(完整版)二项式定理典型例题解析

合集下载

(完整版)二项式定理典型例题解析.docx

(完整版)二项式定理典型例题解析.docx

二项式定理 概 念 篇【例 1】求二项式 ( a - 2b)4 的展开式 . 分析:直接利用二项式定理展开.解:根据二项式定理得(a - 2b)4=C 04 a 4+C 14 a 3( - 2b)+C 24 a 2(- 2b)2+C 34 a( - 2b)3+C 44 ( -2b) 4=a 4 - 8a 3b+24a 2b 2- 32ab 3 +16b 4.说明:运用二项式定理时要注意对号入座,本题易误把- 2b 中的符号“-”忽略 .【例 2】展开 (2x - 32) 5.2x分析一:直接用二项式定理展开式.解法一: (2x -35 05143233 232332x2) =C 5 (2x) +C 5 (2x) (- 2x 2)+C 5 (2x) (-2x 2 ) +C 5 (2x) (- 2x2) +C 54 (2x)( -3) 4+C 55(-3)52x 22x 2=32x 5- 120x 2+180 - 135 + 405-243x4 7 10 .x 8x 32x分析二:对较繁杂的式子,先化简再用二项式定理展开 .解法二: (2x -35(4x 3 3)5 2x 2) =32x10=110 [ C 05 (4x 3)5+C 15 (4x 3 )4(- 3)+C 52 (4x 3)3(- 3)2+C 35 (4x 3)2(- 3)3+C 45 (4x 3)(- 3)4+32xC 55 (-3) 5]1 10 (1024x 15- 3840x 12+5760x 9-4320x 6+1620x 3- 243)=32x=32x 5- 120x 2+180-135+ 405 - 243 .xx 4 8x 732x 10说明:记准、记熟二项式(a+b)n 的展开式是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.【例 3】在 (x - 3 )10 的展开式中, x 6的系数是.解法一:根据二项式定理可知x 6 的系数是 C 104 .解法二: (x - 3 )10 的展开式的通项是r-r(- 3 )r .T r+1=C 10 x 10令 10- r =6,即 r=4,由通项公式可知含 x 6 项为第 5 项,即 T 4+1 =C 104 x 6(- 3 )4=9C 104 x 6.∴ x 6 的系数为 9C 104 .上面的解法一与解法二显然不同,那么哪一个是正确的呢? 问题要求的是求含x 6 这一项系数,而不是求含x 6 的二项式系数,所以应是解法二正确.如果问题改为求含 x 6 的二项式系数,解法一就正确了,也即是C 104 . 说明:要注意区分二项式系数与指定某一项的系数的差异 .二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关, 与二项式无关,后者与二 式、二 式的指数及 数均有关.【例 4】已知二 式(3 x - 2)10,3x(1)求其展开式第四 的二 式系数; (2)求其展开式第四 的系数; (3)求其第四 .分析:直接用二 式定理展开式.解: (3 x -210的展开式的通 是Trx10-r- 2r, ,⋯,)=C 10 (3) ( ) (r=0 10).3x3x 1(1)展开式的第 4 的二 式系数C 103 =120.(2)展开式的第 43 72 3的系数 C 103 (-) =- 77760.3(3)展开式的第 4 - 77760( x )7 1,即- 77760x .x 3明:注意把 (3x - 2) 10写成[ 3 x +(-2)] 10,从而凑成二 式定理的形式 .3x3x【例 5】求二 式( x 2+ 1)10 的展开式中的常数 .2 x分析:展开式中第r +1C 10r(x 2 )10-r (21)r ,要使得它是常数 ,必 使“x ”的指x数 零,依据是x 0=1, x ≠ 0.解: 第 r +1 常数 ,1 rr 20 51 r 5 r- rr() =C 10 x( ) (r =0 , 1,⋯, 10),令 20- r=0,得 r=8.T r +1=C 10 (x )2 2x2∴ T 9=C 108( 1)8= 45 .2256∴第 9 常数 ,其45 .256明:二 式的展开式的某一 常数 ,就是 不含 “ 元”,一般采用令通 T r+1中的 元的指数 零的方法求得常数 .【例 6】(1) 求 (1+2x)7 展开式中系数最大 ;(2)求 (1- 2x)7 展开式中系数最大 .分析:利用展开式的通 公式, 可得系数的表达式,列出相 两 系数之 关系的不等式, 而求出其最大 .解: (1) 第 r+1 系数最大, 有C r 7 2r C r 7 1 2r 1,C r 7 2r C r 7 12r 1,7 !2r7 !2r 1,即 r !(7 r ) !(r 1) !(7 r 1) !7 !2r (r7 ! r2r 1, r !(7 r ) !1) !(7 1) !2 1 ,r 16 ,化 得r8 r 解得3又∵ 0≤ r ≤ 7,∴ r=5.71 r2 .r13.r 13∴系数最大T 6=C 75 25x 5=672x 5.(2)解:展开式中共有 8 ,系数最大 必 正 ,即在第一、三、五、七 四 中取得.又因 (1- 2x)7 括号内的两 中后两 系数的 大于前 系数的 ,故系数最大必在中 或偏右,故只需比T 57两 系数的大小即可C 74 ( 2)4C 73 > 1,所以系数和 T. 6( 2) =1C 7 4C 7最大 第五 ,即T 5=560x 4.明:本例中(1) 的解法是求系数最大 的一般解法,(2) 的解法是通 展开式多 分析,使解 程得到 化,比.【例 7】 (1+2x)n 的展开式中第6 与第7 的系数相等,求展开式中二 式系数最大的 和系数最大的 .分析:根据已知条件可求出n ,再根据 n 的奇偶性确定二 式系数最大的 .解: T 6=C n 5 (2x)5, T 7=C n 6 (2x)6,依 意有 C 5n 25=C n 6 26,解得 n=8. (1+2 x)8 的展开式中,二 式系数最大的 T 5=C n 4 (2x)4=1120x 4.C 7r 2rC 7r 1 2r 1 ,第 r +1 系数最大, 有C 7r 2rC 7r 1 2r 1.∴ 5≤ r ≤6.∴ r =5 或 r =6.∴系数最大的 T 6=1792x 5 ,T 7=1792x 6.明: (1)求二 式系数最大的 , 根据二 式系数的性 ,n 奇数 中 两 的二式系数最大; n 偶数 ,中 一 的二 式系数最大 .(2) 求展开式中系数最大 与求二 式系数最大 是不同的,需根据各 系数的正、化情况,一般采用列不等式,再解不等式的方法求得.用 篇【例 8】若 n ∈N * , (2 +1)n= nnn 、 n ∈Z) ,b n 的()2 a +b (abA. 一定是奇数B. 一定是偶数C.与 b n 的奇偶性相反D.与 a 有相同的奇偶性分析一:形如二 式定理可以展开后考 .解法一:由 ( 2 +1)n =n n ,知 n n2 ) n2 a +b 2 a +b =(1+=C n 0 +C 1n 2 +C n 2 ( 2 )2+C n 3 ( 2 )3+ ⋯ +C n n (2 )n .∴ b n =1+C 2n ( 2 )2+C 4n ( 2 )4+ ⋯∴ b n 奇数 . 答案: A分析二: 的答案是唯一的,因此可以用特殊 法 .解法二: n ∈ N * ,取 n=1 , (2 +1) 1=( 2 +1) ,有 b 1=1 奇数 .取 n=2 , ( 2 +1)2=2 2 +5,有 b 2=5 奇数 .答案: A【例 9】若将 (x+y+z)10 展开 多 式, 合并同 后它的 数()A.11B.33C.55D.66分析: (x+y+z)10 看作二 式[( x y)10z ] 展开 .解:我 把 x+y+z 看成 (x+y)+z ,按二 式将其展开,共有11“ ”,即 (x+y+z)10=10[( x10k10-k ky) z ] =C 10 (x+y) z .k 0,由于“和”中各 z 的指数各不相同,因此再将各个二 式(x+y) 10-k 展开,不同的乘 C 10k (x+y)10-k z k (k=0, 1,⋯, 10)展开后,都不会出 同 .下面,再分 考 每一个乘C 10k (x+y)10-k z k (k=0 , 1,⋯, 10).其中每一个乘 展开后的 数由(x+y)10-k 决定,而且各 中 x 和 y 的指数都不相同,也不会出 同 .故原式展开后的 数11+10+9+⋯ +1=66.答案: D明:化三 式 二 式是解决三 式 的常用方法 .【例 10】求 (| x | +1- 2)3 展开式中的常数 .| x |分析:把原式 形 二 式定理 准形状 .解:∵ (| x | + 1- 2)3=(| x | - 1)6,| x || x |∴展开式的通 是T r+1=C 6r ( | x | )6-r (- 1 )r =(- 1)r C 6r ( | x | )6- 2r .| x |若 T r+1 常数 , 6- 2r =0, r =3.∴展开式的第 4 常数 ,即 T 4=-C 36 =- 20.明: 某些不是二 式,但又可化 二 式的 目,可先化 二 式,再求解 .【例 11】求 ( x - 3 x )9 展开式中的有理 .分析:展开式中的有理 ,就是通 公式中x 的指数 整数的.1127 r解:∵ T r+1=C 9r (x 2 )9-r (- x 3 )r =(- 1)r C 9r x6.令 27r∈ Z ,即 4+3r∈ Z ,且 r=0 , 1, 2,⋯, 9.66∴ r=3 或 r =9.当 r=3 , 27 r =4, T 4=(- 1)3C 39 x 4=- 84x 4. 6当 r=9 ,27 r=3, T 10=( - 1)9C 99 x 3=-x 3.6∴ ( x - 3 x )9的展开式中的有理 是第 4 - 84x 4,第 10 - x 3.明:利用二 展开式的通 T r +1 可求展开式中某些特定 .【例 12】若 (3x - 1)77 7 6 61=a x +a x + ⋯ +a x+a ,求(1)a 1 +a 2 ⋯+a 7; (2)a 1 +a 3 +a 5+a 7;0 2 4 6(3)a +a +a +a .分析:所求 果与各 系数有关可以考 用“特殊 ”法,整体解决 .解: (1)令 x=0, a 0=- 1,令 x=1 , a 7+a 6+ ⋯ +a 1+a 0=27=128.①∴ a 1+a 2+⋯ +a 7=129.(2)令 x=- 1, a 7+a 6+a 5+a 4+a 3+a 2+a 1+a 0=( -4) 7.②由(1) ( 2)得: a 1+a 3+a 5+a 7= 1[ 128- (- 4)7] =8256.22(3)由 (1) (2) 得 a 0 +a 2+a 4+a 6 = 1 [ 128+(-4) 7] =- 8128.2 2明: (1)本解法根据 恒等式特点来用“特殊 ”法, 是一种重要的方法,它用于恒等式 .(2)一般地, 于多 式g(x)=( px+q)n =a 0+a 1x+a 2x 2+a 3x 3+a 4x 4 +a 5x 5+a 6x 6+a 7x 7, g(x)各 的系数和g(1),g(x)的奇数 的系数和1[ g(1)+ g(- 1)],g(x)的偶数 的系数和1[ g(1)22- g (- 1)] .【例 13】 明下列各式(1)1+2C 1n +4C 2n + ⋯ +2n -1C n n 1 +2n C n n =3n ;(2)(C 0n )2+(C 1n ) 2+ ⋯ +(C n n )2=C n 2 n ;(3)C 1n +2C 2n +3C 3n + ⋯ +nC n n =n2n -1.分析: (1)(2) 与二 式定理的形式有相同之 可以用二 式定理,形如数列求和,因此可以研究它的通 求 律 .明: (1)在二 展开式 (a+b)n =C 0n a n +C 1n a n -1b+C 2n a n -2b 2+ ⋯ +C n n 1 ab n -1+C n n b n 中,令 a=1, b=2,得 (1+2) n =1+2C 1n +4C 2n + ⋯ +2n -1C n n 1 +2n C n n ,即1 2+ ⋯ +2n -1n 1 n n =3n.1+2C n +4C nC n +2 C n(2)(1+ x)n (1+x)n =(1+ x) 2n ,12r12r2n.∴ (1+C n x+C n x 2+ ⋯ +C n x r + ⋯ +x n )(1+C n x+C n x 2+ ⋯ +C n x r + ⋯ +x n )=(1+ x)而 Cn 是 (1+ x)2n 的展开式中 x n 的系数,由多 式的恒等定理,得2nC 0n C n n +C 1n C n n 1 + ⋯ +C 1n C n n 1 +C n n C 0n =C n 2n . ∵ C m n =C n n m , 0≤ m ≤ n ,∴ (C n 0 )2+(C 1n )2+ ⋯ +(C n n )2=C 2n n .(3) 法一:令 S=C 1n +2C n 2 +3C n 3 + ⋯ +nC n n . ①令 S=C 1n +2C n 2 + ⋯ +(n - 1)C n n 1 +nC n n =nC n n +(n - 1)C n n 1 + ⋯ +2C n 2 +C 1n=nC n n +(n - 1)C 1n + ⋯ +2C n n 2 +C n n 1 .②由① +②得 2S=nC 1n +nC n2 +nC n3 + ⋯ +nC n n =n(C n n +C 1n +C n2 +C n3+ ⋯ +C n n ) 0123n=n(C n+C n +C n +C n + ⋯ +C n )=n2n.∴ S=n2n-1,即 C 1n +2C n2 +3C 3n + ⋯ +nC n n =n2n-1.法二:察通:kC n k =k n n( n1) !nC n k11 .k ! (n k) !(k1)! (n k) !∴原式 =nC +C n n11 )= n2n-1,12即C n +2C n0121 +nC3+⋯n 101231 +⋯n 1 +nC n 1+nC n n 1+nC n 1=n(C n 1+C n 1+C n 1 +C n 3⋯n n-1+3C n ++nC n =n2 .明:解法二中 kC n k =nC n k11可作性住 .【例 14】求 1.9975精确到 0.001的近似 .分析:准确使用二式定理把 1.997 拆成二之和形式如 1.997=2- 0.003.解: 1.9975=(2- 0.003)5=25- C 15 240.003+C 52 230.0032- C 35 220.0033+⋯≈32-0.24+0.00072 ≈ 31.761.明:利用二式定理行近似算,关是确定展开式中的保留,使其足近似算的精确度 .【例 15】求: 5151-1 能被 7 整除 .分析:了在展开式中出7 的倍数,把51 拆成 7 的倍数与其他数的和(或差 )的形式.明: 5151-1=(49+2) 51-1=C 051 4951+C 151 49502+ ⋯ +C 5051 49· 250+C 5151 251- 1,易知除 C 5151 251- 1 以外各都能被7 整除 .又 251- 1=(2 3)17- 1=(7+1) 17- 1=C0717+C1716+⋯+C167+C17-171717171=7(C 170 716+C 171 715+⋯ +C 1716 ).然能被 7 整除,所以5151- 1 能被 7 整除 .明:利用二式定量明有关多式(数 )的整除,关是将所多式通恒等形二式形式,使其展开后的各均含有除式.新篇【例 16】已知 (x lgx+1) n的展开式的最后三系数之和22,中一20000. 求 x.分析:本看似繁,但只要按二式定理准确表达出来,不求解!解:由已知 C n n +C n n 1 +C n n 2 =22,即 n2+n- 42=0. 又 n∈ N*,∴ n=6.T4中一, T4=C 3lg x 3,即 (xlgx 3lg x=10. 6(x ) =20000)=1000. x两取常用数,有1 lg2x=1, lgx=± 1,∴ x=10 或 x= .10明:当目中已知二展开式的某些或某几之的关系,常利用二式通公式,根据已知条件列出等式或不等式行求解.【例 17】 f(x)=(1+ x)m+(1+ x)n(m, n∈ N* ),若其展开式中关于x 的一次的系数和11, m,n 何,含 x2的系数取最小?并求个最小.分析:根据已知条件得到x2的系数是关于 x 的二次表达式,然后利用二次函数性探最小 .解: C 1m +C 1n =n+m=11. C m2+C n 2 =1(m2-m+n2- n)=m2n211 ,22∵ n∈N *,∴ n=6 或 5, m=5 或 6 , x 2 系数最小,最小 25.明:本 是一道关于二次函数与 合的 合 .【例 18】若 (x+ 1- 2)n 的展开式的常数 -20,求 n.x分析: 中 x ≠ 0,当 x > 0 ,把三 式 (x+1- 2)n化 ( x -1)2n ;当 x < 0 ,xx同理 (x+1-2) n nx - 1 2 n x 的 指数 零, 而解出 n.x=(- 1) () .然后写出通 ,令含x解:当 x > 0 , ( x+ 1- 2)n =(x -1 )2n ,xx其通 T r+1=C 2n r( x )2n -r (-1)r =(- 1)r C 2r n ( x )2n -2r .x令 2n - 2r=0 ,得 n=r ,∴展开式的常数 (- 1)r C 2n n ;当 x < 0 , (x+ 1-2) n =(- 1)n(x -1)2n .同理可得,展开式的常数 (- 1)r C 2n n .xx无 哪一种情况,常数 均 (- 1)r C 2n n .令 (- 1)r C 2n n =20.以 n=1,2, 3,⋯,逐个代入,得n=3.明:本 易忽略x < 0 的情况 .【例 19】利用二 式定理 明(2 n -1 2.) <n31分析:2 不易从二 展开式中得到,可以考 其倒数n 1 .n 12明:欲 (2)n -1 < 21成立,只需 (3)n -1<n1成立 .3n22而 ( 3)n - 1=(1+ 1)n - 1=C n1 +C1n 11+C n 21 ( 1)2+ ⋯ +C n n 11 (1)n -122222=1+ n 1 21 2⋯n 1 1) n -12+C n1 () ++C n 1 (22>n 1.2明:本 目的 明 程中将( 3)n -1化 (1+ 1)n -1,然后利用二 式定理展开式是解2 2决本 的关 .【例 20】求 : 2≤ (1+1) n < 3(n ∈N * ).n1 n 与二 式定理 构相似,用二 式定理展开后分析.分析: (1+)n明:当 n=1 , (1+ 1)n =2.n当 n ≥2 , (1+ 1)n=1+C 1n n又C n k ( 1 )k = n(n 1) (nnk ! n k1 +C n2 1 + ⋯ +C n n ( 1 )n =1+1+C n 2 1 + ⋯ +C n n ( 1 )n> 2.n n 2 n n 2n k 1) ≤ 1 ,k !所以 (1+ 1)n≤ 2+1+ 1 + ⋯ + 1< 2+1 + 1 + ⋯ + 1n2 !3 !n!1 2 2 3 ( n 1) n=2+(1 -1)+(1 - 1 )+ ⋯ +( 1 - 1)22 3 n 1 n=3- 1< 3.n上有 2≤ (1+1)n < 3.n明:在此不等式的 明中,利用二 式定理将二 式展开,再采用放 法和其他有关知 ,将不等式 明到底 .【例 21】求 : 于n ∈N *, (1+ 1) n< (1+ 1)n+1 .nn 1分析: 构都是二 式的形式,因此研究二 展开式的通 是常用方法 .明: (1+1) n展开式的通 Tr1A n rnr+1 =C n n r=r ! n r= 1 n(n 1)(n 2) (n r 1)r ! n r=1 (1-12 r 1 ).r !)(1 -)⋯ (1-nnn(1+1 )n+1展开式的通 T ′ r+1=C n r11 1) r =A n r 1 rn 1( n r !(n 1)=1 n(n 1)(n 2) (n r1)r !n r= 1 (1- 1 )(1- 2)⋯ (1-r1 ).r !n 1n 1n1由二 式展开式的通 可明 地看出 T r+1< T ′ r+1所以 (1+ 1 )n< (1+1)n+1nn 1明:本 的两个二 式中的两 均 正 ,且有一 相同. 明 ,根据 特点,采用比 通 大小的方法完成本 明.【例 22】 a 、 b 、c 是互不相等的正数,且a 、b 、c 成等差数列, n ∈ N * ,求 : a n +c n>2b n .分析: 中 未出 二 式定理的形式,但可以根据a 、b 、c 成等差数列 造条件使用二 式定理 .明: 公差d , a=b - d , c=b+d.a n +c n - 2b n =(b - d)n +( b+d)n - 2b nn1n - 12n - 2 2nn n1n - 12n - 22n=[ b - C n b d+C n bd + ⋯ +(- 1) d ]+[ b +C n bd+C n bd + ⋯ +d ]明:由 a 、 b 、 c 成等差,公差 d ,可得 a=b - d , c=b+d , 就 利用二 式定理 明此 造了可能性 . 即(b - d)n +(b+d) n > 2b n ,然后用作差法改(b - d)n +( b+d)n- 2b n > 0.【例 23】求 (1+2x - 3x 2)6 的展开式中x 5 的系数 .分析:先将 1+2x - 3x 2 分解因式, 把三 式化 两个二 式的 , 即(1+2 x - 3x 2)6 =(1+3x)6 (1- x)6.然后分 写出两个二 式展开式的通 ,研究乘x 5 的系数, 可得到解决.解:原式 =(1+3 x)6(1 -x)6,其中 (1+3x)6 展开式之通T k+1=C k 6 3k x k , (1- x)6 展开式之通 T r+1=C r 6 (- x)r .原式 =(1+3x) 6(1- x)6 展开式的通C 6k C 6r (- 1)r 3k x k+r .要使 k+r =5,又∵ k ∈ {0 , 1, 2, 3, 4, 5, 6} , r ∈{0 , 1,2, 3, 4, 5, 6} ,必k 0, 或 k 1, 或 k 2, 或 k 3, 或 k 4, 或 k 5,r 5r4r 3r2r 1r 0 .故 x 5 系数 C 60 30C 65 (- 1)5+C 16 31 C 64 (- 1)4+C 62 32C 63 ( - 1)3+C 63 33C 62 (- 1)4+C 64 34C 16(- 1)+C 65 35 C 60 (- 1)0=- 168.明:根据不同的 构特征灵活运用二 式定理是本 的关.【例 24】 (2004年全国必修 + 修 1)(x -1)6 展开式中的常数 ()xA.15B.- 15C.20D.- 203r3解析: Trr6-r - rrr 32x) =(- 1) C2,当 r=2 ,3-2=15.r +1=(- 1)C 6 (xxr=0 ,T 3=( -1) C62答案: A【例 25】 (2004 年江 )(2x+ x )4 的展开式中 x 3 的系数是 ()A.6B.12C.24D.48解析:T r +12 rr rx ) 4-r (2x) r =( -1) r r r 2,当 r =2 ,2+ r3- 22=24.=(- 1) C 4 (2 C 4 x2 =3 ,T =( 2) C 4答案: C【例 26】 (2004年福建理 )若 (1- 2x )9展开式的第3288, lim 1 1+ ⋯ +1( +2n)nxxx的 是 ()A.2B.11D.2C.52解析: T r+1=( -1) r C r 9 (2 x )r =(-1) r C r 9 2xr ,当 r =2 , T 3=(- 1)2C 92 22x =288.∴ x= 3.21 112 ∴ lim3 =2.( + 2 + ⋯+n)= nxxx123答案: A【例 27】 (2004 年福建文 )已知 (x - a)8 展开式中常数1120,其中 数 a 是常数,x展开式中各 系数的和是( )A.28B.38C.1 或 38D.1 或 28解析: Tr+1=( -1) rr8 -ra r rr8-2r,当 r=4 , T4 4 =1120,∴ a=± 2.C x() =(- a)C x=(- a) Cx∴有函数 f(x)=(x - a)8.令 x=1, f(1)=1 或 38.x答案: C【 例 28 】(2004 年 天 津 ) 若 (1 - 2x)20040 12 22004 2004=a +a x+a x + ⋯ +ax(x ∈ R) , (a +a )+( a +a)+0 10 2(a 0+a 3)+ ⋯ +(a 0+a 2004)= .(用数字作答 )解析:在函数 f(x)=(1 - 2x)2004中, f(0)= a 0 0 1 2+ ⋯ +a 2004,=1, f(1)=a +a +a=1 (a 0+a 1 )+(a 0+a 2)+( a 0 +a 3 )+⋯+( a 0 +a 2004) =2004a 0 +a 1+a 2+ ⋯ +a 2004=2003a 0 +a 0+a 1+a 2+ ⋯ +a 2004 =2003f(0)+ f(1) =2004.答案: 2004。

