1)=﹣2﹣2=﹣4.19.(6分)如图,在△ABC中,D是AB边上的一点.请用尺规作图法,在△ABC内,作出∠ADE,使∠ADE=∠B,DE交AC于点E.(保留作图痕迹不写作法)【分析】利用基本作图(作一个角等于已知角)作出∠ADE=∠B即可.【解答】解:如图,∠ADE即为所求.20.(8分)完成推理填空如图,已知∠B=∠D,∠BAE=∠E.将证明∠AFC+∠DAE=180°的过程填写完整.证明:∵∠BAE=∠E,∴AB∥DE(内错角相等,两直线平行).∴∠B=∠BCE(两直线平行,内错角相等).又∵∠B=∠D,∴∠D=∠BCE(等量代换).∴AD∥BC(同位角相等,两直线平行).∴∠AFC+∠DAE=180°(两直线平行,同旁内角互补).【分析】根据平行线的判定与性质即可完成证明.【解答】证明:∵∠BAE=∠E,∴AB∥DE(内错角相等,两直线平行).∴∠B=∠BCE(两直线平行,内错角相等).又∵∠B=∠D,∴∠D=∠BCE(等量代换).∴AD∥BC(同位角相等,两直线平行).∴∠AFC+∠DAE=180°(两直线平行,同旁内角互补).故答案为:AB,DE,内错角相等,两直线平行;BCE,两直线平行,内错角相等;BCE,同位角相等,两直线平行;两直线平行,同旁内角互补.四、(本题8分)21.(8分)如图,BE⊥AE,CF⊥AE,垂足分别为E、F,D是EF的中点,CF=AF.(1)请说明CD=BD;(2)若BE=6,DE=3,请直接写出△ACD的面积.【分析】(1)由BE⊥AE,CF⊥AE,得∠BED=∠CFD,再由D是EF的中点,得ED =FD,根据角边角公里可得出△BED与△CFD全等,进而可得结论;(2)由全等可得CF=EB=6,然后可得DF=3,再计算出AD的长,利用三角形面积公式可得答案.【解答】解:(1)∵BE⊥AE,CF⊥AE,∴∠BED=∠CFD,∵D是EF的中点,∴ED=FD,在△BED与△CFD中,,∴△BED≌△CFD(ASA),∴CD=BD;(2)由(1)得:CF=EB=6,∵AF=CF,∴AF=6,∵D是EF的中点,∴DF=DE=3,∴AD=9,∴△ACD的面积:AD•CF=×9×6=27.五、(本题8分)22.(8分)小明家距离学校8千米.一天早晨,小明骑车上学途中自行车出现故障,他于原地修车,车修好后,立即在确保安全的前提下以更快的速度匀速骑行到达学校.如图反映的是小明上学过程中骑行的路程(千米)与他所用的时间(分钟)之间的关系,请根据图象,解答下列问题:(1)小明骑行了3千米时,自行车出现故障;修车用了5分钟;(2)自行车出现故障前小明骑行的平均速度为0.3千米/分,修好车后骑行的平均速度为千米/分;(3)若自行车不发生故障,小明一直按故障前的速度匀速骑行,与他实际所用时间相比,将早到或晚到学校多少分钟?【分析】(1)根据自行车出现故障后路程s不变解答,修车的时间等于路程不变的时间;(2)利用速度=路程÷时间分别列式计算即可得解;(3)求出未出故障需用的时间,然后用实际情况的时间减正常行驶的时间即可进行判断.【解答】解:(1)由图可知,小明行了3千米时,自行车出现故障,修车用了15﹣10=5(分钟);故答案为:3;5;(2)修车前速度:3÷10=0.3(千米/分),修车后速度:5÷15=(千米/分);故答案为:0.3;;(3)8÷(分种),30﹣=(分钟),故他比实际情况早到分钟.六、(本题8分)23.(8分)劳动是财富的源泉,也是幸福的源泉.沈河区某中学对劳动教育进行积极探索和实践,创建学生劳动教育基地,让学生参与农耕劳作.如图,现计划利用校园围墙的一段MN(MN最长可用25m),用40m长的篱笆,围成一个长方形菜园ABCD.设AB 的长为xm(7.2≤x>20).(1)BC的长度为(40﹣2x)m(用含x的代数式表示),长方形菜园的面积S(m2)与AB的长x(m)的关系式为S=﹣2x2+40x;(2)根据(1)中的关系式完成如表:AB的长x(m)89101112131415……菜园的面积S(m2)192198200198192182168150……(3)请根据表中数据分析,S如何随x的变化而变化?(写出一个结论即可)【分析】(1)由矩形的面积=长×宽求解.(2)分别代入x求解.(3)观察表格,找到S取最大值时x所对应的值,当x小于这个值时,S随x增大而增大.【解答】解:(1)BC=40﹣AB﹣CD=(40﹣2x)m,S=AB•BC=x(40﹣2x)=﹣2x2+40x,故答案为:(40﹣2x),﹣2x2+40x.(2)将x=9,10,12分别代入解析式可得S=198,200,192.故答案为:198,200,192.(3)当x<10时,S随x增大而增大.七、(本题10分)24.(10分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例.这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1、2、1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1、3、3、1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.(1)根据上面的规律,(a+b)4展开式的各项系数中最大的数为6;(2)求出25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5的值;(3)若(x﹣1)2020=a1x2020+a2x2019+a3x2018+……+a2019x2+a2020x+a2021,求出a1+a2+a3+……+a2019+a2020的值.【分析】(1)按规律写出系数即可;(2)根据系数关系写出完全平方式即可;(3)根据已知用特值法即可求出.【解答】解:(1)第五行即为1 4 6 4 1对应(a+b)4的系数,故答案为6;(2)∵(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,......∴25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5=[2+(﹣3)]5=(2﹣3)5=﹣1;(3)当x=1时,(x﹣1)2020=a1x2020+a2x2019+a3x2018+……+a2019x2+a2020x+a2021,即a1+a2+a3+……+a2019+a2020+a2021=0,当x=0时,(x﹣1)2020=a1x2020+a2x2019+a3x2018+……+a2019x2+a2020x+a2021,即a2021=1,∴a1+a2+a3+……+a2019+a2020=0﹣1=﹣1.八、(本题12分)25.(12分)已知直线MN∥PQ,点A在直线MN上,点B、C为平面内两点,AC⊥BC于点C.(1)如图1,当点B在直线MN上,点C在直线MN上方时,延长CB交直线PQ于点D,则∠CAB和∠CDP之间的数量关系是∠CAB+∠PDC=180°.(2)如图2,当点C在直线MN上且在点A左侧,点B在直线MN与PQ之间时,过点B作BD⊥AB交直线PQ于点D.为探究∠ABC与∠BDP之间的数量关系,小明过点B 作BF∥MN.请根据他的思路,写出∠ABC与∠BDP的关系,并说明理由;(3)如图3,在(2)的条件下,作∠ABD的平分线交直线MN于点E,当∠AEB=2∠ABC时,直接写出∠ABC的度数.(4)如图4,当点C在直线MN上且在点A左侧,点B在直线PQ下方时,过点B作BD⊥AB交直线PQ于点D.作∠ABD的平分线交直线MN于点E,当∠BDP=2∠BEN 时,请补充图形并直接写出∠ABC的度数.【分析】(1)利用平行线的性质条件三角形的内角和定理求解即可.(2)结论:∠ABC=∠PDB.构造平行线,利用平行线的性质求解即可.(3)设∠ABC=x,则∠AEB=2x,根据∠CBE+∠AEB=90°,构建方程求解即可.(4)设BE交PQ于J.设∠BEN=x,则∠BDP=2x,利用三角形内角和定理,构建方程求解即可.【解答】解:(1)如图1中,∵AC⊥CD,∴∠C=90°,∴∠CAB+∠ABC=90°,∵MN∥PQ,∴∠PDB=∠ABC,∴∠CAB+∠PDC=180°.故答案为:∠CAB+∠PDC=180°.(2)结论:∠ABC=∠PDB.理由:如图2中,∵MN∥PQ,BF∥MN,∴BF∥PQ,∴∠PDB=∠DBF,∵AC⊥BC,AB⊥BD,∴∠ACB=∠ABD=90°,∵∠CBF+∠ACB=180°,∴∠CBF=∠ABD=90°,∴∠ABC=∠DBF,∴∠ABC=∠PDB.(3)如图3中,∵∠AEB=2∠ABC,∴可以假设∠ABC=x,则∠AEB=2x,∵∠ABD=90°,BE平分∠ABD,∴∠ABE=∠EBD=45°,∵∠BCE=90°,∴∠CBE+∠AEB=90°,∴x+45°+2x=90°,∴x=15°,∴∠ABC=15°.(4)如图4中,图形如图所示,设BE交PQ于J.∵∠BDP=2∠BEN,∴可以假设∠BEN=x,则∠BDP=2x,∵MN∥PQ,∴∠BEN=∠PJE=x,∵∠ABD=90°,BE平分∠ABD,∴∠ABE=∠EBD=45°,∵∠BDJ+∠BJD+∠DBJ=180°,∴180°﹣2x+180°﹣x+45°=180°,∴x=75°,∵∠BCE=90°,∴∠EBC=90°﹣75°=15°,∴∠ABC=∠ABE﹣∠EBC=45°﹣15°=30°.。

2020-2021学年陕西省西市七年级(下)期中数学试卷

2020-2021学年陕西省西市七年级(下)期中数学试卷

2020-2021学年陕西省西安市七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列运算正确的是()A.a2•a4=a8B.(﹣2a)3=﹣6a3C.m3÷(﹣m)2=m D.a4+a4=a82.(3分)截至4月2日,全球累计确诊新冠肺炎病例约1.3亿例.我们切不可掉以轻心,要做好日常防护.科学研究表明,导致新冠肺炎的新冠病毒比细菌小很多,平均直径仅为0.000000098m.这个数用科学记数法表示为()A.0.98×10﹣7B.9.8×10﹣8C.98×10﹣8D.9.8×10﹣9 3.(3分)如图所示,下列推理不正确的是()A.若∠1=∠B,则BC∥DEB.若∠2=∠ADE,则AD∥CEC.若∠A+∠ADC=180°,则AB∥CDD.若∠B+∠BCD=180°,则BC∥DE4.(3分)下列各式能用平方差公式计算的是()A.(2a+b)(a﹣2b)B.(a﹣2b)(2b﹣a)C.(2a﹣b)(﹣2a+b)D.(b﹣2a)(﹣2a﹣b)5.(3分)下面说法:①三角形的三条高交于同一点;②面积相等的两个正方形全等;③两条射线不相交就平行;④同位角相等.其中正确的有()A.1个B.2个C.3个D.4个6.(3分)如图,下列推理不能求证△ABD≌△CAD的是()A.DB=DC,AB=AC B.∠ADC=∠ADB,DB=DCC.∠C=∠B,∠ADC=∠ADB D.∠C=∠B,DB=DC7.(3分)如图,AD,AE为△ABC的高线,角平分线,DF⊥AE于点F.当∠DAC=21°,∠B=25°时,∠DAF的度数为()A.21°B.22°C.25°D.30°8.(3分)乐乐观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=94°,∠DCE=115°,则∠E的度数是()A.30°B.25°C.23°D.21°9.(3分)如图,△ABF的面积是2,D是AB边上任意一点,E是CD中点,F是BE中点,△ABC的面积是()A.4B.6C.8D.1610.(3分)如图,长方形ABCD的两边之差为4,以长方形的四条边分别为边向外作四个正方形,且这四个正方形的面积和为80,则长方形ABCD的面积是()A.12B.21C.24D.32二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)若一个角的补角是43°,则这个角的度数为.12.(3分)已知三角形的两边长分别为2和7,第三边为奇数,则它第三边的长是.13.(3分)如果2021a=5,2021b=3.那么20212a﹣3b=.14.(3分)如图,△ABC中,∠ACB=90°,AC=5,BC=12,AB=13,P为直线AB上一动点,连接PC,则线段PC的最小值是.15.(3分)当x=﹣1时,ax2+bx+1的值为﹣3,则(a﹣b+2)(3﹣2a+2b)的值为.16.(3分)已知:如图,在四边形ABCD中,AB∥CD,∠B=90°,AB=6厘米,BC=8厘米,CD=10厘米,点P从点B出发,以2厘米/秒的速度沿BC向点C运动,同时点Q从点D出发,沿DC向点C运动,连接AP,PQ.则点Q的运动速度为厘米/秒时,△ABP与△CPQ全等.三、解答题(本大题共6小题,共52分)17.(12分)计算:(1)(﹣1)2021﹣(﹣2)﹣2+(3﹣π)0;(2)a3a4a+(a2)4﹣(﹣2a4)2;(3)[(a﹣b)(2a﹣b)﹣(a+b)2]÷(﹣a).18.(6分)在△ABC中,∠C>∠B、请用尺规作图法,在AB上找一点P,使∠PCB=∠B.(保留作图痕迹,不写作法.)19.(6分)已知:如图,AD∥BC,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E,那么∠B与∠DCE相等吗?试说明理由.请将下面的推理过程补充完整.解:∠B=∠DCE,理由如下:∵AE平分∠BAD(已知),∴∠1=∠2(角平分线定义),∵AD∥BC(已知),∴∠2=∠E(),∴∠1=∠E(),又∵∠CFE=∠E(已知),∴∠CFE=∠(等量代换),∴∥(),∴∠B=∠DCE.20.(8分)如图,在四边形ABCD中,AB∥CD,∠1=∠2,AD=EC.(1)求证:△ABD≌△EDC;(2)若AB=2,BE=3,求CD的长.21.(8分)为迎接十四运,某小区修建一个长为(3a﹣b)米,宽为(a+2b)米的长方形休闲场所ABCD.长方形内筑一个正方形活动区EFGH和连接活动区到矩形四边的四条笔直小路(如图),正方形活动区的边长为(a﹣b)米,小路的宽均为2米.活动区与小路铺设鹅卵石,其它地方铺设草坪.(1)求铺设草坪的面积是多少平方米;(2)当a=10,b=4时,需要铺设草坪的面积是多少?22.(12分)问题背景:课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=4,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,则得到△ADC≌△EDB,小明证明△BED≌△CAD用到的判定定理是:(用字母表示);问题解决:小明发现:解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.请写出小明解决问题的完整过程;拓展应用:以△ABC的边AB,AC为边向外作△ABE和△ACD,AB=AE,AC=AD,∠BAE=∠CAD=90°,M是BC中点,连接AM,DE.当AM=3时,求DE的长.2020-2021学年陕西省西安市七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列运算正确的是()A.a2•a4=a8B.(﹣2a)3=﹣6a3C.m3÷(﹣m)2=m D.a4+a4=a8【分析】分别根据同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则、幂的乘方运算法则以及合并同类项法则逐一判断即可.【解答】解:A、a2•a4=a6,故本选项不合题意;B、(﹣2a)3=﹣8a3,故本选项不合题意;C、m3÷(﹣m)2=m,故本选项符合题意;D、a4+a4=2a4,故本选项不合题意;故选:C.2.(3分)截至4月2日,全球累计确诊新冠肺炎病例约1.3亿例.我们切不可掉以轻心,要做好日常防护.科学研究表明,导致新冠肺炎的新冠病毒比细菌小很多,平均直径仅为0.000000098m.这个数用科学记数法表示为()A.0.98×10﹣7B.9.8×10﹣8C.98×10﹣8D.9.8×10﹣9【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000098m=9.8×10﹣8m.故选:B.3.(3分)如图所示,下列推理不正确的是()A.若∠1=∠B,则BC∥DEB.若∠2=∠ADE,则AD∥CEC.若∠A+∠ADC=180°,则AB∥CDD.若∠B+∠BCD=180°,则BC∥DE【分析】根据平行线的判定定理即可判断.【解答】解:A、若∠1=∠B,则BC∥DE,不符合题意;B、若∠2=∠ADE,则AD∥CE,不符合题意;C、若∠A+∠ADC=180°,则AB∥CD,不符合题意;D、若∠B+∠BCD=180°,则AB∥CD,符合题意.故选:D.4.(3分)下列各式能用平方差公式计算的是()A.(2a+b)(a﹣2b)B.(a﹣2b)(2b﹣a)C.(2a﹣b)(﹣2a+b)D.(b﹣2a)(﹣2a﹣b)【分析】根据平方差公式逐个判断即可.【解答】解:A.不符合平方差公式,不能用平方差公式进行计算,故本选项不符合题意;B.不符合平方差公式,故本选项不符合题意;C.不符合平方差公式,故本选项不符合题意;D.(b﹣2a)(﹣2a﹣b)=(﹣2a)2﹣b2=4a2﹣b2,符合平方差公式,故本选项符合题意;故选:D.5.(3分)下面说法:①三角形的三条高交于同一点;②面积相等的两个正方形全等;③两条射线不相交就平行;④同位角相等.其中正确的有()A.1个B.2个C.3个D.4个【分析】①三角形的三条高所在直线交于同一点,锐角三角形交在内部,钝角三角形交在外部,直角三角形交在直角顶点上;②根据正方形的面积得出结论;③异面的两直线有既不平行,也不相交的情况;④根据平行线的性质可得到出结论.【解答】解:①三角形的三条高所在直线交于一点,故①说法不符合题意;②因为正方形的面积是边长的平方,所以面积相等的两个正方形边长相等,且四个角又是直角,所以是全等图形,故②说法符合题意;③两条不在同一平面的直线不相交但不一定平行,故③说法不符合题意;④两直线平行,则同位角相等,故④说法不符合题意,所以正确的是①,1个,故选:A.6.(3分)如图,下列推理不能求证△ABD≌△CAD的是()A.DB=DC,AB=AC B.∠ADC=∠ADB,DB=DCC.∠C=∠B,∠ADC=∠ADB D.∠C=∠B,DB=DC【分析】依据全等三角形的判定定理解答即可.【解答】解:A、依据SSS可知△ABD≌△ACD,故A不符合要求;B、依据SAS可知△ABD≌△ACD,故B不符合要求;C、依据AAS可知△ABD≌△ACD,故C不符合要求;D、依据SSA可知△ABD≌△ACD,故D符合要求.故选:D.7.(3分)如图,AD,AE为△ABC的高线,角平分线,DF⊥AE于点F.当∠DAC=21°,∠B=25°时,∠DAF的度数为()A.21°B.22°C.25°D.30°【分析】依据AD,AE为△ABC的高线,角平分线,即可得到∠BAD和BAE的度数,再根据角的和差关系,即可得出∠DAF的度数.【解答】解:∵AD⊥BC,∴∠ADB=90°,又∵∠B=25°,∴∠BAD=90°﹣25°=65°,又∵∠CAD=21°,∴∠BAC=65°+21°=86°,又∵AE平分∠BAC,∴∠BAE=∠BAC=86°=43°,∴∠DAF=∠BAD﹣∠BAE=65°﹣43°=22°,故选:B.8.(3分)乐乐观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=94°,∠DCE=115°,则∠E的度数是()A.30°B.25°C.23°D.21°【分析】延长DC交AE于F,依据AB∥CD,∠BAE=94°,可得∠CFE=94°,再根据三角形外角性质,即可得到∠E=∠DCE﹣∠CFE.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=94°,∴∠CFE=94°,又∵∠DCE=115°,∴∠E=∠DCE﹣∠CFE=115°﹣94°=21°.故选:D.9.(3分)如图,△ABF的面积是2,D是AB边上任意一点,E是CD中点,F是BE中点,△ABC的面积是()A.4B.6C.8D.16【分析】连接AE,由F为BE中点可得S△ABE=4,又由E为CD中点可得S△ADE=,S△BDE=,从而S△ABE=S△ADE+S△BDE=(S△ADC+S△BDC)=S△ABC=4,即可得到答案.【解答】解:连接AE,如图.∵F为BE中点,S△ABF=2,∴S△ABE=2S△ABF=2×2=4,又E为CD中点,∴S△ADE=,S△BDE=,∴S△ABE=S△ADE+S△BDE=+=(S△ADC+S△BDC)=S△ABC=4,故S△ABC=8.故选:C.10.(3分)如图,长方形ABCD的两边之差为4,以长方形的四条边分别为边向外作四个正方形,且这四个正方形的面积和为80,则长方形ABCD的面积是()A.12B.21C.24D.32【分析】设长方形ABCD的边长,表示出四个正方形的面积,根据四个正方形的面积和为80列方程求解即可.【解答】解:设AD=x,AB=y,∴y﹣x=4,∴2y2+2x2=80,即y2+x2=40,∴(y﹣x)2=16,∴y2+x2﹣2xy=16,∴40﹣2xy=16,∴xy=12,即长方形ABCD的面积为12,故选:A.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)若一个角的补角是43°,则这个角的度数为137°.【分析】根据补角的和等于180°计算即可.【解答】解:∵一个角的度数是43°,∴它的补角=180°﹣43°=137°,故答案为:137°.12.(3分)已知三角形的两边长分别为2和7,第三边为奇数,则它第三边的长是7.【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围;又知道第三边长为奇数,就可以得出第三边的长度.【解答】解:设第三边的长为x,根据三角形的三边关系,得7﹣2<x<7+2,即5<x<9,又∵第三边长是奇数,∴x=7.故答案为7.13.(3分)如果2021a=5,2021b=3.那么20212a﹣3b=.【分析】根据同底数幂的除法及幂的乘方的逆运算可计算求解.【解答】解:∵2021a=5,2021b=3,∴20212a﹣3b=20212a÷20213b=(2021a)2÷(2021b)3=52÷33=.故答案为.14.(3分)如图,△ABC中,∠ACB=90°,AC=5,BC=12,AB=13,P为直线AB上一动点,连接PC,则线段PC的最小值是.【分析】当PC⊥AB时,PC的值最小,利用面积法求解即可.【解答】解:在Rt△ABC中,∠ACB=90°,AC=5,BC=12,AB=13,当PC⊥AB时,PC的值最小,此时:△ABC的面积=•AB•PC=•AC•BC,∴13PC=5×12,∴PC=,故答案为:.15.(3分)当x=﹣1时,ax2+bx+1的值为﹣3,则(a﹣b+2)(3﹣2a+2b)的值为﹣22.【分析】先根据已知等式,得到a﹣b的值,然后对所求式子进行因式分解,整体代入计算即可.【解答】解:∵当x=﹣1时,ax2+bx+1=﹣3,∴a﹣b+1=﹣3,即a﹣b=﹣4,∴(a﹣b+2)(3﹣2a+2b)=[(a﹣b)+2][3﹣2(a﹣b)],∴原式=(﹣4+2)[3﹣2×(﹣4)]=﹣2×11=﹣22.故答案为:﹣22.16.(3分)已知:如图,在四边形ABCD中,AB∥CD,∠B=90°,AB=6厘米,BC=8厘米,CD=10厘米,点P从点B出发,以2厘米/秒的速度沿BC向点C运动,同时点Q从点D出发,沿DC向点C运动,连接AP,PQ.则点Q的运动速度为2或8厘米/秒时,△ABP与△CPQ全等.【分析】设点C运动t秒时,△ABP与△CPQ全等,则BP=2t,CP=8﹣2t,分两种情况:①当AB=CQ,BP=CP,②当AB=CP,BP=CQ分别求出t和DQ,根据速度公式即可求出答案,【解答】解:设点C运动t秒时,△ABP与△CPQ全等,则BP=2t,∵BC=8,∴CP=8﹣2t,∵AB∥CD,∠B=90°,∴∠B+∠C=180°,∴∠C=180°﹣∠B=90°.①当AB=CQ=6,BP=CP时,△ABP≌△PCQ,∴DQ=10﹣6=4,2t=8﹣2t,∴t=2,∴点Q的运动速度为4÷2=2(厘米/秒);②当AB=CP,BP=CQ时,△ABP≌△QCP,∴8﹣2t=6,CQ=2t,∴t=1,∴CQ=2,∴DQ=10﹣2=8,∴点Q的运动速度为8÷1=8(厘米/秒);综上所述:点Q的运动速度为2或8厘米/秒时,△ABP与△CPQ全等.故答案为:2或8.三、解答题(本大题共6小题,共52分)17.(12分)计算:(1)(﹣1)2021﹣(﹣2)﹣2+(3﹣π)0;(2)a3a4a+(a2)4﹣(﹣2a4)2;(3)[(a﹣b)(2a﹣b)﹣(a+b)2]÷(﹣a).【分析】(1)根据有理数的乘方、负整数指数幂和零指数幂可以解答本题;(2)根据同底数幂的乘法、积的乘方可以解答本题;(3)根据多项式乘多项式、完全平方公式、多项式除以单项式可以解答本题.【解答】解:(1)(﹣1)2021﹣(﹣2)﹣2+(3﹣π)0=(﹣1)﹣+1=﹣;(2)a3•a4•a+(a2)4﹣(﹣2a4)2=a8+a8﹣4a8=﹣2a8;(3)[(a﹣b)(2a﹣b)﹣(a+b)2]÷(﹣a)=(2a2﹣3ab+b2﹣a2﹣2ab﹣b2)×(﹣)=(a2﹣5ab)×(﹣)=﹣2a+10b.18.(6分)在△ABC中,∠C>∠B、请用尺规作图法,在AB上找一点P,使∠PCB=∠B.(保留作图痕迹,不写作法.)【分析】作线段BC的垂直平分线交AB于点P,点P即为所求作.【解答】解:如图,点P即为所求作.19.(6分)已知:如图,AD∥BC,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E,那么∠B与∠DCE相等吗?试说明理由.请将下面的推理过程补充完整.解:∠B=∠DCE,理由如下:∵AE平分∠BAD(已知),∴∠1=∠2(角平分线定义),∵AD∥BC(已知),∴∠2=∠E(两直线平行,内错角相等),∴∠1=∠E(等量代换),又∵∠CFE=∠E(已知),∴∠CFE=∠1(等量代换),∴AB∥CD(同位角相等,两直线平行),∴∠B=∠DCE.【分析】根据平行线的性质与判定逐项进行判定即可得出答案.【解答】解:∠B=∠DCE,理由如下:∵AE平分∠BAD(已知),∴∠1=∠2(角平分线定义),∵AD∥BC(已知),∴∠2=∠E(两直线平行,内错角相等),∴∠1=∠E(等量代换),又∵∠CFE=∠E(已知),∴∠CFE=∠1(等量代换),∴AB∥CD(同位角相等,两直线平行),∴∠B=∠DCE.故答案为:两直线平行,内错角相等;等量代换;1;AB;CD;同位角相等,两直线平行.20.(8分)如图,在四边形ABCD中,AB∥CD,∠1=∠2,AD=EC.(1)求证:△ABD≌△EDC;(2)若AB=2,BE=3,求CD的长.【分析】(1)由“AAS”即可证△ABD≌△EDC;(2)结合(1)可得AB=DE,BD=CD,可得结论.【解答】(1)证明:∵AB∥CD,∴∠ABD=∠EDC.在△ABD和△EDC中,,∴△ABD≌△EDC(AAS),(2)∵△ABD≌△EDC,∴AB=DE=2,BD=CD,∴CD=BD=DE+BE=2+3=5.21.(8分)为迎接十四运,某小区修建一个长为(3a﹣b)米,宽为(a+2b)米的长方形休闲场所ABCD.长方形内筑一个正方形活动区EFGH和连接活动区到矩形四边的四条笔直小路(如图),正方形活动区的边长为(a﹣b)米,小路的宽均为2米.活动区与小路铺设鹅卵石,其它地方铺设草坪.(1)求铺设草坪的面积是多少平方米;(2)当a=10,b=4时,需要铺设草坪的面积是多少?【分析】(1)用大长方形的面积减去小正方形的面积和四个长方形的面积即可;(2)将a=10,b=4代入(1)中结果计算可得答案.【解答】解:(1)草坪的面积为:(3a﹣b)(a+2b)﹣(a﹣b)2﹣[3a﹣b﹣(a﹣b)]×2=3a2+5ab﹣2b2﹣a2﹣b2+2ab﹣2(2a)﹣2×3b=2a2+7ab﹣3b2﹣4a﹣6b(平方米);(2)当a=10,b=4时,草坪的面积为:2×102+7×10×4﹣3×42﹣4×10﹣6×4=368(平方米),22.(12分)问题背景:课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=4,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,则得到△ADC≌△EDB,小明证明△BED≌△CAD用到的判定定理是:SAS(用字母表示);问题解决:小明发现:解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.请写出小明解决问题的完整过程;拓展应用:以△ABC的边AB,AC为边向外作△ABE和△ACD,AB=AE,AC=AD,∠BAE=∠CAD=90°,M是BC中点,连接AM,DE.当AM=3时,求DE的长.【分析】问题背景:先判断出BD=CD,由对顶角相等∠BDE=∠CDA,进而得出△ADC ≌△EDB(SAS);问题解决:先证明△ADC≌△EDB(SAS),得出BE=AC=3,最后用三角形三边关系即可得出结论;拓展应用:如图2,延长AM到N,使得MN=AM,连接BN,同(1)的方法得出△BMN ≌△CMA(SAS),则BN=AC,进而判断出∠ABN=∠EAD,进而判断出△ABN≌△EAD,得出AN=ED,即可求解.【解答】解:问题背景:如图1,延长AD到点E,使DE=AD,连接BE,∵AD是△ABC的中线,∴BD=CD,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),故答案为:SAS;问题解决:如图1,延长AD到点E,使DE=AD,连接BE,∵AD是△ABC的中线,∴BD=CD,在△ADC≌△EDB中,,∴△ADC≌△EDB(SAS),∴BE=AC,在△ABE中,AB﹣BE<AE<AB+BE,∵AB=4,AC=3,∴4﹣3<AE<4+3,即1<AE<7,∵DE=AD,∴AD=AE,∴<AD<;拓展应用:如图2,延长AM到N,使得MN=AM,连接BN,由问题背景知,△BMN≌△CMA(SAS),∴BN=AC,∠CAM=∠BNM,∵AC=AD,AC∥BN,∴BN=AD,∵AC∥BN,∴∠BAC+∠ABN=180°,∵∠BAE=∠CAD=90°,∴∠BAC+∠EAD=180°,∴∠ABN=∠EAD,在△ABN和△EAD中,,∴△ABN≌△EAD(SAS),∴AN=DE,∵MN=AM,∴DE=AN=2AM,∵AM=3,∴DE=6.。

