初二数学上册期末复习提纲

合集下载

数学期末复习提纲

数学期末复习提纲

复习提纲第一章:1、极限(夹逼准则)2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法2、分部积分法(注意加 C )定积分:1、定义2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程)3、空间平面4、空间旋转面(柱面)具体内容函数收敛比如函数的极限是a,那么我们可以叫他为函数收敛于 a 性质如果函数收敛那么极限唯一。

如果函数收敛它一定有界(有界是指函数定义域存在一个数使得函数值的绝对值大于等于这个数)。

绕口令:函数有界是函数收敛的必要条件(因为可能极限不存在)证明极限的方法1求函数极限的方法定义证明设|Xn|为一数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时,|Xn - a|<ε 都成立,那么就称常数a是数列|Xn|的极限,或称数列|Xn|收敛于a。

记为lim Xn = a 或Xn→a(n→∞)2利用左右极限左右极限存在并相等。

3利用极限存在准则一、单调有界准则,如单调递增又有上界者,或者单调递减又有下界者。

二、夹逼准则,如能找到比目标数列或者函数大而有极限的数列或函数并且又能找到比目标数列或者函数小且有极限的数列或者函数,那么目标数列或者函数必定存在极限。

4利用两个重要极限1)x->0时,sinx/x=1 2)x->无穷时,(1+1/x)^x=e x趋近0的时候5极限的运算法则。

八年级数学上册期末复习资料

八年级数学上册期末复习资料

初二上册数学全册.第十一章全等三角形综合复习1. 全等三角形的概念及性质;2. 三角形全等的判定;3. 角平分线的性质及判定。

知识点一:证明三角形全等的思路通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析:⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩SAS SSSHL AAS SAS ASAAAS ASA AAS 找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。

. 例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。

求证:ACF BDE ∆≅∆。

知识点二:构造全等三角形 例2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。

求证:21C ∠=∠+∠。

例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=。

F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。

求证:AE CF=。

知识点三:常见辅助线的作法..1. 连接四边形的对角线例4. 如图,AB //CD ,AD //BC ,求证:AB CD =。

2. 作垂线,利用角平分线的知识..例5. 如图,,AP CP 分别是ABC ∆外角MAC ∠和NCA ∠的 平分线,它们交于点P 。

求证:BP 为MBN ∠的平分线。

例6. 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。

求证:2AC AE =。

4. “截长补短”构造全等三角形.例7. 如图,在ABC ∆中,AB AC >,12∠=∠,P 为AD 上任意一点。

八年级上册数学总复习资料

八年级上册数学总复习资料

八年级上册数学总复习资料初二数学上册总复习指导第一章勾股定理1、探索勾股定理① 勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c22、一定是直角三角形吗① 如果三角形的三边长a b c满足a2+b2=c2 ,那么这个三角形一定是直角三角形3、勾股定理的应用第二章实数1、认识无理数① 有理数:总是可以用有限小数和无限循环小数表示② 无理数:无限不循环小数2、平方根① 算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x 就叫做a的算数平方根② 特别地,我们规定:0的算数平方根是0③ 平方根:一般地,如果一个数x的平方等于a,即x2=a。

那么这个数x就叫做a 的平方根,也叫做二次方根④ 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根⑤ 正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±⑥ 开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数3、立方根① 立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a 的立方根,也叫三次方根② 每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。

③ 开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数4、估算① 估算,一般结果是相对复杂的小数,估算有精确位数5、用计算机开平方6、实数① 实数:有理数和无理数的统称② 实数也可以分为正实数、0、负实数③ 每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大7、二次根式① 含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数② =(a≥0,b≥0),=(a≥0,b0)③ 最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式④ 化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式第三章位置与坐标1、确定位置① 在平面内,确定一个物体的位置一般需要两个数据2、平面直角坐标系① 含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系② 通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。

八年级上册数学提纲人教版

八年级上册数学提纲人教版

八年级上册数学提纲人教版初中数学和小学相比:知识量加大,知识综合性加强;对应用能力要求加大:如观察、阅读、记忆、思维、想象、操作、表达等能力。

以下是小编给大家整理的八年级上册数学提纲人教版,希望对大家有所帮助,欢迎阅读!八年级上册数学提纲人教版分式知识点1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。