《二项式定理》知识点总结+典型例题+练习(含答案)

《二项式定理》知识点总结+典型例题+练习(含答案)

二项式定理考纲要求1.了解二项式定理的概念.2.二项展开式的特征及其通项公式.3.会区别二项式系数和系数.4.了解二项式定理及简单应用,并运用二项式定理进行有关的计算和证明. 知识点一:二项式定理设a , b 是任意实数,n 是任意给定的正整数,则0011222333110()n n n n n m n m m n n n nn n n n n n n a b C a b C a b C a b C a b C a b C ab C a b------+=++++⋅⋅⋅++⋅⋅⋅++这个公式所表示的定理叫做二项式定理,其中右边的多项式叫的二项式展开式,每项的0n C ,1n C , 2n C ⋅⋅⋅ n n C 叫做该项的二项式系数.注意:二项式具有以下特征:1.展开式中共有1n +项,n 为正整数.2.各项中a 与b 的指数和为n ,并且第一个字母a 依次降幂排列,第二个字母b 依次升幂排列.3.各项的二项式系数依次为0n C , 1n C , 2n C ⋅⋅⋅ nn C . 知识点二:二项展开式通项公式二项展开式中的m n m mn C a b -叫做二项式的通项, 记作 1m T +. 即二项展开式的通项为 1m n m mm n T C a b -+=.注意:该项为二项展开式的第1m +项,而不是第m 项. 知识点三:二项式系数的性质二项式展开式的二项式系数是0n C , 1n C , 2n C ⋅⋅⋅ nn C .1.在二项展开式中,与首末两端距离相等的两项的二项式系数相等,即m n mn n C C -=.2.如果二项式()na b +的幂指数n 是偶数,那么它的展开式中间一项的二项式系数最大即12n+项的二项式系数最大. 3.如果二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.4.二项式()na b +的展开式中,所有二项式系数的和为01232m nn n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=.5.二项式()na b +的展开式中奇数项和偶数项的二项式系数和相等即02413512n n n n n n n C C C C C C -+++⋅⋅⋅=+++⋅⋅⋅=.知识点四:二项式系数与系数的区别 1.二项展开式中各项的二项式系数: mn C .2.二项展开式中各项的系数:除了字母外所有的数字因数的积. 题型一 二项式定理 例1 求51(2)x x-的展开式. 分析:熟记二项式定理.解答:51(2)x x-=05014123232355551111(2)()(2)()(2)()(2)()C x C x C x C x x x x x -+-+-+-4145055511(2)()(2)()C x C x x x+-+-533540101328080x x x x x x=-+-+-题型二 二项展开式通项公式 例2 求91(3)9x x+的展开式中第3项. 分析:灵活运用通项公式. 解答:272532191(3)()9729T T C x x x+===, 所以第3项为5972x . 题型三 二项式系数的性质例3 求7(2)x +的展开式中二项式系数最大的项.分析:根据二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.先求出二项式最大项的项数,再利用通项公式计算.解答:由于7为奇数,所以第4项和第5项的二项式系数最大.即3733343172560T T C x x -+=== 4744454172280T T C x x -+===题型四 二项式系数与系数的区别例4 二项式9(12)x -的二项式系数之和为 . 分析:二项式()na b +的展开式中,所有二项式系数的和为01232m n n n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=。

二项式定理典型例题(含解答)

二项式定理典型例题(含解答)

二项式定理典型例题典型例题一例1 在二项式nx x ⎪⎭⎫ ⎝⎛+421的展开式中前三项的系数成等差数列,求展开式中所有有理项.分析:典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决.解:二项式的展开式的通项公式为:4324121C 21)(C rn r r n rr n r n r x x x T --+=⎪⎭⎫ ⎝⎛= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,123121-=====n n t n t t nn , 由已知:)1(8112312-+=+=n n n tt t ,∴8=n 通项公式为1431681,82,1,021C +-+==r rr rr T r x T 为有理项,故r 316-是4的倍数,∴.8,4,0=r 依次得到有理项为228889448541256121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有典型例题四例4(1)求103)1()1(x x +-展开式中5x 的系数;(2)求6)21(++xx 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式.解:(1)103)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项:用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5x 项,可以得到5510C x ;用3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;用3)1(x -中的2x 乘以10)1(x +展开式中的3x 可得到531033102C 3C 3x x x =⋅;用 3)1(x -中的3x 项乘以10)1(x +展开式中的2x 项可得到521022103C C 3x x x -=⋅-,合并同类项得5x 项为:5521031041051063)C C 3C C (x x -=-+-.(2)2121⎪⎪⎭⎫ ⎝⎛+=++x x x x 1251)21(⎪⎪⎭⎫ ⎝⎛+=++x x x x .由121⎪⎪⎭⎫⎝⎛+x x 展开式的通项公式r rrrrr x x T --+=⎪⎭⎫ ⎝⎛=61212121C 1)2(C ,可得展开式的常数项为924C 612=.说明:问题(2)中将非二项式通过因式分解转化为二项式解决.这时我们还可以通过合并项转化为二项式展开的问题来解决.典型例题五例5 求62)1(x x -+展开式中5x 的系数.分析:62)1(x x -+不是二项式,我们通过22)1(1x x x x -+=-+或)(12x x -+展开. 解:方法一:[]6262)1()1(x x x x -+=-+ -+++-+=44256)1(15)1(6)1(x x x x x其中含5x 的项为55145355566C 15C 6C x x x x =+-.含5x 项的系数为6.方法二:[]6262)(1)1(x x x x -+=-+其中含5x 的项为555566)4(15)3(20x x x x =+-+-.∴5x 项的系数为6.方法3:本题还可通过把62)1(x x -+看成6个21x x -+相乘,每个因式各取一项相乘可得到乘积的一项,5x 项可由下列几种可能得到.5个因式中取x ,一个取1得到556C x .3个因式中取x ,一个取2x -,两个取1得到)(C C 231336x x -⋅⋅. 1个因式中取x ,两个取2x -,三个取1得到222516)(C C x x -⋅⋅. 合并同类项为5525161336566)C C C C (C x x =+-,5x 项的系数为6.典型例题六例6 求证:(1)1212C C 2C -⋅=+++n n n n n n n ;(2))12(11C 11C 31C 21C 1210-+=++++++n n nn n n n n . 分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质nn n n n n 2C C C C 210=++++ .解:(1)11C )!()!1()!1()!()!1(!)!(!!C --=+--⋅=--=-⋅=k n kn n k n k n n k n k n k n k n k k ∴左边111101C C C ----+++=n n n n n n n =⋅=+++=-----11111012)C C C (n n n n n n n 右边.(2))!()!1(!)!(!!11C 11k n k n k n k n k k k n --=-⋅+=+11C 11)!()!1()!1(11+++=-++⋅+=k n n k n k n n . ∴左边112111C 11C 11C 11++++++++++=n n n n n n n =-+=++++=+++++)12(11)C C (C 111112111n n n n n n n 右边. 说明:本题的两个小题都是通过变换转化成二项式系数之和,再用二项式系数的性质求解.此外,有些组合数的式子可以直接作为某个二项式的展开式,但这需要逆用二项式定理才能完成,所以需仔细观察,我们可以看下面的例子:求10C 2C 2C 2C 22108107910810109+++++ 的结果.仔细观察可以发现该组合数的式与10)21(+的展开式接近,但要注意:10101099102210110010102C 2C 2C 2C C )21(⋅+⋅++⋅+⋅+=+从而可以得到:)13(21C 2C 2C 21010101099108210-=++++ . 典型例题七例7 利用二项式定理证明:98322--+n n 是64的倍数.分析:64是8的平方,问题相当于证明98322--+n n 是28的倍数,为了使问题向二项式定理贴近,变形1122)18(93++++==n n n ,将其展开后各项含有k 8,与28的倍数联系起来.解:∵98322--+n n 98)18(98911--+=--=++n n n n64)C 8C 8(112111⋅++⋅+=-+-++n n n n n 是64的倍数.说明:利用本题的方法和技巧不仅可以用来证明整除问题,而且可以用此方程求一些复杂的指数式除以一个数的余数.典型例题八例8 展开52232⎪⎭⎫ ⎝⎛-x x .分析1:用二项式定理展开式.解法1:52232⎪⎭⎫ ⎝⎛-x x 2232524150250523)2(23)2(23)2(⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=x x C x x C x x C 分析2:对较繁杂的式子,先化简再用二项式定理展开.解法2:10535232)34(232x x x x -=⎪⎭⎫ ⎝⎛-233254315530510)3()4()3()4()4([321-+-+=x C x C x C x 10742532243840513518012032xx x x x x -+-+-=. 说明:记准、记熟二项式nb a )(+的展开式,是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.典型例题九例9 若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为( ). A .11 B .33 C .55 D .66 分析:10)(z y x ++看作二项式10])[(z y x ++展开.解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即∑=-⋅+=++=++10010101010)(])[()(k k k kz y x C z y x z y x .这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式ky x -+10)(展开,不同的乘积k kk z y x C ⋅+-1010)((10,,1,0 =k )展开后,都不会出现同类项. 下面,再分别考虑每一个乘积k kk z y x C ⋅+-1010)((10,,1,0 =k ).其中每一个乘积展开后的项数由ky x -+10)(决定,而且各项中x 和y 的指数都不相同,也不会出现同类项.故原式展开后的总项数为66191011=++++ ,∴应选D .典型例题十例10 若nx x ⎪⎭⎫⎝⎛-+21的展开式的常数项为20-,求n .分析:题中0≠x ,当0>x 时,把nx x ⎪⎭⎫ ⎝⎛-+21转化为nn x x x x 2121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+;当0<x 时,同理nn n x x x x 21)1(21⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛-+.然后写出通项,令含x 的幂指数为零,解出n . 解:当0>x 时nn x x x x 2121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+,其通项为rn r n r r rn r n r x C xx C T 222221)()1()1()(--+-=-=,令022=-r n ,得r n =, ∴展开式的常数项为n nnC2)1(-;当0<x 时,nn n x x x x 21)1(21⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛-+, 同理可得,展开式的常数项为n n n C 2)1(-.无论哪一种情况,常数项均为nn n C 2)1(-. 令20)1(2-=-nn n C ,以 ,3,2,1=n ,逐个代入,得3=n .典型例题十一例11 1031⎪⎭⎫ ⎝⎛+x x 的展开式的第3项小于第4项,则x 的取值范围是______________. 分析:首先运用通项公式写出展开式的第3项和第4项,再根据题设列出不等式即可. 解: 1031⎪⎭⎫ ⎝⎛+x x 有意义必须0>x ;依题意有43T T <即3373102382101)(1)(⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛x x C x x C .∴31123891012910xx ⨯⨯⨯⨯⨯<⨯⨯(∵0>x ).解得5648980<<x .∴x 的取值范围是⎭⎬⎫⎩⎨⎧<<5648980x x .∴应填:5648980<<x .典型例题十二例12 已知n xx)1(2log +的展开式中有连续三项的系数之比为321∶∶,这三项是第几项?若展开式的倒数第二项为112,求x 的值.解:设连续三项是第k 、1+k 、2+k 项(+∈N k 且1>k ),则有32111∶∶∶∶=+-k n k n k n C C C , 即321!)1)(1(!!)(!!!)1)(1(!∶∶∶∶=--+-+--k n k n k n k n k n k n .∴321)1(1)(1)1)((1∶∶∶∶=+-+--k k k n k k n k n . ∴⎪⎪⎩⎪⎪⎨⎧=-+=+-⇒⎪⎪⎩⎪⎪⎨⎧=-+=+---32)()1(21132)()1(21)1)(()(k n k k n k k n k k k k n k n k n k 14=⇒n ,5=k 所求连续三项为第5、6、7三项.又由已知,1122log 1314=xx C .即82log =x x .两边取以2为底的对数,3)(log 22=x ,3log 2±=x ,∴32=x ,或32-=x .说明:当题目中已知二项展开式的某些项或某几项之间的关系时,常利用二项式通项,根据已知条件列出某些等式或不等式进行求解.典型例题十三例13 nx )21(+的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项. 分析:根据已知条件可求出n ,再根据n 的奇偶性;确定二项式系数最大的项.解:556)2(x C T n =,667)2(x C T n =,依题意有8226655=⇒=n C C n n . ∴8)21(x +的展开式中,二项式系数最大的项为444851120)2(x x C T ==.设第1+r 项系数最大,则有65222211881188≤≤⇒⎪⎩⎪⎨⎧⋅≥⋅⋅≥⋅++--r C C C C r r r r r r r r . ∴5=r 或6=r (∵{}8,,2,1,0 ∈r ).∴系娄最大的项为:561792x T =,671792x T =.说明:(1)求二项式系数最大的项,根据二项式系数的性质,n 为奇数时中间两项的二项式系数最大,n 为偶数时,中间一项的二项式系数最大.(2)求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式,解不等式的方法求得.典型例题十四例14 设nm x x x f )1()1()(+++=(+∈N n m ,),若其展开式中关于x 的一次项的系数和为11,问n m ,为何值时,含2x 项的系数取最小值?并求这个最小值.分析:根据条件得到2x 的系数关于n 的二次表达式,然后用二次函数性质探讨最小值.解:1111=+=+m n C C n m .211)(21222222-+=-+-=+n m n n m m C C n m499)211(55112211022+-=+-=-=n n n mn .∵+∈N n , ∴5=n 或6,6=m 或5时,2x 项系数最小,最小值为25. 说明:二次函数499)211(2+-=x y 的对称轴方程为211=x ,即5.5=x ,由于5、6距5.5等距离,且对+∈N n ,5、6距5.5最近,所以499)211(2+-n 的最小值在5=n 或6=n 处取得. 典型例题十五例15 若0166777)13(a x a x a x a x ++++=- ,求(1) 721a a a +++ ;(2) 7531a a a a +++;(3) 6420a a a a +++.解:(1)令0=x ,则10-=a ,令1=x ,则128270167==++++a a a a . ①∴129721=+++a a a .(2)令1-=x ,则701234567)4(-=+-+-+-+-a a a a a a a a ②由2②①-得:8256]4128[2177531=--=+++)(a a a a (3)由2②①+得:6420a a a a +++][210123456701234567)()(a a a a a a a a a a a a a a a a +-+-+-+-++++++++=8128])4(128[217-=-+=. 说明:(1)根据问题恒等式特点来用“特殊值”法.这是一种重要方法,它适用于恒等式.(2)一般地,对于多项式nn n x a x a x a a q px x g ++++=+= 2210)()(,)(x g 的各项的系数和为)1(g :)(x g 的奇数项的系数和为)]1()1([21-+g g .)(x g 的偶数项的系数和为)]1()1([21--g g .典型例题十六例16 填空:(1) 3230-除以7的余数_____________;(2) 155555+除以8的余数是___. 分析(1):将302分解成含7的因数,然后用二项式定理展开,不含7的项就是余数.解:3230-3)2(103-=3)8(10-=3)17(10-+=37771010910911010010-++++=C C C C又∵余数不能为负数,需转化为正数。

高二数学二项式定理与性质试题答案及解析

高二数学二项式定理与性质试题答案及解析

高二数学二项式定理与性质试题答案及解析1.若(x+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且a﹣a1+a2﹣a3+…+a8﹣a9=39,则实数m的值为.【答案】5.【解析】令,即,得:,又因为,所以,则.【考点】二项式定理、赋值法.2.若已知,则的值为 .【答案】1【解析】令,可得;令,可得;两式结合可得.【考点】二项式定理的应用.3. x(x﹣)7的展开式中,x4的系数是.【答案】84.【解析】x(x﹣)7的通项是,令7-2r=3,得r="2" ,所以x(x﹣)7的展开式的的系数为所以x(x﹣)7的展开式中,x4的系数是84.【考点】二项式定理;二项式系数的性质4.在的展开式中,x6的系数是()A.﹣27B.27C.﹣9D.9【答案】D【解析】在的展开式中通项为,故x6为r=6,即第7项.代入通项公式得系数为.,故选D.【考点】二项式定理及二项式系数的性质.5.二项式的展开式的常数项为第()项A.17B.18C.19D.20【答案】C【解析】由二项式定理可知,展开式的常数项是使的项,解得为第19项,答案选C.【考点】二项式定理6.(1)已知,记的个位上的数字为,十位上的数字,求的值;(2)求和(结果不必用具体数字表示).【答案】(1);(2).【解析】(1)首先要掌握排列数计算公式,但也不能死算,应为从开始,它的后两位数字均为零,因此只需研究前面的和的结果就可以解决问题;(2)反复、灵活运用组合数的两点性质:①,②即能解决问题.试题解析:(1)的后两位由确定,而,故个位数字为,十位数字为,所以. 6分(2). 12分【考点】1.排列数计算公式;2.组合数的性质.7.若,则a0+a2+a4+a6+a8的值为.【答案】128【解析】令,得①,再令得②,由①+②得:,故应填入:128.【考点】二项式.8.二项式的展开式的常数项为第()项A.17B.18C.19D.20【解析】C由二项展开式的通项知==,则=0,解得=18,故常数为第19项.【考点】二项展开式的通项9.展开式中不含项的系数的和为()A.-1B.0C.1D.2【答案】B【解析】由二项式定理知,展开式中最后一项含,其系数为1,令=1得,此二项展开式的各项系数和为=1,故不含项的系数和为1-1=0,故选B.【考点】二项展开式各项系数和;二项展开式的通项10.展开式中的常数项是_________________.【答案】【解析】由二项式定理可知已知二项展开式的通项为:(r="0,1,2," ,6),令得:;故知已知二项展开式的第三项:是常数项,故填60.【考点】二项式定理.11.若,则;【答案】2014【解析】首先令可得;然后令得,即,代入式子即可求得结果.【考点】二项式定理.12.的展开式中的常数项是。