人教版数学七年级上学期《期中考试试卷》(含答案解析)

人教版数学七年级上学期《期中考试试卷》(含答案解析)
答案与解析
一、选择题(本大题共10个小题,每小题3分,共30分)
1.在 中,表示正分数的有()
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
根据正分数的定义即可求解.
【详解】在 中, 整数, 是负分数,
只有: 是正分数,共2个,
故选:B.
【点睛】本题考查了有理数的分类,熟练掌握有理数的分类方法是解本题的关键.
23.近期电影《少年 你》受到广大青少年的喜爱,某校七年级1班2班的几名同学请他们的家长在网上买票,家长了解到某电影院的活动,设购买电影票的张数为
购买张数
每张票的价格



家长沟通后决定两个班的同学在期中考试结束后去观看。两个班共有 人,期中 班人数多于 不足 人。经过估算,如果两个班都以班为单位购买,则一共应付 元。
15.已知|a|=5,|b|=3,且|a-b|=b-a,那么a+b=________.
16.已知等式 ,无论 取何值等式都成立,则 __________.
三、解答题(共8题,共72分)
17.
18. 化简:
化简求值: ,其中
19.解方程:
20.在军运会期间,七年级1班志愿者小组准备利用午休时间把校门口的自行车摆放整齐,小组长进行分工时(小组长也参与摆放)发现:如果每人摆放 辆自行车,则还剩 辆自行车需要最后再摆;如果每人摆放 辆自行车,则有一名同学少摆放 辆自行车。请问:这个志愿者小组有几名同学,校门口有几辆自行车需要摆放?
2.下列式子是单项式的是()
A. B. C. D.
【答案】A
【解析】
【分析】
直接利用单项式的定义分析得出答案.
【详解】A、1是整式,此选项符合题意;

2020年七年级数学上期中试卷带答案

2020年七年级数学上期中试卷带答案
3.有理数a,b在数轴上的点的位置如图所示,则正确的结论是()
A.a<﹣4B.a+ b>0C.|a|>|b|D.ab>0
4.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是( )
A.|a|>|b|B.|ac|=acC.b<dD.c+d>0
5.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()
(1)计算: ;
(2)若请推算 □内的符号;
(3)在“ ”的□内填入符号后,使计算所得数最小,直接写出这个最小数.
25.有一种“24点”游戏,其游戏规则是这样的,将4个1~13之间的数进行加减乘除运算(每个数只能用一次),使其结果为24.例如,1,2,3,4可做如下运算:(1+2+3)×4=24,1×2×3×4=24,等等.
解析:3
【解析】
【分析】
不含有xy项,说明整理后其xy项的系数为0.
【详解】
解:整理只含xy的项得:(k-3)xy,
∴k-3=0,k=3.
故答案为3.
【点睛】
本题考查多项式的概念.不含某项,说明整理后的这项的系数之和为0.
14.【解析】【分析】直接根据已知数据变化规律进而将原式变形求出答案【详解】解:===故答案为:【点睛】此题主要考查了数字变化规律正确将原式变形是解题关键
B、∠DOC和∠AOE互余,说法正确;
C、∠AOD和∠DOC互补,说法正确;
D、∠AOE和∠BOC互补,说法错误;
故选D.
【点睛】
本题考查了余角和补角的知识,解答本题的关键是理解余角和补角的定义,掌握角平分线的性质.