通分的关键是:确定几个分式的最简公分母。

确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的次幂、所有不同字母及指数的积。

(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。

3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

在约分时要注意:(1)如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,即约去分子、分母系数的公约数,相同字母的最低次幂;(2)如果分子、分母中至少有一个多项式就应先分解因式,然后找出它们的公因式再约分;(3)约分一定要把公因式约完。

实数知识点1、实数的分类:有理数和无理数2、数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上点一一对应.3、相反数:符号不同的两个数,叫做互为相反数.a的相反数是-a,0的相反数是0.(若a与b护卫相反数,则a+b=0)4、绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.5、倒数:乘积为1的两个数6、乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂.(平方和立方)7、平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数x就叫做a的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.(算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.)实数,是有理数和无理数的总称。

(完整版)八年级上册数学数与代数专题期末复习讲义

(完整版)八年级上册数学数与代数专题期末复习讲义

期末复习复习(二)—代数学生/课程年级学科授课教师日期时段核心内容整式的乘除,分式课型教学目标1.会运用法则、乘法公式进行整式的乘除运算.2.通过对提公因式法和公式法的教学,让学生灵活地解决因式分解的题目/.3.掌握分式的基本运算,熟练解决分式的应用。

重、难点整式的乘法运算;因式分解;分式知识导图导学一整式的乘除知识点讲解 1:幂的运算例 1. 下列算式中:① (a3)3=a6;②[(x2)2]3=x12;③y·(y2)2=y5;④[(-x)3]4=-x12,其中正确的有.例 2. 计算:(1)-ab2(3a2b-abc-1) (2)(-5ab2x)·(-a2bx3y)例 3. 已知3x+5y=8,求8x·32y的值.我爱展示1. 计算:(1)(2)2. 已知一个多项式与单项式的积为,求这个多项式。