二项式定理典型例题

二项式定理典型例题

二项式定理典型例题--典型例题一(1 <例1在二项式Jx十一^ 的展开式中,前三项的系数成等差数列,求展开式中所有有< 2仮丿理项.分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决.解:二项式的展开式的通项公式为:前三项的r =0,1,2.1 1 12 1 1得系数为:t1=1, t2= C n— = — n,t3 = C n— = —n(n -1),2 2 4 81 由已知:2t^t1t3n=1 n(n—1),8n = 8通项公式为1 16 J3rT r^c8-r x^r =0,1,2…8,T r 1为有理项,故16-3r是4的倍数, 2r••• r =0,4,8.依次得到有理项为「=X4,T5二c8■丄x二色乂忑二c81x‘1X2.248 28256 说明:本题通过抓特定项满足的条件,利用通项公式求出了r的取值,得到了有理项.类100似地,C.2 3)的展开式中有多少项是有理项?可以通过抓通项中r的取值,得到共有17页系数和为3n.典型例题四例4 (1 )求(1 -X)3(1 - x)10展开式中X5的系数;(2)求(X - 2)6展开式中的常X数项.分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式.3 10 5解:(1)(1-X)(1 X)展开式中的X可以看成下列几种方式得到,然后合并同类项:3彳门庄55用(1 -X )展开式中的常数项乘以 (1 X )展开式中的 X 5项,可以得到 C io X ;用(1-X )3展开式中的一次项乘以(1 - X )10展开式中的X 4项可得到(-3x)(C :o x 4) =-3C :0X 5;43 2(C10~C 10'3C10 —'Golx63x、.x17x1 展开式的通项公式X的常数项为C ;2二924 .说明:问题(2)中将非二项式通过因式分解转化为二项式解决•这时我们还可以通过 合并项转化为二项式展开的问题来解决.典型例题五26c例5求(1 • x -X )展开式中X 5的系数. 分析:(1,x-x 2)6不是二项式,我们可以通过 1 • X - X 2=(1 • x) -X 2或1・(x-x 2)把它看成二项式展开.解:方法一:(1 X _x 2)6 =(1 . x) _x 2f6 5 2 4 4=(1 x ) -6(1 x) x 15(1 x) x -其中含 X 5 的项为 c 6x 5 -6C ;X 5 15C ;X 5 =6x 5. 含x 5项的系数为6.方法二:(1 x -x 2)6 = 1(X -X 2)F=1 6(x-x 2) 15(x -X 2)220(x -X 2)315(x -X 2)46(x-x 2)5(x-x 2)65 5 555用(1 —x)3中的X 2乘以(1 X )10展开式中的X 3可得到 3X 2C ;o X 3=3C ;o X 5;用(1 - X )3中的3102X 项乘以(1 X )展开式中的X 项可得到—3x C 10X = -C 10X ,合并同类项得5X 项为:12由T r 1 二C ;2(、2)12二C ;2X 6_C ,可得展开式其中含x 的项为20(-3)x ,15(-4)x 6x = 6x .5 二x 项的系数为6.方法3 :本题还可通过把(1 • x - X 2)6看成6个1 • x - X 2相乘,每个因式各取一项相乘 可得到乘积的一项,x 5项可由下列几种可能得到.5个因式中取x , —个取1得到C 6x 5 .3个因式中取x , 一个取—x 2,两个取1得到C 6 C ;x 3 ・(-x 2). 1个因式中取x ,两个取—x 2,三个取1得到C ; C ;x (-x 2)2 . 合并同类项为(C ; -c l c ; • C ;C ;)X 5 =6x 5, x 5项的系数为6.典型例题六例 6 求证:(1) C 「2C 2zr nV = 2心; (2)c n 〔c ;1c :1(2n 1-1).23n +1 n +1分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证 明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质c n - Cn -c n - c n =2n .•••左边=n C 0」+ nC ;_1+…+n-n (C n J ' C^^ ',Cnj.) = n,2=右边.丄 cn=——=—n!— k 1 k 1 k!(n -k)! (k -1)!(n - k)!1 (n 1)!1 (1)C n 1 n 1 (k 1)!(n -k)! n 1 本题的两个小题都是通过变换转化成二项式系数之和,再用二项式系数的性质 求解.此外,有些组合数的式子可以直接作为某个二项式的展开式, 但这需要逆用二项式定 理才能完成,所以需仔细观察,我们可以看下面的例子:求910897822 C io 2 C 10 2 C w■ 2C io 10的结果.仔细观察可以发现该组合数的式与(1 -2)10的展开式接近,但要注意:(1 2)10二 C o Co 2 • C 2。

二项式定理经典题型及详细答案

二项式定理经典题型及详细答案

二项式定理经典考点例析考点1:二项式系数与项的系数1、在28(2x -的展开式中,求: (1)第5项的二项式系数及第5项的系数.(2)2x 的系数.2.若1()nx x+展开式中第2项与第6项的系数相同,则展开式的中间一项的系数为___________.3.已知二项式102)3x求 (1)第四项(2)展开式第四项的二项式系数(3)展开式第四项的系数考点2:二项式定理逆用1、5432(1)5(1)10(1)10(1)5(1)x x x x x -+-+-+-+-=_____________2、5432)12()12(5)12(10)12(10)12(51+-+++-+++-x x x x x =_____________考点3:求二项式展开式中的特定项、某一项【例题】 1、二项式3522()x x-的展开式中5x 的系数___________;2. 二项式43(1)(1x -的展开式中2x 的系数是___________.3.若4(1a +=+(,a b 为有理数),则a b +=___________.4.二项式8(2-展开式中不含4x 项的系数的和为___________.5、二项式53)31()21(x x -+的展开式中4x 的系数___________.【练习】1.二项式4(1)x +的展开式中2x 的系数为___________..2.二项式210(1)x -的展开式中,4x 的系数为___________.3.二项式6展开式中含2x 项的系数为___________. 4.二项式533)1()21(x x -+的展开式中x 的系数___________.、常数项和有理项【例题】 1. 二项式61(2)2x x-的展开式的常数项是___________.2、二项式100的展开式中x 的系数为有理数的项的个数___________.3. 二项式261(1)()x x x x++-的展开式中的常数项为___________.4.二项式5)12(++xx 的展开式中常数项是___________. 【练习】1.8(2x -的展开式中的常数项___________. 2.在261()x x+的展开式中,常数项是___________.3.二项式5)44(++xx 的展开式中常数项是___________. 4.二项式54)31()21(xx -+的展开式中常数项是___________. 考点4:求展开式中的各项系数之和的问题1、已知7270127(12)...x a a x a x a x -=++++.求:(1)0a ; (2)763210a a a a a a ++++++ ;(3)763210a a a a a a -++-+-(4)6420a a a a +++;(5)7531a a a a +++;(6)2753126420)()(a a a a a a a a +++-+++. (7)||||||||||||763210a a a a a a ++++++ .(8)7766321022842a a a a a a ++++++ ;(9)7766321022842a a a a a a ++++++; 2.在二项式9(23)x y -的展开式中,求:(1)二项式系数之和;(2)各项系数之和;(3)所有奇数项系数之和;(4)所有项的系数的绝对值之和.3.利用二项式nn n n n n n n x C x C x C x C C x +++++=+ 432210)1(展开式nn n n n n n n n nn n n n n n n n n n n n n nn n n n n C C C C C C C C C C C C C C C C C C C C C 32842)4(2)3(0)1()2(2)1(3210153142032103210=+++++=+++=+++=-++-+-=+++++-考点5:多项式的展开式最大项问题【例题】1、二项式9)21(x +展开式中,(1)二项式系数的最大项 (2)系数的最大项 2、二项式12)21(x -展开式中(1)求展开式中系数的绝对值最大的项.(2)求展开式中系数最大的项.(3)求展开式中系数最小的项.3、已知()(1)(12)(,)m n f x x x m n N +=+++∈的展开式中含x 项系数为11,求()f x 展开式中2x 项系数的最小值.4、n xx )1(4+展开式中含x 的整数次幂的项的系数之和为__________.【练习】1、2102()x x+的展开式中系数最大的项; 2、求7(12)x -展开式中系数最大的项.3、设x =50(1)x +展开式中第几项最大?4、已知()nx x 2323+展开式中各项系数的和比各项的二项式系数的和大992,(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.考点6:含参二次函数求解【例题】1.【特征项】在二项式25()a x x-的展开式中x 的系数是-10,则实数a 的值是___________.2.【常数项】若n的展开式中存在常数项,则n 的值可以是___________.3.【有理项】已知n的展开式中,前三项的系数成等差数列,展开式中的所有有理项________. 4.【特征项】在210(1)x px ++的展开式中,试求使4x 项的系数最小时p 的值.5.【系数最大】已知1(2)2nx +的展开式中,第5项、第6项、第7项的二项式系数成等差数列,求展开式中二项式系数最大的项. 【练习】1.若9()a x x-的展开式中3x 的系数是-84,则a =___________.2.已知2)n x的展开式中第5项系数与第3项的系数比56:3,则该项展开式中2x 的系数_____. 3.若二项式22()nx x-的展开式中二项式系数之和是64,则展开式中的常数项为___________ 4.已知(13)nx +的展开式中,末三项的二项式系数的和等于121,求展开式中系数最大的项.考点7:求解某些整除性问题或余数问题1. 求证22*389()n n n N +--∈能被64整除.2. 9291被100整除所得的余数为_________ 3. 设21(*)n k k N =-∈,则11221777...7nn n n n n n C C C ---+⋅+⋅++⋅被9除所得的余数为_________4. 求证:(1)51511-能被7整除;(2)2332437n n +-+能被64整除.5. 如果今天是星期一,那么对于任意的自然数n ,经过33(275)n n +++天是星期几?考点8:计算近似值1、求60.998的近似值,使误差小于0.001. 2、求51.997精确到的近似值.考点9:有关等式与不等式的证明化简问题1、求121010101010124...2C C C ++++的值. 2、化简:1231248...(2)nnn n n n C C C C -+-++-. 3、求证:01121*(2)!...()(1)!(1)!n nn n n n n n n C C C C C C n N n n -+++=∈-+.4、证明下列等式与不等式(1)123123 (2)nn n n n n C C C nC n -++++=⋅.(2)设,,a b c 是互不相等的正数,且,,a b c 成等差数列,*n N ∈,求证2nnna cb +>. 【练习】1、=++++nn n n n n C C C C 2222210 ;2、=-++-+-nn n n n n n n C C C C C 2)1(22232210 ; 3、求证:12122-⋅=+++n n n n n n nC C C4、求证:nn n n n n n C C C C C 22222120)()()()(=++++5、已知7292222210=++++nn n n n n C C C C ,求n n n n C C C +++ 21考点10:创新型题目1、对于二项式(1-x)1999,有下列四个命题:①展开式中T 1000= -C 19991000x999;②展开式中非常数项的系数和是1;③展开式中系数最大的项是第1000项和第1001项;④当x=2000时,(1-x)1999除以2000的余数是1.其中正确命题的序号是__________.(把你认为正确的命题序号都填上) 2、规定!)1()1(m m x x x C m x +--=,其中x ∈R,m 是正整数,且10=x C ,这是组合数m n C (n 、m 是正整数,且m ≤n )的一种推广.(1) 求315-C的值;(2) 设x >0,当x 为何值时,213)(xxC C 取得最小值(3) 组合数的两个性质;①m n n m n C C -=. ②mn m n m n C C C 11+-=+.是否都能推广到mx C (x ∈R,m 是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.3、对于任意正整数,定义“n的双阶乘n!!”如下:对于n是偶数时,n!!=n·(n-2)·(n-4)……6×4×2;对于n是奇数时,n!!=n·(n-2)·(n-4)……5×3×1.现有如下四个命题:①(2005!!)·(2006!!)=2006!;②2006!!=21003·1003!;③2006!!的个位数是0;④2005!!的个位数是5.正确的命题是________.。