2020人教版七年级下册数学《期中考试试题》附答案

2020人教版七年级下册数学《期中考试试题》附答案

人教版七年级下学期期中测试数 学 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1. -2的相反数是( )A. -2B. 2C. ±2D. 122.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为( )A. 0.76×104B. 7.6×103C. 7.6×104D. 76×102 3.将如图所示直角梯形绕直线l 旋转一周,得到的立体图形是( )A.B. C.D.4.在227,π,这些实数中,无理数有( )个 A. 1 B. 2 C. 3 D. 4 5.已知关于x 的一元一次方程2(x ﹣1)+3a =3的解为4,则a 的值是( ) A. ﹣1 B. 1 C. ﹣2 D. ﹣36.如图所示,直线a∥b ,点B 在直线b 上,且AB∥BC ,∥1=55°,则∥2的度数为( )A. 55°B. 45°C. 35°D. 25° 7.半面直角坐标系中,点A (-2,1)到y 轴的距离为( )A. -2B. 1C. 2D. 8.下列计算正确的是( )A.B. C. ∥2 D. ∥±29.把不等式x+2>4的解集表示在数轴上,正确的是 ( )A. B. C. D.10.下列命题中是假命题的是( )A. 若a >b ,则a+3>b+3B. 若a >b ,则-a <-bC. 若a >b ,则a 2>b 2D. 若a >b ,则33a b > 11.《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x 两、y 两,则可列方程组为( )A. 5210258x y x y +=⎧⎨+=⎩B. 5210258x y x y -=⎧⎨-=⎩C. 5210258x y x y +=⎧⎨-=⎩D.5282510x y x y +=⎧⎨+=⎩ 12.已知方程ax+by=10的两个解是10x y =-⎧⎨=⎩,15x y =⎧⎨=⎩,求a+b 的值( ) A. 6 B. -6 C. 1 D. -1二、填空题13.比较实数的大小:3.14.在平面直角坐标系中,已知,点A(m-2,3+m)x轴上,则m=______.15.如图:已知:a∥b,∥1=80°,则∥2=______.16.如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,则线段AD的长为______cm.17.不等式8x2>1的解集是______.18.如图,把自然数按图的次序排在直角坐标系中,每个自然数都对应着一个坐标.如1的对应点是原点(0,0),3的对应点是(1,1),16的对应点是(-1,2),那么,2019的对应点的坐标是______.三、解答题19.求值:(-1)2018-|1|20.如图,在平面直角坐标系中,∥ABC的三个顶点的坐标分别为:A(-1,2),B(-2,-1),C(2,0).(1)作图:将∥ABC先向右平移4个单位,再向上平移3个单位,则得到∥A1B1C1,作出∥A1B1C1;(不要求写作法)(2)写出下列点的坐标:A1______;B1______;C1______.(3)求∥ABC面积.21.已知关于x,y方程组4x y53x y9-=⎧⎨+=⎩和13418ax byx by+=-⎧⎨+=⎩有相同的解.(1)求出它们相同的解;(2)求(2a+3b)2019的值.22.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?23.如图,在∥ABC中,CD∥AB,垂足为D,点E在BC上,EF∥AB,垂足为F.(1)CD 与EF 平行吗?为什么?(2)如果∥1=∥2,CD 平分∥ACB ,且∥3=120°,求∥ACB 与∥1的度数.24.阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的“好解”例如:18x y =⎧⎨=⎩就是方程3x+y=11的一组“好解”;123x y z =⎧⎪=⎨⎪=⎩是方程组3206x y z x y z ++=⎧⎨++=⎩的一组“好解”. (1)请直接写出方程x+2y=7所有“好解”;(2)关于x ,y ,k 的方程组1551070x y k x y k ++=⎧⎨++=⎩有“好解“吗?若有,请求出对应的“好解”;若没有,请说明理由;(3)已知x ,y 为方程33x+23y=2019的“好解”,且x+y=m ,求所有m 的值.25.如图,以直角三角形AOC 的直角顶点O 为原点,以OC ∥OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ∥(),0C b 20b -=∥()1则C 点的坐标为______∥A 点的坐标为______∥()2已知坐标轴上有两动点P ∥Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是()1,2,设运动时间为(0)t t >秒.问:是否存在这样的t ,使ODP ODQ S S =V V ?若存在,请求出t 的值;若不存在,请说明理由. ()3点F 是线段AC 上一点,满足FOC FCO ∠=∠,点G 是第二象限中一点,连OG ,使得.AOG AOF ∠=∠点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACE OEC∠+∠∠的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.的26.已知a+1是4的算术平方根,b-1是27的立方根,化简求值:2(2a-b2)-(4a-a2).答案与解析一、选择题1. -2的相反数是()A. -2B. 2C. ±2D. 1 2【答案】B【解析】【分析】直接利用相反数的定义进而分析得出答案.【详解】解:-2的相反数是:2.故选:B.【点睛】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A. 0.76×104B. 7.6×103C. 7.6×104D. 76×102【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:7600=7.6×103,故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是()A. B. C. D.【答案】A【解析】【分析】根据直角梯形上下底不同得到旋转一周后上下底面圆的大小也不同,进而得到旋转一周后得到的几何体的形状.【详解】题中的图是一个直角梯形,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆,因此得到的立体图形应该是一个圆台.故选:A .【点睛】本题主要考查学生是否具有基本的识图能力,以及对点、线、面、体之间关系的理解.4.在227,π,这些实数中,无理数有( )个 A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】根据无限不循环小数是无理数的定义进行判断选择即可.2=-,所以在227,π,这些实数中,无理数有,π共两个,故答案选B.【点睛】本题考查的是无理数的概念,能够准确区别无限不循环小数是解题的关键. 5.已知关于x 一元一次方程2(x ﹣1)+3a =3的解为4,则a 的值是( )A. ﹣1B. 1C. ﹣2D. ﹣3【答案】A【解析】【分析】把x=1代入方程,即可得到一个关于a 的方程,即可求解.【详解】把x =4代入方程得()24133,a -+=解得: 1.a =-故选∥A.【点睛】考查方程解的概念,使方程左右两边相等的未知数的值就是方程的解. 6.如图所示,直线a∥b ,点B 在直线b 上,且AB∥BC ,∥1=55°,则∥2的度数为()A. 55°B. 45°C. 35°D. 25°【答案】C【解析】【分析】先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.【详解】解:∵∥1=55°,∥ABC=90°,∴∥3=90°-55°=35°.∵a ∥b ,∴∥2=∥3=35°. 的故选:C.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.7.半面直角坐标系中,点A(-2,1)到y轴的距离为()A. -2B. 1C. 2【答案】C【解析】【分析】根据点到y轴的距离等于横坐标的绝对值解答.【详解】解:∵点A(-2,1),∴点A(-2,1)到y轴的距离=|-2|=2,故选:C.【点睛】本题考查了点的坐标,熟记点到y轴的距离等于横坐标的绝对值是解题的关键.8.下列计算正确的是()∥2∥±2【答案】A【解析】【分析】根据算数平方根的定义可判断:若一个正数的平方等于a,则这个正数就是a的算数平方根【详解】A=2故B是错误C=4故C、D都是错误所以本题答案应为:A【点睛】算术平方根的定义是本题的考点,注意区别算数平方根和平方根.9.把不等式x+2>4的解集表示在数轴上,正确的是( )A. B.C.D.【答案】B【解析】 试题分析:移项得,x >4-2,合并同类项得,x >2,把解集画在数轴上,故选B .考点: 在数轴上表示不等式的解集.10.下列命题中是假命题的是( )A. 若a >b ,则a+3>b+3B. 若a >b ,则-a <-bC. 若a >b ,则a 2>b 2D. 若a >b ,则33a b > 【答案】C【解析】【分析】利用不等式的性质分别判断后即可确定正确的选项.【详解】解:A.若a >b ,则a+3>b+3,正确,是真命题;B.若a >b ,则-a <-b ,正确,是真命题;C.若a >b ,则a 2>b 2不一定成立,错误,是假命题;D.若a >b ,则33a b >,正确,是真命题; 故选:C.【点睛】本题考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大. 11.《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x 两、y 两,则可列方程组为( )A. 5210258x y x y +=⎧⎨+=⎩B. 5210258x y x y -=⎧⎨-=⎩C. 5210258x y x y +=⎧⎨-=⎩D.5282510x y x y +=⎧⎨+=⎩ 【答案】A【解析】 【分析】每头牛、每只羊分别值金x 两、y 两,根据“5头牛,2只羊,值金10两;2头牛,5只羊,值金8两”列出方程组即可得答案.【详解】由题意可得,5210258x y x y +=⎧⎨+=⎩∥ 故选A∥【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,找准等量关系列出相应的方程组.12.已知方程ax+by=10的两个解是10x y =-⎧⎨=⎩,15x y =⎧⎨=⎩,求a+b 的值( ) A. 6B. -6C. 1D. -1【答案】B【解析】【分析】把方程的两个解代入,则可得到一个关于a 和b 的二元一次方程组,解答即可. 【详解】解:把两个解10x y =-⎧⎨=⎩,15x y =⎧⎨=⎩分别代入方程ax+by=10中, 得:10510a a b -=⎧⎨+=⎩, 解得:104a b =-⎧⎨=⎩, ∴a+b=-10+4=-6,故选:B.【点睛】本题考查了二元一次方程的解,解题关键把方程的两个解代入原方程,得到关于a和b的二元一次方程组,再求解.二、填空题13.比较实数的大小:.【答案】>【解析】【分析】此题涉及的知识点是二次根式的性质,根据二次根式的性质,将3化成根号的形式即可比较出两实数的大小.【详解】将39>5,所以3【点睛】此题重点考察学生对二次根式的理解,熟练掌握二次根式的性质是本题解题的关键.14.在平面直角坐标系中,已知,点A(m-2,3+m)x轴上,则m=______.【答案】-3【解析】【分析】根据x轴上点的纵坐标为0列式计算即可得解.【详解】解:∵点A(m-2,3+m)在x轴上,∴3+m=0,解得:m=-3.故答案为:-3.【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.15.如图:已知:a∥b,∥1=80°,则∥2=______.【答案】100°【解析】【分析】利用两直线平行,同位角相等和邻补角的定义求∠2的度数.【详解】解:∵a∥b,∴∥3=∥1=80°.∥∥2=180°-∥3=100°.故答案为:100°.【点睛】本题比较简单,考查的是平行线的性质和邻补角的定义.16.如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,则线段AD的长为______cm.【答案】7.5【解析】【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=10cm,继而即可求出答案.【详解】解:∵C点为线段AB的中点,D点为BC的中点,AB=10cm,∴AC=CB=12AB=5cm,CD=12BC=2.5cm,∴AD=AC+CD=5+2.5=7.5cm.故答案为:7.5.【点睛】本题考查了比较线段的长短的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.17.不等式8x2->1的解集是______.【答案】x<6【解析】【分析】先去分母,去括号,然后移项,合并同类项,系数化成1即可.【详解】解:8x1 2->,82x ->,28x->-,x->-,6x<,6x<.故答案为:6【点睛】本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.18.如图,把自然数按图的次序排在直角坐标系中,每个自然数都对应着一个坐标.如1的对应点是原点(0,0),3的对应点是(1,1),16的对应点是(-1,2),那么,2019的对应点的坐标是______.【答案】(16,-22)【解析】【分析】观察图的结构,发现所有奇数的平方数都在第四象限的角平分线上.依此先确定2025的坐标为(22,-22),再根据图的结构求得2019的坐标.【详解】解:观察图的结构,发现所有奇数的平方数都在第四象限的角平分线上.452=2025,由2n+1=45得n=22,∴2025的坐标为(22,-22),由9的对应点是(1,1),在同一直线上且在第四象限,9的前面有0个点,25的对应点是(2,2),在同一直线上且在第四象限,10的前面有1个点,∴2019在同一直线上且在第四象限,2019的前面有21个点,2019=2025-6,22-6=16,∴2019坐标是(16,-22).故答案为:(16,-22).【点睛】本题考查了点的坐标,找到所有奇数的平方数所在位置是解题的关键.三、解答题19.求值:(-1)2018-|1|【答案】2【解析】【分析】直接利用绝对值的性质以及二次根式的性质分别化简得出答案.【详解】解:原式=1--1)-2+2=1+1-2+2=2【点睛】此题主要考查了实数运算,正确化简各数是解题关键.20.如图,在平面直角坐标系中,∥ABC的三个顶点的坐标分别为:A(-1,2),B(-2,-1),C(2,0).(1)作图:将∥ABC先向右平移4个单位,再向上平移3个单位,则得到∥A1B1C1,作出∥A1B1C1;(不要求写作法)(2)写出下列点的坐标:A1______;B1______;C1______.(3)求∥ABC的面积.【答案】(1)详见解析;(2)(3,5),(2,2),(6,3);(3)5.5【解析】【分析】(1)、(2)利用点平移的坐标变换规律,然后写出A1、B1、C1的坐标,然后描点、连线即可;(3)用一个矩形的面积分别减去三个直角三角形的面积可计算出△ABC的面积.【详解】解:(1)如图,∥A1B1C1为所作.(2)写出下列点的坐标:A1坐标为(3,5);B1坐标为(2,2);C1坐标为(6,3).故答案为:(3,5),(2,2),(6,3);(3)∥ABC 的面积=4×3-12×1×3-12×4×1-12×3×2=5.5. 【点睛】本题考查了作图-平移变换:确定平移后图形基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.21.已知关于x ,y 的方程组4x y 53x y 9-=⎧⎨+=⎩和13418ax by x by +=-⎧⎨+=⎩有相同的解. (1)求出它们相同的解;(2)求(2a+3b )2019的值.【答案】(1)x 2y 3=⎧⎨=⎩;(2)-1 【解析】【分析】(1)求出第一个方程组的解即可;(2)求出a 、b 的值,再代入求出即可.【详解】解:(1)∵解方程组4x y 5{3x y 9-=+=得:x 2{y 3==, ∴它们的相同的解是x 2{y 3==; (2)把x 2{y 3==代入方程组ax by 1{3a 4by 18+=-+=, 得:2a 3b 1{612b 18+=-+=, 解得:a 2{b 1=-=, ∴(2a+3b )2019=[2×(-2)+3×1]2019=-1.【点睛】本题考查了二元一次方程组的解,解二元一次方程组和求代数式的值等知识点,能求出两方程组的相同的解是解此题的关键.22.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如的的(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?【答案】(1)商场购进甲种矿泉水300箱,购进乙种矿泉水200箱(2)该商场共获得利润6600元【解析】【详解】(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,由题意得:500{243313800 x yx y+=+=,解得:300 {200 xy==,答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱;(2)300×(36−24)+200×(48−33)=3600+3000=6600(元),答:该商场共获得利润6600元.23.如图,在∥ABC中,CD∥AB,垂足为D,点E在BC上,EF∥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∥1=∥2,CD平分∥ACB,且∥3=120°,求∥ACB与∥1的度数.【答案】(1)详见解析;(2)∥ACB=120°,∥1=60°【解析】(1)根据垂直于同一直线的两直线平行判定;(2)根据平行线的性质和已知求出∠1=∠2=∠DCB,推出DG∥BC,根据平行线的性质得出∠ACB的度数即可;再由∠ACB的度数和已知得∠DCG的度数,利用三角形的外角的性质即可求出∠1的度数.【详解】解:(1)CD∥EF,理由是:∵CD⊥AB,EF⊥AB,∴CD∥EF;(2)∵CD∥EF,∴∥2=∥DCB,∵∥1=∥2,∴∥1=∥DCB,∴DG∥BC,∴∥ACB=∥3,∵∥3=120°,∴∥ACB=120°.∵CD平分∥ACB,∴∥DCG=12∥ACB=60°,∵∥3=∥1+∥DCG,∴∥1=120°-60°=60°.∴∥ACB=120°,∥1=60°.【点睛】本题考查了对平行线的性质和判定的应用,三角形的内角和定理以及三角形外角的性质,角平分线的定义.熟练掌握平行线的判定与性质是解决本题的关键.24.阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的“好解”例如:18 xy=⎧⎨=⎩就是方程3x+y=11的一组“好解”;123xyz=⎧⎪=⎨⎪=⎩是方程组3206x y zx y z++=⎧⎨++=⎩的一组“好解”.(1)请直接写出方程x+2y=7的所有“好解”;(2)关于x,y,k的方程组1551070x y kx y k++=⎧⎨++=⎩有“好解“吗?若有,请求出对应的“好解”;若没有,请说明理由;(3)已知x,y为方程33x+23y=2019的“好解”,且x+y=m,求所有m的值.【答案】(1)x1y3=⎧⎨=⎩,x3y2=⎧⎨=⎩,x5y1=⎧⎨=⎩;(2)x3y7=⎧⎨=⎩;(3)63,73,83【解析】【分析】(1)根据“好解”的定义,求方程的正整数解,先把方程做适当的变形,再列举正整数代入求解;(2)解方程组求得554{5594kxky+=-=,,根据“好解”的定义得5519k-<<,在范围内列举正整数代入求解;(3)根据题意,联立方程组,求出方程组的解,根据“好解”的定义得到k的取值范围,在范围内列举正整数代入求解.【详解】解:(1)由x+2y=7,得y=7x2-(x.y为正整数).∵x0 {7x2->>,即0<x<7,∴当x=1时,y=3;当x=3时,y=2;当x=5时,y=1;∴方程x+2y=7的“好解”有x1{y3==,x3{y2==,x5{y1==;(2)由x y k15{x5y10k70++=++=,解得554{5594kxky+=-=,∵55k 04{559k 04+->>,即-1<k <559, ∴当k=3时,x=5,y=7,∴方程组x y k 15{x 5y 10k 70++=++=有“好解“, ∴“好解”为x 3{y 7==;(3)由33x 23y 2019{x y m +=+=,解得201923m x 10{33m 2019y 10-=-=, ∵201923m 010{33m 2019010-->>,即201933<m <201923, ∴当m=63时,x=57,y=6;m=73时,x=38,y=39;m=83时,x=11,y=72;∴所有m 的值为63,73,83.【点睛】本题考查了三元一次方程组的应用,解题关键是要理解方程(组)的“好解”条件,根据条件求解.25.如图,以直角三角形AOC 的直角顶点O 为原点,以OC ∥OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ∥(),0C b20b -=∥()1则C 点的坐标为______∥A 点的坐标为______∥()2已知坐标轴上有两动点P ∥Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是()1,2,设运动时间为(0)t t >秒.问:是否存在这样的t ,使ODP ODQ S S =V V ?若存在,请求出t 的值;若不存在,请说明理由.()3点F 是线段AC 上一点,满足FOC FCO ∠=∠,点G 是第二象限中一点,连OG ,使得.AOG AOF ∠=∠点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACE OEC∠+∠∠的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.【答案】(1)()2,0;()0,4 ;(2)1;(3)2.【解析】分析:(1)根据绝对值和算术平方根的非负性,求得a ,b 的值即可;(2)先得出CP =t ,OP =2﹣t ,OQ =2t ,AQ =4﹣2t ,再根据S △ODP =S △ODQ ,列出关于t 的方程,求得t 的值即可;(3)过H 点作AC 的平行线,交x 轴于P ,先判定OG ∥AC ,再根据角的和差关系以及平行线的性质,得出∠PHO =∠GOF =∠1+∠2,∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,最后代入OHC ACE OEC ∠∠∠+进行计算即可.详解:(1+|b ﹣2|=0,∴a ﹣2b =0,b ﹣2=0,解得:a =4,b =2,∴A (0,4),C (2,0);(2)由条件可知:P 点从C 点运动到O 点时间为2秒,Q 点从O 点运动到A 点时间为2秒,∴0<t ≤2时,点Q 在线段AO 上,即 CP =t ,OP =2﹣t ,OQ =2t ,AQ =4﹣2t ,∴1111222212222DOP D DOQ D S OP y t t S OQ x t t =⋅=-⨯=-=⋅=⨯⨯=V V (),. ∵S △ODP =S △ODQ ,∴2﹣t =t ,∴t =1;(3)OHC ACE OEC∠∠∠+的值不变,其值为2. ∵∠2+∠3=90°.又∵∠1=∠2,∠3=∠FCO ,∴∠GOC +∠ACO =180°,∴OG ∥AC ,∴∠1=∠CAO ,∴∠OEC =∠CAO +∠4=∠1+∠4,如图,过H 点作AC 的平行线,交x 轴于P ,则∠4=∠PHC ,PH ∥OG ,∴∠PHO =∠GOF =∠1+∠2,∴∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,∴124421421414OHC ACE OEC ∠∠∠∠∠∠∠∠∠∠∠∠∠+++++===++().点睛:本题主要考查了坐标与图形性质,解决问题的关键值作辅助线构造平行线.解题时注意:任意一个数的绝对值都是非负数,算术平方根具有非负性,非负数之和等于0时,各项都等于0.26.已知a+1是4的算术平方根,b -1是27的立方根,化简求值:2(2a -b 2)-(4a -a 2).【答案】-31【解析】【分析】先根据算术平方根和立方根的定义得出a 、b 的值,再去括号、合并同类项化简原式,继而代入计算可得.【详解】解:∵a+1是4的算术平方根,b -1是27的立方根,∴a+1=2,b -1=3,解得a=1,b=4,原式=4a -2b 2-4a+a 2=a 2-2b 2,当a=1,b=4时,原式=1-2×16=1-32=-31.【点睛】本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和法则是解题的关键.。

2020 - 2021学年度 湖北省武汉市汉阳区第一学期期中考试 七年级数学试卷

2020 - 2021学年度 湖北省武汉市汉阳区第一学期期中考试 七年级数学试卷

2020 - 2021学年度汉阳区第一学期期中考试七年级数学试卷一、选择题〔共10小题,每小题3分,共30分) 1. -7的相反数是( ) A .7 B .-7 C .71 D .71- 2. 质检员抽查4袋方便面,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从质量的角度看,最接近标准的产品是( )A . -3.5B . +0.7C . -2.5D . -0.63. 2020年6月23日,北斗三号最后一颗全球组网卫星从西昌发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道。

将36000用科学记数法表示应为( ) A .51036.0⨯ B .5106.3⨯ C .4106.3⨯ D .41036⨯ 4. 在下列给出的四个多项式中,为三次二项式的多项式是( )A .14-xB .322-+xy xC .y x -32D .132+-y x 6. 若单项式22+m y x 与y x n 3-的和仍然是一个单项式,则n m +的值( )A .B .C .D .7. 若“ω”是新规定的某种运算符号,设b a b a 23-=ω,则)()(y x y x -+ω的值为( ) A .y x + B .y x 2+ C .y x 22+ D .y x 5+8. 当x =1时,多项式135-++cx bx ax 的值是5,则当x =-1时,它的值为( ) A .-7 B .-3 C .-5 D .79. 找出以下图形变化的规律,则第101个图形中黑色正方形的数量是( )A .149B .150C .151D .15210. 在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图所示.:则第5个方框中最下面一行的数可能是( ) A .1296 B .2809 C .3136 D .4225 二、填空题(共6小题,每小题3分,共18分) 11. 若x 、y 互为倒数,则xy3=____________ 12. 用四舍五入法求5.4349精确到0.01的近似值是___________13. 若0)42(22=++-n m ,则=+n m ______________14. 若关于x 、y 的多项式y y x y y nx my +-++23232中不含三次项,则mn =___________15. 有四个完全相同的小长方形和两个完全相同的大长方形按如图位置摆放,按照图中所示尺寸,a =20,b =12,则小长方形的长与宽的差是____________第15题图 第16题图16. 同学们喜欢玩的换房游戏,老师创新改成了“幻圆”游戏,现在将-1,2,-3,4,-5,6,-7,8分别填入如图所示的圆圈内,使横、纵以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则b a +的值是______________ 三、解答题(共72分) 17. (本题共8分)计算:(1))5.1(2)51(6----+ (2)]2)53()4[()10(23⨯---+-18. (本题共8分)先化简,再求值:(1)x x x x x 6525345222+----+,其中3-=x (2))3123()31(22122y x y x x +-+--,其中32,2=-=y x19. (本题共8分)“十一”黄金周期间,某市外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(1)请判断外出旅游人数最多的是10月_______日,最少是10月__________日.小长方形大长方形(2)若黄金周期间平均每人每天消费500元,且出游人数最多的一天有3万人,求城市10月6日这天外出旅游消费总额是多少万元?20. (本题共8分)如图1,将一个边长为a 的正方形纸片剪去两个一模一样的小长方形。

2020-2021学年度七年级下学期期中考试数学试卷(含答案)

2020-2021学年度七年级下学期期中考试数学试卷(含答案)

七年级下学期期中考试数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第三章《变量之间的关系》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。

在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.某数学兴趣小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表),下列说法错误的是()温度/℃−20−100102030声速/(m/s)318324330336342348A. 在这个变化中自变量是温度,因变量是声速B. 当温度每升高10℃,声速增加6m/sC. 当空气温度为20℃,5s的时间声音可以传播1740mD. 温度越高声速越快2.体育课上,老师测量跳远成绩的依据是()A. 平行线间的距离相等B. 两点之间,线段最短C. 垂线段最短D. 两点确定一条直线3.下列各项中,两个幂是同底数幂的是()A. x2与a2B. (−a)5与a3C. (x−y)2与(y−x)2D. −x2与x34.若(x−1)0−2(2x−6)−2有意义,那么x的取值范围是()A. x>1B. x<3C. x≠1或x≠3D. x≠1且x≠35.如图,∠B的同位角可以是()A. ∠1B. ∠2C. ∠3D. ∠46.一蓄水池中有水50m3,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分1234…水池中水量/m348464442…下列说法不正确的是()A. 蓄水池每分钟放水2m3B. 放水18分钟后,水池中水量为14m3C. 蓄水池一共可以放水25分钟D. 放水12分钟后,水池中水量为24m37.某商场为了增加销售额,推出优惠活动,其活动内容为凡活动期间一次购物超过50元,超过50元的部分按9折优惠.在活动期间,李明到该商场为单位购买单价为30元的办公用品x(件)(x>2),则应付款y(元)与商品件数x的关系式为()A. y=27x(x>2)B. y=27x+5(x>2)C. y=27x+50(x>2)D. y=27x+45(x>2)8.如图 ①,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的关系的图象如图 ②,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的关系的图象大致是()A. B.C. D.9.如图,将一副三角尺按下列位置摆放,使∠α和∠β互余的摆放方式是()A.B.C.D.10.如图,直线AB,CD相交于点O,射线OM平分∠BOD.若∠AOC=42∘,则∠AOM等于()A. 159∘B. 161∘C. 169∘D. 138∘11.小萌在利用完全平方公式计算一个二项整式的平方时,得到正确结果4x2+20xy+■,不小心把最后一项染黑了,你认为这一项是()A. 5y2B. 10y2C. 100y2D. 25y212.某同学在计算−3x2乘一个多项式时错误的计算成了加法,得到的答案是x2−x+1,由此可以推断正确的计算结果是()A. 4x2−x+1B. x2−x+1C. −12x4+3x3−3x2D. 无法确定13.若多项式x2+x+m能被x+5整除,则此多项式也能被下列哪个多项式整除()A. x−6B. x+6C. x−4D. x+414.如图所示,与∠α构成同位角的角的个数为()A. 1B. 2C. 3D. 415.某人要在规定的时间内加工100个零件,则工作效率η与时间t之间的关系中,下列说法正确的是()A.数100和η、t都是变量B. 数100和η都是常量C. η和t是变量D. 数100和t都是常量卷Ⅱ二、填空题(本大题共5小题,共25.0分)16.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是_________________.17.如图,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车距离最近,请你在铁路边选一点来建火车站(位置已选好),理由是.18.已知2x=a,3x=b,则6x=.19.如图,直线EF与CD相交于点O,OA⊥OB,且OC平分∠AOF.若∠AOE=40∘,则∠BOD的度数为.20.观察下列图形及表格:梯形个数n123456⋯周长l5811141720⋯则周长l与梯形个数n之间的关系式为.三、解答题(本大题共7小题,共80.0分)21.(8分)计算:(1)(x2y−12xy2−2xy)÷12xy;(2)[2(x+y)3−4(x+y)2−x−y]÷(x+y).22.(8分)如图,直线a、b被直线l所截,已知∠1=40°,试求∠2的同位角及同旁内角的度数.23.(12分)(1)表示汽车性能的参数有很多,例如:长宽高、轴距、排量、功率、扭矩、转速、百公里油耗等等.为了了解某种车的耗油量,某专业检测人员对这种车在高速公路上做了耗油试验,并把试验的数据记录下米,制成下表:汽车行驶时间t(ℎ)0123…油箱剩余油量Q(L)100948882…①上表反映的两个变量中,白变量是______;②根据上表可知,每小时耗油______升;③根据上表的数据,写出用t表示Q的关系式:______④若汽车油箱中剩余油量为55L,则汽车行驶了多少小时?(2)年龄与手机号码的秘密:①选取你家里任意一部手机的最后一位:②把这个数字乘上2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥最后用这个数目减去你出生的那一年(例如2004年).现在你看到一个三位数的数字.第一位数字是你家手机号的最后一位,接下来就是你的实际年龄!你能否用你所选数字按照上述步骤验证下?你能用所学知识解释这一问题吗?(计算年龄时按照农历现在为2017年)24.(10分)观察下列式:(x2−1)÷(x−1)=x+1;(x3−1)÷(x−1)=x2+x+1;(x4−1)÷(x−1)=x3+x2+x+1;(x5−1)÷(x−1)=x4+x3+x2+x+1;(1)猜想:(x7−1)÷(x−1)=______;(27−1)÷(2−1)=______;(2)根据①猜想的结论计算:1+2+22+23+24+25+26+27.25.(12分)如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=72∘,求∠BOD的度数;(2)若∠DOE=2∠AOC,判断射线OE,OD的位置关系,并说明理由.26.(14分)2018年5月14日川航3U8633航班挡风玻璃在高空爆裂,机组临危不乱,果断应对,正确处置,顺利返航,避免了一场灾难的发生,下面表格是成都当日海拔ℎ(千米)与相应高度处气温t(℃)的关系(成都地处四川盆地,海拔较低,为方便计算,在此题中近似为0米).海拔ℎ(千米)012345…气温t(℃)201482−4−10…根据上表,回答以下问题:(1)由上表可知海拔5千米的上空气温约为________℃;(2)由表格中的规律请写出当日气温t与海拔高度h的关系式为________;如图表示当日飞机下降过程中海拔与玻璃爆裂后立即返回地面所用的时间关系.根据图象回答以下问题:(3)挡风玻璃在高空爆裂时飞机所处的高度为________千米,返回地面用了________分钟;(4)飞机在2千米高空水平面上大约盘旋了________分钟;(5)求挡风玻璃在高空爆裂时,飞机所处高空的气温.27.(16分)已知:如图是一个跳棋棋盘,其游戏规则是:一个棋子从某一个起始角开始,经过若干步跳动以后,到达终点角.跳动时,每一步只能跳到它的同位角或内错角或同旁内角的位置上,例如:从起始位置∠1跳到终点位置∠3写出其中两种不同路径,路径1:∠1−同旁内角→∠9−内错角→∠3.路径2:∠1一内错角→∠12一内错角→∠6−同位角→∠10−同旁内角→∠3.试一试:(1)从起始∠1跳到终点角∠8;(2)从起始角∠1依次按同位角、内错角、同旁内角的顺序跳,能否跳到终点∠8?答案1.C2.C3.D4.D5.D6.D7.B8.C9.A10.A11.D12.C13.C14.C15.C16.y=4−x2(0<x<2)17.垂线段最短18.ab19.20∘20.l=3n+221.解:(1)(x2y−12xy2−2xy)÷12xy=x2y÷12xy−12xy2÷12xy−2xy÷12xy=2x−y−4;(2)[2(x+y)3−4(x+y)2−x−y]÷(x+y)=2(x+y)3÷(x+y)−4(x+y)2÷(x+y)−(x+y)÷(x+y) =2(x+y)2−4(x+y)−1.22.解:如图,由图可知,∠4是∠2的同位角,∠3是∠2的同旁内角,∵∠1=40°,∴∠3=∠1=40°,∠4=180°−∠1=140°,即∠2的同位角是140°,∠2的同旁内角是40°.23.解:(1)①自变量是t,②据上表可知,每小时耗油100−94=6升;③Q=100−6t;④当Q=55时,55=100−6t,6t=45,t=7.5.答:汽车行使了7.5小时;(2)比如:我选择数字为9,出生时间为2004年,我的年龄为13岁,由题意得(9×2+5)×50+1767−2004=900+2017−2004=913,解释:假设选取数字为m,出生时间为n年,由题意得(m×2+5)×50+1767−n=100m+(2017−n)因为m为个位数字,(2017−n)两位数,所以100m+(2017−n)三位数,而且第一位数字就所选数字,后两位恰好为年龄.24.(1)x6+x5+x4+x3+x2+x+1;26+25+24+23+22+2+1;(2)根据①猜想的结论计算:1+2+22+23+24+25+26+27=(28−1)÷(2−1)=28−1=255.25.解:(1)因为OA平分∠EOC,∠EOC=72∘,∠EOC=36∘.所以∠AOC=12所以∠BOD=∠AOC=36∘.(2)OE⊥OD.理由如下:因为∠DOE=2∠AOC,OA平分∠EOC,所以∠DOE=2∠AOC=∠EOC.又因为∠DOE +∠EOC =180∘, 所以∠DOE =∠EOC =90∘. 所以OE ⊥OD .26.解:(1)−10;(2)t =20−6ℎ; (3)9.8,20; (4)2;(5)根据图象可知,当ℎ=9.8时,挡风玻璃爆裂,此时t =20−6×9.8=−38.8, 所以挡风玻璃在高空爆裂时,飞机所处高空的气温为−38.8℃.27.解:(1)路径∠1→内错角∠12→同旁内角∠8;(2)从起始角∠1依次按同位角、内错角、同旁内角的顺序跳,能跳到终点∠8.其路径为: 路径:∠1→同位角∠10→内错角∠5→同旁内角∠8.。