3. 当时,= .4. 已知,则的值为.5. 阅读材料:求1+2+22+23+24+…+22015的值.解:设S=1+2+22+23+24+…+22012+22015,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22016将下式减去上式得2S﹣S=22016﹣1即S=22016﹣1即1+2+22+23+24+…+22015=22016﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).知识点讲解 2:乘法公式例 1. [单选题] 下列计算正确的是()A. B.C. D.例 2. 计算:(1) (2)(3) (4)例 3. 化简求值:,其中.我爱展示1. [单选题] 计算的结果正确的是()A. B. C. D.2. [单选题] 若,,则的值为()A. B. C.1 D.23. [单选题] 有3张边长为a的正方形纸片,4张边长分别为a、b(b>a)的长方形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为()A.a+b B.2a+b C.a+2b D.3a+b4. ,则.5. [单选题] 已知(m-n)2=8,(m+n)2=2,则m2+n2= ( )A.10B.6C.5D.36. 已知,则= .7. 先化简,再求值:(1)其中.(2) ,其中.知识点讲解 3:因式分解例 1. [单选题] 下列因式分解正确的是()A. B.C. D.例 2. [单选题] 把多项式分解因式的结果是()A. B. C. D.例 3. 已知长方形的周长为20,相邻两边长分别为(均为整数),且满足,求的值.我爱展示1.若,,则代数式的值是.2.分解因式:(1)(2)(3) 3. 先化简,然后对式子中a、b分别选择一个自己最喜欢的数代入求值.4. [单选题] 下列等式从左到右的变形,属于因式分解的是 ( )A.a(x-y)=ax-ayB.x2-1=(x+1)(x-1)C.(x+1)(x+3)=x2+4x+3D.x2+2x+1=x(x+2)+15. [单选题] 可利用x2+(p+q)x+pq=(x+p)(x+q)分解因式的是 ( )A.x2-3x+2B.3x2-2x+1C.x2+x+1D.3x2+5x+7导学二分式知识点讲解 1:分式的基本概念例 1. [单选题] 分式的值等于0时,x的值为()A.±2B.2 C.-2 D.我爱展示1.[单选题] 要使的值为0,则m的值为()A.3 B.-3 C.±3D.不存在2.当时,分式有意义.3. [单选题] 下列式子:,,,,,b,其中是分式的个数有() A. 2个 B. 3个 C. 4个 D. 5个知识点讲解 2:分式的运算例 1. [单选题] 下列运算正确的是()A. B. C. D.例 2. 计算:(1)(2)例 3. 计算:(1)我爱展示1. [单选题] 如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()A.扩大为原来的10倍B.扩大为原来的5倍C.缩小为原来的D.不变2. 先化简,再求值:(1-)÷-,其中x满足x2-x-1=0.3.先化简:÷(- ),再从-2<x<3的范围内选取一个你喜欢的x值代入求值.4.先化简,在求值:,其中.5.[单选题] 已知为实数,且,设,则M、N的大小关系是().A.M=NB.M>NC.M<ND.不确定知识点讲解 3:分式方程的解及解法例 1. [单选题] 把方程去分母正确的是( )A. B.C. D.例 2. [单选题] 解分式方程分以下四步,其中错误的一步是( )A. 方程两边分式的最简公分母是B. 方程两边都乘以,得整式方程C. 解这个整式方程,得D. 原方程的解为例 3. [单选题] 若关于x的分式方程-1=无解,则m的值为()A.-B.1 C.-或2 D.-或-例 4. 已知关于x的分式方程=1的解为负数,求a的取值范围.我爱展示1.[单选题] 关于x的方程的解为,则a的值为()A.1B.3C.-1D.-32.[单选题] 若关于x的分式方程=2-的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,33.已知关于x的分式方程-=0无解,求a的值.4.若有增根,则增根是,k= .5.若分式无意义,当时,则m= .知识点讲解 4:分式方程的实际应用例 1. 某文化用品商店用2000元购进一批小学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了2元,结果第二批用了2600元.若商店销售这两批书包时,每个售价都是30元,全部售出后,商店共盈利多少元?例 2. 王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?我爱展示1.[单选题] 为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4 800元,第二次捐款总额为5 000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等.如果设第一次捐款人数为x 人,那么x满足的方程是()A. B. C. D.2.