6.3 二项式定理(解析版)人教版高中数学精讲精练选择性必修三

6.3 二项式定理(解析版)人教版高中数学精讲精练选择性必修三

6.3二项式定理考法一二项式的展开式【例1-1】(2023上·高二课时练习)求411x ⎛⎫⎪⎝⎭+的展开式.【答案】答案见解析【解析】4123404132231404444411111C 1C 1C C 1C 1111x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⨯+⨯ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+⎭⎝⎝⎭⎝⎭23446411x x x x =++++.【例1-2】(2023·黑龙江)()12312C 4C 8C 2C nnn n n n -+-++-= ().A .1B .-1C .(-1)nD .3n【答案】C【解析】原式=()()()()()()0120122222121n n nn n n n n -+-+-++-=-=-C C C C L .故选:C.【一隅三反】1.(2023·甘肃)若对x ∀∈R ,()()()()()()55432252102102521ax b x x x x x +=+-+++-+++-恒成立,其中,a b ∈R ,则a b +=()A .1-B .0C .2D .3【答案】C【解析】由()()()()()()()543255252102102521211x x x x x x x +-+++-+++-=+-=+,得()()551ax b x +=+,所以1a b ==,2a b +=.故选:C.2.(2023·安徽安庆)如果12212C 2C 2C 2187n n n n n ++++= ,则22223C C C n +++=.【答案】56【解析】依题意,1220012212C 2C 2C 2C 2C 2C 2C n n n n n n n n n n n+++++++=+ ()1232187nn =+==,解得7n =,222322237337C C C C C C =++++++ 32232224475567C C C C C C C =+++=+++ 322323667778C C C C C C 87656321⨯⨯=====⨯⨯+++.故答案为:563.(2023·高二课时练习)(1)求4⎛⎫ ⎪⎝⎭的展开式(2)求()()55211x x x -++的展开式;(3)化简()()()()()5432151********x x x x x -+-+-+-+-.【答案】(1)221218110854x x x x-+-+(2)答案见解析;(3)51x -【解析】(1)()4442131x x ⎛⎫⎫==- ⎪⎪⎝⎭⎭()()()()()()()()432234012344444421C 3C 31C 31C 31C 1x x x x x⎡⎤=+⋅-+⋅-+⋅-+-⎣⎦()432218110854121x x x x x=-+-+221218110854x x x x =-+-+.(2)()()()5555223(1)1(1)11x x x x x x x -++-++⎦=⎣-⎡⎤=()()()()()123405314323332341355555C 1C 1C 1C 1C 1x x x x x =⨯⨯⨯+⨯+⨯-+-+---()55035C 1x+⨯-3691215151010 5x x x x x =-+-+-.(3)原式0514********555555C (1)C (1)C (1)C (1)C (1)C (1)1x x x x x x =-+-+-+-+-+--55[(1)1]11x x =-+-=-.考法二二项式指定项的系数【例2-1】(2024·四川绵阳)51x ⎫-⎪⎭的展开式中,x 的系数为()A .5-B .10-C .5D .10【答案】A【解析】51x ⎫⎪⎭的展开式的通项为53521551C (1)C rr r r r rr T x x --+⎛⎫=⋅⎭⋅-=-⋅⋅ ⎪⎝.令5312r-=,得1r =.x ∴的系数为15C 5-=-.故选:A .【例2-2】.(2024·湖南)二项式741x ⎫-⎪⎭的展开式中常数项为()A .7-B .21-C .7D .21【答案】A【解析】二项式741x ⎫⎪⎭的通项公式为()14147317741C C 1rrrr r rr T x x --+⎛⎫=⋅⋅-=⋅-⋅ ⎪⎝⎭,令1414013r r -=⇒=,所以常数项为()17C 17⋅-=-,故选:A 【例2-3】(2024·云南)写出623x⎛⎝展开式中的一个有理项为.【答案】12729x (答案不唯一)【解析】623x⎛⎝展开式的通项公式为所以展开式中的有理项分别为:0r =时,6121213729T x x ==;2r =时,4277363C 1215T x x ==;4r =时,2422563C 135T x x ==;6r =时,37-=T x .故答案为:12729x (四个有理项任写其一均可).【一隅三反】1.(2024·河南)29(2x x-展开式中的常数项为()A .672B .672-C .5376-D .5376【答案】D【解析】二项式29(2)x x -的展开式的通项218319992C )()(N 2)C (,9,r r r r r rr T r x xr x--+=-=-≤∈,令1830r -=,得6r =,所以二项展开式中的常数项为669C 2)7(536-=.故选:D2.(2024安徽)9a x x ⎛⎫+ ⎪⎝⎭展开式中含3x 项的系数为84-,则实数a 的值为()A .1-B .2-C .3-D .4-【答案】A 【解析】()992199C C 0,1,2,,9rr rr r r r a T xa x r x --+⎛⎫=⋅==⋅⋅⋅ ⎪⎝⎭,令923r -=,得3r =.∴3333349C 84T a x a x ==,依题意38484a =-,∴1a =-.故选:A.3.(2023·全国·模拟预测)5的展开式中,有理项是第项.【答案】3【解析】5的展开式的通项511051362155C 3C 3kkkk k k k T x x x ---+⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭⋅,其中0,1,2,3,4,5k =,当1k T +为有理项时,1056k-为整数,结合0,1,2,3,4,5k =,所以2k =,即有理项是展开式中的第3项,故答案为:3考法三两个二项式乘积的系数【例3-1】(2024·广东广州)在()()511x x +-展开式中3x 的系数为()A .1-B .0C .1D .2【答案】B【解析】显然()()()()5551111x x x x x +-=-+-,则()51x -展开式第1r +项55155,N,5C (1)C (1)rrr rr r r T xr x r --+-∈=-≤=,当3r =时,33235C (1)10x x x ⋅-=-,当2r =时,22335C (1)10x x -=,所以展开式中含3x 的项为3310100x x -+=,即展开式中3x 的系数为0.故选:B【例3-2】(2023·全国·模拟预测)()7y m x y x ⎛⎫+- ⎪⎝⎭的展开式中34x y 的系数为105-,则实数m =()A .2B .1C .1-D .2-【答案】D【解析】()7x y -的展开式的通项公式为()7171C r r r rr T x y -+=-,所以()61171C r r r r r y T x y x-++=-.令6314r r -=⎧⎨+=⎩,解得3r =,()7171C r r r rr mT m x y -+=⋅-.令734r r -=⎧⎨=⎩,解得4r =.由题意,可知()()()3434343777771C 1C C C 1C 105m m m -+⋅-=-+=-=-,所以2m =-.故选:D .【一隅三反】1.(2023·湖北)若()()542x m x --的展开式中的3x 的系数为600-,则实数m =()A .8B .7C .9D .10【答案】B【解析】由题意知,()52x -展开式的通项公式为()55C 2rr rx --,故3x 的系数为()()3232554C 2C 232040600m m ⨯---=--=-,解得7m =.故选:B .2.(2024·广东·)()()42112x x +⋅-的展开式中3x 的系数为.【答案】40-【解析】()()42112x x +⋅-的展开式中3x 的项为:()()313213441C 2C 240x x x x ⨯-+⨯-=-,所以展开式中3x 的系数为40-.故答案为:40-3.(2024·山东滨州)()622x x y y ⎛⎫+- ⎪⎝⎭的展开式中42x y 的系数为.(用数字作答)【答案】40-【解析】()62x y -的通项公式为()()66166C 2C 2rrr r rr r r T x y x y --+=-=-,令2r =得,()22424236C 260T x y x y =-=,此时4242602120x y x y ⋅=,令3r =得,()33333346C 2160T x y x y =-=-,此时3342160160xx y x y y-⋅=-,故42x y 的系数为12016040-=-故答案为:40-考法四三项式指定项的系数【例4-1】(2023·全国·校联考模拟预测)在6221x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为()A .721B .-61C .181D .-59【答案】D【解析】6221x x ⎛⎫+- ⎪⎝⎭ =()6221x x ⎡⎤+-⎢⎥⎣⎦的展开式的通项公式为1r T +=()6622C 1rrrx x -⎛⎫+- ⎪⎝⎭=()()626C 21r r rr x x ---+,其中()66rx -+的展开式的通项公式为1k T +=66C kr kr x---,当0r =时,60r k --=,6k ∴=,常数项为()00666C C 2-;当1r =时,62r k --=,3k ∴=,常数项为()1365C C 2-;当2r =时,64r k --=,0k ∴=,常数项为()22064C C 2-;故常数项为()00666C C 2-+()1365C C 2-+()22064C C 259-=-.故选:D【例4-2】(2023·广东广州)()522x x y +-的展开式中52x y 的系数为(用数字作答).【答案】120【解析】由于()22522x y x y x =⋅⋅,所以()522x x y +-的展开式中含52x y 的项为()()222211252532C 2C C 120x x y x y ⨯⨯-=,所以()522x x y +-的展开式中52x y 的系数为120.故答案为:120【一隅三反】1(2023上·高二课时练习)()52123x x +-的展开式中5x 的系数为.【答案】92【解析】()()()5552123113x x x x +-=-+,又()51x -展开式的通项()()5155C 1C 1,0,1,2,3,4,5rrr r r r r T x x r -+=-=-=,()513x +展开式的通项()5155C 13C 3,0,1,2,3,4,5kk k k k k k S x x k -+===,所以含5x 的项为162534435261T S T S T S T S T S T S ++⋅+⋅++则含5x 的系数()()()()()()012345055144233322411500555555555555C 1C 3C 1C 3C 1C 3C 1C 3C 1C 3C 1C 392-+-+-+-+-+-=.故答案为:92.2.(2024·福建)412x x ⎛⎫+- ⎪⎝⎭的展开式中,常数项为()A .72-B .70-C .70D .72【答案】C【解析】方法一:8412xx ⎛⎫+-= ⎪⎝⎭展开式中,第()1r +项()84188C 1C rrrrrr r T x--+⎛==- ⎝,所以常数项为()44581C 70T =-=,方法二:441122x x x x ⎡⎤⎛⎫=- ⎪⎛⎫+-+ ⎢⎭⎝⎣⎪⎭⎥⎝⎦展开式中,第()1r +项()4141C 2rrrr T x x -+⎛⎫=-+ ⎪⎝⎭,当0r =时,()4041C 2x x ⎛⎫-+ ⎪⎝⎭展开式中常数项为24C 6=;当2r =时,()22241C 2x x ⎛⎫-+ ⎪⎝⎭展开式中常数项为21424C C 48⨯=;当4r =时,()04441C 216x x ⎛⎫-+= ⎪⎝⎭,所以412x x ⎛⎫+- ⎪⎝⎭的展开式中,常数项为70,故选:C .3.(2023上·河北唐山)()423a b c --的展开式中2abc 的系数为()A .208B .216-C .217D .218-【答案】B【解析】根据二项式定理可得,()423a b c --的展开式中,含2abc 的项为()()211122432C C 2C 3216a b c abc ⋅⋅⋅-⋅⋅-=-.所以,()423a b c --的展开式中2abc 的系数为216-.故选:B.考法五(二项式)系数的最值【例5-1】(2023上·辽宁朝阳·高三建平县实验中学校联考阶段练习)在二项式612x ⎫⎪⎭的展开式中,二项式系数最大的是()A .第3项B .第4项C .第5项D .第3项和第4项【答案】B【解析】二项式612x ⎫⎪⎭的展开式共有7项,则二项式系数最大的是第4项.故选:B.【例5-2】(2023·四川雅安)10(1)x -的展开式中,系数最小的项是()A .第4项B .第5项C .第6项D .第7项【答案】C【解析】依题意,10(1)x -的展开通项公式为()11010C ()(1)N C 010,r r r r r r T x x r r +≤≤=-=∈-,其系数为10(1)C r r-,当r 为奇数时,10(1)C r r-才能取得最小值,又由二项式系数的性质可知,510C 是{}10C r 的最大项,所以当=5r 时,10(1)C r r-取得最小值,即第6项的系数最小.故选:C .【一隅三反】1.(2022·重庆)(多选)若1nx x ⎛⎫+ ⎪⎝⎭的展开式中第3项与第8项的系数相等,则展开式中二项式系数最大的项为()A .第4项B .第5项C .第6项D .第7项【答案】BC【解析】 1n x x ⎛⎫+ ⎪⎝⎭的展开式的通项为211rr n r r n rr n n T C x C x x --+⎛⎫== ⎪⎝⎭,因为展开式中第3项与第8项的系数相等,∴27nnC C =,所以9n =,则91x x ⎛⎫+ ⎪⎝⎭展开式中二项式系数最大的项为第5项和第6项;故选:BC .2.(2024·海南)在()1nx +的二项展开式中,系数最大的项为3x 和4x ,则展开式中含x 项的系数为.【答案】7【解析】()1C 0,1,,kn kk n T xk n -+==⋅⋅⋅,因为系数最大的项为3x和4x ,所以n 为奇数,1142n n +⎛⎫--= ⎪⎝⎭,且132n n +-=,解得7n =.所以含x 项的系数为67C 7=.故答案为:73.(2023·上海嘉定)已知6(12)x +的二项展开式中系数最大的项为.【答案】4240x 【解析】设系数最大的项为()61C 2kkk T x +=,则11661166C 2C 2C 2C 2k k k k k k k k ++--⎧⋅≥⋅⎨⋅≥⋅⎩,解得111433k ≤≤,因为06k ≤≤且k 为整数,所以4k =,此时最大的项为()44456C 2240T x x ==.故答案为:4240x 4.(2023·上海)二项式()71x -的展开式中,系数最大的项为.【答案】335x 【解析】()71x -展开式通项公式为()717C 1rr rr T x -+=-,07r ≤≤且r 为整数.要想系数最大,则r 为偶数,其中()007717C 1T x x =-=,()225537C 121T x x =-=,()44357C 135T x x 3=-=,()6677C 17T x x =-=,显然系数最大项为3535T x =.故答案为:335x 考法六(二项式)系数和--赋值法【例6-1】(2023·广东佛山)(多选)已知()()()()102108012102111x x a a x a x a x ++=+++++++ ,则下列结论正确的是()A .02a =B .217a =C .13579384a a a a a ++++=D .0121023116144a a a a ++++= 【答案】ACD【解析】对于A ,令=1x -,则1080(12)(1)112a =-++-=+=,故A 正确;对于B ,因为108108(2)[(1)1][(1)1]x x x x ++=++++-,所以8662108C C (1)73a =+⋅-=,B 错误;对于C ,令0x =,则10011021024a a a +++== ,令2x =-,则8012102256a a a a -+-+== ,所以1357910242563842a a a a a -++++==,故C 正确;对于D ,由选项B 可知,977564110831084108C C (1)2,C C 64,C C 280a a a =+-==+⨯=-==,5342312510861087108810C C 196,C C 238,C C 112,C 146,a a a a =-==+==-==+=109101010C 10,C 1a a ====,所以01210231122237346452806196a a a a +++⋯+=+⨯+⨯+⨯+⨯+⨯7238811294610101116144+⨯+⨯+⨯+⨯+⨯=,故D 正确.故选:ACD.【例6-2】(2023·广东佛山)(多选)若5250125(1)(1)(1)x a a x a x a x =+-+-++- ,其中(0,1,,5)i a i = 为实数,则()A .01a =B .310a =C .13516a a a ++=-D .1251a a a +++= 【答案】AC【解析】令1x =可得01a =,A 正确.()5511x x =-+,其展开式的第三项是()()33235C 1101T x x =-=--,所以310a =-,B 不正确.令0x =可得01250a a a a ++++= ,所以1251a a a +++=- ,D 不正确.令2x =可得012532a a a a -++-= ,与01250a a a a ++++= 相减可得13516a a a ++=-,C 正确.故选:AC【一隅三反】1.(2023·河北)(多选)若()()20232320230123202332R x a a x a x a x a x x -=+++++∈ ,则()A .202302a =B .20230242022152a a a a -++++=C .20231352023512a a a a --++++=D .20233202312232023213333a a a a ++++=- 【答案】BD【解析】对于A ,当0x =时,()20232023022a =-=-,A 错误;对于B ,C ,当1x =时,20230123202311a a a a a +++++== ,当=1x -时,20230123202220235a a a a a a -+-++-=- ,所以20230242022152a a a a -++++= ,13a a+202352023512a a ++++= ,所以B 正确,C 错误;对于D ,当13x =时,20232023120220231323333a a a a ⎛⎫⨯-=++++ ⎪⎝⎭,所以()20232023123202302320231213333a a a a a ++++=--=- ,D 正确.故选:BD .2.(2023·江苏扬州·高二统考期中)(多选)()201212nn n x a a x a x a x -=++++ 的展开式中第3项和第11项的二项式系数相等,则以下判断正确的是()A .第7项的二项式系数最大B .所有奇数项二项式系数的和为132C .21212121222a a a+++=- D .12312231212a a a a ++++=- 【答案】AC【解析】由题意,可得210C C n n =,所以12n =,对于A 中,根据二项式定理的性质,可得中间项第7项的二项式系数最大,所以A 正确;对于B 中,根据二项式系数的性质,可得所有奇数项二项式系数的和为112,所以B 错误;对于C 中,对于C 中,令12x =,可得1212122102(11)0222a a a a ++++=-= ,令0x =,可得01a =,所以21212121222a a a +++=- ,所以C 正确;对于D 中,由()122120121212x a a x a x a x -=++++ ,可得()122120121212()x a a x a x a x '⎡⎤-=++++⎣⎦' ,即2111231211224(12)312a a x a x x a x -=+++-+ ,令1x =,可得1231112231224(12)24a a a a =+--+⨯+=+ ,所以D 错误.故选:AC.3.(2024·黑龙江·高二校联考期末)(多选)若()82801281(1)(1)x a a x a x a x =+-+-++- ,其中0128,,,,a a a a 为实数,则()A .01a =B .656a =C .1357128a a a a +++=D .2468128a a a a +++=【答案】AC【解析】令1t x =-,则原式转化为8280128(1)t a a t a t a t +=++++ ,对A ,令0=t ,得01a =,故A 正确;对B ,由二项式定理得6a =28C 28=,故B 错误;对CD ,令1t =,得801282a a a a ++++= ,令1t =-,得01280a a a a -+-+= ,所以71357024682128a a a a a a a a a +++=++++==,所以2468127a a a a +++=,故C 正确,D 错误.故选:AC考法七余数与小数【例7-1】(2023下·河南郑州·高二校联考期中)108除以49所得的余数是.【答案】22【解析】法一:由10010198291010101010(71)C 7C 7...C 7C 718=+=+++++,前9项可以被49整除,而910C 71714922+==+,故余数为22.法二:由510564(58491)==+5423324549515491015491015495154915=+⨯⨯+⨯⨯+⨯⨯+⨯⨯+,而515759375491549722==⨯+,故余数为22.故答案为:22【例7-2】.(2023·高二课时练习)将50.991精确到0.01的近似值是.【答案】0.96【解析】因为()55011225550.99110.009C 1C 0.009C 0.00910.0450.000810.95581=-=⨯-⨯+⨯-≈-+= ,且将50.991精确到0.01,故近似值为0.96故答案为:0.96【一隅三反】1.(2023安徽)1.028的近似值是.(精确到小数点后三位)【答案】1.172【解析】由题意得:8801223388881.02(10.02)0.020.020.02 1.172C C C C =+≈+⋅+⋅+⋅≈.故答案为:1.1722.(2023上·河北)1098除以1000的余数是.【答案】24【解析】因为10101922899101010101010109(1002)100+C (2)100+C (2)10C 80(2)100+C (2)=-=⨯-⨯⨯-⨯++⨯-⨯⨯-L 101922891010=[100+C (2)100+C (2)100(2)1000]+1024⨯-⨯⨯-⨯++-⨯L 101922891010=[100+C (2)100+C (2)100(2)1000+1000]24⨯-⨯⨯-⨯++-⨯+L ,所以1098除以1000的余数是:24.故答案为:243.(2023下·江苏淮安·高二江苏省郑梁梅高级中学校考阶段练习)今天是星期日,经过7天后还是星期日,那么经过202315天后是()A .星期日B .星期一C .星期三D .星期四【答案】B【解析】()202320232023120222022202320231514114C 14C 141=+=+++⨯+ ,因为20231202220222023202314C 14C 14+++⨯ 能被7整除,所以202315除以7余1,所以经过202315天后是星期一.故选:B.4.(2024·甘肃武威)干支纪年是中国古代的一种纪年法.分别排出十天干与十二地支如下:天干:甲乙丙丁戊己庚辛壬癸地支:子丑寅卯辰巳午未申酉戌亥把天干与地支按以下方法依次配对:把第一个天干“甲”与第一个地支“子”配出“甲子”,把第二个天干“乙”与第二个地支“丑”配出“乙丑”,L ,若天干用完,则再从第一个天干开始循环使用.已知2023年是癸卯年,则8132+年以后是年.【答案】丙午【解析】因为88817788132(121)212C 12C 123+=++=+⨯++⨯+ ,所以8132+年以后地支为“午”.因为8881777888132(103)210C 103C 10332+=++=+⨯⨯++⨯⨯++ ,又因为88326563,32+=+除以10余数为3,所以8132+年以后天干为“丙”,故8132+年以后是丙午年.故答案为:丙午考法八杨辉三角的应用【例8】(2023·广东广州)(多选)我国南宋数学家杨辉在1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.该表蕴含着许多的数学规律,下列结论正确的是()第0行1第1行11第2行121第3行1331第4行14641第5行15101051第6行1615201561…………A .3333434520232024C C C C C ++++= B .11111=,211121=,L ,51115101051=C .从左往右逐行数,第2023项在第63行第7个D .第5行到第10行的所有数字之和为2024【答案】AC【解析】对于A 选项,由组合数的计算性质()1*1C C C ,,m m m n n n m n m n -++=∈<N ,所以,3333433334520234452023C C C C C C C C ++++=++++ 433434552023202320232024C C C C C C =+++==+= ,A 对;对于B 选项,()555122334455555111101C 10C 10C 10C 1010=+=+⋅+⋅+⋅+⋅+15010001000050000100000161051=+++++=,B 错;对于C 选项,第()n n ∈N 行共有1n +项,从左往右逐行数,第n 行最后一项对应的项数为()()()1212312n n n n ++++++++= ,因为()()62162220162++=,且202320167=+,所以,从左往右逐行数,第2023项在第63行第7个,C 对;对于D 选项,第()*n n ∈N 行所有项之和为01C C C 2n n n n n ++=+ ,所以,第5行到第10行的所有数字之和为()565610212222201612-+++==- ,D 错.故选:AC.【一隅三反】1.(2023·山东青岛·高二校联考期中)(多选)我国南宋数学家杨辉1261年所著的《详解九章算法》一书中展示了二项式系数表,数学爱好者对杨辉三角做了广泛的研究.则下列结论正确的是()A .123367891C C C C +++=B .第2023行的第1012个和第1013个数最大C .第6行、第7行、第8行的第7个数之和为第9行的第7个数D .第34行中从左到右第14个数与第15个数之比为2:3【答案】ABD【解析】A 选项,123678768761C C C 168421321⨯⨯⨯+++=+++=⨯⨯⨯,39987C 84321⨯⨯==⨯⨯,故A 正确;B 选项,由图可知:第n 行有1n +个数字,如果n 是奇数,则第12n +和第112n ++个数字最大,且这两个数字一样大;如果n 是偶数,则第12n+个数字最大,故第2023行的第1012个和第1013个数最大,故B 正确;C 选项,第6行,第7行,第8行的第7个数字分别为:1,7,28,其和为36;第9行第7个数字是84,故C 错误;D 选项,依题意:第34行第14个数字是133434!C 13!21!=⨯,第34行第15个数字是143434!C 14!20!=⨯,所以133443434!C 213!21!2:334!C314!20!⨯===⨯,故D 正确.故选:ABD.2.(2024上·江西·高二校联考期末)杨辉三角(如下图所示)是数学史上的一个伟大成就,杨辉三角中从第2行到第2023行,每行的第3个数字之和为()A .32023C B .32024C C .32023C 1-D .32024C 1-【答案】B【解析】()()()()()()()1!C !1!!!+!!1!1!C 1!r r n n n r n n r n n r n r r n r r n r +⋅++⋅-=+=-+--+-()()()()()()11!11!1!!1!C !r n n n n r n r r n r ++⋅++===+-+-,由题意可得,第2行到第2023行,每行的第3个数字之和为2222322232223420233342023442023C C C C C C C C C C C ++++=++++=+++ 323202320232024C C C ==+= ,故选:B .3.(2023上·湖北)如图,“杨辉三角”是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现,比欧洲发现早500年左右.现从杨辉三角第20行随机取一个数,该数大于2023的概率为()A .1321B .1320C .57D .34【答案】A【解析】由杨辉三角的性质知第20行的数为()20C 020,N ii i ≤≤∈,一共有21个数,其中012342020202020C 1,C 20,C 190,C 1140,C 48452023=====>,由杨辉三角的对称性可知,第20行中大于2023的数的个数为214231-⨯=,故所求概率为1321.故选:A.一.单选题1.(2023·四川南充)二项式62x ⎫-⎪⎭的展开式中常数项为()A .60-B .60C .210D .210-【答案】B【解析】展开式的通项为()611216=C 2kkk k T x x --+骣琪-琪桫,所以()()161022k k k -+-´=Þ=,常数项为()2665C 24602k´-=´=,故选:B.2.(2023·河北)若()()()2202020202019201801220201111a x a x x a x x a x +-+-++-= ,则012020a a a +++= ()A.1B.0C.20202D.20212【答案】C【解析】()2020201920182202001220202020(1)(1(1)11)x x a x a x x a x x a x +-+-++-=⎡⎤⎣⎦+-=L Q ,当02020k ≤≤且k ∈N 时,2020kk a C =,因此,01220202020202020202020012202020202a a a C C a C C =++++=+++⋅⋅⋅+L .故选:C.3.(2024上海)二项式30的展开式中,其中是有理项的项数共有()A.4项B.7项C.5项D.6项【答案】D【解析】二项式30的展开式中,通项公式为5153063030rr r r rC C x --⋅⋅=⋅,030r ≤≤,0,6,12,18,24,30r ∴=时满足题意,共6项.故选:D.4.(2023安徽省)在12nx ⎫-⎪⎭的展开式中,只有第5项的二项式系数最大,则展开式中5x 的系数为()A.7-B.358-C.358D.7【答案】D【解析】因为在12n x ⎫-⎪⎭的展开式中,只有第5项的二项式系数最大所以8n =所以812x ⎫-⎪⎭的展开式的通项88218811,0,1,2,,822rrrr r r r T C x C x r +-+⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭令852r +=,得2r =所以展开式中5x 的系数为228172C ⎛⎫-= ⎪⎝⎭故选:D 5.(2023安徽)()6111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为()A.15B.20C.30D.35【答案】D【解析】因为()61x +展开式的通项为6C r r x ,所以()6111x x ⎛⎫++ ⎪⎝⎭展开式中含2x 的项为2261C x ⋅和3631x C x ⋅.因为2366152035C C +=+=,所以()6111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为35.故选:D6.(2023下·四川达州·高二统考期末)()3212x x -+的展开式中,3x 的系数为()A .20B .20-C .15-D .15【答案】B 【解析】()()632112x x x --+=,其展开式的通项为:()616C 1rrr r T x -+=⋅⋅-,取3r =得到3x 的系数为()336C 120⋅-=-.故选:B .7.(2023云南)在71x x ⎛⎫- ⎪⎝⎭的二项展开式中,系数最大的是第()项A.3B.4C.5D.6【答案】C【解析】在二项式71x x ⎛⎫- ⎪⎝⎭的展开式中,通项公式为772+177()()r r r r r r rr T C x x C x ---=⋅⋅-=-,故第r +1项的系数为7(1)r rC -,当0,2,4,6r =时,系数为正,因为0162477777C C C C C <=<<,所以当r =4时,系数最大的项是第5项.故选:C8.(2023·江西赣州·)在52x x ⎛⎫- ⎪⎝⎭的展开式中,下列说法不正确的是()A .不存在常数项B .所有二项式系数的和为32C .第3项和第4项二项式系数最大D .所有项的系数和为1【答案】D【分析】根据给定的二项式,写出展开式判断A ;利用二项式性质判断BC ;利用赋值法计算判断D 作答.【详解】523450514233245555555222222C C C C C C x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=+⋅-+⋅-+⋅-+⋅-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭53358080321040x x x x x x =-+-+-,因此在52(x x-的展开式中没有常数项,A 正确;52(x x-的展开式的所有二项式系数的和为5232=,B 正确;52(x x -的展开式的第3项和第4项二项式系数相等,并且最大,C 正确;当1x =时,52(x x-的展开式的所有项的系数和为5(1)1-=-,D 错误.故选:D二.多选题9.(2024·辽宁辽阳)若2nx⎛⎝展开式的二项式系数之和为64,则下列结论正确的是()A .该展开式中共有6项B .各项系数之和为1C .常数项为60-D .只有第4项的二项式系数最大【答案】BD【解析】因为二项式系数之和为64,即有264n =,所以6n =,则该展开式中共有7项,A 错误;令1x =,得该展开式的各项系数之和为1,B 正确;通项()()36662166C 21C 2rr rr r r rr T x x---+⎛=⋅⋅=-⋅⋅⋅ ⎝,令3602r -=,得4r =,()442561C 260T =-⨯⨯=,C 错误;二项式系数最大的是36C ,它是第4项的二项式系数,D 正确.故选:BD.10.(2023·辽宁朝阳)已知2,n ,8成等差数列,则在12nx x ⎛⎫- ⎪⎝⎭的展开式中,下列说法正确的是()A .二项式系数之和为32B .各项系数之和为1C .常数项为40D .展开式中系数最大的项为80x【答案】ABD【解析】由题意可得:22810n =+=,则5n =,对于选项A :二项式系数之和为5232=,故A 正确;对于选项B :令1x =,可得各项系数之和为()5211-=,故B 正确;对于选项C 、D :因为512x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为:()()55521551C 21C 2,0,1,2,3,4,5rrr r r r rr T x x r x ---+⎛⎫=-=-⋅⋅= ⎪⎝⎭,所以553135123280804010x x x x x x x x ---⎛⎫-=-+-+- ⎪⎝⎭,展开式中没有常数项,故C 错误;展开式中系数最大的项为80x ,故D 正确;故选:ABD.11.(2022上·辽宁本溪·高二校考期末)若202123202101232021(12)(R)x a a x a x a x a x x -=+++++∈ ,则()A .01220211a a a a ++++=-LB .20211352021312a a a a +++++=C .20210242020132a a a a -++++=D .123202123202112222a a a a++++=- 【答案】AD【解析】由题意,当0x =,2021011a ==,当1x =时,202101232021(1)1a a a a a +++++=-=- ,A 正确;当=1x -时,2021012320213a a a a a -+-+-= ,所以20211352021312a a a a +++++=- ,20210242020312a a a a -++++= ,B ,C 错误;2202120211212202122021111222222a a a a a a ⎛⎫⎛⎫+++=⨯+⨯++⨯ ⎪ ⎪⎝⎭⎝⎭,当12x =时,2202101220211110222a a a a ⎛⎫⎛⎫=+⨯+⨯++⨯ ⎪ ⎪⎝⎭⎝⎭,所以2202112202101111222a a a a ⎛⎫⎛⎫⨯+⨯++⨯=-=- ⎪ ⎪⎝⎭⎝⎭,D 正确.故选:AD .12.(2023下·河北沧州·高二统考期中)已知()112110121123x a a x a x a x -=++++ ,则()A .111231112a a a a ++++=-- B .11135791115a a a a a a +++++=-C .11111231152a a a a ++++=- D .12311231133a a a a ++++=- 【答案】ACD【解析】因为()112110121123x a a x a x a x -=++++ ,令0x =可得1102a =,令1x =可得()11012112311a a a a ++++=-⨯=- ①,所以111231112a a a a ++++=-- ,故A 正确;令=1x -可得()1111012310112315a a a a a a -+-++-=+⨯= ②,①-②得111357911152a a a a a a --+++++=,故B 错误;①+②得110246810152a a a a a a -++++++=,又()1123x -展开式的通项为()11111C 23rrr r T x -+=⋅⋅-(011r ≤≤且N r ∈),所以当r 为奇数时展开式系数为负数,当r 为偶数时展开式系数为正数,即0246810,,,,,0a a a a a a >,1357911,,,,,0a a a a a a <,所以12311a a a a ++++ 1111123101152a a a a a =-+-++-=- ,故C 正确;将()112110121123x a a x a x a x -=++++ 两边对x 求导可得:()102101231133232311x a a x a x a x --=++++ ,再令1x =可得()101231123113323133a a a a ++++=--⨯=- ,故D 正确;故选:ACD 三.填空题13.(2023下·安徽合肥·高二统考期末)已知012233C 4C 4C 4C (1)4C 729n n nn n n n n -+-++-= ,则n 的值为.【答案】6【解析】由012233C 4C 4C 4C (1)4C 729n n nn n n n n -+-++-= ,可得001112220C 1(4)C 1(4)C 1(4)C 1(4)729n n n n nn n n n--⋅⋅-+⋅⋅-+⋅⋅-++⋅⋅-= 则(14)729n -=,即6(3)729(3)n -==-,解得6n =.故答案为:6.14.(2023下·山西吕梁·高二统考阶段练习)20242023被4除的余数为.【答案】1【解析】因为20242024020241202322022202320242024202420242023(20241)C 2024C 2024C 2024C 20241=-=-+--+ ,且2024可以被4整除,所以余数为1.故答案为:1.15.(2023·北京)()82212x x x ⎛⎫-+ ⎪⎝⎭的展开式中常数项为.(用数字作答)【答案】2464-【解析】82x x ⎛⎫+ ⎪⎝⎭的展开式的通项8821882C C 2rr r r r rr T x x x --+⎛⎫=⋅= ⎪⎝⎭(0r =,1,2, (8).当4r =时,其展开式的常数项为448C 21120=;当=5r 时,其展开式中21x的系数为558C 21792=,则()82212x x x ⎛⎫-⋅+ ⎪⎝⎭的展开式中常数项为1120217922464-⨯=-.故答案为:2464-16.(2023上·山东·高二校联考阶段练习)()21nx x ++展开式中各项的系数可以仿照杨辉三角构造如图所示的广义杨辉三角,其性质是以下各行每个数是它正上方和左、右两边三个数的和(不足3个数时,用0补上),则()52(3)1x x x -++的展开式中,7x 项的系数为.【答案】45-【解析】根据题意,可得广义杨辉三角如图所示,可知()521x x ++的展开式中,6x 项的系数为745,x 项的系数为30,所以()()5231x x x -++的展开式中,7x 项的系数为14533045⨯-⨯=-.故答案为:45-四.解答题17.(2023·广东梅州)在二项式()92x y -的展开式中,求:(1)二项式系数之和;(2)各项系数之和;(3)所有偶数项系数之和;(4)系数绝对值之和.【答案】(1)512(2)1(3)9841-(4)19683【解析】(1)设()99872901292.x y a x a x y a x y a y -=++++ 二项式系数之和为012999999C C C C 2512++++== (2)设9987290129()2x y a x a x y a x y a y -=++++ ,则各项系数之和为0129a a a a ++++ ,令1,1,x y ==得()9012921 1.a a a a ++++=-= (3)由(2)知01291,a a a a ++++= 令1,1x y ==-可得:901293,a a a a -+--= 将两式相减,可得:9135791398412a a a a a -++++==-,故所有偶数项系数之和为9841-.(4)方法一:012901239,a a a a a a a a a ++++=-+-+- 令1,1,x y ==-则9012901239319683a a a a a a a a a ++++=-+-+-== 方法二:0129a a a a ++++ 即为()92x y +展开式中各项系数和,令1,1x y ==得90129319683a a a a ++++== 故系数绝对值之和为19683.18.(2023·全国·高二随堂练习)(1)求92x⎛⎝的展开式中的常数项;(2)若621x ax ⎛⎫+ ⎪⎝⎭的展开式中3x 的系数为52,求a 的值;(3)求(10611⎛⎝的展开式中的常数项;(4)若3nx ⎛⎫⎝的展开式中各项系数之和为128,求展开式中31x 的系数.【答案】答案见详解【解析】(1)设92x⎛⎝的展开式通项为:1r T +,则()()1199922199C 2C 21r r rr rr rr T x x r x -----+⎛⎫=⋅⋅-=⋅⋅-⋅ ⎪⎝⎭,当6r =时,6379C 2672T =⨯=;故92x⎛⎝的展开式中的常数项为672;(2)设621x ax ⎛⎫+ ⎪⎝⎭的展开式通项为:1r T +,则()62112316611C C r rrrr r r T xx x a a ---+⎛⎫⎛⎫=⋅⋅=⋅⋅ ⎪ ⎪⎝⎭⎝⎭,当3r =时,结合题意知此时3333334661515C C 222T x x a a a ⎛⎫⎛⎫=⋅⋅=⇒⋅=⇒= ⎪ ⎪⎝⎭⎝⎭;故a 的值为2;(3)设(10611⎛⎫ ⎪⎝⎭、的展开式通项分别为:11r m T H ++、,则3416110C C r m rm r m Tx H x -++==、,当0r m ==时,111T H ⨯=,当3,4r m ==时,454200T H ⨯=,当6,8r m ==时,7945T H ⨯=故(10611⎛⎝的展开式中的常数项为14200454246++=;(4)令1x =,则由题意可知21287n n =⇒=,设3nx ⎛⎫ ⎝的展开式通项为1r T +,则()()2577733177C 3C 31rrr r r r r r T x x x ----+⎛⎫=-=- ⎪⎝⎭,当6r =时,63377C 321T x x --=⨯=,故展开式中31x 的系数为21.19.(2023上·四川攀枝花·高二统考期末)从①第4项的系数与第2项的系数之比是74;②第3项与倒数第2项的二项式系数之和为36;这两个条件中任选一个,再解决补充完整的题目.已知()201221nn n x a a x a x a x -=+++⋅⋅⋅+(*N n ∈),且()21nx -的二项展开式中,____.(1)求n 的值;(2)①求二项展开式的中间项;②求123n a a a a +++⋅⋅⋅+的值.【答案】(1)条件选择见解析,8n =(2)①451120T x =;②831-.【解析】(1)若选择①第4项的系数与第2项的系数之比是74,则有()()()()()()33113112C 211273214244C 21 nn n n n n n n n n ----⋅⋅---⨯⨯=⋅⋅-==,化简可得24400n n --=,求得8n =或7n =-(舍去).若选择②第3项与倒数第2项的二项式系数之和为36,则有()221211C CC C 3622n nnnnn n n nn --+++=+===,化简可得2720n n +-=,求得8n =或9n =-(舍去).(2)由(1)可得8n =,①()821x -的二项展开式的中间项为()()454458C 211120T x x =⋅⋅-=.②二项式()821x -展开式的通项公式为()()()88888C 2112C rrrrr rr x x ---⋅⋅-=-⋅⋅⋅,所以0a 、2a 、4a 、6a 、8a 为正数,1a 、3a 、5a 、7a 为负数.在()828012821x a a x a x a x -=+++⋅⋅⋅+中,令00,1x a ==.再令1x =-,可得801238123831a a a a a a a a a =-+-+⋅⋅⋅+=++++⋅⋅⋅+,∴1238831a a a a +++⋅⋅⋅+=-.20.(2023下·江苏宿迁·高二统考期中)在()2021212222121D D D D D nn n n n nn n n n n x x x x x x ---++=+++++L 的展开式中,把0122,,,D D D D ,nn n n n 叫做三项式的n 次系数列.(1)求02463333D D D D +++的值;(2)根据二项式定理,将等式2(1)(1)(1)n n n x x x +=++的两边分别展开,可得左右两边的系数对应相等,如()()()()2222122C C C C C n n n nnnn=++++ ,利用上述思想方法,求001122202120212022202220232023202320232023202320232023202320232023202320232023D C D C D C D C D C D C -+--+- 的值.【答案】(1)14(2)0【解析】(1)230615563333(1)D D D D x x x x x ++=++++ 令1x =得:3015633333D D D D =++++ ①令=1x -得:015633331D D D D =-+-+ ②①+②得:02463333282(D D D D )=+++,所以02463333D D D D 14+++=.(2)因为321(1)(1)x x x x -=-++所以()202332023220231(1)(1)x x x x -=-++,右边展开式中含4046x 项的系数为001122202120212022202220232023202320232023202320232023202320232023202320232023D C D C D C D C D C D C -+--+- ,而展开式中左边含4046x 项的系数为0,所以001122202120212022202220232023202320232023202320232023202320232023202320232023D C D C D C D C D C D C 0-+--+-= .21.(2023北京)在()20122112121221D D D D D D D nr r r r n n n nn n n n n n n x x x x x x x x ++--++=+++⋅⋅⋅+++⋅⋅⋅++中,把0122D ,D ,D ,,D nn n n n ⋅⋅⋅叫做三项式系数.(1)当2n =时,写出三项式系数0123422222D ,D ,D ,D ,D 的值;(2)()()*na b n N +∈的展开式中,二项式系数可用杨辉三角表示,如图:第1行11第2行121第3行1331第4行14641第5行15101051…………当04n <≤,*n ∈N 时,类比杨辉三角,请列出三项式系数表;(3)求011223398989999999999999999999999999999D C D C D C D C D C D C -+-+⋅⋅⋅+-的值(可用组合数作答).【答案】(1)02D 1=,12D 2=,22D 3=,32D 2=,42D 1=;(2)系数表见解析;(3)3399C .【解析】(1)因为()2223411232x x x x x x ++=++++,所以02D 1=,12D 2=,22D 3=,32D 2=,42D 1=.(2)当04n <≤,*n ∈N 时,三项式系数表如下:第1行111第2行12321第3行1367631第4行14101619161041(3)()()()9999201223319719719819899999999999911D D D D D D x x x x x x x x++⋅-=++++⋅⋅⋅++()09919829798999999999999C C C C C x x x x ⋅-+-⋅⋅⋅++,其中含99x 项的系数为0011229898999999999999999999999999D C D C D C D C D C -+-⋅⋅⋅+-,又()()()99999923111x x x x ++⋅-=-,()9931x -的展开式中的第1r +项为()()9931991C rrrr T x -+=-,令()39999r -=,解得66r =,所以含99x 项的系数为66339999C C =;所以001122339898999966339999999999999999999999999999D C D C D C D C D C D C C C -+-+⋅⋅⋅+-==.22.(2023上·上海松江·高二上海市松江二中校考阶段练习)已知函数()y f x =,*x ∈N ,满足:①对任意*,a b ∈N ,都有()()()()af a bf b af b bf a +>+;②对任意*n ∈N 都有()3f f n n ⎡⎤=⎣⎦.(1)试证明:()f x 为*N 上的严格增函数;(2)求()()()1628f f f ++;(3)令()3nn a f =,*n ∈N ,试证明:121111424n n n a a a ≤+++<+ .【答案】(1)证明见解析(2)66。