2020年最新七年级下册期中数学试卷及答案(苏科版)

2020年最新七年级下册期中数学试卷及答案(苏科版)

七年级(下)期中数学试卷一.选择题1.下列长度的3根小棒,能搭成三角形的是()A.9,5,2 B.5,4,9 C.4,6,9 D.8,5,132.下列计算错误的是()A.x3m+1=(x3)m+1B.x3m+1=x•x3mC.x3m+1=x m•x2m•x D.x3m+1=(x m)3•x3.如果3x=m,3y=n,那么3x﹣y等于()A.m+n B.m﹣n C.mn D.4.(﹣3)100×(﹣3)﹣101等于()A.﹣3 B.3 C.D.﹣5.下列各式中,为完全平方式的是()A.a2+2a+ B.a2+a+C.x2﹣2x﹣1 D.x2﹣xy+y26.下列因式分解中,正确的是()A.﹣2x3﹣3xy3+xy=﹣xy(2x2﹣3y2+1)B.﹣y2﹣x2=﹣(y+x)(y﹣x)C.16x2+4y2﹣16xy=4(2x﹣y)2D.x2y+2xy+4y=y(x+2)27.下列方程组中,是二元一次方程组的是()A.B.C.D.8.设(y≠0),则=()A.12 B.C.﹣12 D.9.如果a=(﹣99)0,b=(﹣0.1)﹣1,c=,那么a、b、c三数的大小为()A.a>b>c B.c>a>b C.a>c>b D.c>b>a10.设方程组的解是,那么a,b的值分别为()A.﹣2,3 B.3,﹣2 C.2,﹣3 D.﹣3,2二.填空题11.(4x)2﹣8xy+y2= 2,(a﹣2b)=(2b)2﹣a2.12.若x2+kx+16是完全平方式,则k的值为.13.如果2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,那么数a= ,b= .14.是方程3mx﹣2y﹣1=0的解,则m= .15.如果x3n=3,那么x6n= .16.计算:2a3b•(﹣3ab)3= .17.若a+b=﹣3,ab=2,则a2+b2= ,(a﹣b)2= .18.|x﹣2y+1|+|x+y﹣5|=0,则x+y= .19.若a﹣=3,则a2﹢﹦.三.解答题20.计算:(1)(x+2y)(2x﹣y)(2)(2a﹣3b)(﹣2a﹣3b)21.分解因式:(1)4a2﹣16(2)﹣36x2+12xy﹣y2.22.解方程组:(1)(2).23.已知3×9m×27m=321,求m的值.24.已知方程组与方程组有相同的解,求a、b的值.25.甲乙两人相距10千米,两人同时出发,同向而行,甲2.5小时可以追上乙;相向而行,1小时相遇,求两人的速度.26.如图,点A、B、C、D在一条直线上,EA⊥A D,FB⊥AD,垂足分别为A、B,∠E=∠F,CE与DF平行吗?为什么?七年级(下)期中数学试卷参考答案与试题解析一.选择题1.下列长度的3根小棒,能搭成三角形的是()A.9,5,2 B.5,4,9 C.4,6,9 D.8,5,13【考点】三角形三边关系.【分析】根据三角形的三边关系定理:三角形两边之和大于第三边进行分析即可.【解答】解:A、5+2<9,不能构成三角形,故此选项错误;B、5+4=9,不能构成三角形,故此选项错误;C、4+6>9,能构成三角形,故此选项正确;D、5+8=13,不能构成三角形,故此选项错误;故选:C.【点评】此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.下列计算错误的是()A.x3m+1=(x3)m+1B.x3m+1=x•x3mC.x3m+1=x m•x2m•x D.x3m+1=(x m)3•x【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】结合选项分别进行幂的乘方和积的乘方、同底数幂的乘法等运算,然后选择正确选项.【解答】解:A、(x3)m+1=x3m+3,原式计算错误,故本选项正确;B、x3m+1=x•x3m,原式计算正确,故本选项错误;C、x m•x2m•x=x3m+1,原式计算正确,故本选项错误;D、x3m+1=(x m)3•x,原式计算正确,故本选项错误.故选A.【点评】本题考查了幂的乘方和积的乘方以及同底数幂的乘法,解答本题的关键是掌握幂的乘方和积的乘方和同底数幂的乘法法则.3.如果3x=m,3y=n,那么3x﹣y等于()A.m+n B.m﹣n C.mn D.【考点】同底数幂的除法.【分析】根据同底数幂相除,底数不变,指数相减,整理后再根据指数相等列出方程求解即可.【解答】解:∵3x=m,3y=n,∴3x﹣y=3x÷3y=,故选D.【点评】本题考查了同底数幂的除法,熟练掌握运算性质,根据指数相等列式是解本题的关键.4.(﹣3)100×(﹣3)﹣101等于()A.﹣3 B.3 C. D.﹣【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】运用同底数幂的乘法及负整数幂的法则计算.【解答】解:(﹣3)100×(﹣3)﹣101=(﹣3)100﹣101=﹣.故选:D.【点评】本题主要考查了同底数幂的乘法及负整数幂的知识,解题的关键是熟记法测.5.下列各式中,为完全平方式的是()A.a2+2a+ B.a2+a+ C.x2﹣2x﹣1 D.x2﹣xy+y2【考点】完全平方式.【专题】计算题.【分析】利用完全平方公式的结构特征判断即可得到结果.【解答】解:a2+a+=(a+)2,故选B【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.6.下列因式分解中,正确的是()A.﹣2x3﹣3xy3+xy=﹣xy(2x2﹣3y2+1)B.﹣y2﹣x2=﹣(y+x)(y﹣x)C.16x2+4y2﹣16xy=4(2x﹣y)2D.x2y+2xy+4y=y(x+2)2【考点】提公因式法与公式法的综合运用.【分析】根据提公因式法分解因式,平方差公式,完全平方公式对各选项分析判断后利用排除法求解.【解答】解:A、应为﹣2x3﹣3xy3+xy=﹣x(2x2+3y3﹣y),错误;B、﹣y2﹣x2不符合平方差公式的特征,不能进行因式分解,错误;C、16x2+4y2﹣16xy=4(2x﹣y)2,正确;D、应为x2y+2xy+4y=y(x2+2x+4),错误.故选C.【点评】本题主要考查提公因式法,公式法分解因式,找准公因式、熟记公式结构特点是求解此类问题的关键.7.下列方程组中,是二元一次方程组的是()A.B.C.D.【考点】二元一次方程组的定义.【分析】根据二元一次方程组的定义逐个判断即可.【解答】解:A、不是二元一次方程组,故本选项错误;B、不是二元一次方程组,故本选项错误;C、不是二元一次方程组,故本选项错误;D、是二元一次方程组,故本选项正确;故选D.【点评】本题考查了二元一次方程组的定义的应用,主要考查学生对二元一次方程组的定义的理解能力.8.设(y≠0),则=()A.12 B. C.﹣12 D.【考点】解二元一次方程组.【分析】先观察所给方程组与所求代数式的特点可发现,所求代数式中不含未知数y,故可用代入法把y 消去,直接求出x、z的比值.【解答】解:①可变形为y=…③,把③代入②得, +4z=0,去分母、移项得,x=﹣12z,两边同除以12得=﹣12.故选C.【点评】此题比较简单,解答此题的关键是注意观察方程组中的方程与所求代数式之间的关系,消去所求代数式中不含有的未知数,利用等式的性质直接求出x、z的比值.9.如果a=(﹣99)0,b=(﹣0.1)﹣1,c=,那么a、b、c三数的大小为()A.a>b>c B.c>a>b C.a>c>b D.c>b>a【考点】负整数指数幂;零指数幂.【专题】计算题.【分析】分别计算出a、b、c的值,然后比较有理数的大小即可.【解答】解:a=(﹣99)0=1,b=(﹣0.1)﹣1=﹣10,c==,故可得b<c<a.故选C.【点评】此题考查了负整数指数幂及零指数幂的知识,属于基础题,解答本题的关键是掌握负整数指数幂的运算法则,难度一般.10.设方程组的解是,那么a,b的值分别为()A.﹣2,3 B.3,﹣2 C.2,﹣3 D.﹣3,2【考点】二元一次方程组的解.【分析】把代入方程组,得到关于a,b的方程组,再进一步解方程组.【解答】解:把代入方程组,得,解得.故选A.【点评】能够把方程组的解代入得到新的方程组,从而求解.二.填空题11.(4x)2﹣8xy+y2= (4x﹣y)2,(a﹣2b)(﹣a﹣2b)=(2b)2﹣a2.【考点】完全平方公式;平方差公式.【分析】根据完全平方公式、平方差公式,即可解答.【解答】解:(4x)2﹣8xy+y2=(4x﹣y)2,(a﹣2b)(﹣a﹣2b)=(2b)2﹣a2.故答案为:(4x﹣y),(﹣a﹣2b).【点评】本题考查了完全平方公式、平方差公式,解决本题的关键是熟记平方差公式、完全平方公式.12.若x2+kx+16是完全平方式,则k的值为±8.【考点】完全平方式.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【解答】解:∵x2+kx+16=x2+kx+42,∴kx=±2•x•4,解得k=±8.故答案为:±8.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.13.如果2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,那么数a= 3 ,b= 4 .【考点】二元一次方程的定义.【分析】根据一元二次方程的定义,令未知数的次数为1,即可列方程解答.【解答】解:∵2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,∴,解得,,故答案为3,4.【点评】本题考查了二元一次方程的定义,根据题意列出方程是解题的关键.14.是方程3mx﹣2y﹣1=0的解,则m= .【考点】二元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把x与y的值代入方程计算即可求出m的值.【解答】解:把代入方程3mx﹣2y﹣1=0,得:3m﹣4﹣1=0,解得:m=,故答案为:【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.如果x3n=3,那么x6n= 9 .【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:∵x3n=3,∴x6n=(x3n)2=9.故答案为:9.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.16.计算:2a3b•(﹣3ab)3= ﹣54a6b4.【考点】单项式乘单项式.【分析】根据单项式乘单项式法则计算即可得到结果.【解答】解:2a3b•(﹣3ab)3=﹣54a6b4,故答案为:﹣54a6b4.【点评】此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.17.若a+b=﹣3,ab=2,则a2+b2= 5 ,(a﹣b)2= 1 .【考点】完全平方公式.【专题】计算题.【分析】把已知条件a+b=﹣3,两边平方整理即可求出a2+b2的值,再根据(a﹣b)2=a2+b2﹣2ab代入数据计算即可求解.【解答】解:∵a+b=﹣3,∴a2+2ab+b2=9,∵ab=2,∴a2+b2=9﹣2×2=9﹣4=5;(a﹣b)2=a2+b2﹣2ab=5﹣2×2=5﹣4=1.【点评】本题是对完全平方公式的考查,熟记公式特点是解题的关键.18.|x﹣2y+1|+|x+y﹣5|=0,则x+y= 5 .【考点】解二元一次方程组;非负数的性质:绝对值.【专题】计算题;一次方程(组)及应用.【分析】已知等式利用非负数的性质化简求出x+y的值即可.【解答】解:∵|x﹣2y+1|+|x+y﹣5|=0,∴,则x+y=5,故答案为:5【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.若a﹣=3,则a2﹢﹦11 .【考点】完全平方公式.【专题】计算题.【分析】将已知等式两边平方,利用完全平方公式展开,变形即可求出所求式子的值.【解答】解:将a﹣=3两边平方得:(a﹣)2=9,即a2+﹣2=9,则a2+=11.故答案为:11【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.三.解答题20.计算:(1)(x+2y)(2x﹣y)(2)(2a﹣3b)(﹣2a﹣3b)【考点】平方差公式.【分析】(1)根据多项式乘以多项式,即可解答;(2)根据平方差公式,即可解答.【解答】解:(1)(x+2y)(2x﹣y)=2x2+3xy﹣2y2;(2)(2a﹣3b)(﹣2a﹣3b)=(﹣3b)2﹣(2a)2=9b2﹣4a2.【点评】本题考查了平方差公式,解决本题的关键是熟记平方差公式.21.分解因式:(1)4a2﹣16(2)﹣36x2+12xy﹣y2.【考点】因式分解-运用公式法.【分析】(1)先提取公因式,再利用平方差公式因式分解即可;(2)先提取公因式,再利用完全平方公式因式分解即可.【解答】解:(1)原式=4(a2﹣4)=4(a+2)(a﹣2);(2)原式=﹣(36x2﹣12xy+y2)=﹣(6x﹣y)2.【点评】此题考查利用公式法因式分解,掌握平方差公式和完全平方公式是解决问题的关键.22.解方程组:(1)(2).【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),①×3+②得:17x=0,即x=0,把x=0代入①得:y=﹣3,则方程组的解为;(2)方程组整理得:,①×3+②×2得:17x=408,即x=24,把x=24代入①得:y=12,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.已知3×9m×27m=321,求m的值.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】先把9m×27m分解成32m×33m,再根据同底数幂的乘法法则进行计算即可求出m的值.【解答】解:∵3×9m×27m=3×32m×33m=31+2m+3m=321,∴1+2m+3m=21,∴m=4.【点评】此题考查了同底数幂的乘法,幂的乘方与积的乘方,理清指数的变化是解题的关键.24.已知方程组与方程组有相同的解,求a、b的值.【考点】二元一次方程组的解.【分析】根据题意得出方程组的解与题中两方程组解相同,进而得出x,y的值代入另两个方程求出a,b 的值即可.【解答】解:由题意得出:方程组的解与题中两方程组解相同,解得:,将x=1,y=﹣2代入ax+5y=4,解得:a﹣10=4,∴a=14,将x=1,y=﹣2,代入5x+by=1,得5﹣2b=1,∴b=2.【点评】此题主要考查了二元一次方程的解,根据题意得出两方程的同解方程是解题关键.25.甲乙两人相距10千米,两人同时出发,同向而行,甲2.5小时可以追上乙;相向而行,1小时相遇,求两人的速度.【考点】二元一次方程组的应用.【分析】设甲的速度为x千米/小时,乙的而速度为y千米/小时,根据题意可得,甲2.5小时比乙2.5小时多走10千米,甲乙1小时可走10千米,据此列方程组求解.【解答】解:设甲的速度为x千米/小时,乙的而速度为y千米/小时,由题意得,,解得:.答:甲的速度为7千米/小时,乙的度数为3千米/小时.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.26.如图,点A、B、C、D在一条直线上,EA⊥AD,FB⊥AD,垂足分别为A、B,∠E=∠F,CE与DF平行吗?为什么?【考点】平行线的判定.【分析】由垂直可证明AE∥BF,可得到∠E=∠EGF=∠F,可判定CE∥DF.【解答】解:CE∥DF,理由如下:∵AE⊥AD,BF⊥AD,∴∠A=∠FBD,∴AE∥BF,∴∠E=∠EGF,又∵∠E=∠F,∴∠EGF=∠F,∴CE∥DF.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.。