某商家预测一种应季衬衫能畅销市场,就用13 200元购进了一批这种衬衫,面市后果然供不应求,商家又用28 800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件? (2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完利润率不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?3.[单选题] 完成某项工作,甲独做需a小时,乙独做需b小时,则两人合作完成这项工作的80%,所需要的时间是( ).A. 小时B. 小时C. 小时D. 小时4.一艘轮船在静水中的最大航速为20千米/时,它在江水中航行时,江水的流速为v千米/时,则它以最大航速顺流航行s 千米所需的时间是.5.甲、乙两地相距50km,A骑自行车,B乘汽车,同时从甲城出发去乙城.已知汽车的速度是自行车速度的2.5倍,B中途休息了0.5小时还比A早到2小时,求自行车和汽车的速度.导学三专题培优知识点讲解 1:乘法公式的灵活运用例 1. 用简便方法计算:1002-992+982-972+962-952+…+22-1.例 2. 如果a+b+c=0,a2+b2+c2=1,求ab+bc+ca的值.例 3. 已知(m-53)(m-47)=24,求(m-53)2+(m-47)2的值例 4. 对于任意一个正整数n,整式A=(4n+1)(4n-1)-(n+1)(n-1)能被15整除吗?请说明理由.我爱展示1. 计算:(1)(a+b)3 (2)(x-y-m+n)(x-y+m-n)2. 已知(x+y)2=25,(x-y)2=16,求xy的值.3.已知求的值.4.如果一个正整数能表示为两个连续偶数的和与差的乘积,那么我们就称这个正整数为“和谐数”,如4=(2+0)(2-0),12=(4+2)(4-2),20=(6+4)(6-4),因此4,12,20这三个数都是“和谐数”.(1)当28=(m+n)(m-n)时,m+n= ;(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?知识点讲解 2:因式分解的应用例 1. [单选题] 计算:.例 2. △ABC的三边长分别为,且,请判断△ABC是等边三角形、等腰三角形还是直角三角形?说明理由.例 3. 如果是整数,且,求的值.我爱展示1.已知可因式分解成,其中均为整数,求的值.2.不解方程组,求的值.3.已知为△ABC的三角边的长,试判断代数式的值的符号,并说明理由4.如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成4个小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的面积为;(2)观察图2,请你写出式子(m+n) 2,(m-n) 2,mn之间的等量关系:; (3)若x+y=-6,xy=2.75,则x-y=; (4)实际上有许多恒等式可以用图形的面积来表示,如图3,它表示等式:.5.某商业大楼共有四层,第一层有商品种,第二层有商品种,第三层有商品种,第四层有商品种,若,则这座商业大楼共有商品多少种?知识点讲解 3:分式的条件求值例 1. 已知+=3,求的值.【学有所获】归一代入法:将条件式和所求分式作适当的恒等变形,然后整体代入,使分子、分母化归为同一个只含相同字母积的分式,便可约分求值.例 2. 已知a2-a+1=2,求+a-a2的值.【学有所获】整体代入法:将条件式和所求分式作适当的恒等变形,然后整体代入求值.例 3. 已知==,求的值.【学有所获】设辅助元代入法:在已知条件中有连比或等比时,一般可设参数k,往往立即可解.例 4. 已知m2+=4,求m+和m-的值.【学有所获】构造互倒式代入法:构造x2+=(x± )2∓2迅速求解,收到事半功倍之效.例 5. 已知3x-4y-z=0,2x+y-8z=0,求的值.【学有所获】主元法:若两个方程有三个未知数,故将其中两个看作未知数,剩下的第三个看作常数,联立解方程组,思路清晰、解法简洁.例 6. 已知x+=3,求的值.【学有所获】倒数法:已知条件和待求式同时取倒数后,再逆用分式加减法法则对分式进行拆分,然后将三个已知式相加,这样解非常简捷.我爱展示1.已知-=5,求的值.2. 已知a+b+c=0,求c( + )+b( + )+a( + )的值.3. 已知==≠0,则的值为.4. 已知三个数x、y、z满足=-2,=,=- .求的值.5. 若4x-3y-6z=0,x+2y-7z=0(xyz≠0),求代数式的值.6. 已知,求式子的值.6.已知,求的值.限时考场模拟______ 分钟完成1. [单选题] 若9x2-kxy+4y2是一个完全平方式,则k的值()A.6 B.±6C.12 D.±122.在横线填上“+”或“-”,使等式成立:(1)(y-x)2= (x-y)2; (2)(1-x)(2-x)= (x-1)(x-2)3.[单选题] 下列关于x的方程中,是分式方程的是( )A. B. C. D.3x-2y=14. 已知关于x的分式方程的解为负数,则k的取值范围是.5.[单选题] 每千克m元的糖果x千克与每千克n元的糖果y千克混合成杂拌糖,则这种杂拌糖每千克的价格为() A.元B.元C.元D.元6.已知a、b、c是△ABC的三边,且满足a2+b2+c2-ab-bc-ac=0,试判断△ABC的形状,并说明理由。