高考专题 二项式定理(全解析)

高考专题 二项式定理(全解析)

1 / 4二项式定理一、选择题1.(求项的系数)5(2x +的展开式中,4x 的系数是( )A .40B .60C .80D .100【答案】C【解析】5(2x二项展开式的通项为5552155(2)2k k kkk kk T C x C x---+=⋅⋅=⋅⋅.令542k-=,得2k =. 因此,二项展开式中4x 的系数为235280C ⋅=,故选C .2.(知常数项求某一项的系数)若在(a +3x )(1−√x 3)8关于x 的展开式中,常数项为4,则x 2的系数是( ) A .56 B .-56 C .112 D .-112【答案】B【解析】由题意得(1−√x 3)8展开式的通项为T r+1=C 8r (−√x 3)r=(−1)r C 8r x r3,r =0,1,2,⋯,8, ∴(a +3x )(1−√x 3)8展开式的常数项为(−1)0C 8⋅a =a =4, ∴(4+3x )(1−√x 3)8展开式中x 2项为4⋅(−1)6C 86x 63+3x ⋅(−1)3C 83x 33=−56x 2∴展开式中x 2的系数是−56. 故选B3.(直常数项求参数)若6ax ⎛- ⎝展开式的常数项为60,则a 值为( )A .4B .4±C .2D .2±【答案】D【解析】因为6ax ⎛ ⎝展开式的通项为()()3666622166T 11k k k k k k k k k k C a x x C a x -----+=-=-,令3602k -=,则4k =,所以常数项为()44646160C a --=,即21560a =,所以2a =±. 故选D2 / 44.(奇数项系数的和)记6260126(1)(1)(1)...(1)x a a x a x a x -=+++++++,则0246a a a a +++=( )A .81B .365C .481D .728【答案】B【解析】令x=0得1=0126...a a a a ++++,令x=-2得601234563=a a a a a a a -+-+-+,所以0246a a a a +++=1+729=3652. 故选B5.(由系数二项式系数的和求参数)已知n的展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于 A .4 B .5 C .6 D .7【答案】C【解析】二项式n的各项系数的和为()1+34n n=,二项式n的各项二项式系数的和为()1+12n n=, 因为各项系数的和与其各项二项式系数的和之比为64,所以4=2642n nn =,6n =,故选C .二、填空题6.(集合关系判断)若)22nx -展开式中只有第六项的二项式系数最大,则展开式中的常数项是____.【答案】180【解析】因为)22nx -展开式中只有第六项的二项式系数最大,所以10n =,展开式的通项公式为5510221101022r rrr rrr r TC xC x---+=⋅⋅⋅=⋅⋅,令5502r-=,解得3 / 42r,所以展开式的常数项为22101280C ⋅=.7.(求系数最大项)61x x ⎛⎫- ⎪⎝⎭的展开式中,系数最大的项为第__________项.【答案】3或5【解析】61x x ⎛⎫- ⎪⎝⎭的展开式中系数与二项式系数只有符号差异,又中间项的二项式系数最大,中间项为第4项其系数为负,则第3,5项系数最大. 8.(二项展开式系数的性质应用)在()()25132x x +-的展开式中,所有的奇次幂的系数和为__________.【答案】478- 【解析】设()()25223456701234567132x x a a x a x a x a x a x a x a x +-=+++++++令1x =,得:0123456716a a a a a a a a =+++++++……① 令1x =-,得:01234567972a a a a a a a a =-+-+-+-……② ①-②得:()13579562a a a a -=+++ 解得:1357478a a a a +++=- 本题正确结果:478-9.(二项式与数列)已知数列{}n a 满足11a k=,k *∈N ,[]n a 表示不超过n a 的最大整数(如[]1,61=,记[]n n b a =,数列{}n b 的前n 项和为n T ).①若数列{}n a 是公差为1的等差数列,则4T =__________; ②若数列{}n a 是公比为1k +的等比数列,则n T =__________.【答案】6 ()211nk kn k+--【解析】①若数列{}n a 是公差为1的等差数列,且11a k =,*2k k N ≥∈,,则11(1,)n a n n n k=+-∈-,所以[]1n n b a n ==-,则401236T =+++=;故填6.4 / 4②若数列{}n a 是公比为1k +的等比数列,且11a k=,*2k k N ≥∈,,则 1112131211(1)(1)n n n n n n n a k k C k C kk k------=⋅+=⋅+++⋅⋅⋅+,则213111n n k n n n b k C k C -----=++⋅⋅⋅+, 221311101(2)(33)()n n k n n n T k k k k C k C -----=+++++++⋅⋅⋅+++⋅⋅⋅+22223332341451[123(1)](1?)(1)n n n n C C C k C C C k---=+++⋅⋅⋅+-++++⋅⋅+++++⋅⋅⋅++⋅⋅⋅+3422(1))2n n n n n n n C k C k C k --=+++⋅⋅⋅+ 223321()n n n n n C k C k C k k =++⋅⋅⋅+ 21[(1)1]n k nk k =+--;故填21[(1)1]n k nk k+--. 10.(二项式与函数)已知二进制和十进制可以相互转化,例如65432108912021212020212=⨯+⨯+⨯+⨯+⨯+⨯+⨯,则十进制数89转化为二进制数为2(1011001).将n 对应的二进制数中0的个数,记为n a (例如:24(100)=,251(110011)=,289(1011001)=,则42a =,512a =,893a =),记()2n a f n =,则2018201820182019(2)(21)(22)...(21)f f f f ++++++-=__________. 【答案】20183【解析】由题意得20182018201820192212221++-,,,,共201920182018222-=个数中所有的数转换为二进制后,总位数都为2019,且最高位都为1而除最高位之外的剩余2018位中,每一位都是0或者1 设其中的数x ,转换为二进制后有k 个0(0k 2018≤≤) ∴()2kf x =在这20182个数中,转换为二进制后有k 个0的数共有2018kC 个 ∴()()()()201820182018201820192018022122 (2)12k kk f f f f C =++++++-=∑由二项式定理,()201820182018201802123k kk C ==+=∑。