2020年最新七年级下册期中数学试卷及答案解析

2020年最新七年级下册期中数学试卷及答案解析

七年级(下)期中数学试卷一、选择题1.方程1﹣3x=0的解是()A.x=﹣B.x= C.x=﹣3 D.x=32.若是方程组的解,则a、b值为()A.B.C.D.3.不等式2x﹣3<1的解集在数轴上表示为()A.B.C.D.4.把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1 B.3x﹣x﹣1=1 C.3x﹣x﹣1=6 D.3x﹣(x﹣1)=65.下列不等式一定成立的是()A.x+2<x+3 B.5a>4a C.﹣a>﹣2a D.6.把方程4y+=1+x写成用含x的代数式表示y的形式,以下各式正确的是()A.y=+1 B.y=+C.y=+1 D.y=+7.某小区在规划设计时,准备在两幢楼房之间,设置一块周长为120米的长方形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,下面列出的方程正确的是()A.2(x﹣10)=120 B.2[x+(x﹣10)]=120 C.2(x+10)=120 D.2[x+(x+10)]=1208.植树节这天有20名同学共种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x 人,女生有y人,根据题意,下列方程组正确的是()A. B.C. D.二、填空题9.若关于x的方程3x﹣5=x+2m的解为x=2,则m的值为.10.方程组的解是.11.不等式3x﹣2>x﹣6的最小整数解是.12.若方程组的解适合x+y=2,则k的值为.13.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为元.14.某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题加10分,答错(或不答)一题扣5分,小明参加本次竞赛得分要不低于140分.设他答对x道题,则根据题意,可列出关于x的不等式为.三、解答题(本大题共10小题,共78分)15.解方程:3(x﹣1)﹣2(x+2)=4x﹣1.16.解方程组:.17.解方程组:.18.解不等式1﹣,并把解集在数轴上表示出来.19.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时完成了任务.已知甲每小时比乙多加工2个零件,问甲、乙二人每小时各加工多少个零件?20.为了更好地保护环境,治污公司决定购买若干台污水处理设备.现有A、B两种型号的设备,已知购买1台A型号设备比购买1台B型号设备多2万元,购买2台A型号设备比购买3台B型号设备少6万元.求A、B两种型号设备的单价.21.若关于x、y的二元一次方程组的解满足x﹣y>﹣8.(1)用含m的代数式表示x﹣y.(2)求满足条件的m的所有正整数值.22.某商场销售A、B两种型号计算器,A型号计算器的进货价格为每台30元,B型号计算器的进货价格为每台40元.商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)分别求商场销售A、B两种型号计算器每台的销售价格.(2)商场准备用不多于2 500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?【利润=销售价格﹣进货价格】23.用正方形硬纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个等边三角形底面组成,硬纸板用如图两种方法裁剪(裁剪后边角料不再利用).现有19张硬纸板,其中x张硬纸板用方法一裁剪,其余硬纸板用方法二裁剪.(1)分别求裁剪出的侧面和底面的个数.(用含x的代数式表示)(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?24.某班去体育用品商店购买羽毛球和羽毛球拍,每只羽毛球2元,每副羽毛球拍25元.甲商店说:“羽毛球拍和羽毛球都打9折优惠”,乙商店说:“买一副羽毛球拍赠2只羽毛球”.(1)该班如果买2副羽毛球拍和20只羽毛球,问在甲、乙两家商店各需花多少钱?(2)该班如果准备花90元钱全部用于买2副羽毛球拍和若干只羽毛球,请问到哪家商店购买更合算?(3)该班如果必须买2副羽毛球拍,问当买多少只羽毛球时到两家商店购买同样合算?七年级(下)期中数学试卷参考答案与试题解析一、选择题1.方程1﹣3x=0的解是()A.x=﹣B.x= C.x=﹣3 D.x=3【考点】一元一次方程的解.【分析】方程移项,把x系数化为1,即可求出解.【解答】解:1﹣3x=0,方程移项得:﹣3x=﹣1,解得:x=.故选:B.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.2.若是方程组的解,则a、b值为()A.B. C. D.【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】把x与y的值代入方程组求出a与b的值即可.【解答】解:把代入方程组得:,解得:,故选A【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.3.不等式2x﹣3<1的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【专题】数形结合.【分析】先解不等式得到x<2,用数轴表示时,不等式的解集在2的左边且不含2,于是可判断D选项正确.【解答】解:2x<4,解得x<2,用数轴表示为:.故选D.【点评】本题考查了在数轴上表示不等式的解集:用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心;二是定方向,定方向的原则是:“小于向左,大于向右”.4.把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1 B.3x﹣x﹣1=1 C.3x﹣x﹣1=6 D.3x﹣(x﹣1)=6【考点】解一元一次方程.【专题】计算题.【分析】去分母的方法是方程两边同时乘以各分母的最小公倍数6,在去分母的过程中注意分数线起到括号的作用,以及去分母时不能漏乘没有分母的项.【解答】解:方程两边同时乘以6得:3x﹣(x﹣1)=6.故选D.【点评】在去分母的过程中注意分数线起到括号的作用,并注意不能漏乘没有分母的项.5.下列不等式一定成立的是()A.x+2<x+3 B.5a>4a C.﹣a>﹣2a D.【考点】不等式的性质.【分析】根据不等式的性质分析判断.【解答】解:A、因为2<3,不等式两边同时加上x,不等号方向不变,即x+2<x+3正确;B、因为5>4,不等式两边同乘以a,而a≤0时,不等号方向改变,即5a≤4a,故错误;C、因为﹣1>﹣2,不等式两边同乘以a,而a≤0时,不等号方向改变,即﹣a≤﹣2a,故错误;D、因为4>2,不等式两边同除以a,而a<0时,不等号方向改变,即<,故错误.故选A.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.把方程4y+=1+x写成用含x的代数式表示y的形式,以下各式正确的是()A.y=+1 B.y=+ C.y=+1 D.y=+【考点】解二元一次方程.【专题】计算题.【分析】把x看做已知数表示出y即可.【解答】解:方程4y+=1+x,去分母得:12y+x=3+3x,解得:y=+.故选B【点评】此题考查了解二元一次方程,将x看做已知数求出y是解本题的关键.7.某小区在规划设计时,准备在两幢楼房之间,设置一块周长为120米的长方形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,下面列出的方程正确的是()A.2(x﹣10)=120 B.2[x+(x﹣10)]=120 C.2(x+10)=120 D.2[x+(x+10)]=120【考点】由实际问题抽象出一元一次方程.【分析】根据题意可以列出相应的一元一次方程,本题得以解决.【解答】解:由题意可得,2[x+(x+10)]=120,故选D.【点评】本题考查由实际问题抽象出一元一次方程,解题的关键是明确题意,列出相应的一元一次方程.8.植树节这天有20名同学共种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x 人,女生有y人,根据题意,下列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.【解答】解:设男生有x人,女生有y人,根据题意可得:,故选D.【点评】此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.二、填空题9.若关于x的方程3x﹣5=x+2m的解为x=2,则m的值为﹣.【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把x=2代入方程计算即可求出m的值.【解答】解:把x=2代入方程得:1=2+2m,解得:m=﹣,故答案为:﹣【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.10.方程组的解是.【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=12,即x=4,把x=4代入①得:y=﹣2,则方程组的解为.故答案为:.【点评】此题考查了二元一次方程组的解,求出方程组的解是解本题的关键.11.不等式3x﹣2>x﹣6的最小整数解是﹣1 .【考点】一元一次不等式的整数解.【分析】先求出不等式的解集,再找出其最小整数解即可.【解答】解:∵解不等式3x﹣2>x﹣6得,x>﹣2,∴不等式的最小整数解为:﹣1.故答案为:﹣1.【点评】本题考查的是一元一次不等式的整数解,熟知解一元一次不等式的基本步骤是解答此题的关键.12.若方程组的解适合x+y=2,则k的值为 3 .【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】方程组两方程相加表示出x+y,代入x+y=2中求出k的值即可.【解答】解:,①+②得:5(x+y)=5k﹣5,即x+y=k﹣1,代入x+y=2得:k﹣1=2,解得:k=3,故答案为:3【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.13.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为28 元.【考点】分式方程的应用;一元一次方程的应用.【专题】销售问题.【分析】根据题意,设这种电子产品的标价为x元,按照等量关系“标价×0.9﹣进价=进价×20%”,列出一元一次方程即可求解.【解答】解:设这种电子产品的标价为x元,由题意得:0.9x﹣21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.【点评】本题考查了一元一次方程的应用题型,同学们需学会借助方程去解决应用题.14.某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题加10分,答错(或不答)一题扣5分,小明参加本次竞赛得分要不低于140分.设他答对x道题,则根据题意,可列出关于x的不等式为10x﹣5(20﹣x)≥140 .【考点】由实际问题抽象出一元一次不等式.【分析】小明答对题的得分:10x;答错或不答题的得分:﹣5(20﹣x).根据不等关系:小明参加本次竞赛得分要不低于140分列出不等式即可.【解答】解:设他答对x道题,根据题意,得10x﹣5(20﹣x)≥140.故答案为10x﹣5(20﹣x)≥140.【点评】此题主要考查了由实际问题抽象出一元一次不等式,抓住关键词语,找到不等关系是解题的关键.三、解答题(本大题共10小题,共78分)15.解方程:3(x﹣1)﹣2(x+2)=4x﹣1.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去括号得:3x﹣3﹣2x﹣4=4x﹣1,移项得:x﹣4x=﹣1+7,合并得:﹣3x=6,解得:x=﹣2.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.16.解方程组:.【考点】解二元一次方程组.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:①×3得9x+12y=30③,②×2得10x﹣12y=84④.③+④得19x=114,解得x=6.把x=6代入①,得18+4y=10,解得y=﹣2.故方程组的解为:.【点评】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.17.解方程组:.【考点】解三元一次方程组.【分析】根据解三元一次方程组的方法可以解答本题.【解答】解:把③代入①,得5y+z=2④把③代入②,得6y+4z=﹣6⑤④×4﹣⑤,得14y=14解得,y=1,把y=1代入④,得z=﹣3,把y=1代入③,得x=4,故原方程组的解是.【点评】本题考查解三元一次方程组,解题的关键是明确三元一次方程组的解法.18.解不等式1﹣,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先去分母,再去括号,移项,合并同类项,把x的系数化为1,并在数轴上表示出来即可.【解答】解:去分母得,6﹣(x﹣3)>2x,去括号,6﹣x+3>2x,移项得,﹣x﹣2x>﹣3﹣6,合并同类项得,﹣3x>﹣9,把x的系数化为1得,x<3.在数轴上表示为:.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.19.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时完成了任务.已知甲每小时比乙多加工2个零件,问甲、乙二人每小时各加工多少个零件?【考点】一元一次方程的应用.【分析】如果乙每小时加工x个零件,那么甲每小时加工(x+2)个零件,根据要加工200个零件,甲先单独加工5小时,然后又与乙一起加工4小时,完成了任务以及甲每小时比乙多加工2个,可列出方程q 求出即可.【解答】解:设乙每小时加工x个零件,那么甲每小时加工(x+2)个零件.根据题意,列方程,得5(x+2)+4(x+x+2)=200,解这个方程,得x=14,x+2=14+2=16,答:甲每小时加工16个零件,乙每小时加工14个零件.【点评】本题考查了一元一次方程的应用,关键是以甲比乙每小时多做的件数和完成200个做为等量关系列方程.20.为了更好地保护环境,治污公司决定购买若干台污水处理设备.现有A、B两种型号的设备,已知购买1台A型号设备比购买1台B型号设备多2万元,购买2台A型号设备比购买3台B型号设备少6万元.求A、B两种型号设备的单价.【考点】二元一次方程组的应用.【分析】首先设A型号设备的单价为x万元,B型号设备的单价为y万元,利用购买1台A型号设备比购买1台B型号设备多2万元,购买2台A型号设备比购买3台B型号设备少6万元,得出方程组求出即可.【解答】解:设A型号设备的单价为x万元,B型号设备的单价为y万元,根据题意,得,解这个方程组,得.答:A、B两种型号设备的单价分别为12万元、10万元.【点评】此题主要考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.21.若关于x、y的二元一次方程组的解满足x﹣y>﹣8.(1)用含m的代数式表示x﹣y.(2)求满足条件的m的所有正整数值.【考点】解一元一次不等式;二元一次方程组的解.【分析】(1)直接把两式相减即可得出结论;(2)根据(1)中x﹣y的表达式列出关于m的不等式,求出m的取值范围即可.【解答】解:(1),①﹣②得,x﹣y=﹣2m+3﹣4=﹣2m﹣1;(2)由题意,得﹣2m﹣1>﹣8,解得m<,∵m为正整数,∴m=1、2或3.【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.22.某商场销售A、B两种型号计算器,A型号计算器的进货价格为每台30元,B型号计算器的进货价格为每台40元.商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)分别求商场销售A、B两种型号计算器每台的销售价格.(2)商场准备用不多于2 500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?【利润=销售价格﹣进货价格】【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)首先设A种型号计算器的销售价格是x元,B种型号计算器的销售价格是y元,根据题意可等量关系:①5台A型号和1台B型号计算器,可获利润76元;②销售6台A型号和3台B型号计算器,可获利润120元,根据等量关系列出方程组,再解即可;(2)根据题意表示出所用成本,进而得出不等式求出即可.【解答】(1)设A种型号计算器的销售价格是x元,B种型号计算器的销售价格是y元.根据题意,得解得(答:商场销售A、B两种型号计算器的销售价格分别为42元、56元.(2)设需要购进A型号的计算器a台.根据题意,得30a+40(70﹣a)≤2500.解得a≥30.答:最少需要购进A型号的计算器30台.【点评】此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,根据题意得出总的进货费用是解题关键.23.用正方形硬纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个等边三角形底面组成,硬纸板用如图两种方法裁剪(裁剪后边角料不再利用).现有19张硬纸板,其中x张硬纸板用方法一裁剪,其余硬纸板用方法二裁剪.(1)分别求裁剪出的侧面和底面的个数.(用含x的代数式表示)(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?【考点】一元一次方程的应用;展开图折叠成几何体.【分析】(1)由x张用方法一,就有(19﹣x)张用方法二,就可以分别表示出侧面个数和底面个数;(2)根据裁剪出的侧面和底面恰好全部用完得出方程,解方程求出x的值,求出侧面的总数就可以求出结论.【解答】解:(1)侧面个数:6x+4(19﹣x)=(2x+76)个.底面个数:5(19﹣x)=(95﹣5x)个.(2)由题意,得.解得:x=7.(个).答:若裁剪出的侧面和底面恰好全部用完,能做30个盒子.【点评】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,列代数式的运用,解答时根据裁剪出的侧面和底面个数相等建立方程是关键.24.某班去体育用品商店购买羽毛球和羽毛球拍,每只羽毛球2元,每副羽毛球拍25元.甲商店说:“羽毛球拍和羽毛球都打9折优惠”,乙商店说:“买一副羽毛球拍赠2只羽毛球”.(1)该班如果买2副羽毛球拍和20只羽毛球,问在甲、乙两家商店各需花多少钱?(2)该班如果准备花90元钱全部用于买2副羽毛球拍和若干只羽毛球,请问到哪家商店购买更合算?(3)该班如果必须买2副羽毛球拍,问当买多少只羽毛球时到两家商店购买同样合算?【考点】二元一次方程组的应用.【分析】(1)根据甲商店“羽毛球拍和羽毛球都打9折优惠”以及乙商店“买一副羽毛球拍赠2只羽毛球”,列式计算即可得出结论;(2)设在甲商店能买x只羽毛球,在乙商店能买y只羽毛球,结合甲商店“羽毛球拍和羽毛球都打9折优惠”以及乙商店“买一副羽毛球拍赠2只羽毛球”,即可列出关于x、y的二元一次方程组,解方程组后比较大小即可得出结论;(3)设买m只羽毛球时到两家商店购买同样合算,根据甲商店“羽毛球拍和羽毛球都打9折优惠”以及乙商店“买一副羽毛球拍赠2只羽毛球”,即可列出关于m的一元一次方程,解方程即可得出结论.【解答】解:(1)甲商店:(25×2+2×20)×0.9=81(元);乙商店:25×2+2×(20﹣4)=82(元).答:在甲商店需要花81元,在乙商店需要花82元.(2)设在甲商店能买x只羽毛球,在乙商店能买y只羽毛球.由题意,得:,解得:,∵25>24,∴到甲商店购买更合算.(3)设买m只羽毛球时到两家商店购买同样合算.由题意,得:(25×2+2m)×0.9=25×2+2(m﹣4),解得m=15.答:当买15只羽毛球时到两家商店购买同样合算.【点评】本题考查了二元一次方程组以及一元一次方程的应用,解题的关键是:(1)根据数量关系列式计算;(2)根据数量关系列出关于x、y的二元一次方程组;(3)根据数量关系列出关于m的一元一次方程.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出算式(方程或方程组)是关键.。

成都七中初中学校2023—2024学年度上七年级数学期中考试试卷附详细答案

成都七中初中学校2023—2024学年度上七年级数学期中考试试卷附详细答案

成都七中初中学校2023—2024学年度上七年级期中质量检测数学(满分150分,120分钟完成)A 卷(共100分)一、选择题(每小题4分,共32分)1.−12的绝对值是( ) A.12 B.2 C.−2 D.122.北京时间2022年11月21日0点,万众瞩目的卡塔尔世界杯全面打响,据统计在小组赛的赛程中,场均观看直播人数达到了70620000人,则70620000用科学记数法表示为( )A.7.062×104B.70.62×106C.0.7062×108D.7.062×1073.用一个平面去截一个正方体,截面的形状不可能是( )A.梯形B.五边形C.六边形D.七边形4.下列运算正确的是( )A.−5−5=0B.2×(−5)=−10C.(−13)2=−19D.(−2)÷12=−1 5.下列代数式:①a+1;②-3ab 7;③5;④−2a+5b ;⑤a ;⑥1a .其中单项式有( ) A.1个 B.2个 C.3个 D.4个6.已知2a x b 4与−a 2b y-1是同类项,则x y 的值为( )A.6B.−6C.−10D.107.下列变形,错误的是( )A.−(a −b)=−a+bB.−2(a+b)=−2a −2bC.−a −b=−(a −b)D.a −b=−(−a+b)8.将一些完全相同的棋子按如图所示的规律摆放,第①个图中有4颗棋子,第②个图中有7颗棋子,第③个图中有12颗棋子,…,按此规律,则第⑩个图中棋子的颗数是( )A.84B.99C.103D.122二、填空题(每小题4分,共20分)9.比较大小:−37____−38(填“<”或“>”). 10.如图是一个正方体的平面展开图,若该正方体相对两个面上的数相等,则a+b+c=____.11.多项式x 3−2x 2y 2+3y 2是____次____项式.12.如果4a −9与3a −5互为相反数,那么a 2−a+1的值等于____.13.某种T 形零件尺寸如图所示.用含有x 、y 的代数式表示阴影部分的周长是____.(结果要化简)三、解答题(共48分)14.计算或化简(每小题4分,共20分)(1)(−65)−7−(−3.2)+(−1) (2)(−60)×(34+56−12) (3)−36÷65×56÷(−5) (4)12×|−3|+(−12)2−(−1) (5)−22×[(2−8)÷6]−18÷(−3)215.(6分)已知|a −2|+(b +12)2=0,求a 2b −(3ab 2−a 2b)+2(2ab 2−a 2b)的值. 10题图a 13 -2 1+b c+10.5x ① ② ③ ④16.(6分)如图1,是一个用小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的个数.请你在如图2方格纸中画出它从正面和从左面看到的平面图形.17.(6分)已知|x |=3,|y|=7.(1)若x y <0,求x +y 的值;(2)若|x −y|=x −y ,求2x +y 的值.18.(10分)杭州亚运会的举办,不仅提升了杭州的国际影响力,也为杭州的旅游业带来了巨大的发展机遇.随着亚运会的到来,杭州每月的游客人数较往年同期有明显增长,已知杭州2023年1月的游客人数为17.0百万人次,接下来7个月的游客人数变化情况如表:注:表中的数据为当月的游客人数相比前一个月游客人数的变化量.(1)杭州2023年4月份的游客人数是多少百万人次?(2)杭州2023年2月到8月,哪个月游客人数最多?最多是多少百万人次?哪个月游客人数最少?最少是多少百万人次?(3)假设杭州市每个月为旅游业建设支出50亿元,2023年前4个月每百万人次的游客能为杭州市旅游业带来收入10亿元,而随着亚运会的临近,5月到8月每百万人次的游客为杭州市旅游业带来的收入提升至20亿元,则2023年1月到8月杭州市34 32 1 图1 图2 从正面看 从左面看旅游业的总利润是多少亿元?B 卷(满分50分)一、填空题(每小题4分,共20分)19.已知a 2−2a=1,则多项式2023−2a 2+4a 的值是______.20.计算12+14+…+12100=______.21.一个小立方块的六个面分别标有字母A 、B 、C 、D 、E 、F ,从三个不同方向看到的情形如图所示,其中A 、B 、C 、D 、E 、F 分别代表数字−4、−2、0、1、2、4,则三个小立方块的下底面所标字母代表的数字的和为______.22.已知n 为正整数,n(n+1)(n+2)的末位数字记为f(n).如n=2时,f(2)=4,则f(1)+f(2)+f(3)+…+f(2023)的值为______.23.对于一个四位正整数M ,如果M 满足各数位上的数字均不为0,它的百位上的数字比千位上的数字大1,个位上的数字比十位上的数字大1,则称M 为“进步数”,如:1245就是一个进步数.对于一个“进步数”M 记为abcd̅̅̅̅̅̅,它的千位数字和百位数字组成的两位数为ab ̅̅̅,十位数字和个位数字组成的两位数为cd̅̅̅,将这两个两位数求和记作t ;它的千位数字和十位数字组成的两位数为ac ̅,它的百位数字和个位数字组成的两位数为bd̅̅̅̅,将这两个两位数求和记作s ,当s −t=36时,M 的最大值与最小值的和为______.二、解答题(共30分)24.(8分)已知A=3a 2−ab+2a+1,B=2a 2+ab −2.(1)若a=3,b=−1,求A −2B 的值.(2)若2A −3B 的值与a 无关,求b 的值.A B FA DE B D E25.(10分)请利用“数形结合”的数学方法解决下列问题.(1)有理数a 、b 、c 在数轴上的位置如图,化简:|b −c|−|a+b|+|c −a|.(2)请你找出所有符合条件的整数x ,使得|2+x |+|x −5|=11.(3)若m 、n 为非负整数,且(|m −2|+|m −6|)(|n −1|+|n+2|)=24,求m 、n 的值.26.(12分)如图,在数轴上点A 表示数a ,点B 表示b ,点C 表示数c.单项式−6x b y 次数是3,a 是这个单项式的系数,|c+1|=9.(1)a=______,b=______,c=________.(2)若点P 从点A 出发,以每秒2个单位的速度沿数轴向右运动,点Q 从点C 出发,以每秒1个单位的速度沿数轴向左运动.点P 与点Q 同时出发,经过多少秒后,线段PB 的中点M 到点Q 的距离为6.(3)在(2)的条件下,当点P 与点Q 相遇后,两点都立即掉头,速度不变,此时点N 开始从点B 出发,以每秒1个单位的速度向左运动,点P 运动的时间为t 秒,当PQ=4PN 时,求点P 在数轴上对应的数.成都七中初中学校2023—2024学年度上七年级期中质量检测数学(满分150分,120分钟完成)A 卷(共100分)一、选择题(每小题4分,共32分)1.−12的绝对值是( ) A.12 B.2 C.−2 D.12xb1.解:负数的绝对值是正数,两者之和为0,故选A 。

河南省郑州市第七中学2022--2023学年七年级上学期期中考试数学试卷(含答案)

河南省郑州市第七中学2022--2023学年七年级上学期期中考试数学试卷(含答案)