八年级上册数学期末复习知识点人教版框架

八年级上册数学期末复习知识点人教版框架

八年级上册数学期末复习知识点(人教版)框架1. 全等三角形:全等三角形的概念及性质。

全等三角形的判定条件:SSS、SAS、ASA、AAS、HL(直角三角形)。

应用全等三角形解决实际问题。

2. 轴对称:轴对称图形的定义及性质。

找出轴对称图形的对称轴。

利用轴对称进行图形的变换和作图。

3. 实数:无理数和有理数的概念及分类。

实数的数轴表示及大小比较。

实数的运算(加、减、乘、除、乘方、开方)。

实数的近似值和有效数字。

4. 一次函数:一次函数的概念、图象及性质。

一次函数的解析式(正比例函数、一次函数)。

利用一次函数解决实际问题(如线性方程组的解、一次函数与不等式的关系)。

5. 整式的乘除与因式分解:整式的乘法(单项式乘单项式、单项式乘多项式、多项式乘多项式)。

整式的除法(多项式除以单项式)。

因式分解的方法(提公因式法、公式法、十字相乘法等)。

6. 分式:分式的概念、基本性质及运算(加、减、乘、除)。

分式的化简与求值。

分式方程的概念及解法。

7. 数据的收集、整理与描述:统计调查的方法(全面调查、抽样调查)。

数据的整理与表示(频数分布表、频数分布直方图、条形图、折线图、扇形图)。

数据的集中趋势(平均数、中位数、众数)和波动程度(方差、标准差)。

8. 几何初步:平行线及其判定(同位角、内错角、同旁内角)。

直线与角(直线的性质、角的度量与分类、角的和差倍分)。

简单的几何作图(如作角平分线、垂线、平行线等)。

八年级上册数学期末复习要点:二元一次方程组

八年级上册数学期末复习要点:二元一次方程组

八年级上册数学期末复习要点:二元一次方程组
(2)运用代入法要使解方程组过程简单化,即选取系数较小的方程变形。

(3)要判断求得的结果是否正确。

6.对二元一次方程组的解的理解:
(1)方程组的解是指方程组里各个方程的公共解。

(2)“公共解”的意思,实际上包含以下两个方面的含义:
①因为任何一个二元一次方程都有无数个解,所以方程组的解必须是方程组里某一个方程的一个解。

②而这个解必须同时满足方程组里其中任何一个方程,因此二元一次方程组的解一定同时满足这个方程组里两个方程的任何一个方程。

只要这样踏踏实实完成每天的计划和小目标,就可以自如地应对新学习,达到长远目标。

由查字典数学网为您提供的2019八年级上册数学期末复习要点:二元一次方程组,祝您学习愉快!。

八年级上册数学复习提纲整理

八年级上册数学复习提纲整理

八年级上册数学复习提纲整理八年级上册数学复习提纲第一章勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即。

2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。

3.勾股定理逆定理:如果三角形的三边长,,满足,那么这个三角形是直角三角形。

满足的三个正整数称为勾股数。

第二章实数1.平方根和算术平方根的概念及其性质:(1)概念:如果,那么是的平方根,记作:;其中叫做的算术平方根。

(2)性质:①当≥0时,≥0;当0时,无意义;②=;③。

2.立方根的概念及其性质:(1)概念:若,那么是的立方根,记作:;(2)性质:①;②;③=3.实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。

无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。

4.与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。

每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。

因此,数轴正好可以被实数填满。

5.算术平方根的运算律:(≥0,≥0);(≥0,0)。

第三章图形的平移与旋转1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。

2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

这点定点称为旋转中心,转动的角称为旋转角。

旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。

沪科版八年级上册数学复习提纲

沪科版八年级上册数学复习提纲

沪科版八年级上册数学复习提纲数学是中考的重要科目,想要学好数学确定要找对〔学习〔方法〕〕,平常也要做好复习提纲,下面我给大家共享一些沪科版〔八年级〕上册数学复习提纲,希望能够关怀大家,欢迎阅读!沪科版八年级上册数学复习提纲全等三角形一.学问框架二.学问概念1.全等三角形:两个三角形的样子、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质:全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)。

4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).在学习三角形的全等时,教师应当从实际生活中的图形出发,引出全等图形进而引出全等三角形。

通过直观的理解和比较觉察全等三角形的奥妙之处。

在经受三角形的角平分线、中线等探究中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。

轴对称一.学问框架二.学问概念1.对称轴:假如一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

八年级上册数学复习知识提纲人教版

八年级上册数学复习知识提纲人教版

八年级上册数学复习知识提纲人教版1.同底数幂的乘法法则:(m,n都是正数)2..幂的乘方法则:(m,n都是正数)3.整式的乘法(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

(3).多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

4.平方差公式:5.完全平方公式:6.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n).在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.②任何不等于0的数的0次幂等于1,即,如,(-2.50=1),则00无意义.③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;当a<0时,a-p的值可能是正也可能是负的,如,④运算要注意运算顺序.7.整式的除法单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.分解因式的一般方法:1.提公共因式法2.运用公式法3.十字相乘法分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.整式的乘除与分解因式这章内容知识点较多,表面看来零碎的概念和性质也较多,但实际上是密不可分的整体。