(完整版)二项式定理公式、各种例题讲解及练习

(完整版)二项式定理公式、各种例题讲解及练习

二项式定理例题讲解分 类 计 数 原 理分 步 计 数 原理做一件事,完成它有n 类不同的办法.第一类办法中有m1种方法,第二类办法中有m2种方法……,第n 类办法中有mn 种方法,则完成这件事共有:N=m1+m2+…+mn 种方法。

做一件事,完成它需要分成n 个步骤。

第一步中有m1种方法,第二步中有m2种方法……,第n 步中有mn 种方法,则完成这件事共有:N=m1 m2 … mn 种方法。

注意:处理实际问题时,要善于区分是用分类计数原理还是分步计数原理,这两个原理的标志是“分类”还是“分步骤”。

排列组合从n 个不同的元素中取m (m≤n)个元素,按照一定的顺序排成一排,叫做从n 个不同的元素中取m 个元素的排列。

从n 个不同的元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同的元素中取m 个元素的组合。

排列数组合数从n 个不同的元素中取m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,记为Pnm从n 个不同的元素中取m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,记为Cnm选排列数全排列数二项式定理二项展开式的性质(1)项数:n+1项(2)指数:各项中的a 的指数由n 起依次减少1,直至0为止;b 的指出从0起依次增加1,直至n 为止.而每项中a 与b 的指数之和均等于n 。

(3)二项式系数:各奇数项的二项式数之和等于各偶数项的二项式的系数之和例1.试求:(1)(x 3-22x )5的展开式中x 5的系数; (2)(2x 2-x 1)6的展开式中的常数项;(3)(x -1)9的展开式中系数最大的项;(4)在1003)23(+x 的展开式中,系数为有理数的项的个数.解:(1)T r +1=rr r r r rx C xx C 51552535)2()2()(---=-依题意15-5r =5,解得r =2故(-2)2rC 5=40为所求x 5的系数(2)T r +1=rC 6(2x 2)6- rr x)1(-=(-1)r ·26- r ·r r x C 3126- 依题意12-3r =0,解得r =4故4)1(-·2226C =60为所求的常数项.(3)T r +1=r )1(-r r x C -99∵1265949==C C ,而(-1)4=1,(-1)5=-1∴ T 5=126x 5是所求系数最大的项(4)T r +1=r r rrr r r x C x C ---⋅⋅=1003250100310010023)2()3(,要使x 的系数为有理数,指数50-2r与3r 都必须是整数, 因此r 应是6的倍数,即r =6k (k ∈Z ), 又0≤6k ≤100,解得0≤k ≤1632(k ∈Z ) ∴x 的系数为有理数的项共有17项.评述 求二项展开式中具有某特定性质的项,关键是确定r 的值或取值范围.应当注意的是二项式系数与二项展开式中各项的系数不是同一概念,要加以区分.例2.试求:(1)(x +2)10(x 2-1)的展开式中x 10的系数;(2)(x -1)-(x -1)2+(x -1)3-(x -1)4+(x -1)5的展开式中x 2的系数;(3)321⎪⎪⎭⎫ ⎝⎛-+x x 的展开式中的常数项。

(完整版)二项式定理(习题含答案)

(完整版)二项式定理(习题含答案)

二项式定理一、求展开式中特定项1、在30的展开式中,x 的幂指数是整数的共有( )A .4项 B .5项 C .6项 D .7项【答案】C【解析】()r r rrr r x C x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=,30......2,1,0=r ,若要是幂指数是整数,所以=r 0,6,12,18,24,30,所以共6项,故选C . 3、若2531()x x +展开式中的常数项为 .(用数字作答)【答案】10【解】由题意得,令1x =,可得展示式中各项的系数的和为32,所以232n =,解得5n =,所以2531()x x +展开式的通项为10515r r r T C x -+=,当2r =时,常数项为2510C =,4、二项式82x的展开式中的常数项为 .【答案】112【解析】由二项式通项可得,3488838122rrr r rr r x C xx C --+-=-=)()()(T (r=0,1,,8),显然当2=r 时,1123=T ,故二项式展开式中的常数项为112.5、41(23)x x--的展开式中常数项等于________.【答案】14.【解析】因为41(2)(13)x x--中4(13)x -的展开式通项为4C (3)r r x -,当第一项取2时,04C 1=,此时的展开式中常数为2;当第一项取1x-时,14C (3)12x -=-,此时的展开式中常数为12;所以原式的展开式中常数项等于14,故应填14.6、设20sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰,则()622x ⎛-⋅+ ⎝的展开式中常数项是 .【答案】332=-332()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ⎛⎫=-+=+=-+= ⎪⎝⎭⎰⎰,6(=6的展开式的通项为663166((1)2r r rr r r r r T C C x ---+==-⋅⋅,所以所求常数项为3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-.二、求特定项系数或系数和7、8()x -的展开式中62x y 项的系数是( )A .56B .56-C .28D .28-【答案】A【解析】由通式r r r y x C )2(88--,令2=r ,则展开式中62x y 项的系数是56)2(228=-C .8、在x (1+x )6的展开式中,含x 3项的系数是 .【答案】15【解】()61x +的通项16r rr T C x +=,令2r =可得2615C =.则()61x x +中3x 的系数为15.9、在6(1)(2)x x -⋅-的展开式中含3x 的项的系数是 .【解析】6(1)(2)x x -⋅-的展开式中3x 项由336)(2x C -和226)(x -x C -⋅)(两部分组成,所以3x 的项的系数为552-2636-=-C C .10、已知dx x n 16e 1⎰=,那么nxx (3-展开式中含2x 项的系数为 .【答案】135【解析】根据题意,66e111ln |6e n dx x x=⎰==,则n x x )(3-中,由二项式定理的通项公式1r n r rr n T C a b -+=,可设含2x 项的项是616(3)r r r r T C x -+=-,可知2r =,所以系数为269135C ⨯=.11、已知()()()()10210012101111x a a x a x a x +=+-+-++-L ,则8a 等于( )A .-5B .5C .90D .180【答案】D 因为1010(1)(21)x x +=-+-,所以8a 等于8210(2)454180.C -=⨯=选D.12、在二项式1)2nx -的展开式中,只有第5项的二项式系数最大,则=n ________;展开式中的第4项=_______.【答案】8,1937x -.【解析】由二项式定理展开通项公式21()(2)33111()()22n r n r r r r r rr nn T C x x C x -++=-⋅=-,由题意得,当且仅当4n =时,rn C 取最大值,∴8n =,第4项为1193)333381()72C x x +-=-.13、如果7270127(12)x a a x a x a x -=++++ ,那么017a a a +++ 的值等于( )(A )-1 (B )-2 (C )0 (D )2【解析】令1x =,代入二项式7270127(12)x a a x a x a x -=++++ ,得70127(12)1a a a a -=++++=- ,令0x =,代入二项式7270127(12)x a a x a x a x -=++++ ,得70(10)1a -==,所以12711a a a ++++=- ,即1272a a a +++=- ,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7 =﹣1,15、(x﹣2)(x﹣1)5的展开式中所有项的系数和等于 【答案】0解:在(x﹣2)(x﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0,所以展开式中所有项的系数和等于0.16、在*3)()n n N ∈的展开式中,所有项的系数和为32-,则1x 的系数等于.【答案】270-【解析】当1=x 时,()322--=n,解得5=n ,那么含x1的项就是()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯,所以系数是-270.17、设0(sin cos )k x x dx π=-⎰,若8822108)1(x a x a x a a kx ++++=- ,则1238a a a a +++⋅⋅⋅+= .【答案】0.【解析】由0(sin cos )(cos sin )k x x dx x x ππ=-=--⎰(cos sin )(cos 0sin 0)2ππ=-----=,令1x =得:80128(121)a a a a -⨯=++++ ,即01281a a a a ++++= 再令0x =得:80128(120)000a a a a -⨯=+⨯+⨯++⨯ ,即01a =所以12380a a a a +++⋅⋅⋅+=18、设(5x﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M﹣N=240,则展开式中x 的系数为 .【答案】150解:由于(5x﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由二项式系数和为N=2n ,且M﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0.解得 2n =16,或 2n =﹣15(舍去),∴n=4.(5x﹣)n 的展开式的通项公式为 T r+1=?(5x )4﹣r ?(﹣1)r ?=(﹣1)r?54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r?54﹣r =1×6×25=150,19、设8877108)1(x a x a x a a x ++++=- ,则178a a a +++= .【答案】255【解析】178a a a +++= 87654321a a a a a a a a +-+-+-+-,所以令1-=x ,得到=82876543210a a a a a a a a a +-+-+-+-,所以2551256-20887654321=-==+-+-+-+-a a a a a a a a a 三、求参数问题20、若n的展开式中第四项为常数项,则n =( )A .4B .5C .6D .7【答案】B【解析】根据二项式展开公式有第四项为2533333342)21()(---==n nn nxC xx C T ,第四项为常数,则必有025=-n ,即5=n ,所以正确选项为B.21、二项式)()1(*N n x n ∈+的展开式中2x 的系数为15,则=n ( )A 、5 B 、 6 C 、8 D 、10【答案】B【解析】二项式)()1(*N n x n ∈+的展开式中的通项为k n kn k x C T -+⋅=1,令2=-k n ,得2-=n k ,所以2x 的系数为152)1(22=-==-n n C C n n n ,解得6=n ;故选B .22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵4r+14T =C r r r a x -,∴当43r -=,即1r =时,133324T =C 48,2ax ax x a ==∴=.23、若()()411x ax ++的展开式中2x 的系数为10,则实数a =( )A1 B .53-或1 C .2或53- D. 【答案】B.【解析】由题意得4(1)ax +的一次性与二次项系数之和为14,其二项展开通项公式14r r rr T C a x +=,∴22144101C a C a a +=⇒=或53-,故选B .24、设23(1)(1)(1)(1)n x x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+,当012254n a a a a +++⋅⋅⋅+=时,n 等于( )A .5B .6C .7D .8【答案】C. 【解析】令1x =,则可得2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-,故选C .四、其他相关问题25、20152015除以8的余数为( )【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数.试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,。

二项式定理归类(解析版)

二项式定理归类(解析版)