2022-2023学年河南省郑州七中七年级(上)期中数学试卷一、选择题(每题3分,共30分)1.(3分)﹣2022的相反数是()A.﹣B.C.﹣2022D.20222.(3分)我国第七次全国人口普查时,统计全国总人口约为1440000000人.请用科学记数法表示数据1440000000为()A.144×107B.0.144×1010C.14.4×108D.1.44×1093.(3分)北京冬奥会的吉祥物是一只叫冰墩墩的熊猫,这次冰墩墩的3D设计,就是将熊猫拟人化,含义就是告诉全世界的人,中国是一个社会和谐,人们生活富裕的国家.如图是正方体的展开图,每个面内都写有汉字,折叠成立体图形后“冬”的对面是()A.奥B.会C.吉D.祥4.(3分)下列计算正确的是()A.﹣5+3=2B.﹣5﹣3=﹣8C.(﹣5)×(﹣3)=﹣15D.(﹣5)÷(﹣3)=﹣5.(3分)下列方程变形中,正确的是()A.方程=1,去分母得5(x﹣1)﹣2x=10B.方程3﹣x=2﹣5(x﹣1),去括号得3﹣x=2﹣5x﹣1C.方程t=,系数化为1得t=1D.方程3x﹣2=2x+1,移项得3x﹣2x=﹣1+26.(3分)下列说法正确的有()个.①单项式x的系数和次数都是0;②3x4﹣5x2y2﹣6y3+2的次数是11;③多项式1﹣2x+x2是由1,﹣2x,x2三项组成;④在a2,,0中整式有2个.A.1B.2C.3D.47.(3分)下列计算错误的是()A.3(x+8)=3x+24B.19a2b﹣9a2b=10a2bC.2x+2y=4xy D.6x﹣5=6(x﹣)8.(3分)多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的和不含二次项,则m为()A.2B.﹣2C.4D.﹣49.(3分)我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗,今持粟三斛,得酒五斗,问清,醑酒各几何?”大意是:现有一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒,醑酒各几斗?如果设清酒x斗,那么可列方程为()A.10x+3(5﹣x)=30B.3x+10(5﹣x)=30C.D.10.(3分)已知数a,b,c在数轴上的位置如图,下列说法:①b+c>0;②a+b−c>0;③=1;④|a−b|−2|c+b|+|a−c|=−3b+c.其中正确结论的个数是()个.A.1B.2C.3D.4二、填空题(每题3分,共15分)11.(3分)请写出一个只含有字母a,b,且系数为﹣1,次数为5的单项式.12.(3分)如图,乐乐将−3,−2,−1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,若a,b,c分别表示其中的一个数,则a+b−c 的值为.13.(3分)按下面的程序计算,若开始输入x的值为﹣4,则输出的值为.14.(3分)当x=1时,ax2+bx﹣1的值为6,当x=﹣1时,这个多项式ax3+bx﹣1的值是.15.(3分)如图所示,在一个电子青蛙游戏程序中,电子青蛙只能在标有五个数字点的圆周上跳动.游戏规则:若电子青蛙,停在奇数点上,则它下次沿顺时针方向跳两个点;若电子青蛙停在偶数点上,则它下次沿逆时针方向跳一个点.现在电子青蛙若从4这点开始跳,则经过2050次后它停的点对应的数为.三、解答题(共7题,共55分)16.(8分)计算:(1)12−(−8)+(−2)3−15;(2).17.(7分)化简并求值:2(x2﹣2xy)﹣3(﹣6xy+y2)﹣x2+2y2,其中x、y取值的位置如图所示.18.(8分)如图是由7个完全相同的小立方块搭成的几何体,已知每个小立方块的棱长为3cm.(1)请分别画出从正面、上面、左面三个方向看到的图形;(2)该几何体的表面积为cm2.(包括底部)19.(8分)情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需元,购买12根跳绳需元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.20.(8分)郑州地铁1号线是河南省郑州市第一条建成运营的地铁线路,起于河南工业大学站,途经中原区、二七区、管城区、郑东新区,止于河南大学新区站,其中的15个站点如图所示.小亮从郑州火车站开始乘坐地铁,在图中15个地铁站点做值勤志愿服务,到A站下车时,本次志愿者活动结束,约定向文苑北路站方向为正,当天的乘车记录如下(单位:站):+6,+2,﹣3,+9,﹣3,﹣4,+2,﹣5.(1)请你通过计算说明A站是哪一站?(2)已知相邻两站之间的平均距离为1.4千米,求小亮在志愿者服务期间乘坐地铁行进的路程是多少千米?21.(8分)国庆节期间,人民广场的一个公共区域用盆栽进行了美化,盆栽按如图的方式摆放,图中的盆栽被折线隔开分成若干层,第一层有1个盆栽,第二层有3个盆栽,第三层有5个盆栽,第四层有7个盆栽,…,以此类推.请观察图形规律,解答下列问题:(1)第10层有个盆栽,前5层共有个盆栽;(2)观察图计算1+3+5+…+17=;(3)拓展应用:求51+53+55+…+2023的值.22.(8分)对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“梦幻数”,将一个“梦幻数”任意两个数位上的数字对调后可以得到三个不同的新三数,把这三个新三位数的和与111的商记为K(n),例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以K(123)=6.(1)计算:K(536)和K(398);(2)若x是“梦幻数”,说明:K(x)等于x的各数位上的数字之和;(3)若x,y都是“梦幻数”,且x+y=1000,猜想:K(x)+K(y)=.2022-2023学年河南省郑州七中七年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)﹣2022的相反数是()A.﹣B.C.﹣2022D.2022【分析】根据相反数的定义直接求解.【解答】解:﹣2022的相反数是2022,故选:D.【点评】本题主要考查相反数的定义,熟练掌握相反数的定义是解答此题的关键.2.(3分)我国第七次全国人口普查时,统计全国总人口约为1440000000人.请用科学记数法表示数据1440000000为()A.144×107B.0.144×1010C.14.4×108D.1.44×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:1440000000=1.44×109.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)北京冬奥会的吉祥物是一只叫冰墩墩的熊猫,这次冰墩墩的3D设计,就是将熊猫拟人化,含义就是告诉全世界的人,中国是一个社会和谐,人们生活富裕的国家.如图是正方体的展开图,每个面内都写有汉字,折叠成立体图形后“冬”的对面是()A.奥B.会C.吉D.祥【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴折叠成立体图形后“冬”的对面是“祥”,故选:D.【点评】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.4.(3分)下列计算正确的是()A.﹣5+3=2B.﹣5﹣3=﹣8C.(﹣5)×(﹣3)=﹣15D.(﹣5)÷(﹣3)=﹣【分析】根据有理数的加、减、乘、除运算法则逐一判断即可.【解答】解:A.﹣5+3=﹣2,不符合题意;B.﹣5﹣3=﹣8,符合题意;C.(﹣5)×(﹣3)=15,不符合题意;D.(﹣5)÷(﹣3)=,不符合题意;故选:B.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则.5.(3分)下列方程变形中,正确的是()A.方程=1,去分母得5(x﹣1)﹣2x=10B.方程3﹣x=2﹣5(x﹣1),去括号得3﹣x=2﹣5x﹣1C.方程t=,系数化为1得t=1D.方程3x﹣2=2x+1,移项得3x﹣2x=﹣1+2【分析】根据等式的性质,逐项判断即可.【解答】解:∵方程=1,去分母得5(x﹣1)﹣2x=10,∴选项A符合题意;∵方程3﹣x=2﹣5(x﹣1),去括号得3﹣x=2﹣5x+5,∴选项B不符合题意;∵方程t=,系数化为1得t=,∴选项C不符合题意;∵方程3x﹣2=2x+1,移项得3x﹣2x=1+2,∴选项D不符合题意.故选:A.【点评】此题主要考查了解一元一次方程的方法,要熟练掌握,注意等式的性质的应用.6.(3分)下列说法正确的有()个.①单项式x的系数和次数都是0;②3x4﹣5x2y2﹣6y3+2的次数是11;③多项式1﹣2x+x2是由1,﹣2x,x2三项组成;④在a2,,0中整式有2个.A.1B.2C.3D.4【分析】根据多项式、单项式、整式的相关概念解答即可.【解答】解:①单项式x的系数和次数都是1,原说法错误;②3x4﹣5x2y2﹣6y3+2的次数是4,原说法错误;③多项式1﹣2x+x2是由1,﹣2x,x2三项组成,原说法正确;④在a2,,,0中整式有3个,原说法错误.说法正确的有1个.故选:A.【点评】本题主要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.7.(3分)下列计算错误的是()A.3(x+8)=3x+24B.19a2b﹣9a2b=10a2bC.2x+2y=4xy D.6x﹣5=6(x﹣)【分析】根据去括号,添括号及合并同类项的法则逐项判断.【解答】解:3(x+8)=3x+24,故A正确,不符合题意;19a2b﹣9a2b=10a2b,故B正确,不符合题意;2x与2y不时同类项,不能合并,故C错误,符合题意;6x﹣5=6(x﹣),故D正确,不符合题意;故选:C.【点评】本题考查整式的加减,解题的关键是掌握去括号,添括号及合并同类项的法则.8.(3分)多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的和不含二次项,则m为()A.2B.﹣2C.4D.﹣4【分析】先把两多项式的二次项相加,令x的二次项为0即可求出m的值.【解答】解:∵多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3相加后不含x的二次项,∴﹣8x2+2mx2=(2m﹣8)x2,∴2m﹣8=0,解得m=4.故选:C.【点评】本题考查的是整式的加减,根据题意把两多项式的二次项相加得到关于m的方程是解答此题的关键.9.(3分)我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗,今持粟三斛,得酒五斗,问清,醑酒各几何?”大意是:现有一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒,醑酒各几斗?如果设清酒x斗,那么可列方程为()A.10x+3(5﹣x)=30B.3x+10(5﹣x)=30C.D.【分析】根据共换了5斗酒,其中清酒x斗,则可得到醑酒(5﹣x)斗,再根据拿30斗谷子,共换了5斗酒,即可列出相应的方程.【解答】解:设清酒x斗,则醑酒(5﹣x)斗,由题意可得:10x+3(5﹣x)=30,故选:A.【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.10.(3分)已知数a,b,c在数轴上的位置如图,下列说法:①b+c>0;②a+b−c>0;③=1;④|a−b|−2|c+b|+|a−c|=−3b+c.其中正确结论的个数是()个.A.1B.2C.3D.4【分析】根据数轴上的位置关系.判断出a,b,c的大小关系以及各自绝对值得大小关系,在进行判断即可.【解答】解:∵|c|>|b|,b<0<c,∴b+c>0,正确,故①正确;∵b<0<a,|b|>|a|,c>0,∴a+b−c<0,故②错误;++=++=1﹣1+1=1,正确,故③正确;∵a﹣b>0,c+b>0,a﹣c<0∴|a−b|−2|c+b|+|a−c|,=a﹣b﹣2(b+c)+c﹣a,=a﹣b﹣2b﹣2c+c﹣a,=﹣3b﹣c,故④错误,∴正确的有两个.故选:B.【点评】本题主要考查数轴与绝对值的综合运用,解题的关键在于掌握绝对值化简的技巧.二、填空题(每题3分,共15分)11.(3分)请写出一个只含有字母a,b,且系数为﹣1,次数为5的单项式﹣a2b3(答案不唯一).【分析】根据单项式、单项式的系数和次数的概念解答即可.【解答】解:单项式﹣a2b3,是一个含有字母a、b,系数为﹣1,次数为5的单项式,故答案为:﹣a2b3(答案不唯一).【点评】本题考查的是单项式的概念,掌握单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.12.(3分)如图,乐乐将−3,−2,−1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,若a,b,c分别表示其中的一个数,则a+b−c 的值为﹣5.【分析】由每行、每列、每条对角线上的三个数之和相等,即可求出a,b,c的值.【解答】解:∵每行、每列、每条对角线上的三个数之和相等,∴a+5+0=0+b+4=c﹣3+4=5+1﹣3=3,∴a=﹣2,b=﹣1,c=2,∴a+b−c=﹣2﹣1﹣2=﹣5,故答案为:﹣5.【点评】本题考查有理数的加法,关键是应用条件:每行、每列、每条对角线上的三个数之和相等.13.(3分)按下面的程序计算,若开始输入x的值为﹣4,则输出的值为84.【分析】把x=﹣4代入程序计算,进行判断按题目要求输入下一级运算.【解答】解:(﹣4)2=16>15,(16+5)×4=84,故答案为:84.【点评】本题主要考查了有理数的混合运算、代数式求值,掌握有理数混合运算顺序是解题关键.14.(3分)当x=1时,ax2+bx﹣1的值为6,当x=﹣1时,这个多项式ax3+bx﹣1的值是﹣8.【分析】根据题意列等式,化简整理等式和代数式,整体代入求值.【解答】解:∵x=1时,ax2+bx﹣1的值为6,∴a+b﹣1=6,∴a+b=7,∴当x=﹣1时,ax3+bx﹣1=﹣a﹣b﹣1=﹣(a+b)﹣1=﹣7﹣1=﹣8.故答案为:﹣8.【点评】本题考查了代数式求值,解题的关键是掌握整体代入求值.15.(3分)如图所示,在一个电子青蛙游戏程序中,电子青蛙只能在标有五个数字点的圆周上跳动.游戏规则:若电子青蛙,停在奇数点上,则它下次沿顺时针方向跳两个点;若电子青蛙停在偶数点上,则它下次沿逆时针方向跳一个点.现在电子青蛙若从4这点开始跳,则经过2050次后它停的点对应的数为5.【分析】分别得到从4开始起跳后落在哪个点上,得到相应的规律,看2050次跳后应循环在哪个数上即可.【解答】解:第1次跳后落在3上;第2次跳后落在5上;第3次跳后落在2上;第4次跳后落在1上;第5次跳后落在3上…∴4次跳后一个循环,依次在3,5,2,1这4个数上循环,∵2050÷4=512……2,∴应落在5上.故答案为:5.【点评】此题主要考查了数的变化规律,得到青蛙落在数字上的循环规律是解决本题的关键.三、解答题(共7题,共55分)16.(8分)计算:(1)12−(−8)+(−2)3−15;(2).【分析】(1)先算乘方,再算加减;(2)先把除法转化为乘法,再利用乘法的分配律计算比较简便.【解答】解:(1)12−(−8)+(−2)3−15=12+8﹣8﹣15=﹣3;(2)=(﹣﹣)×(﹣60)=×(﹣60)﹣×(﹣60)﹣×(﹣60)=﹣40+5+4=﹣31.【点评】本题主要考查了有理数的混合运算,掌握有理数的运算法则、运算律、运算顺序是解决本题的关键.17.(7分)化简并求值:2(x2﹣2xy)﹣3(﹣6xy+y2)﹣x2+2y2,其中x、y取值的位置如图所示.【分析】化简代数式,再根据数轴给出的值,代入求值即可.【解答】解:由图可知,x=2,y=﹣1,∴2(x2﹣2xy)﹣3(﹣6xy+y2)﹣x2+2y2=2x2﹣4xy+18xy﹣3y2﹣x2+2y2=x2+14xy﹣y2=22+14×2×(﹣1)﹣(﹣1)2=4﹣28﹣1=﹣25.【点评】本题考查了整式的化简求值,解题的关键是掌握整式的混合运算.18.(8分)如图是由7个完全相同的小立方块搭成的几何体,已知每个小立方块的棱长为3cm.(1)请分别画出从正面、上面、左面三个方向看到的图形;(2)该几何体的表面积为252cm2.(包括底部)【分析】(1)根据三视图的概念求解即可;(2)几何体的表面积就是利用主视图、左视图、俯视图所看到的面的个数乘以2再乘以每个小正方形的面积即可.【解答】解:(1)如图所示:(2)该几何体的表面积为(5+3+5)×2×3×3+2×3×3=252(cm2).答:该几何体的表面积是252cm2.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.19.(8分)情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需150元,购买12根跳绳需240元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.【分析】(1)根据总价=单价×数量,现价=原价×0.8,列式计算即可求解;(2)设小红购买跳绳x根,根据等量关系:小红比小明多买2跟,付款时小红反而比小明少5元;即可列出方程求解即可.【解答】解:(1)25×6=150(元),25×12×0.8=300×0.8=240(元).答:购买6根跳绳需150元,购买12根跳绳需240元.(2)有这种可能.设小红购买跳绳x根,则25×0.8x=25(x﹣2)﹣5,解得x=11.故小红购买跳绳11根.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.20.(8分)郑州地铁1号线是河南省郑州市第一条建成运营的地铁线路,起于河南工业大学站,途经中原区、二七区、管城区、郑东新区,止于河南大学新区站,其中的15个站点如图所示.小亮从郑州火车站开始乘坐地铁,在图中15个地铁站点做值勤志愿服务,到A站下车时,本次志愿者活动结束,约定向文苑北路站方向为正,当天的乘车记录如下(单位:站):+6,+2,﹣3,+9,﹣3,﹣4,+2,﹣5.(1)请你通过计算说明A站是哪一站?(2)已知相邻两站之间的平均距离为1.4千米,求小亮在志愿者服务期间乘坐地铁行进的路程是多少千米?【分析】(1)根据有理数的加法,可得答案;(2)根据绝对值的意义和有理数的加法可得一共的站数,再乘以1.4可得答案.【解答】解:(1)+6+2﹣3+9﹣3﹣4+2﹣5=4,答:A站是燕庄站;(2)(|+6|+|+2|+|﹣3|+|+9|+|﹣3|+|﹣4|+|+2|+|﹣5|)×1.4=47.6(千米),答:这次小亮志愿服务期间乘坐地铁行进的总路程是47.6千米.【点评】本题考查了正数和负数,根据题意列出算式是解题的关键.21.(8分)国庆节期间,人民广场的一个公共区域用盆栽进行了美化,盆栽按如图的方式摆放,图中的盆栽被折线隔开分成若干层,第一层有1个盆栽,第二层有3个盆栽,第三层有5个盆栽,第四层有7个盆栽,…,以此类推.请观察图形规律,解答下列问题:(1)第10层有19个盆栽,前5层共有25个盆栽;(2)观察图计算1+3+5+…+17=81;(3)拓展应用:求51+53+55+…+2023的值.【分析】(1)后面一层比前面一层多2个盆栽,结合图形,根据规律可求出其值;(2)图形刚好构成正方形的面积,求面积即可;(3)先算出1+3+5+…+49+51+…+2023的和,1+3+5+…+49的和,再求它们的差即可.【解答】解:(1)根据题意可得,2×(10﹣1)+1=19,∴第10层有19个盆栽,5×5=25,∴前5层共有25个盆栽,故答案为:19;25;(2)观察图形可得,第9层盆栽数量为:2×9﹣1=17,∴1+3+5+…+17=92=81,故答案为:81;(3)根据题意可得,第1012层盆栽数量为:2×1012﹣1=2024﹣1=2023,∴1+3+5+…+49+51+53+55+…+2023=10122,第25层盆栽数量为:2×25﹣1=50﹣1=49,∴1+3+5+…+49=252,∴51+53+55+…+2023=(1+3+5+…+49)+(51+53+55+…+2023)﹣(1+3+5…+49)=10122﹣252=1023519,∴51+53+55+…+2023的值为1023519.【点评】本题考查了图形的变化,根据图形的变化找出其规律并求值是解本题的关键,综合性较强,难度适中.22.(8分)对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“梦幻数”,将一个“梦幻数”任意两个数位上的数字对调后可以得到三个不同的新三数,把这三个新三位数的和与111的商记为K(n),例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以K(123)=6.(1)计算:K(536)和K(398);(2)若x是“梦幻数”,说明:K(x)等于x的各数位上的数字之和;(3)若x,y都是“梦幻数”,且x+y=1000,猜想:K(x)+K(y)=28.【分析】(1)根据K的定义,可以直接计算出问题;(2)设x=,根据K的定义,得到新的三位数分别是,,.它们的和是100(a+b+c)+10(a+b+c)+(a+b+c)=111(a+b+c),可以得到K=a+b+c;(3)猜想:K(x)+K(y)=28.设x=,y=.根据(2)的结论可以得到:K (x)+K(y)=(a+b+c)+(m+n+p).再根据x+y=1000,可得c+p=10,b+n=9,a+m =9,依此即可求解.【解答】解:(1)已知n=536,所以新的三个数分别是356,635,563.它们的和为1554,得到K(536)=14;同样n=398,所以新的三个数分别是938,893,389.它们的和为2220,得到K(398)=20;(2)设x=,得到新的三位数分别是,,.它们的和是100(a+b+c)+10(a+b+c)+(a+b+c)=111(a+b+c),可以得到K(x)=a+b+c,即K(x)等于x的各数位上的数字之和;(3)设x=,y=.根据(2)的结论可以得到:K(x)+K(y)=(a+b+c)+(m+n+p).∵x+y=1000,∴100(a+m)+10(b+n)+(c+p)=1000.根据三位数的数字特点,可以知道必然有:c+p=10,b+n=9,a+m=9.所以K(x)+K(y)=(a+b+c)+(m+n+p)=28.故答案为:28.【点评】此题考查了多位数的数字特点,每个数字是10以内的自然数,且不会为0.结合新的定义,可以计算出问题的解.注意把握每个数字都会出现一次的特点,区别数字与多位数的不同.。