八年级上册数学知识点大纲

八年级上册数学知识点大纲

八年级上册数学知识点大纲
一、有理数
1. 有理数的定义及表示
2. 有理数的大小比较
3. 有理数的加减法
4. 有理数的乘法及除法
二、代数式
1. 代数式的概念及基本性质
2. 代数式的运算
3. 代数式的化简
三、一元一次方程
1. 一元一次方程的定义及基本性质
2. 解一元一次方程的方法
3. 一元一次方程的应用
四、平面图形
1. 二维图形的基本概念及性质
2. 三角形的性质及分类
3. 四边形的性质及分类
4. 圆的基本性质及应用
五、立体图形
1. 立体图形的基本概念及性质
2. 立方体、长方体、正方体的性质及计算
3. 锥、柱、球的性质及计算
六、统计与概率
1. 数据的收集、整理及分析
2. 概率的基本概念及计算方法
3. 概率的应用
七、三角函数
1. 三角函数的定义及关系
2. 三角函数的性质及图像
3. 三角函数的应用
以上就是八年级上册数学知识点大纲,希望同学们在学习时能够认真掌握,扎实基础。

同时,也提醒大家要注重实践应用,将所学知识运用于实际生活中,感受数学的魅力。

新人教版八年级数学上册复习提纲

新人教版八年级数学上册复习提纲

富顺县兜山镇初级中学校2014-2015学年度(上期)八年级数学复习提纲1、分式的识别。

含有字母的式子叫分式(注意π不是字母)例:在x 1、31、212+x 、πy +5、ma 1+中分式的个数有 个。

2、分式的基本性质。

分式的分子、分母同时乘以或除以同一个不为0的数或整式,分式的值不变。

(注意乘以整式时,要限制字母不等于0)例:①把分式ba a+2中a 、b 都扩大2倍,则分式的值( )若为b a a +22,则应选( )A 、扩大4倍B 、扩大2倍C 、缩小2倍D 、不变②下列计算错误的是( )A 、9312=⎪⎭⎫ ⎝⎛-- B 、axy a xy a 53532= C 、a baab =2 D 、()1210=+-3、分式的值为0的条件。