专题28二项式定理归类目录【题型一】二项式通项公式.............................................................................................................1【题型二】积型求某项.....................................................................................................................3【题型三】展开式二项式系数和...................................................................................................4【题型四】展开式各项系数和.........................................................................................................5【题型五】赋值法求部分项系数和.................................................................................................7【题型六】换元型赋值求系数与系数和.........................................................................................8【题型七】求系数最大项...............................................................................................................10【题型八】杨辉三角形应用...........................................................................................................11【题型九】三项展开式...................................................................................................................13培优第一阶——基础过关练...........................................................................................................15培优第二阶——能力提升练...........................................................................................................17培优第三阶——培优拔尖练.. (19)【题型一】二项式通项公式【典例分析】二项式5的展开式中常数项为()A .80B .80-C .40-D .40【答案】B【分析】求出展开式的通项,再令x 的指数等于0,即可得出答案.【详解】解:二项式5的展开式的通项为()15556155C 2C kkkk kkk T x --+⎛=⋅-=- ⎝,令15506k-=,则3k =,所以常数项为()3352C 80-=-.故选:B.1.将二项式8的展开式中所有项重新排成一列,有理式不相邻的排法种数为()A .37A B .6366A A C .6367A A D .7377A A 【答案】C【分析】先利用二项式定理判断其展开式中有理式的项数,再利用插空法进行排列即可.【详解】根据题意,得816324418811C C C 22k k kk k kkk k k T x x x ----+⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,因为08k ≤≤且*N k ∈,当0k =时,16344k-=,即1T 为有理式;当4k =时,16314k-=,即5T 为有理式;当8k =时,16324k-=-,即9T 为有理式;当{}1,2,3,5,6,7k ∈时,163Z 4k-∉,即k T 为无理式;所以8展开式一共有9个项,有3个有理式,6个无理式,先对6个无理式进行排列,共有66A 种方法;再将3个有理式利用“插空法”插入这6个无理式中,共有37A 种方法;利用分步乘法计数原理可得,一共有6367A A 种方法.故选:C.2.在72x x ⎛⎫- ⎪⎝⎭的展开式中,1x 的系数是()A .35B .35-C .560D .560-【答案】C【分析】利用二项式展开式的通项公式,求得展开式中1x的系数.【详解】二项式72x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为()7727722rr rr r r C x C x x --⎛⎫⋅⋅-=-⋅⋅ ⎪⎝⎭,令7214r r -=-⇒=,所以72x x ⎛⎫- ⎪⎝⎭的展开式中1x 的系数为()44721635560C -⋅=⨯=.故选:C3..在622x x ⎛⎫- ⎪⎝⎭的展开式中,第四项为()A .160B .160-C .3160x D .3160x -【答案】D【分析】直接根据二项展开式的通项求第四项即可.【详解】在622x x ⎛⎫- ⎪⎝⎭的展开式中,第四项为()()333323334662C 2C 160T x x x x ⎛⎫=-=-=- ⎪⎝⎭.故选:D.【题型二】积型求某项【典例分析】已知()511a x x ⎛⎫++ ⎪⎝⎭的展开式中31x 的系数为10,则实数a 的值为()A .12-B .12C .2-D .2【答案】B【分析】因为()555111111a x a x x x x ⎛⎫⎛⎫⎛⎫++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,结合二项展开的通项公式运算求解.【详解】511x ⎛⎫+ ⎪⎝⎭的展开式的通项公式为515511C 1C rrr r r r T x x -+⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭,0,1,2,3,4,5r =,∵()555111111a x a x x x x ⎛⎫⎛⎫⎛⎫++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴3455C C 10510a a +=+=,解得12a =,故选:B.【变式训练】1..()()8x y x y -+的展开式中36x y 的系数为()A .28B .28-C .56D .56-【答案】B【分析】由二项式定理将8()x y +展开,然后得出8()()x y x y -+,即可求出36x y 的系数.【详解】由二项式定理:8()()x y x y -+080171808888()(C C C )x y x y x y x y =-+++080171808080171808888888(C C C )(C C C )x x y x y x y y x y x y x y =+++-+++090181818081172809888888(C C C )(C C C )x y x y x y x y x y x y =+++-+++观察可知36x y 的系数为6523888887876C C C C 2821321⨯⨯⨯-=-==-⨯⨯⨯.故选:B.2.在()()2311x x +-展开式中,含4x 项的系数是()A .5-B .5C .1-D .1【答案】D【分析】由题意可得()()()()233211121x x x x x +-=++-,再对()31x -借助于二项展开式分析运算.【详解】∵()()()()233211121x x x x x +-=++-,且()31x -的展开式的通项为()()3133C 11C ,0,1,2,3rrr r r rr T x x r -+=⨯⨯-=-=,则含4x 项的系数是()()32323321C 11C 1⨯-+⨯-=.故选:D.3.()412x x x ⎛⎫++ ⎪⎝⎭的展开式中,常数项为()A .2B .6C .8D .12【答案】D【分析】先将()412x x x ⎛⎫++ ⎪⎝⎭展开,再求,41x x ⎛⎫+ ⎪⎝⎭展开式的通项,即可求出答案.【详解】()4442=11+12x x x x x x x x ⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,41x x ⎛⎫+ ⎪⎝⎭展开式的通项为:4421441C C rr r r r r T x x x --+⎛⎫== ⎪⎝⎭,当420r -=即2r =时,242C =12⋅,所以()412x x x ⎛⎫++ ⎪⎝⎭的展开式中,常数项为12.故选:D.【题型三】展开式二项式系数和【典例分析】.()101x -的展开式中所有奇数项的二项式系数和为().A .128B .256C .512D .1024【答案】C【分析】根据奇数项的二项式系数和为22n计算可得;【详解】解:()101x -的展开式中所有奇数项的二项式系数和为1025122=,故选:C .【变式训练】1.已知2(n x的展开式中,各二项式系数和为64,则x 7的系数为()A .15B .20C .60D .80【答案】C【分析】由二项式系数和求得n ,再利用通项可得x 7的系数.【详解】由二项式系数和为264n =,解得6n =,通项为()512622166C C 2rr rr r r r T x x --+==,令51272-=r ,得2r =,则x 7的系数为226260C =.故选:C.2.已知()2*2nx n x ⎛⎫-∈ ⎪⎝⎭N 的展开式中各项的二项式系数之和为64,则其展开式中3x 的系数为()A .240-B .240C .160-D .160【答案】C【分析】由二项式系数的性质求出n ,写出二项展开式的通项公式,令x 的指数为3,即可得出答案.【详解】由展开式中各项的二项式系数之和为64,得264n =,得6n =.∵622x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为()()()621231662C 1C ·2·1rrrr r r rr r T x x x --+⎛⎫=-=- ⎪⎝⎭,令1233r -=,则3r =,所以其展开式中3x 的系数为()3336C 21160⨯⨯-=-.故选:C.3.已知二项式212mx x ⎛⎫+ ⎝⎭的展开式的二项式系数之和为64,则展开式中含x 3项的系数是()A .1B .32C .52D .3【答案】D【分析】由二项式系数的和的公式解得m 的值,运用二项展开式的通项公式解出r 的值,进而可得3x 项的系数.【详解】由题意知,264m =,解得:6m =,所以621()2x x +的二项展开式的通项公式为663166211C C 22rr r r rr r T x x x --+⎛⎫=⋅= ⎪⎝⎭,令6-3r =3,得r =1,故含3x 项的系数为161132C =.故选:D.【题型四】展开式各项系数和【典例分析】在3nx⎛⎝的展开式中,各项系数与二项式系数和之比为64,则该展开式中的常数项为()A .15B .45C .135D .405【答案】C【分析】令1x =可得展开式各项系数和,再由二项式系数和为2n ,即可得到方程,求出n ,再写出二项式展开式的通项,令x 的指数为0,即可求出r ,再代入计算可得;【详解】解:对于3nx ⎛ ⎝,令1x =,可得各项系数和为4n ,又二项式系数和为2n,所以6426422nn n ===,解得6n =,所以63x ⎛+ ⎝展开式的通项为()36662166C 3C 3rr r r r r r T x x ---+=⋅=⋅,令3602r -=,解得4r =,所以42056C 3135T x =⋅=;故选:C1..0x ∀≠,101x x ⎛⎫+ ⎪⎝⎭可以写成关于221x x ⎛⎫+ ⎪⎝⎭的多项式,则该多项式各项系数之和为().A .240B .241C .242D .243【答案】D【分析】利用换元法,将101x x ⎛⎫+ ⎪⎝⎭转化为()52t +,从而利用赋值法即可求得该多项式各项系数之和.【详解】因为222112x x x x ⎛⎫+=++ ⎪⎝⎭,令221t x x =+,则()5105221122x x t x x ⎡⎤⎛⎫⎛⎫+=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令1t =,则()5523243t +==,所以该多项式各项系数之和为243.故选:D.2.已知二项式1nx ⎛⎫ ⎪⎝⎭的展开式中,所有项的系数之和为32,则该展开式中x 的系数为()A .405-B .405C .81-D .81【答案】A【分析】根据二项式定理,写出通项公式,求出指定项的系数.【详解】令1x =,可得所有项的系数之和为2325n n =⇔=,则11(5)(52)5522155(1)3C (1)3C r r r r rr rr rr r Tx xx------+=-=-,由题意5312r-=,即1r =,所以展开式中含x 项的系数为4153C 405-=-.故选:A .3.已知5312a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为4,则该展开式中的常数项为()A .200B .280C .200-D .280-【答案】D【分析】根据题意将1x =代入,由各项系数的和为4可求得a 的值,再根据二次项展开式求出512x x ⎛⎫- ⎪⎝⎭的通项()5521512C rr r rr T x --+=-,分别与x 和33x相乘得到常数项,可求出r 的值,再合并即可得到结果.【详解】由题意,令1x =,得到展开式的各项系数和为1a +,所以14a +=,解得3a =.所以55553331311312222a x x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-=+-=-+- ⎪⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,512x x ⎛⎫- ⎪⎝⎭展开式的通项为()5521512C r r r rr T x --+=-,令521r -=-,解得3r =;令523-=r ,解得1r =,所以展开式中的常数项为()()35335115512C 312C 280---⨯+⨯-⨯=-.选项D 正确,故选D.【题型五】赋值法求部分项系数和【典例分析】若()6652460126x y a y a xy a x y a x +=+++⋅⋅⋅+,则()()220246135a a a a a a a +++-++的值为()A .0B .32C .64D .128【答案】A【分析】先利用赋值法求得0123456a a a a a a a -+-+-+和0123456a a a a a a a ++++++的值,进而求得()()220246135a a a a a a a +++-++的值.【详解】1x =,1y =-时,01234560a a a a a a a =-+-+-+1x =,1y =时,012345664a a a a a a a =++++++()()220246135a a a a a a a +++-++()()012345601234560640a a a a a a a a a a a a a a =-+-+-+++++++=⨯=,故选:A.【变式训练】1.已知()727012752x a a x a x a x -=++++,则0127a a a a ++++=()A .128B .2187C .78125D .823543【答案】D【分析】由展开式通项公式可得系数0246a a a a 、、、小于0,系数1357a a a a 、、、大于0,由赋值法令=1x -,所求值即为()7-5-1-2⨯⎡⎤⎣⎦.【详解】()752x -的展开式中第1k +项为()()()77771777C 52C 52=kkkk k kk k k k T x x a x ----+-=-=-,故系数()777C 52kk kk a --=-,即当k 为奇数时,系数0246a a a a 、、、小于0,当k 为偶数时,系数1357a a a a 、、、大于0.()7012701234567-823543----5-1-2a a a a a a a a a a a a ++++=++++=⨯=⎡⎤⎣⎦.故选:D2.()4234012341x a a x a x a x a x +=++++,则01234a a a a a -+-+=()A .1B .3C .0D .3-【答案】C【分析】根据展开式,利用赋值法取=1x -即得.【详解】因为()4234012341x a a x a x a x a x +=++++,令=1x -,可得()401234110a a a a a -+-+=-=.故选:C.3.已知()()4529012912x x a a x a x a x -+=++++,则2468a a a a +++=()A .40B .8C .16-D .24-【答案】D【分析】设45()(1)(2)f x x x =-+,根据二项式展开式可得0(0)a f =、02468(1)(1)2f f a a a a a -+++++=,即可求解.【详解】设45()(1)(2)f x x x =-+,则50(0)232a f ===,0129(1)0a a a a f ++++==4012349(1)216a a a a a a f -+-+--=-==,所以02468(1)(1)82f f a a a a a -+++++==,所以246883224a a a a +++=-=-.故选:D.【题型六】换元型赋值求系数与系数和【典例分析】已知()()()()20232202301220232111x a a x a x a x -=+++++++,则0122023a a a a ++++=()A .40462B .1C .20232D .0【答案】A【分析】首先利用换元,转化为()20232202301220233t a a t a t a t -=++++,再去绝对值后,赋值求和.【详解】令1t x =+,可得1x t =-,则()()20232023220230122023213t t a a t a t a t --=-=++++⎡⎤⎣⎦,二项式()20233t -的展开式通项为()202312023C 3rr rr T t -+=⋅⋅-,则()20232023C 31(02023rr rr a r -=⋅⋅-≤≤且N)r ∈.当r 为奇数时,0r a <,当r 为偶数时,0r a >,因此,()2023404601220210122023312a a a a a a a a ++++=-+--=+=.故选:A .1.已知10111012C C n n =,设()()()()201223111n nn x a a x a x a x -=+-+-++-,下列说法:①2023n =,②20233n a =-,③0121n a a a a ++++=,④展开式中所有项的二项式系数和为1.其中正确的个数有()A .0B .1C .2D .3【答案】C【分析】根据组合数的性质求得n ,根据二项式展开式的通项公式、赋值法、二项式系数和的知识求得正确答案.【详解】101110122023n =+=,①对.()20232202301220232023(23)(1)(1)(1211)x a a x a x a x x -=+-+-+=--⎡⎤⎦+-⎣,所以02023202320232023C 22n a a =⋅==,②错.令2x =得0121n a a a a ++++=,③对.展开式中所有项的二项式系数和为20232,④错.所以正确的说法有2个.故选:C2.已知36C C n n =,设()()()()201223111n n n x a a x a x a x -=+-+-+⋅⋅⋅+-,则12n a a a ++⋅⋅⋅+=()A .1-B .0C .1D .2【答案】D【分析】利用组合数的性质可求得n 的值,再利用赋值法可求得0a 和012n a a a a +++⋅⋅⋅+的值,作差可得出所求代数式的值.【详解】因为36C C n n =,所以由组合数的性质得369n =+=,所以()()()()929012923111x a a x a x a x -=+-+-+⋅⋅⋅+-,令2x =,得()90129223a a a a ⨯-=+++⋅⋅⋅+,即01291a a a a +++⋅⋅⋅+=.令1x =,得()902131a ⨯-==-,所以()()12901290112a a a a a a a a +++=+⋅⋅⋅⋅++⋅=⋅+---=,故选:D.3..已知(1)n x -的二项展开式的奇数项二项式系数和为64,若()2012(1)1(1)(1)n n n x a a x a x a x -=+++++⋯++,则1a 等于()A .192B .448C .192-D .448-【答案】B【分析】根据奇数项二项式系数和公式求出n ,再利用展开式求1a .【详解】(1)n x -的二项展开式的奇数项二项式系数和为64,1264n -∴=,即7n =;则77(1)[(1)2]x x -=+-的通项公式为717C (1)(2)k k kk T x -+=+-,令71k -=,则6k =,所以6617C (2)448a =⨯-=.故选:B【题型七】求系数最大项【典例分析】已知22nx ⎫+⎪⎭的展开式中,第3项的系数与倒数第3项的系数之比为116,则展开式中二项式系数最大的项为第()项.A .3B .4C .5D .6【答案】C【分析】先求出二项式展开的通项公式,分别求出第3项的系数与倒数第3项的系数,由题意得到关于n 的方程,即可确定其展开式二项式系数最大项.【详解】22nx ⎫⎪⎭的展开式通项公式为52122C C 2rn r n r r r rr n n T x x --+⎛⎫==⋅⋅ ⎪⎝⎭,则第3项的系数为22C 2n ⋅,倒数第3项的系数为22C 2n n n --⋅,因为第3项的系数与倒数第3项的系数之比为116,所以22422C 212C 216n n n n ---⋅==⋅,所以2226C 2C 2n n n n --⋅=⋅,解得8n =,所以展开式中二项式系数最大的项为第5项,故选:C 【变式训练】1.已知2nx ⎫⎪⎭的展开式中只有第5项是二项式系数最大,则该展开式中各项系数的最小值为()A .448-B .1024-C .1792-D .5376-【答案】C【分析】先根据二项式系数的性质可得=8n ,再结合二项展开式的通项求各项系数()82C r rr a =-,分析列式求系数最小项时r 的值,代入求系数的最小值.【详解】∵展开式中只有第5项是二项式系数最大,则=8n∴展开式的通项为()83821882C 2C ,0,1,...,8rr rr rr r T x r x --+⎛⎫=-=-= ⎪⎝⎭则该展开式中各项系数()82C ,0,1,...,8r rr a r =-=若求系数的最小值,则r 为奇数且+2200r r r r a a a a --≤-≤⎧⎨⎩,即()()()()+2+28822882C 2C 02C 2C 0r r r r r r r r -----≤---≤⎧⎪⎨⎪⎩,解得=5r ∴系数的最小值为()55582C 1792a =-=-故选:C.2.已知m 为正整数,()2m x y +展开式的二项式系数的最大值为a ,()21m x y ++展开式的二项式系数的最大值为b ,且137a b =,则m 的值为()A .4B .5C .6D .7【答案】C【分析】根据二项式系数的性质确定,a b ,由关系137a b =列方程求m 的值.【详解】由题意可知221C ,C m mm m a b +==,137a b =,22113C 7C m mm m +∴=,即()()()2!21!137!!!1!m m m m m m +=⋅⋅+,211371m m +∴=⨯+,解得6m =.故选:C .3.已知()*(1),n mx n m +∈∈N R 的展开式只有第5项的二项式系数最大,设2012(1)n n n mx a a x a x a x +=++++,若18a =,则23n a a a +++=()A .63B .64C .247D .255【答案】C【分析】根据二项式系数的性质求出n ,根据18a =求出m ,再由赋值法求解即可.【详解】因为展开式只有第5项的二项式系数最大,所以展开式共9项,所以8n =,718C 8a m =⋅=,∴1m =,∴8280128(1)x a a x a x a x +=++++,令1x =,得8012382256a a a a a +++++==,令0x =,得01a =,∴2325681247n a a a +++=--=.故选:C .【题型八】杨辉三角形应用【典例分析】“杨辉三角”是中国古代数学文化的瑰宝之一,它揭示了二项式展开式中的组合数在三角形数表中的一种几何排列规律,如图所示,则下列关于“杨辉三角”的结论正确的是()A .222234510C C C C 165+++⋅⋅⋅+=B .在第2022行中第1011个数最大C .第6行的第7个数、第7行的第7个数及第8行的第7个数之和等于9行的第8个数D .第34行中第15个数与第16个数之比为2:3【答案】C【分析】A 选项由11C C C m m m n n n -++=及22222322234510334510C C C C C C C C C 1++++=+++++-即可判断;B 选项由二项式系数的增减性即可判断;C 选项由11C C C m m m n n n -++=及6767C C =即可判断;D 选项直接计算比值即可判断.【详解】由11C C C m m m n n n -++=可得22222322234510334510C C C C C C C C C 1++++=+++++-32223445101111109C C C C 1C 11164321⨯⨯=++++-=-=-=⨯⨯,故A 错误;第2022行中第1011个数为1010101120222022C C <,故B 错误;666766767678778889C C C C C C C C C ++=++=+=,故C 正确;第34行中第15个数与第16个数之比为14153434343321343320C :C :15:203:4141311514131⨯⨯⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯,故D 错误.故选:C.【变式训练】1.将三项式展开,得到下列等式:20(1)1a a ++=212(1)1a a a a ++=++22432(1)2321a a a a a a ++=++++2365432(1)367631a a a a a a a a ++=++++++⋯观察多项式系数之间的关系,可以仿照杨辉三角构造如图所示的广义杨辉三角形,其构造方法为:第0行为1,以下各行每个数是它正上方与左右两肩上的3个数(不足3个数时,缺少的数以0计)之和,第k 行共有21k +个数.则关于x 的多项式()2253(1)a ax x x +-++的展开式中,8x 项的系数()A .()2151a a +-B .()2151a a ++C .()21523a a ++D .()21523a a +-【答案】D【分析】直接利用广义杨辉三角和数据的组合的应用求出结果.【详解】根据广义杨辉三角的定义:()5210987654321151530455145301551a a a a a a a a a a a a ++=++++++++++;故()5210987654321151530455145301551x x x x x x x x x x x x ++=++++++++++;关于x 的多项式()()52231a ax x x +-++的展开式中8x 项的系数为()()22315301523aa a a -⨯+⨯=+-.故选:D .2.当N n ∈时,将三项式()21nx x ++展开,可得到如图所示的三项展开式和“广义杨辉三角形”:若在()()5211ax x x +++的展开式中,8x 的系数为75,则实数a 的值为()A .1B .1-C .2D .2-【答案】C【分析】根据广义杨辉三角形可得出()521x x ++的展开式,可得出()()5211ax x x +++的展开式中8x 的系数,即可求得a 的值.【详解】由广义杨辉三角形可得()521098765432151530455145301551xx x x x x x x x x x x ++=++++++++++,故()()5211ax x x +++的展开式中,8x 的系数为153075a +=,解得2a =.故选:C.3.如图,在由二项式系数所构成的杨辉三角形中,若第n 行中从左至右第14与第15个数的比为2:3,则n 的值为___________.【答案】34【分析】根据杨辉三角形中数据的规律可以写出第n 行中从左至右第14与第15个数的表达式,根据比例结果可计算得n 的值.【详解】由题意可知,根据数字规律可以看出第n 行中从左至右第m 个数为1C m n -所以,第n 行中从左至右第14与第15个数分别是13C n 和14C n ;即1314C 2C 3nn =,由组合数计算公式!C !()!m nn m n m =-可得142133n =-,计算的34n =;故答案为:34.【题型九】三项展开式【典例分析】下列各式中,不是()422a a b +-的展开式中的项是()A .78aB .426a bC .332a b -D .3224a b -【答案】D【分析】根据题意多项式展开式中,有一个因式选2a ,有2个因式选b -,其余的2个因式选2a ,有1个因式选b -,剩下的3个因式选2a ,分别计算所得项,即可得到结果.【详解】()422a a b +-表示4个因式22a a b +-的乘积,在这4个因式中,有一个因式选2a ,其余的3个因式选2a ,所得的项为()3132743C 2C 8a aa ⨯⨯=,所以78a 是()422a a b +-的展开式中的项,在这4个因式中,有2个因式选b -,其余的2个因式选2a ,所得的项为()()222224242C C 6b a a b ⨯-⨯⨯=,所以426a b 是()422a a b +-的展开式中的项,在这4个因式中,有1个因式选b -,剩下的3个因式选2a ,所得的项为()()313343C C 232b a a b ⨯-⨯=-,所以332a b -是()422a a b +-的展开式中的项,在这4个因式中,有2个因式选b -,其余的2个因式中有一个选2a ,剩下的一个因式选2a ,所得的项为()()2212132421C C C 224b a a a b ⨯-⨯⨯⨯⨯=,所以3224a b -不是()422a a b +-的展开式中的项.故选:D.三项展开式的通项公式:1.411()x y x y+--的展开式的常数项为A .36B .36-C .48D .48-【答案】A【分析】先对多项式进行变行转化成441()1x y xy ⎛⎫+- ⎪⎝⎭,其展开式要出现常数项,只能第1个括号出22x y 项,第2个括号出221x y 项.【详解】∵4444111()1x y x y x y x y x y xy xy ⎛⎫⎛⎫⎛⎫++--=+-=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴411x y x y ⎛⎫+-- ⎪⎝⎭的展开式中的常数项为22244222(C (C 361))x y x y ⨯=.故选:A.2.在()621x x +-的展开式中,含3x 项的系数为()A .30-B .10-C .30D .50【答案】B【分析】把()621x x +-看成6个()21x x +-相乘,利用分类加法计数原理和分步乘法计数原理,即可得到结果.【详解】()621x x +-是6个()21x x +-相乘,需要依次从每个()21x x +-的三项(1,x ,2x -)中选出一项后相乘,就可得到展开式中的一项.得到3x 项的方法有两类:第一类是,6个()21x x +-的1个()21x x +-里选出x ,1个()21x x +-里选出2x -,其余()21x x +-里选出1,相乘得3x -,这类方法,共可得到114654CC C 30⨯⨯=个3x -,合并同类项后即得到330x -;第二类是,6个()21x x +-的3个()21x x +-里选出x ,其余()21x x +-里选出1,相乘得3x ,这类方法,共可得到3363C C 20⨯=个3x ,合并同类项后即得到320x .再将上述两项合并,得333302010x x x -+=-,因此3x 项的系数为10-.故选:B.3.()823x y z ++的展开式中,共有多少项?()A .45B .36C .28D .21【答案】A【分析】按照展开式项含有字母个数分类,即可求出项数.【详解】解:当()823x y z ++展开式的项只含有1个字母时,有3项,当()823x y z ++展开式的项只含有2个字母时,有2137C C 21=项,当()823x y z ++展开式的项含有3个字母时,有27C 21=项,所以()823x y z ++的展开式共有45项;故选:A.培优第一阶——基础过关练1.()()412x x --的展开式中,3x 项的系数为()A .2B .14C .48D .2-【答案】B 【分析】3x 项由()41x -的2x 项与x 的积和()41x -的3x 项和2-的积组成,再结合二项式定理得出系数.【详解】()41x -展开式的通项为()441C rr rx--,在()()412x x --中,3x 项由()41x -的2x 项与x 的积和()41x -的3x 项和2-的积组成,故可得3x 的系数为()()()2121441C 11C 214-⨯+-⨯-=.故选:B .2.6⎛⎫ ⎪⎝⎭的展开式中3x 的系数为()A .160-B .64-C .64D .160【答案】C【分析】在二项展开式的通项公式中令x 的幂指数为3,求出r 的值,即可求得3x 的系数.【详解】6的展开式的通项公式为663166C (C 2(1)r r r r rr r r T x ---+==⋅-⋅,令33r -=,则0r =,故展开式中3x 的系数为0606C 2(1)64⋅-=.故选:C.3.已知1021001210(1)-=++++x a a x a x a x ,则()01210+++=a a a a ()A .10-B .10C .1D .1-【答案】D【分析】赋值法分别求0a 和1210a a a +++即可.【详解】令0x =可得01a =,令1x =可得012100a a a a ++++=即121001a a a a +++=-=-,所以()012101a a a a +++=-.故选:D.4.在4(1)(12)()a x y a ++∈N 的展开式中,记m n x y 项的系数为(),f m n ,若()()0,11,06f f +=,则a 的值为()A .0B .1C .2D .3【答案】B【分析】利用二项式定理展开公式求解.【详解】()01140,1C C 2,a f =⋅()1041,0C C ,a f =⋅所以()()0,11,0246f f a +=+=解得1a =,故选:B.5.()61x a y x ⎛⎫-+ ⎪⎝⎭的展开式中,含14x y -项的系数为15-,则=a ()A .1B .1-C .1±D .2±【答案】C【分析】先求出()6a y +的通项公式,然后整理出14x y -项的系数,根据系数相等可得答案.【详解】()6a y +的展开式的通项公式为66C rrr ay -,令4r =,可得6246C 15r r ra y a y -=;所以含14x y -项的系数为215a -,即21515a -=-,解得1a =±.故选:C.6.511(12)x x ⎛⎫+- ⎪⎝⎭的展开式中,常数项是()A .9-B .10-C .9D .10【答案】A【分析】由二项式定理的通项公式计算可得结果.【详解】∵555111(12)(12)(12)x x x x x ⎛⎫+--=+- ⎪⎝⎭,5(12)x -第1r +项为:155C (2)C (2)r r r r r r T x x +=-=-,(0,1,,5)r =,51(12)x x -的第1k +项为:11551C (2)C (2)k k kk k k T x x x-+=-=-,(0,1,,5)k =∴展开式中的常数项()()001155C 2C 21109T =-+-=-=-.故选:A.7.已知()na b +的展开式中只有第7项的二项式系数最大,则n =()A .11B .10C .12D .13【答案】C【分析】当n 为偶数时,展开式中第12n+项二项式系数最大,当n 为奇数时,展开式中第12n +和32n +项二项式系数最大.【详解】∵只有第7项的二项式系数最大,∴172n+=,∴12n =.故选:C8.若()()()()()42201223222nn x x x a a x a x a x -+=+-+-++-,则564a a a +=()A .15B .25C .35D .45【答案】D【分析】将23x x +中含有x 的项都写成2x -的形式,即可得解.【详解】()()()()()442223222107x x x x x x ⎡⎤+⎣⎦-+=---+()()()654272102x x x =-+-+-,所以6541,7,10a a a ===,所以56445a a a +=.故选:D.培优第二阶——能力提升练1.8x ⎛⎝的展开式中,以下为有理项的是()A .第3项B .第4项C .第5项D .第6项【答案】AC【分析】根据给定二项式求出其展开式的通项,再求出通项中x 的幂指数为整数的所对项数即可.【详解】8x ⎛⎝的展开式的二项式通项为138822188C C ,0,1,2,3,4,5,6,7,8r r r rr r T xx x r ---+⎛⎫=== ⎪⎝⎭,令823r -为整数,求得0r =,2,4,6,8,所以对应第1,3,5,7,9项为有理项,故选:AC2.在62x x ⎛⎫+ ⎪⎝⎭的展开式中,下列说法正确的是()A .常数项为160B .第3项二项式系数最大C .所有项的二项式系数和为62D .所有项的系数和为63【答案】ACD【分析】先求62x x ⎛⎫+ ⎪⎝⎭的通项公式可得选项A 的正误,利用n 的值可得选项B 、C 的正误,所有项的系数和可以利用赋值法求解【详解】62x x ⎛⎫+ ⎪⎝⎭展开式的通项为66261662C 2C rr r r r r r T x xx ---+⎛⎫=⋅= ⎪⎝⎭,由260r -=,得3r =,所以常数项为3362C 160=,A 正确;二项式展开式中共有7项,所以第4项二项式系数最大,B 错误;由6n =及二项式系数和的性质知,所有项的二项式系数和为62,C 正确;令1x =,得()660126213a a a a +++⋯+=+=,所有项的系数和为63,D 正确;故选:ACD.3.若2022220220122022(1)x a a x a x a x -=++++,则()A .01a =B .12022a =C .1220221a a a +++=-D .012320221a a a a a -+-++=【答案】AC【分析】对ACD ,由赋值法可判断;对B ,由二项式展开项通项公式可求.【详解】对A ,令0x =得01a =,A 对;对B ,由二项式展开项通项公式可得第2项为()1120212202211C 120222022T x x a x a =-=-=⇒=-,B 错对C ,令1x =得0122022122022001a a a a a a a a +++=++=-+⇒=-+,C 对;对D ,令=1x -得0123220222022a a a a a -+-++=,D 错.故选:AC.4.下列说法中正确的有()A .2799C C =B .233445C C C +=C .123C C C C 2n n n n n n ++++=D .()41x +展开式中二项式系数最大的项为第三项【答案】ABD【分析】根据组合数的性质即可判断AB ;根据二项式之和即可判断C ;对于D ,先求出展开式的通项,不妨设第1k +项的系数最大,则有144144C C C C kk k k -+⎧≥⎨≥⎩,从而可得出答案.【详解】对于A ,由组合数的性质可得2799C C =,故A 正确;对于B ,由组合数的性质可得233445C C C +=,故B 正确;对于C ,因为0123C C C C C 2n n n n n n n +++++=,所以1231C C C C 2n n n n n n ++++=-,故C 错误;对于D ,()41x +展开式的通项为14C kkk T x +=,不妨设第1k +项的二项式系数最大,则144144C C C C kk k k -+⎧≥⎨≥⎩,解得2k =,所以()41x +展开式中二项式系数最大的项为第三项,故D 正确.故选:ABD.5.()521x y ++展开式中24x y 的系数为________(用数字作答).【答案】30【分析】求出()521⎡⎤++⎣⎦x y 的通项令2r =时得()3245C 1+x y ,再求出()31x +展开式中2x 的系数可得答案.【详解】()521⎡⎤++⎣⎦x y 展开式通项为()55211C -+=+rr r r T x y ,{}0,1,2,3,4,5r Î,当2r =时()32425C 1=+T x y ,由()301223333331C +C +C +C +=x x x x 得2x 的系数为3,故24x y 的系数为25C 330⨯=.故答案为:30.6.已知()01311(1)22nn n x a a x a x ⎛⎫+=+++++ ⎪⎝⎭,写出满足条件①②的一个n 的值__________.①*3,n n ≥∈N ;②3,0,1,2,,i a a i n ≥=.【答案】8,9,10或11.(答案不唯一)【分析】令1x t +=,得到1C ,0,1,2,,2ii i na i n ⎛⎫== ⎪⎝⎭,再由3,0,1,2,,i a a i n ≥=求解.【详解】解:令1x t +=,得01112nn n t a a t a t ⎛⎫+=+++ ⎪⎝⎭,1C ,0,1,2,,2ii i n a i n ⎛⎫∴== ⎪⎝⎭,由条件②知32323234343411C C ,,22811,11C C ,22n n n n a a n a a ⎧⎧⎛⎫⎛⎫≥⎪⎪ ⎪ ⎪≥⎪⎪⎝⎭⎝⎭⇒⇒≤≤⎨⎨≥⎛⎫⎛⎫⎪⎪≥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎩⎩.又*,n n ∈∴N 的值可以为8,9,10或11.(答案不唯一)故答案为:8,9,10或11.(答案不唯一)7.若()()542345321x a bx cx dx ex fx x -=+++++++,其中a ,b ,c ,d ,e ,f 为常数,那么b c d f +++=______.【答案】109【分析】利用赋值法求a b c d e f +++++和a ,利用二项式展开式通项公式求e ,由此可得结果.【详解】因为()()542345321x a bx cx dx ex fx x -=+++++++,令1x =,得316a b c d e f -=++++++,整理得:19a b c d e f +++++=-,令0x =,得961a -=+,97a =-,因为()52x -的展开式的通项公式为()515C 2rr rr T x -+=⋅-,所以()532x -的展开式中含4x 项的系数为()153C 2⋅-,又()41x +的展开式中含4x 项的系数为44C ,所以()153C 21e ⋅-=+,31e =-,将a 、e 代入即可求得109b c d f +++=.故答案为:109.8.0x ∀≠,101x x ⎛⎫+ ⎪⎝⎭可以写成关于221x x ⎛⎫+ ⎪⎝⎭的多项式,则该多项式各项系数之和为_________.【答案】243【分析】利用换元法,将101x x ⎛⎫+ ⎪⎝⎭转化为()52t +,从而利用赋值法即可求得该多项式各项系数之和.【详解】因为222112x x x x ⎛⎫+=++ ⎪⎝⎭,令221t x x =+,则()5105221122x x t x x ⎡⎤⎛⎫⎛⎫+=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令1t =,则()5523243t +==,所以该多项式各项系数之和为243.故答案为:243培优第三阶——培优拔尖练1.已知集合{}2019,12,6,10,5,1,0,1,8,15H =---,记集合H 的非空子集为1M 、2M 、L 、1023M ,且记每个子集中各元素的乘积依次为1m 、2m 、L 、1023m ,则121023m m m +++的值为___________.【答案】1-【分析】构造函数()()()()()()()()()()201912610511815f x x x x x x x x x x x =+++---+++,设该函数展开式中所有项系数之和为T ,则1210231m m m T +++=-,利用赋值法可求得结果.【详解】设集合H 的十个元素分别为1a 、2a 、L 、10a .1210121391012389101210121023m a a a a a a a a a a a a a a a a m m a a =+++++++++++++++.设函数()()()()()()()()()()201912610511815f x x x x x x x x x x x =+++---+++展开式中所有项系数之和为T ,则1210231m m m T +++=-,因为()10T f ==,所以11T -=-.故答案为:1-.【点睛】关键点点睛:本题主要考查的集合子集的判定,构造函数求解,属于难题.本题的关键是根据二项定理的推导过程构造出函数()()()()()()()()()()201912610511815f x x x x x x x x x x x =+++---+++,这种转化思想是本题的难点.2.设0i a i =(,1,2,…,2022)是常数,对于∀x ∈R ,都有()()()()()20220122022112122022x a a x a x x a x x x =+-+--++---(),则012345202120222!3!4!2020!2021!a a a a a a a a -+-+-+-+-=________.【答案】2021【分析】先令1x =,求得0a 的值,再将给定的恒等式两边求关于x 的导数,然后令1x =,从而可得所求的值.【详解】因为()()()()()()20220122022112122022xa a x a x x a x x x =+-+--++---,则令1x =可得01a =.又对()()()()()()20220122022112122022xa a x a x x a x x x =+-+--++---两边求导可得:()()()()()2021122022202212122022x a a x x a x x x ''=+--++---⎡⎤⎡⎤⎣⎦⎣⎦,令()()()()12n f x x x x n =--⨯⨯-,则()()()()()()12+2n f x x x x n x x n ''=--⨯⨯--⨯⨯-⎡⎤⎣⎦,所以()()()()()1112111!n n f n n -'=-⨯⨯-=--,所以()()()12202120211232022202211112!12021!a a a a ⨯=+⨯-⨯+⨯-⨯++⨯-故123202220222!2021!a a a a =-+--,所以012345202120222!3!4!2020!2021!202212021a a a a a a a a -+-+-+-+-=-=.故答案为:2021.【点睛】本题考查函数的导数以及恒等式的系数和的求法,注意根据恒等式的特征选择合适的赋值,本题属于较难题.3.()623a b c +-的展开式中23ab c 的系数为______.【答案】-6480【分析】()()662323a b c a b c +-=+-⎡⎤⎣⎦,利用二项式定理得到()3345402T c a b =-⋅+,再展开()32a b +,计算得到答案.【详解】()()662323a b c a b c +-=+-⎡⎤⎣⎦,展开式的通项为:()()61623rrr r T C a b c -+=+-,取3r =,则()()()63333346235402T C a b c c a b -=+-=-⋅+,()32a b +的展开式的通项为:()3132mm m m T C a b -+=,取2m =,得到()22233212T C a b ab ==,故23ab c 的系数为540126480-⨯=-.故答案为:6480-.【点睛】本题考查了二项式定理的应用,意在考查学生的计算能力和应用能力.4.对任意正整数i ,设函数()414034log 2i f x i =-⋅的零点为i a ,数列{}n a 的前n 项和为()*n S n N ∈,则使得n S 能被2n +整除的正整数n 的个数是________.【答案】0【分析】要求零点,应先把函数()i f x 解析式中的对数化为相同底数,再求函数的零点可得2017i x a i ==,进而写出数列{}n a 的前n 项和201720172017123n S n =++++,用二项式定理和整除思想说明2017n 不能被2n +整除即可。