2020--2021学年度七年级数学下册期中试卷及答案

2020--2021学年度七年级数学下册期中试卷及答案

七年级(下)期中数学试卷一、选择题(共10小题,每小题3分,计30分)1.(3分)下列各图中,∠1与∠2是对顶角的是()A. B.C. D.2.(3分)最薄的金箔的厚度为0.000000091m,将0.000000091用科学记数法表示为()A.9.1×108B.9.1×109C.9.1×10﹣8D.9.1×10﹣93.(3分)已知多项式x2+kx+64是一个完全平方式,则k=()A.16或﹣16B.8C.16D.8或﹣84.(3分)一个角的度数是50°,那么它的余角的补角的度数是()A.130°B.140°C.50°D.90°5.(3分)下列运算中正确的是()A.a5+a5=2a10B.3a3•2a2=6a6C.a6÷a2=a3D.(﹣2ab)2=4a2b26.(3分)下列说法正确的是()A.同位角相等B.在同一平面内,如果a⊥b,b⊥c,则a⊥cC.相等的角是对顶角D.在同一平面内,如果a∥b,b∥c,则a∥c 7.(3分)将一直角三角尺与两边平行的纸条按如图所示放置,下列结论中不一定成立的是()A.∠1=∠2B.∠2+∠4=90° C.∠1=∠3D.∠4+∠5=1808.如果(2x+m)(x﹣3)展开后结果中不含x的一次项,则m等于()A.3B.﹣6C.﹣3D.6 9.(3分)一蓄水池有水40m3,按一定的速度放水,水池里的水量y(m3)与放水时间t(分)有如下关系:放水时间(分)1234…水池中水量(m3)38363432…下列结论中正确的是()A.y随t的增加而增大B.放水时间为15分钟时,水池中水量为8m3C.每分钟的放水量是2m3D.y与t之间的关系式为y=40t10.(3分)早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达.设小明在途的时间为x,两人之间的距离为y,则下列选项中的图象能大致反映y 与x之间关系的是()A.B.C.D.二、填空题(共4小题,每小題3分,计12分)11.(3分)教室的黑板是一个长方形,它的面积为6a2﹣9ab+3a,已知这个长方形的长为3a,则宽为.12.(3分)如图,直线l与直线AB、CD分别相交于E、F,∠1=120°,当∠2=时,AB∥CD.12题14题13.(3分)某地区截止到今年栽有果树2400棵,计划今后每年栽果树300棵,x年后,总共栽有果树y棵,则y与x之间的关系式为.14.(3分)如图,直线EF分别交AB、CD于点E、F,EG平分∠BEF,AB∥CD.若∠1=72°,则∠2的度数为.三、解答题(共9小题,计78分.解答应写出过程)15.(12分)计算(1)20182﹣2017×2019 (2)|﹣2|+(3)(﹣3a2b)2(2ab2)÷(﹣9a4b2)(4)(a﹣2)2﹣(2a﹣1)(a﹣4)16.(8分)如图,由相同边长的小正方形组成的网格图形,A、B、C都在格点上,利用网格画图.(1)过点C画AB的平行线CF,标出F点;(2)过点B画AC的垂线BG,垂足为点G,标出G点;(3)点B到AC的距离是线段的长度;(4)线段BG、AB的大小关系为:BG AB(填“>”、“<”或“=”),理由是.17.(6分)用尺规作一个角等于已知角的和,要求不写作法,但要保留作图痕迹;已知:∠1、∠2.求作:∠AOB,使∠AOB=∠1+∠2.18.(9分)已知a+b=﹣5,ab=6,试求:(1)a2+b2的值;(2)a2b+ab2的值;(3)a﹣b的值.19.(8分)某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x (分钟)之间的关系如折线图所示,根据图象解答下列问题:(1)在这个变化过程中,自变量、因变量是什么?(2)洗衣机的进水时间是多少分钟?清洗时洗衣机的水量是多少升?(3)时间为10分钟时,洗衣机处于哪个过程?20.(8分)已知,如图直线AB与CD相交于点O,∠BOE=90°,∠AOD =30°,OF为∠BOD的角平分线.(1)求∠EOC度数;(2)求∠EOF的度数.21.(8分)请把下面证明过程补充完整如图,已知AD⊥BC于D,点E在BA的延长线上,EG⊥BC于C,交AC 于点F,∠E=∠1.求证:AD平分∠BAC.证明:∵AD⊥BC于D,EG⊥BC于G(),∴∠ADC=∠EGC=90°(),∴AD∥EG(),∴∠1=∠2(),∴=∠3(),又∵∠E=∠1(已知),∴∠2=∠3(),∴AD平分∠BAC()22.(8分)一个长方形的宽为xcm,长比宽多2cm,面积为scm2.(1)求s与x之间的函数关系式;(2)当x=8时,长方形的面积为多少cm2.23.(11分)如图,平面内的直线有相交和平行两种位置关系(1)如图①,已知AB∥CD,求证:∠BPD=∠B+∠D;(提示;可过点P作PO∥AB)(2)如图②,已知AB∥CD,求证:∠B=∠P+∠D.七年级(下)期中数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合要求的)1.【解答】解:A、∠1和∠2是对顶角,故选项正确;B、∠1和∠2不是对顶角,故选项错误;C、∠1和∠2不是对顶角,故选项错误;D、∠1和∠2不是对顶角,故选项错误.故选:A.2.【解答】解:0.000 0000 91=9.1×10﹣8,故选:C.3.【解答】解:∵x2+kx+64是一个完全平方式,∴k=±16.故选:A.4.【解答】解:50°角的余角是:90°﹣50°=40°,40°角的补角是:180°﹣40°=140°.故选:B.5.【解答】解:(A)a5+a5=2a5,故A错误;(B)3a3•2a2=6a5,故B错误;(C)a6÷a2=a4,故C错误;故选:D.6.【解答】解:A、只有在两直线平行这一前提下,同位角才相等,故A选项错误;B、在同一平面内,如果a⊥b,b⊥c,则a∥c,故B选项错误;C、相等的角不一定是对顶角,因为对顶角还有位置限制,故C选项错误;D、由平行公理的推论知,故D选项正确.故选:D.7.【解答】解:∵直尺的两边互相平行,∴∠1=∠2,∠3=∠4,∠4+∠5=180°,∵三角板的直角顶点在直尺上,∴∠2+∠4=90°,∴A,B,D正确.故选:C.8.【解答】解:(2x+m)(x﹣3)=2x2﹣6x+mx﹣3m=2x2+(m﹣6)x﹣3m,∵结果中不含有x的一次项,∴m﹣6=0,解得m=6.故选:D.9.【解答】解:设y与t之间的函数关系式为y=kt+b,将(1,38)、(2,36)代入y=kt+b,,解得:,∴y与t之间的函数关系式为y=﹣2t+40,D选项错误;∵﹣2<0,∴y随t的增大而减小,A选项错误;当t=15时,y=﹣2×15+40=10,∴放水时间为15分钟时,水池中水量为10m3,B选项错误;∵k=﹣2,∴每分钟的放水量是2m3,C选项正确.故选:C.10.【解答】解:由题意可得,小明从家出发到妈妈发现小明的作业本落在家里这段时间,y随x的增大而增大,小明的妈妈开始给你小明送作业到追上小明这段时间,y随x的增大而减小,小明妈妈追上小明到各自继续行走这段时间,y随x的增大不变,小明和妈妈分别去学校、回家的这段时间,y随x的增大而增大,故选:B.二、填空题(共4小题,每小題3分,计12分)11.【解答】解:根据题意,宽为(6a2﹣9ab+3a)÷3a=2a﹣3b+1,故答案为:2a﹣3b+1.12.【解答】解:若AB∥CD,则∠2+∠3=180°,∵∠1=∠3,∴∠2+∠1=180°,∵∠1=120°,∴∠2=60°,∴当∠2=60°时,AB∥CD.故答案为:60°.13.【解答】解:根据题意得:y=2400+300x(x≥0,且x为正整数);故答案为:y=2400+300x.14.【解答】解:∵AB∥CD,∴∠BEF=180°﹣∠1=180°﹣72°=108°,∠2=∠BEG,又∵EG平分∠BEF,∴∠BEG=∠BEF=×108°=54°,∴∠2=∠BEG=54°.故答案为:54°.三、解答题(共9小题,计78分.解答应写出过程)15.【解答】解:(1)原式=20182﹣(2018﹣1)×(2018+1)=20182﹣(20182﹣1)=20182﹣20182+1=1;(2)原式=2+1﹣8=3﹣8=﹣5;(3)原式=(9a4b2)•(2ab2)÷(﹣9a4b2)=(18a5b4)÷(﹣9a4b2)=﹣2ab2;(4)原式=a2﹣4a+4﹣2a2+9a+4=﹣a2+5a+8.16.【解答】解:(1)如图,CF即为所求;(2)如图所示,BG即为所求;(3)点B到AC的距离是线段BG的长度,故答案为:BG;(4)线段BG、AB的大小关系为:BG<AB,理由是:直线外一点与直线上各点连接的所有线段中,垂线段最短,故答案为:<,直线外一点与直线上各点连接的所有线段中,垂线段最短.17.【解答】解:如图所示:∠AOB即为所求.18.【解答】解:(1)∵a+b=﹣5,ab=6,∴a2+b2=(a+b)2﹣2ab=25﹣12=13;(2)a2b+ab2=ab(a+b)=﹣30;(3)(a﹣b)2=a2+b2﹣2ab=13﹣12=1,故a﹣b=±1.19.【解答】解:(1)自变量是时间x,因变量是水量y;(2)洗衣机的进水时间是4分钟,清洗时洗衣机中的水量40升;(3)由于排水速度与进水速度相同,排水量和进水量相同,所以排水时间与进水时间相同,即排水时间为4分钟,所以洗衣机清洗衣服所用的时间:15﹣4﹣4=7分钟;答:时间为10分钟时,不符合题意.20.【解答】解:(1)∵∠BOC=∠AOD=30°,∠BOE=90°,∴∠COE=90°﹣30°=60°,(2)∵∠BOC=30°,∴∠BOD=180°﹣30°=150°,∵OF为∠BOD的角平分线,∴∠BOF=∠BOD=×150°=75°,∴∠EOF=∠EOC+∠BOC+∠BOF=60°+30°+75°=165°.21.【解答】证明:∵AD⊥BC于D,EG⊥BC于G(已知),∴∠ADC=∠EGC=90°(垂直的定义),∴AD∥EG(同位角相等,两直线平行),∴∠1=∠2(两直线平行,内错角相等),∴∠E=∠3(两直线平行,同位角相等),又∵∠E=∠1(已知),∴∠2=∠3(等量代换),∴AD平分∠BAC(角平分线的定义)故答案为:已知;垂直的定义;同位角相等,两直线平行;两直线平行,内错角相等;∠E;两直线平行,同位角相等;等量代换;角平分线的定义.22.【解答】解:(1)根据题意得:长方形的长为:(x+2)cm,则s=x(x+2)=x2+2x,即s与x之间的函数关系式为:s=x2+2x,(2)把x=8代入s=x2+2x得:s=82+2×8=80(cm2),答:当x=8时,长方形的面积为80cm2.23.【解答】(1)证明:过点P作PE∥AB,如图1所示.∵AB∥PE,AB∥CD,(已知)∴AB∥PE∥CD.(在同一平面内,平行于同一直线的两条直线互相平行)∴∠B=∠BPE,∠D=∠DPE,(两直线平行,内错角相等)∴∠BPD=∠BPE+∠DPE=∠B+∠D.(等量代换)(2)证明:过点P作PE∥CD,如图2所示.∵AB∥CD,∴∠B=∠BOD,∵PE∥CD(辅助线),∴∠BOD=∠BPE(两直线平行,同位角相等);∠D=∠DPE(两直线平行,内错角相等);∴∠BPE=∠BPD+∠DPE=∠BPD+∠D(等量代换),∴∠BOD=∠P+∠D(等量代换),即∠B=∠P+∠D.。

人教版2020-2021学年第二学期期中考试试卷七年级数学试题及答案

人教版2020-2021学年第二学期期中考试试卷七年级数学试题及答案

2020-2021学年第二学期期中考试试卷七年级 数学满分120分,考试时间120分一.选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求)1.下列说法中,不正确的是( )A.如果两条直线都和第三条直线平行,那么这两条直线也互相平行B.过直线外一点,有且只有一条直线和已知直线相交C.同一平面内的两条不相交直线平行D.过直线外一点,有且只有一条直线与已知直线平行 2.某数的立方根是它本身,这样的数有( )A . 1个B . 2个C . 3个D . 4个 3.下列图形中,由AB CD ∥,能得到12∠=∠的是( )ABCD 4.一个正方体水晶砖,体积为1002cm ,它的棱长大约在 ( )A .4~5cm 之间B .5~6cm 之间C .6~7cm 之间D .7~8cm 之间5.数学课上, 老师要求同学们利用三角板画两条平行线.小明的画法如下:①将含30角的三角尺的最长边与直线a 重合,另一块三角尺最长边与含30角的三角尺的最短边紧贴;②将含30角的三角尺沿贴合边平移一段距离,画出最长边所在直线b ,则//.b a 小明这样画图的依据是( )A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等DCBA DCBA ABCDDC BA21122112A B C D6.下列实数317,π-,3.14159,8,327-,21中无理数有( ). A .个 B .个 C .个 D .个7.方程310x y +=的正整数解有( )A.1组B.3组C.4组D.无数组 8.方格纸上有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(3,4),若以A 点为原点建立直角坐标系,则B 点坐标是( )A. (3,4)B. (4,3)C. (3,4)--D. (4,3)-9.《孙子算经》有一道题.大概意思是:用一根绳子去量一根木头的长,绳子还余 4.5 尺, 将绳子对折再量木头,则木头还剩余 1 尺,问木头长多少尺?可设木头为 x 尺,绳长为y 尺,则所列方程组正确的是( )A. 4.521y x y x =-⎧⎨=-⎩B. 4.521y x y x =+⎧⎨=-⎩C. 4.50.5+1y x y x =-⎧⎨=⎩D. 4.50.51y x y x =+⎧⎨=-⎩10如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点55A 的坐标是( )A.(1313),B.(1313)--,C.(1414),D.(1414)--,二.填空题(本大题共8小题,每小题3分,共24分)11.√81的算术平方根是 .12.若(m −2)x n +y |m−1|=0是二元一次方程,则m −n 的值为 .13.如图所示,直线AB 与CD 相交于点O ,:2:3AOC AOD ∠∠= ,则BOD ∠的度数为 .第13题图 第14题图 第15题图14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.15.如图,已知90ACB ∠=°.CD AB ⊥,垂足为D ,则点A 到直线CB 的距离为线段 的长.2345ODC B A图1DCBAA 11A 12A 10A 9A 8A 7A 6A 5A 4A 3A 2A 1yx16.52-+的绝对值是 .17.如图,AB ∥CD ,直线l 分别与直线AB 、CD 相交于点E 、F ,EG 平分BEF ∠交直线CD 于点G ,若112GFE ∠=︒,则EGF ∠的度数为第17题图 第18题图18.如图是某种电子产品的主板示意图,每一个转角处都是直角.已知AB=75mm ,BC=90mm ,则该主板的周长是_____mm .三.解答题(本大题共9小题,共66分)19.(8分)(1)计算:(﹣2)2×14+38-+2×(﹣1)2019 (2)解方程:3(x ﹣2)2=27 20.(8分)解下列二元一次方程组⑴25342x y x y -=⎧⎨+=⎩ ⑵2-3-3-3+42x y x y =⎧⎨=⎩21.(5分) 完成下面的证明.(在序号后面横线上填写合适的内容) 已知:如图,AC⊥BD,EF⊥BD,∠A=∠1.求证:EF 平分∠BED. 证明:∵AC⊥BD,EF⊥BD,∴∠ACB=90°,∠EF D =90°(① ) ∴∠ACB +∠EF D=180°∴② (③ ) ∴∠A=∠2.∠3=∠1.(④ ) 又∵∠A=∠1,∴∠2=∠3(⑤ ) ∴EF 平分∠BED.22. (6分)已知一个正数x 的两个不同的平方根为23a -和5a -.求a 和x 的值.23.(6分)方程组3522710x y ax y -=⎧⎨+=-⎩的解x 、y 的值互为相反数,求a 的值.24.(6分)如图1是由8个同样大小的小正方体组成的正方体魔方,体积为8. (1)求出这个魔方的棱长;(2)图1中阴影部分是一个正方形ABCD ,求出阴影部分的面积及其边长.(3)把正方形ABCD 放到数轴上,如图2,使得点A 与1-重合,那么点D 在数轴上表示的数为多少.25.(7分)七年级(2)班的同学组织到人民公园游玩,张明、王励、李华三位同学和其他同学走散了,同学们已到中心广场,他们三个对着景区示意图在电话中向在中心广场的同学们说他们的位置,张明说他的坐标是(200,200)-,王励说他的坐标是(200,100)--,李华说他的坐标是(300,200)-.(1)请你根据题目条件,在图中画出平面直角坐标系; (2)写出这三位同学所在位置的景点名称;(3)写出除了这三位同学所在位置外,图中其余两个景点的坐标.26.(8分)疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与3辆小货车可以一次运货多少吨?27 (12分)在平面直角坐标系中,点A 、B 在坐标轴上,其中A(0,a )、B(b ,0)满足:21280a b a b --++-=(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为C(-2,t), 如图所示.若三角形ABC 的面积为9,求点D 的坐标.2020-2021学年第二学期期中考试试卷七年级 数学满分120分,考试时间120分一.选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求)1.下列说法中,不正确的是( )A.如果两条直线都和第三条直线平行,那么这两条直线也互相平行B.过直线外一点,有且只有一条直线和已知直线相交C.同一平面内的两条不相交直线平行D.过直线外一点,有且只有一条直线与已知直线平行 【答案】B2.某数的立方根是它本身,这样的数有( )A . 1个B . 2个C . 3个D . 4个 【答案】C ;3.下列图形中,由AB CD ∥,能得到12∠=∠的是( )ABCD 【答案】B ;4.一个正方体水晶砖,体积为1002cm ,它的棱长大约在 ( )A .4~5cm 之间B .5~6cm 之间C .6~7cm 之间D .7~8cm 之间【答案】A5.数学课上, 老师要求同学们利用三角板画两条平行线.小明的画法如下:①将含30角的三角尺的最长边与直线a 重合,另一块三角尺最长边与含30角的三角尺的最短边紧贴;②将含30角的三角尺沿贴合边平移一段距离,画出最长边所在直线b ,则//.b a 小明这样画图的依据是( )DCBA DCBA ABCDDC BA21122112A B C DA .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等 【答案】A 6.下列实数317,π-,3.14159,8,327-,21中无理数有( ). A .个 B .个 C .个 D .个【答案】A7.方程310x y +=的正整数解有( )A.1组B.3组C.4组D.无数组 【答案】B8.方格纸上有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(3,4),若以A 点为原点建立直角坐标系,则B 点坐标是( )A. (3,4)B. (4,3)C. (3,4)--D. (4,3)-【答案】C9.《孙子算经》有一道题.大概意思是:用一根绳子去量一根木头的长,绳子还余 4.5 尺, 将绳子对折再量木头,则木头还剩余 1 尺,问木头长多少尺?可设木头为 x 尺,绳长为y 尺,则所列方程组正确的是( )A. 4.521y x y x =-⎧⎨=-⎩B. 4.521y x y x =+⎧⎨=-⎩C. 4.50.5+1y x y x =-⎧⎨=⎩D. 4.50.51y x y x =+⎧⎨=-⎩【答案】D10如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点55A 的坐标是( )A.(1313),B.(1313)--,C.(1414),D.(1414)--,【答案】C2345A 11A 12A 10A 9A 8A 7A 6A 5A 4A 3A 2A 1yx二.填空题(本大题共8小题,每小题3分,共24分)11.√81的算术平方根是 . 【答案】312.若(m −2)x n +y |m−1|=0是二元一次方程,则m −n 的值为 . 【答案】-113.如图所示,直线AB 与CD 相交于点O ,:2:3AOC AOD ∠∠= ,则BOD ∠的度数为 .第13题图 第14题图 第15题图【答案】72︒14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____. 【答案】(-2,-2)15.如图,已知.,垂足为,则点到直线的距离为线段 的长;【答案】AC16.52-+的绝对值是 . 【答案】5-217.如图,AB ∥CD ,直线l 分别与直线AB 、CD 相交于点E 、F ,EG 平分BEF ∠交直线CD 于点G ,若112GFE ∠=︒,则EGF ∠的度数为第17题图 第18题图 【答案】34°18.如图是某种电子产品的主板示意图,每一个转角处都是直角.已知AB=75mm ,BC=90mm ,90ACB ∠=°CD AB ⊥D A CB ODC B A图1DCBA则该主板的周长是_____mm . 【答案】330三.解答题(本大题共9小题,共66分)19.(8分)(1)计算:(﹣2)2×14+38-+2×(﹣1)2019 (2)解方程:3(x ﹣2)2=27 =4×12+(−2)+(−√2) (x-2)2=9=2−2−√2 x-2=3或x-2=-3 =−√2 x=5或x=-1 20.(8分)解下列二元一次方程组⑴25342x y x y -=⎧⎨+=⎩ ⑵2-3-3-3+42x y x y =⎧⎨=⎩ 【答案】(1){x =2y =−1 (2){x =6y =521.(5分) 完成下面的证明.已知:如图,AC⊥BD,EF⊥BD,∠A=∠1.求证:EF 平分∠BED. 证明:∵AC⊥BD,EF⊥BD,∴∠ACB=90°,∠EF D =90°(①垂直的定义) ∴∠ACB +∠EF D=180°∴②EF ∥AC .(③同旁内角互补,两直线平行) ∴∠A=∠2.∠3=∠1.(④两直线平行,内错角相等) 又∵∠A=∠1, ∴∠2=∠3(⑤等量代换) ∴EF 平分∠BED.22. (6分)已知一个正数x 的两个不同的平方根为23a -和5a -.求a 和x 的值. 解:由题意得:(2a-3)+(5-a)=0,解得:a=-2;x=49. 所以 x=(2a-3)2=(-7)2=49 23.(6分)方程组3522710x y ax y -=⎧⎨+=-⎩的解x 、y 的值互为相反数,求a 的值.解:由题意得:x+y=0,联立方程组{2x +7y =−10x +y =0,解得:{x =2y =−2, 把{x =2y =−2代入3x-5y=2a, 得:2a=16,解得:a=8 24.(6分)如图1是由8个同样大小的小正方体组成的正方体魔方,体积为8.(1)求出这个魔方的棱长;(2)图1中阴影部分是一个正方形ABCD ,求出阴影部分的面积及其边长.(3)把正方形ABCD 放到数轴上,如图2,使得点A 与1-重合,那么点D 在数轴上表示的数为________. 【答案】(1)设魔方的棱长为x,由x 3=8,解得x=2, 所以魔方的棱长为2;(2)因为魔方的棱长为2,所以魔方每个面的面积为4,正方形ABCD 的面积为魔方每个面的面积的一半,所以阴影部分的面积为2,正方形ABCD 的边长为√2;(3)正方形ABCD 的边长为√2,点A 与1-重合,所以点D 在数轴上表示的数为−1−√2 25.(7分)七年级(2)班的同学组织到人民公园游玩,张明、王励、李华三位同学和其他同学走散了,同学们已到中心广场,他们三个对着景区示意图在电话中向在中心广场的同学们说他们的位置,张明说他的坐标是(200,200)-,王励说他的坐标是(200,100)--,李华说他的坐标是(300,200)-.(1)请你根据题目条件,在图中画出平面直角坐标系; (2)写出这三位同学所在位置的景点名称;(3)写出除了这三位同学所在位置外,图中其余两个景点的坐标.【答案】(1)根据题意,他们以中心广场为坐标原点,100m 为单位长度建立直角坐标系: y y(2) 张明在游乐园,王励在望春亭,李华在湖心亭; (3)中心广场(0,0),牡丹亭(300,300)26.(8分)疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与3辆小货车可以一次运货多少吨? 【答案】解:设1辆大货车可以一次运货x 吨, 1辆小货车可以一次运货y 吨. {3x +2y =175x +4y =29 解得:{x =5y =1 2x +y =2×5+1×3=13(吨)所以2辆大货车与3辆小货车可以一次运货13吨.27 (12分)在平面直角坐标系中,点A 、B 在坐标轴上,其中A(0,a )、B(b ,0)满足:21280a b a b --++-=(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为C(-2,t),如图所示.若三角形ABC 的面积为9,求点D 的坐标.xy【答案】(1)根据题意{2a −b −1=0a +2b −8=0解得:{a =2b =3 所以A 、B 两点的坐标分别为(0,2),(3,0);(2)如图所示,过A 点作x 轴平行线,过B 点作y 轴平行线,过C 点作x 轴,y 轴平行线,交点为P ,Q,R ,根据题意,点C 在第三象限,所以t<0, P(3,t),R(3,2),Q(-2,2),CP=5,CQ=2-t,AQ=2,AR=3,BR=2,BP=- tS ∆ABC =5(2−t )−12×2(2−t )−12×2×3−12×5×(−t )=9, 解得:t =−83所以线段CD 是由线段AB 向左平移2个单位,向下平移143个单位得到的; 所以D 点坐标为(1,-143)PQ1、三人行,必有我师。

2020年初一数学上期中试卷(附答案)

2020年初一数学上期中试卷(附答案)