分子 ,且分母 。

例:使分式122--x xx 的值为零的所有x 的值是 ,当x 时,分式无意义。

4、负指数的科学计数法。

例:1nm=910-m ,则250nm 纳米用科学记数法表示为 米;用科学计数法表示的 数-3.6×10-4写成小数是 。

5、分式方程无解问题。

先化为分母相同,再分子相等,分子中的x 值为分母等于0时取值。

例:①若关于x 的分式方程3232-=--x m x x 无解,则m 的值为__________。

②当m= 时,关于x 的方程223224mx x x x +=-+-会产生增根 6、分式的化简。

先乘方,再乘除,最后加减,有括号的先化简括号里面的。

不管是通分还是约分,能进行因式分解的要先进行因式分解,所以化简前要先观察。

加减时整式要先化为分式。

例:①只有乘除;化简211a a a a--÷的结果是 。

②只有加减:化简xx x x x x x -+---+2222121的结果是 。

③既有乘除,又有加减。

化简⎪⎭⎫⎝⎛---÷-+225423x x x x 的结果是 。

④先化简,再求值:22111x x x -⎛⎫+÷ ⎪⎝⎭,其中2=x 化简结果是 ,值为 。

人教版八年级上册数学期末复习提纲

人教版八年级上册数学期末复习提纲

人教版八年级上册数学期末复习提纲一、一元一次方程与不等式
- 一元一次方程的含义与解法
- 一元一次方程的实际应用:两个运动员相向而行
- 不等式的定义及解法
- 不等式的实际应用:节约用水
二、平面图形
- 四边形:平行四边形、矩形、菱形、正方形、梯形
- 计算几何:平面图形的面积和周长
- 平行四边形的性质
- 矩形、正方形和菱形的性质
- 梯形的性质
三、函数
- 函数的概念与表达方式
- 函数的实际应用:移动电话资费
- 函数的增减性及其应用
- 函数的最大值和最小值及其应用
四、统计
- 统计的概念及基本术语
- 统计图及其应用:条形图、折线图、饼图
- 统计的平均数及其应用:算术平均数、加权平均数- 统计的离散程度及其应用:极差、方差、标准差
五、三角形
- 三角形的内角和定理及其应用
- 相似三角形及其应用
- 勾股定理及其应用
- 三角形面积的计算方法及其应用
六、立体图形
- 空间图形的基本概念:棱、面、顶点- 立方体、长方体的图形及其应用
- 平面与立体图形的转化
- 空间图形的表面积和体积计算及其应用。

初二上册数学复习经典总结优秀

初二上册数学复习经典总结优秀

初二上册数学复习经典总结优秀八年级上册数学复习计划篇一一、复习内容:第一章:全等三角形第二章:轴对称第三章:勾股定理二、复习目标:八年级数学本学期知识点多,复习时间又比较短,只有一周多的时间。

根据实际情况,应该完成如下目标:(一)、整理半学期学过的知识与方法:(二)、在自己经历过的解决问题活动中,选择一个最具有挑战问题性的问题,写下解决它的过程:包括遇到的困难、克服困难的方法与过程及所获得的体会,并选择这个问题的原因。

(三)、通过半学期的数学学习,让同学们总结自己有哪些收获;有哪些需要改进的地方。

三、复习方法:1、强化训练,这个学期计算类和证明类的题目较多,在复习中要加强这方面的训练。

重点是解题方法的正确选择同时使学生养成检查计算结果的习惯。

还有几何证明题,要通过针对性练习力争达到少失分,达到证明简练又严谨的效果。

2、加强管理严格要求,根据每个学生自身情况、学习水平严格要求,对应知应会的内容要反复讲解、练习,必须做到学一点会一点,对接受能力差的学生课后要加强辅导,及时纠正出现的错误,平时多小测多检查。

对能力较强的学生要引导他们多做课外习题,适当提高做题难度。

3、加强证明题的训练,通过近阶段的学习,我发现学生对证明题掌握不牢,不会找合适的分析方法,部分学生看不懂题意,没有思路。

在今后的复习中我准备拿出一定的时间来专项练习证明题,引导学生如何弄懂题意、怎样分析、怎样写证明过程。

力争让学生把各种类型题做全并抓住其特点。

4、加强成绩不理想学生的辅导,制定详细的复习计划,对他们要多表扬多鼓励,调动他们学习的积极性,利用课余时间对他们进行辅导,辅导时要有耐心,要心平气和,对不会的知识要多讲几遍,不怕麻烦,直至弄懂弄会。

四、复习阶段采取的措施:1、精心备课上课,针对班级学生出现的错题及所涉及到的重点问题认真挑选试题。

2、对于复习阶段作业的布置,少而精,有针对性,并且很抓订正及改错。

3、在试题的选择上作到面面俱到,重点难点突出,不重不漏。

八年级数学上册第十一章期末复习提纲

八年级数学上册第十一章期末复习提纲

八年级数学上册第十一章期末复习提纲十一章全等三角形复习一、全等三角形能够完全重合的两个三角形叫做全等三角形。

一个三角形经过平移、翻折、旋转可以得到它的全等形。

2、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。

(2):全等三角形的周长相等、面积相等。

(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“sss”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“sas”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“asa”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“aas”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“hl”)4、证明两个三角形全等的基本思路:二、角的平分线:1、(性质)角的平分线上的点到角的两边的距离相等.2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。

三、学习全等三角形应注意以下几个问题:(1):要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3):“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4):时刻注意图形中的隐含条件,如“公共角” 、“公共边”、“对顶角”第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。