2020年初一数学上期中试卷(附答案)一、选择题1.有理数a、b、c在数轴上的对应点如图,下列结论中,正确的是()A.a>c>b B.a>b>c C.a<c<b D.a<b<c2.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2015,则m的值是()A.43B.44C.45D.463.用科学记数方法表示0.0000907,得()A.49.0710-⨯B.59.0710-⨯C.690.710-⨯D.790.710-⨯4.方程去分母,得()A.B.C.D.5.生物学家发现一种病毒的长度约为0.000043mm,用科学记数法表示这个数的结果为(单位:mm)()A.4.3×10﹣5B.4.3×10﹣4C.4.3×10﹣6D.43×10﹣56.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>07.23的相反数是()A.32B.32-C.23D.23-8.如图,用火柴棒摆出一列正方形图案,第①个图案用了 4 根,第②个图案用了 12 根,第③个图案用了 24 根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是()A.84B.81C.78D.769.如图,O是直线AB上一点,OD平分∠BOC,OE平分∠AOC,则下列说法错误的是()A .∠DOE 为直角B .∠DOC 和∠AOE 互余 C .∠AOD 和∠DOC 互补D .∠AOE 和∠BOC 互补10.下列说法:①﹣a 一定是负数;②|﹣a |一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是( ) A .1个B .2个C .3个D .4个11.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( ) A .23bB .26bC .29bD .236b12.下列等式变形正确的是( ) A .由a =b ,得5+a =5﹣b B .如果3a =6b ﹣1,那么a =2b ﹣1 C .由x =y ,得x y m m= D .如果2x =3y ,那么262955x y--= 二、填空题13.在-2,0,1,−1这四个数中,最大的有理数是________. 14.当k =_____时,多项式x 2+(k ﹣1)xy ﹣3y 2﹣2xy ﹣5中不含xy 项.15.如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n 个图案中白色正方形比黑色正方形多________个.(用含n 的代数式表示)16.某电台组织知识竞赛,共设置20道选择题,各题分值相同,每题必答,下表记录了3个参赛者的得分情况.若参赛者D 得82分,则他答对了__________道题. 参赛者答对题数答错题数 得分A20 0100B191 94 C 1466417.观察以下一列数:3,54,79,916,1125,…则第20个数是_____. 18.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x ﹣7的值为_____.19.下列哪个图形是正方体的展开图( )A .B .C .D .20.如图,依次用火柴棒拼三角形:照这样的规律拼下去,拼n 个这样的三角形需要火柴棒______________根.三、解答题21.某班原分成两个小组进行课外体育活动,第一组28人,第二组20人,根据学校活动器材的数量,要将第一组的人数调整为第二组的一半,应从第一组调多少人到第二组去? 22.如图,在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、b 满足|a+2|+(c ﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数 表示的点重合; (3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB= ,AC= ,BC= .(用含t 的代数式表示) (4)请问:3BC ﹣2AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.23.任何一个有理数都能写成分数的形式(整数可以看作是分母为1的分数).我们知道:0.12可以写成123,0.12310025=可以写成1231000,因此,有限小数是有理数.那么无限循环小数是有理数吗?下面以循环小数2.61545454 2.6154••=为例,进行探索:设 2.6154x ••=,①两边同乘以100得: 100261.54x ••=,② ②-①得:99261.54 2.61258.93x =-=25893287799001100x ∴== 因此,••261.54是有理数.(1)直接用分数表示循环小数1.5•=(2)试说明3.1415••是一个有理数,即能用一个分数表示.24.如图,A 岛在B 岛的北偏东30°方向,C 岛在B 岛的北偏东80°方向,A 岛在C 岛北偏西40°方向.从A 岛看B 、C 两岛的视角∠BAC 是多少?25.用四个长为m ,宽为n 的相同长方形按如图方式拼成一个正方形.(1).请用两种不同的方法表示图中阴影部分的面积. 方法①: ; 方法②: .(2).由 (1)可得出()m n +2,2()m n - ,4mn 这三个代数式之间的一个等量关系为: . (3)利用(2)中得到的公式解决问题:已知2a+b=6,ab =4,试求2(2)a b -的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据数轴上的数,右边的总比左边的大写出后即可选择答案. 【详解】根据题意得,a <c <b . 故选C . 【点睛】本题考查了利用数轴比较有理数的大小,熟记数轴上的数右边的总比左边的大是解题的关键.2.C解析:C【解析】【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数2015的是从3开始的第1007个数,然后确定出1007所在的范围即可得解.【详解】∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=()()221m m+-,∵2n+1=2015,n=1007,∴奇数2015是从3开始的第1007个奇数,∵()()4424412+-=989,()()4524512+-=1034,∴第1007个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选C.【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.3.B解析:B【解析】【分析】【详解】解:根据科学记数法的表示—较小的数为10na⨯,可知a=9.07,n=-5,即可求解.故选B【点睛】本题考查科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.4.B解析:B【解析】解一元一次方程中去分母的步骤:先确定几个分母的最简公分母,然后将方程两边同时乘以这个最简公分母约去分母即可.【详解】解:因为最简公分母是6,所以将方程两边同时乘以6可得: ,约去分母可得: ,故选B.【点睛】本题主要考查解一元一次方程中去分母的步骤,解决本题的关键是要熟练掌握去分母的步骤. 5.A解析:A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】6.B解析:B【解析】【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.7.D解析:D【解析】【分析】只有符号不同的两个数互为相反数.【详解】2 3的相反数是23故选:D【点睛】考核知识点:相反数.理解定义是关键.8.A解析:A【解析】【分析】图形从上到下可以分成几行,第n个图形中,竖放的火柴有n(n+1)根,横放的有n(n+1)根,因而第n个图案中火柴的根数是:n(n+1)+n(n+1)=2n(n+1).把n=6代入就可以求出.【详解】解:设摆出第n个图案用火柴棍为S n.①图,S1=1×(1+1)+1×(1+1);②图,S2=2×(2+1)+2×(2+1);③图,S3=3×(3+1)+3×(3+1);…;第n个图案,S n=n(n+1)+n(n+1)=2n(n+1).则第⑥个图案为:2×6×(6+1)=84.故选A.【点睛】本题考查了规律型:图形的变化,此题注意第n个图案用火柴棍为2n(n+1).9.D解析:D【解析】【分析】根据角平分线的性质,可得∠BOD=∠COD,∠COE=∠AOE,再根据余角和补角的定义求解即可.【详解】解:∵OD平分∠BOC,OE平分∠AOC,∴∠BOD=∠COD=12∠BOC,∠AOE=∠COE=12∠AOC,∵∠AOC+∠COB=180°,∴∠COE+∠COD=90°,A、∠DOE为直角,说法正确;B、∠DOC和∠AOE互余,说法正确;C、∠AOD和∠DOC互补,说法正确;D、∠AOE和∠BOC互补,说法错误;故选D.【点睛】本题考查了余角和补角的知识,解答本题的关键是理解余角和补角的定义,掌握角平分线的性质.10.A解析:A【解析】【分析】【详解】根据负数的概念,当a≤0时,-a≥0,故①不正确;|-a|≥0,是非负数,故②不正确;根据乘积为1的两数互为倒数,可知倒数是本身的数为±1,故③正确;根据绝对值的意义,一个正数的绝对值是本身,0的绝对值是0,负数的绝对值是其相反数,故④不正确;由平方的意义,1和0的平方均为她本身,故⑤不正确.故选A.【点睛】此题主要考查了有理数的相关概念,解题时要明确正负数,相反数,绝对值,倒数的意义及特点,然后从中判断即可.相反数:只有符号不同的两数互为相反数;绝对值:一个正数的绝对值是本身,0的绝对值是0,一个负数的绝对值是其相反数;倒数:乘积为1的两数互为倒数.11.C解析:C【解析】【分析】根据完全平方公式的形式(a±b)2=a2±2ab+b2可得出缺失平方项.【详解】根据完全平方的形式可得,缺失的平方项为9b2故选C.【点睛】本题考查了整式的加减及完全平方式的知识,掌握完全平方公式是解决本题的关键.12.D解析:D【解析】【分析】根据等式性质1对A进行判断;根据等式性质2对B、C进行判断;根据等式性质1、2对D进行判断.【详解】解:A、由a=b得a+5=b+5,所以A选项错误;B、如果3a=6b﹣1,那么a=2b﹣13,所以B选项错误;C、由x=y得xm=ym(m≠0),所以C选项错误;D、由2x=3y得﹣6x=﹣9y,则2﹣6x=2﹣9y,所以262955x y--=,所以D选项正确.故选:D.【点睛】本题考查了等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.二、填空题13.1【解析】解:∵-2<−1<0<1∴最大的有理数是1故答案为:1解析:1【解析】解:∵-2<−1<0<1,∴最大的有理数是1.故答案为:1.14.3【解析】【分析】不含有xy项说明整理后其xy项的系数为0【详解】解:整理只含xy的项得:(k-3)xy∴k-3=0k=3故答案为3【点睛】本题考查多项式的概念不含某项说明整理后的这项的系数之和为0解析:3【解析】【分析】不含有xy项,说明整理后其xy项的系数为0.【详解】解:整理只含xy的项得:(k-3)xy,∴k-3=0,k=3.故答案为3.【点睛】本题考查多项式的概念.不含某项,说明整理后的这项的系数之和为0.15.4n+3【解析】【分析】利用给出的三个图形寻找规律发现白色正方形个数=总的正方形个数-黑色正方形个数而黑色正方形个数第1个为1第二个为2由此寻找规律总个数只要找到边与黑色正方形个数之间关系即可依此类解析:4n+3【解析】【分析】利用给出的三个图形寻找规律,发现白色正方形个数=总的正方形个数-黑色正方形个数,而黑色正方形个数第1个为1,第二个为2,由此寻找规律,总个数只要找到边与黑色正方形个数之间关系即可,依此类推,寻找规律.【详解】解:方法一:第1个图形黑、白两色正方形共3×3个,其中黑色1个,白色3×3-1个,第2个图形黑、白两色正方形共3×5个,其中黑色2个,白色3×5-2个,第3个图形黑、白两色正方形共3×7个,其中黑色3个,白色3×7-3个,依此类推,第n个图形黑、白两色正方形共3×(2n+1)个,其中黑色n个,白色3×(2n+1)-n 个,即:白色正方形5n+3个,黑色正方形n个,故第n个图案中白色正方形比黑色正方形多4n+3个,方法二第1个图形白色正方形共8个,黑色1个,白色比黑色多7个,第2个图形比第1个图形白色比黑色又多了4个,即白色比黑色多(7+4)个,第3个图形比第2个图形白色比黑色又多了4个,即白色比黑色多(7+4×2)个,类推,第n个图案中白色正方形比黑色正方形多[7+4(n-1)]个,即(4n+3)个,故第n个图案中白色正方形比黑色正方形多4n+3个.【点睛】本题考查了几何图形的变化规律,是探索型问题,图中的变化规律是解题的关键.16.17【解析】【分析】由参赛者A的得分就可以得出答对一题的得5分再由参赛者BC可知答错一题扣1分;设答对的题有x题则答错的有(20-x)题根据答对的得分-答错题的得分=82分建立方程求出其解即可;【详解析:17【解析】【分析】由参赛者A的得分就可以得出答对一题的得5分,再由参赛者B,C可知,答错一题扣1分;设答对的题有x题,则答错的有(20-x)题,根据答对的得分-答错题的得分=82分,建立方程求出其解即可;【详解】由参赛者A的得分就可以得出答对一题的得5分,再由参赛者B,C可知,答错一题扣1分;设答对的题有x题,则答错的有(20-x)题,所以5x-(20-x)=82解得x=17故答案为:17.【点睛】考核知识点:一元一次方程的与比赛问题.理解题意,求出积分规则是关键.17.【解析】【分析】观察已知数列得到一般性规律写出第20个数即可【详解】解:观察数列得:第n个数为则第20个数是故答案为【点睛】本题考查了规律型:数字的变化类弄清题中的规律是解答本题的关键 解析:41400【解析】【分析】 观察已知数列得到一般性规律,写出第20个数即可.【详解】解:观察数列得:第n 个数为221n n ,则第20个数是41400. 故答案为41400. 【点睛】本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键. 18.2【解析】试题分析:由题意可得:2x2+3x+7=10所以移项得:2x2+3x=10-7=3所求多项式转化为:6x2+9x ﹣7=3(6x2+9x )-7=3×3-7=9-7=2故答案为2考点:求多项式解析:2【解析】试题分析:由题意可得:2x 2+3x+7=10,所以移项得:2x 2+3x=10-7=3,所求多项式转化为:6x 2+9x ﹣7=3(6x 2+9x )-7=3×3-7=9-7=2,故答案为2.考点:求多项式的值.19.B 【解析】【分析】根据正方体展开图的11种特征选项ACD 不是正方体展开图;选项B 是正方体展开图的1-4-1型【详解】根据正方体展开图的特征选项ACD 不是正方体展开图;选项B 是正方体展开图故选B 【点睛解析:B【解析】【分析】根据正方体展开图的11种特征,选项A 、C 、D 不是正方体展开图;选项B 是正方体展开图的“1-4-1”型.【详解】根据正方体展开图的特征,选项A 、C 、D 不是正方体展开图;选项B 是正方体展开图. 故选B .【点睛】正方体展开图有11种特征,分四种类型,即:第一种:“1-4-1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2-2-2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3-3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1-3-2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.20.【解析】【分析】首先正确数出前三个图形中的火柴棒的根数:第一个三角形是3根火柴;第二个三角形是5根火柴第三个三角形是7根火柴依次多2个可推出第n个这样的三角形需要多少根火柴【详解】∵第一个三角形是3 解析:21n【解析】【分析】首先正确数出前三个图形中的火柴棒的根数:第一个三角形是3根火柴;第二个三角形是5根火柴,第三个三角形是7根火柴, 依次多2个,可推出第n个这样的三角形需要多少根火柴.【详解】∵第一个三角形是3根火柴;第二个三角形是5根火柴,第三个三角形是7根火柴,发现依次多2个,即可推出第n个这样的三角形需要2n+1根火柴.【点睛】本题考查图形的变换规律,得到每个图形中火柴的根数与图形的个数的关系式解决本题的关键.三、解答题21.应从第一组调12人到第二组去【解析】【分析】设应从第一组调x 人到第二组去,根据第一组28人,第二组20人打扫包干区,要使第一组人数是第二组人数的一半,从而可列方程求解.【详解】解:设应从第一组调x 人到第二组去,根据题意,得()12820.2x x -=+ 解得:12.x =经检验,符合题意答:应从第一组调12人到第二组去,【点睛】本题考查的是调配问题,关键知道调配后的数量关系从而可列方程求解.22.(1)-2, 1,c=7;(2)4;(3)3t+3, 5t+9, 2t+6;(4)不变,3BC ﹣2AB=12.【解析】【分析】(1)利用|a +2|+(c−7)2=0,得a +2=0,c−7=0,解得a ,c 的值,由b 是最小的正整数,可得b =1;(2)先求出对称点,即可得出结果;(3)AB 原来的长为3,所以AB =t +2t +3=3t +3,再由AC =9,得AC =t +4t +9=5t +9,由原来BC =6,可知BC =4t−2t +6=2t +6;(4)由 3BC−2AB =3(2t +6)−2(3t +3)求解即可.【详解】(1)∵|a +2|+(c−7)2=0,∴a +2=0,c−7=0,解得a =−2,c =7,∵b 是最小的正整数,∴b =1;故答案为:−2;1;7.(2)(7+2)÷2=4.5,对称点为7−4.5=2.5,23.(1)149;(2)见解析 【解析】【分析】(1)设 1.5x •=,两边乘10,仿照例题可解;(2)设 3.1415x ••=,两边乘100,仿照例题可化简求解.【详解】解:(1)设 1.5x •=,①两边乘10得:1015.5x •=,②②-①得:914x =, ∴149x =, ∴141.59•=; (2)设 3.1415x ••=,①两边同乘以100得:••100314.15x =,②②-①得:314.15 3.1499311.1105x ••••=-= 311011036799003300x ∴==, 因此3.1415••是有理数【点睛】本题需理解题中的例子,将一个循环小数化为分数的方法,需要学生有很好的分析理解能力.24.70°【解析】【分析】先根据方向角的概念,得出∠DBA=30°,∠DBC=80°,∠ACE=40°,再由两直线平行,同旁内角互补,求出∠ACB=60°,然后根据三角形内角和定理即可求解.【详解】解:∵A 岛在B 岛的北偏东30°方向,即∠DBA=30°,∵C 岛在B 岛的北偏东80°方向,即∠DBC=80°;∵A 岛在C 岛北偏西40°方向,即∠ACE=40°,∴∠ACB=180°﹣∠DBC ﹣∠ACE=180°﹣80°﹣40°=60°;在△ABC 中,∠ABC=∠DBC ﹣∠DBA=80°﹣30°=50°,∠ACB=60°,∴∠BAC=180°﹣∠ABC ﹣∠ACB=180°﹣50°﹣60°=70°.【点睛】本题考查了方向角的定义,平行线的性质和三角形内角和定理,比较简单.正确理解方向角的定义是解题的关键.25.(1) 2()m n -;2()4m n mn +-;(2)2()m n -=2()4m n mn +-;(3)4.【解析】【分析】(1)直接利用正方形的面积公式得到图中阴影部分的面积为(m-n )2;也可以用大正方形的面积减去4个长方形的面积得到图中阴影部分的面积为(m+n )2-4mn ;(2)根据图中阴影部分的面积是定值得到等量关系式;(3)利用(2)中的公式得到(2a-b )2=(2a+b )2-4×2ab . 【详解】方法①:()2m n -;方法②:()24m n mn +-(2)()2m n -=()24m n mn +-(3) (2a-b)2=(2a+b)2-8ab=36-32=4【点睛】考查了列代数式:根据题中的已知数量利用代数式表示其他相关的量.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

克七中2019-2020学年第一学期期中考试卷
初一数 学
一、填空题(2分×21=42分)
1、如果水位升高3m 时水位变化记作+3m ,则水位下降5米时水位变化记作:
2、大于–3且不大于2的所有整数写出来是
3、2-的相反数是 , 3的倒数是 ,
4、把数701000000000用科学记数法记作为
5、计算:_______)5()8(=++-;_______)5()15(=-÷-.
6、一车间有工人72人,一车间人数比二车间人数的2
3还少4人,那么二车间
有多少工人?若设二车间人数为x ,依题意可列方程 。

7、最大的负整数是___________。

8、如果|x|=2,那么x=__________;如果x= —x ,那么x=_________。

9、30435保留3个有效数字为____________;
10、在数轴上,点A 表示的数是 —1,点B 也是数轴上的点,且AB 的长是4
个单位长度,则B 点表示的数是___________。

11、比 —5大 —3的数是__________。

12、观察下列数据,按某种规律在横线上填上适当的数:
1,43-,95,167-,259,
,…13、如图是
2005年11一长方形在日历上任意框出4使得这4个数的和为88小的一个数为x ,那么列方程为、
___ ______________ __。

14、比较-3
2
1与-3的大小,即-321
-3;
15、写出一个解为-3的方程_______________________。

16、某中学年级之间组织足球循环赛:初三胜初一3:2,初二胜初三1:0,初
二平 初一1:1,则初一年级的净胜球为________个。

17、有理数-3 ,0 ,20 ,-1.25 ,14
3
, -12- ,-(-5) 中,正整数是 ,
负数是 。

二、选择题(2分×7=14分)
18、下列方程中,一元一次方程的有( )个。

① 2x-3y=6 ②x 2-5x+6=0 ③3(x-2)=1-2x ④013
=+x
⑤3x-2(6-x)=0
A 、1
B 、2
C 、3
D 、4 19、若a 3=a , 则a 这样的有理数有( )个。

A 、0个 B 、1个 C 、2个 D 、3个 20、下列运用等式的性质,变形正确的是( ) A 、若x= y , 则 x-5 = y+5 B 、若a= b, 则 ac= bc
C 、若c b c a =,则2a=3b
D 、若x= y , 则a y a x =
21、一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有( )
A .25.30千克
B .24.70千克
C .25.51千克
D .24.80千克 22、近似数1.250所表示的准确数a 的取值范围是( )
(A )1.24≤a <1.25 (B )1.2495≤a <1.2505 (C )1.2500≤a <1.2505 (D )1.2495<a <1.2505 23、如果方程2x + a = x -1的解是-4,那么a 的值为( )
A. 3
B. -5
C.-13
D.5
24、有下面的算式:①(-1)2003= -2003;②0-(-1)=1;③-2
1
+3
1=6
1;④)2
1(21
-÷= -1;
⑤2×(-3)2=36;⑥-3÷2
1
×2= -3,其中正确算式的个数是( ) (A )1个 (B )2个 (C )3个 (D )4个 三、计算(3分×5=15分)
1、21
2
4379.1221195321.87+-+- 2、-4÷3
2-(-3
2)×(-
30)
3、 |+8|–|–7|+ (–1)2004 –23
4、 -)12
79532(36+-⨯
(用简便方法)
5、 -12 -3 ×(-3
2
)2+(-2)3×81
四、解方程(3分×2=6分):1、7x + 6 = 16 – 3x 2、
4
3
x – 1 = 5
五、(4分×2=8分)
1、若a 、b 为有理数,那么我们定义新运算“⊕”使得a ⊕b =2a -b , 求(1⊕2)⊕3的值?
2、已知616x -+与718x -互为相反数,求2x + 的值
六、(5分)某自行车厂本周计划每日生产400辆自行车,由于人数和操作原因,
每天实际生产量分别为405辆,393辆,397辆,410辆,391辆,385辆,405辆。

(1)用正、负数表示每日实际生产量与计划量的增减情况; (2)该车厂本周实际比计划多生产了还是少生产了?差多少辆?
七、甲、乙两人从相距240千米的两地同时出发,相向而行,3小时相遇,已知甲每小时行 50千米,乙每小时行多少千米?(5分)
八、种一批树,如果每人种10棵,则剩6棵未种;如果每人种12棵,则缺6棵。

有多少人种树?有多少棵树?(5分)。

相关文档
最新文档