这条直线叫做对称轴。

折叠后重合的点是对应点,叫做对称点3、轴对称图形和轴对称的区别与联系4.轴对称的性质①关于某直线对称的两个图形是全等形。

苏科版初二上册数学复习提纲

苏科版初二上册数学复习提纲

1全等三角形的对应边、对应角相等2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5边边边公理(SSS)有三边对应相等的两个三角形全等6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7定理1在角的平分线上的点到这个角的两边的距离相等8定理2到一个角的两边的距离相同的点,在这个角的平分线上9角的平分线是到角的两边距离相等的所有点的集合10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)21推论1等腰三角形顶角的平分线平分底边并且垂直于底边22等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合23推论3等边三角形的各角都相等,并且每一个角都等于60°24等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)25推论1三个角都相等的三角形是等边三角形26推论2有一个角等于60°的等腰三角形是等边三角形27在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半28直角三角形斜边上的中线等于斜边上的一半29定理线段垂直平分线上的点和这条线段两个端点的距离相等30逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上31线段的垂直平分线可看作和线段两端点距离相等的所有点的集合32定理1关于某条直线对称的两个图形是全等形33定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线34定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上35逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称36勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^237勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形38定理四边形的内角和等于360°39四边形的外角和等于360°40多边形内角和定理n边形的内角的和等于(n-2)×180°41推论任意多边的外角和等于360°42平行四边形性质定理1平行四边形的对角相等43平行四边形性质定理2平行四边形的对边相等44推论夹在两条平行线间的平行线段相等45平行四边形性质定理3平行四边形的对角线互相平分46平行四边形判定定理1两组对角分别相等的四边形是平行四边形47平行四边形判定定理2两组对边分别相等的四边形是平行四边形48平行四边形判定定理3对角线互相平分的四边形是平行四边形49平行四边形判定定理4一组对边平行相等的四边形是平行四边形50矩形性质定理1矩形的四个角都是直角51矩形性质定理2矩形的对角线相等52矩形判定定理1有三个角是直角的四边形是矩形53矩形判定定理2对角线相等的平行四边形是矩形54菱形性质定理1菱形的四条边都相等55菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角56菱形面积=对角线乘积的一半,即S=(a×b)÷257菱形判定定理1四边都相等的四边形是菱形58菱形判定定理2对角线互相垂直的平行四边形是菱形59正方形性质定理1正方形的四个角都是直角,四条边都相等60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角61定理1关于中心对称的两个图形是全等的62定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分63逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称64等腰梯形性质定理等腰梯形在同一底上的两个角相等65等腰梯形的两条对角线相等66等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形67对角线相等的梯形是等腰梯形68平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等69推论1经过梯形一腰的中点与底平行的直线,必平分另一腰70推论2经过三角形一边的中点与另一边平行的直线,必平分第三边71三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半72梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h73(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d74(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d75(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b76平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例77推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例78定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边79平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例80定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似81相似三角形判定定理1两角对应相等,两三角形相似(ASA)82直角三角形被斜边上的高分成的两个直角三角形和原三角形相似83判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)84判定定理3三边对应成比例,两三角形相似(SSS)85定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似86性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比87性质定理2相似三角形周长的比等于相似比88性质定理3相似三角形面积的比等于相似比的平方89任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值90任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值91圆是定点的距离等于定长的点的集合92圆的内部可以看作是圆心的距离小于半径的点的集合93圆的外部可以看作是圆心的距离大于半径的点的集合94同圆或等圆的半径相等95到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆96和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线97到已知角的两边距离相等的点的轨迹,是这个角的平分线98到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线99定理不在同一直线上的三点确定一个圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学上册期末复习提纲
因式分解
1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化. 2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.
3.公因式的确定:系数的最大公约数·相同因式的最低次幂.
注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3.
4.因式分解的公式:
(1)平方差公式:a2-b2=(a+ b)(a- b);(2)完全平方公式:a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.
5.因式分解的注意事项:
(1)选择因式分解方法的一般次序是:一提取、二公式
(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;
(4)因式分解的最后结果要求每一个因式的首项符号为正;(5)因式分解的最后结果要求加以整理;
(6)因式分解的最后结果要求相同因式写成乘方的形式.
6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.
全等三角形:。

相关文档
最新文档