二项式定理例题100道带解析

二项式定理例题100道带解析

二项式定理例题100道带解析摘要:一、二项式定理的概念与基本性质1.二项式定理的定义2.二项式系数的性质3.二项式定理的应用场景二、二项式定理的求解方法1.直接展开法2.组合数计算法3.递推法4.矩阵法三、二项式定理的例题解析1.基础题型解析2.进阶题型解析3.难题解析四、二项式定理的拓展与应用1.多项式定理与二项式定理的关系2.二项式定理在其他领域的应用3.相关研究进展与发展正文:一、二项式定理的概念与基本性质1.二项式定理的定义二项式定理是数学中一个重要的定理,它揭示了二项式(a+b)的展开式中各项的系数和幂次的规律。

二项式定理的表述为:(a+b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ...+ C(n,n)b^n其中,C(n,k)表示组合数,即从n个元素中选取k个元素的不同组合的个数。

2.二项式系数的性质二项式系数具有以下性质:性质1:C(n,k) = C(n,n-k)性质2:C(n,k) = n! / (k!(n-k)!)性质3:C(n,k) = C(n-1,k-1) + C(n-1,k)3.二项式定理的应用场景二项式定理在数学分析、概率论、物理学等领域具有广泛的应用,例如求解二项式展开式的收敛性、求解概率论中的二项分布等问题。

二、二项式定理的求解方法1.直接展开法直接将二项式(a+b)^n展开,然后根据题目要求求解各项系数。

2.组合数计算法利用二项式系数的性质,通过计算组合数求解二项式定理的问题。

3.递推法利用二项式定理的性质,通过递推关系式求解问题。

4.矩阵法将二项式定理的问题转化为矩阵运算问题,然后利用矩阵的性质求解。

三、二项式定理的例题解析1.基础题型解析例如:(1+x)^5的展开式中,x的幂次为3的项的系数是多少?解析:利用二项式定理,可以直接求得系数为C(5,3) = 10。

2.进阶题型解析例如:求解不等式:(1+x)^6 > 1000解析:将不等式转化为二项式展开式的形式,然后根据二项式系数的性质,判断各项系数的符号,从而求解不等式。

二项式定理题型

二项式定理题型

二项式定理题型一、求二项展开式中的特定项1. 题目- 求二项式(2x - (1)/(x))^6展开式中的常数项。

2. 解析- 根据二项式定理(a + b)^n=∑_k = 0^nC_n^ka^n - kb^k,对于(2x-(1)/(x))^6,a = 2x,b=-(1)/(x),n = 6。

- 展开式的通项公式为T_r+1=C_6^r(2x)^6 - r(-(1)/(x))^r。

- 化简T_r + 1=C_6^r(2x)^6 - r(-(1)/(x))^r=C_6^r2^6 - rx^6 - r(-1)^rx^-r=C_6^r2^6 - r(-1)^rx^6 - 2r。

- 要求常数项,则令x的指数6-2r = 0,解得r = 3。

- 把r = 3代入通项公式中,可得常数项为C_6^32^6 - 3(-1)^3。

- 计算C_6^3=(6!)/(3!(6 - 3)!)=(6×5×4)/(3×2×1)=20。

- 所以常数项为20×2^3×(-1)=-160。

二、求二项展开式的系数和1. 题目- 已知二项式(1 + 2x)^n,设(1 + 2x)^n=a_0+a_1x + a_2x^2+·s+a_nx^n,求a_0+a_1+a_2+·s+a_n的值。

2. 解析- 令x = 1,则(1+2×1)^n=(1 + 2)^n=3^n。

- 此时(1 + 2x)^n变为a_0+a_1×1+a_2×1^2+·s+a_n×1^n,即a_0+a_1+a_2+·s+a_n=3^n。

三、二项式系数的性质相关题目1. 题目- 在二项式(x + y)^n的展开式中,二项式系数最大的项是第5项和第6项,求n的值。

2. 解析- 当n为偶数时,二项式系数最大的是中间一项,即第(n)/(2)+1项;当n为奇数时,二项式系数最大的是中间两项,即第(n + 1)/(2)项和第(n+3)/(2)项。

《二项式定理》典型例题

《二项式定理》典型例题

《二项式定理》典型例题【考情分析】本节内容是二项式定理,是高考中的重点,主要涉及二项式定理及其系数的应用,考查内容主要包括:求二项展开式某项的系数、求二项展开式中特定项等,考题角度灵活、综合性较强.题型1求二项展开式某项的系数(数学运算)典例1 [分析计算能力](2020-全国卷I)(x+y 2x)(x+y)5的展开式中x3y3的系数为()A.5 B.10 C.15 D.20解析本题主要考查二项式定理及其展开式的通项公式,分析题意通过赋值法找到所求项,并转化为求所求项的系数进行计算.(x+y)5展开式的通项公式为T r+1=C5r x5−r y r(r∈N且r⩽5),所以(x+y2x)的各项与(x+y)5展开式的通项的乘积可表示为:xT r+1=xC5r x5−r y r=C5r x6−r y r和y2x T r+1=y2xC5r x5−r y r=C5r x4−r y r+2,在xT r+1=C5r x6−r y r中,令r=3,可得xT4=C53x3y3,该项中x3y3的系数为10,在y2 x T r+1=C5r x4−r y r+2中,令r=1,可得y2xT2=C51x3y3,该项中x3y3的系数为5,所以x3y3的系数为10+5=15.答案C.题型2求二项展开式中特定项(数学抽象)典例2 [概括理解能力、分析计算能力](2020-全国卷III)(x2+2x )6的展开式中常数项是__________.(用数字作答)解析本题考查对二项式定理的概括理解,利用通项公式求解计算二项展开式中的指定项,解题关键是掌握二项式展开通项公式.∵(x2+2x )6的二项式展开通项:T r+1=C6r⋅(x2)6−r⋅(2x)r=C6r⋅x12−2r2r⋅x−r=2r C6r⋅x12−3r,当12−3r=0,解得r=4,∴(x2+2x )6的展开式中常数项是:C64⋅24=C62⋅16=15×16=240.答案240.题型3用计数原理求项(逻辑推理)典例3 [推测解释能力]在(x2+2x+√y)6的展开式中,x3y2的系数为________________.(用数字作答)解析本题考查二项展开式的通项公式,通过多项相加,运用逻辑推理,对具体问题情境进行推测和解释,求出要求的项的系数.(x2+2x+√y)6=[(x2+2x)+y 12]6,它展开式中的第r+1项为T r+1=C6r(x2+2x)6−r y r2,令r2=2,则r=4,T5=C64(x2+2x)2y2=C64(x4+4x3+4x2)y2,x3y2的系数为C64×4=60.答案60.。

(完整版)二项式定理十大典型例题纯版(最新整理)

(完整版)二项式定理十大典型例题纯版(最新整理)
.
练: 求(1 3 x )6 (1 1 )10 展开式中的常数项. 4x
系数分别

A1,
A2 ,,
An1 ,设第 r
1
项系数最大,应有
Ar
1
Ar1
Ar Ar 2
,从而解出 r
来。
专题一
题型一:二项式定理的逆用;
例: Cn1 Cn2 6 Cn3 62 Cnn 6n1
.
解: (1 6)n Cn0 Cn1 6 Cn2 62 Cn3 63 Cnn 6n 与已知的有一些差距,
C 4 r 1 r 1 12
,化简得到 9.4
r
10.4 ,又0
r
12 ,
r
10 ,展开式中系数最大的项为 T11 ,有 T11
(
1 2
)12
C10 12
410
x10
16896x10
练:在 (1 2x)10 的展开式中系数最大的项是多少?
解:假设 Tr1 项最大,Tr1 C1r0 2r xr
1.二项式定理:
(a b)n Cn0an Cn1an1b Cnr anrbr Cnnbn (n N ) ,
2.基本概念:
①二项式展开式:右边的多项式叫做 (a b)n 的二项展开式。
②二项式系数:展开式中各项的系数 Cnr (r 0,1, 2,, n) . ③项数:共 (r 1) 项,是关于 a 与 b 的齐次多项式
3 , T10
(1)3C99 x3
x3 。
题型五:奇数项的二项式系数和=偶数项的二项式系数和;
例:若 ( x2 1 )n 展开式中偶数项系数和为 256 ,求 n . 3 x2
解:设 (
x2
3

高三数学二项式定理与性质试题答案及解析

高三数学二项式定理与性质试题答案及解析

高三数学二项式定理与性质试题答案及解析1.已知(1+x)10=a0+a1(1-x)+a2(1-x)2+…+a10(1-x)10,则a8等于()A.180B.90C.-5D.5【答案】A【解析】(1+x)10=[2-(1-x)]10,其通项公式为Tr+1=210-r·(-1)r(1-x)r,a8是r=8时,第9项的系数.∴a8=22(-1)8=180.故选A.2. (1+x)10(1+)10展开式中的常数项为()A.1B.()2C.D.【答案】D【解析】因为(1+x)10(1+)10=[(1+x)(1+)]10=(2+x+)10=(+)20(x>0),所以Tr+1=()20-r·()r=x10-r,由10-r=0,得r=10,故常数项为T11=,选D.3.已知(-)n的展开式中,第五项与第三项的二项式系数之比为14∶3,求展开式中的常数项.【答案】180【解析】依题意∶=14∶3,即3=14,∴=,∴n=10.设第r+1项为常数项,又Tr+1= ()10-r(-)r=(-2)r令=0,得r=2.∴T3= (-2)2=180,即常数项为180.4.用代表红球,代表蓝球,代表黑球,由加法原理及乘法原理,从1个红球和1个篮球中取出若干个球的所有取法可由的展开式表示出来,如:“1”表示一个球都不取、“”表示取出一个红球,面“”用表示把红球和篮球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的篮球都取出或都不取出的所有取法的是A.B.C.D.【答案】A【解析】依题意所有的篮球都取出或都不取出.所以要有或不含的式子.所以符合.故选A.【考点】1.新定义.2.二项式展开式.5.的展开式中的常数项为,则直线与曲线围成图形的面积为;【答案】=,【解析】的展开式的通项公式为 Tr+1令3r-3=0,r=1,故展开式的常数项为 a=3.则直线y=ax即 y=3x,由求得直线y=ax与曲线y=x2围成交点坐标为(0,0)、(3,9),故直线y=ax与曲线y=x2围成图形的面积为=,故选C.【考点】二项式定理;定积分在求面积中的应用.6.设,使的展开式中含有常数项的最小的为()A.4B.5C.6D.7【答案】B【解析】由可得.所以可化为,展开式的通项公式可得.依题意可得到.因为.所以当时n的最小值为5.故选B.【考点】1.定积分的概念.2.二项展开式的公式.3.整除问题.7.设函数则当x>0时,表达式的展开式中常数项为( )A.-20B.20C.-15D.15【答案】A【解析】当x>0时,f,所以,其展开式的通项为,所以由题意知,,即,所以展开式中常数项为.8. 1.若,则的值为()A.1B.-1C.0D.2【答案】A【解析】∵令,则令,则∴.9.已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=________.【答案】-1【解析】已知(1+ax)(1+x)5的展开式中x2的系数为+a·=5,解得a=-110.设,则的值是.【答案】40【解析】由题意【考点】二项式定理。

二项式定理典型例题(含解答)

二项式定理典型例题(含解答)

二项式定理典型例题典型例题一例1 在二项式nx x ⎪⎭⎫ ⎝⎛+421的展开式中前三项的系数成等差数列,求展开式中所有有理项. 分析:典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决.解:二项式的展开式的通项公式为:4324121C 21)(C rn r r n rr n r n r x x x T --+=⎪⎭⎫ ⎝⎛= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,123121-=====n n t n t t nn , 由已知:)1(8112312-+=+=n n n tt t ,∴8=n 通项公式为1431681,82,1,021C +-+==r rr rr T r x T 为有理项,故r 316-是4的倍数,∴.8,4,0=r 依次得到有理项为228889448541256121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有典型例题四例4(1)求103)1()1(x x +-展开式中5x 的系数;(2)求6)21(++xx 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式.解:(1)103)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项: 用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5x 项,可以得到5510C x ;用3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;用3)1(x -中的2x 乘以10)1(x +展开式中的3x 可得到531033102C 3C 3x x x =⋅;用 3)1(x -中的3x 项乘以10)1(x +展开式中的2x 项可得到521022103C C 3x x x -=⋅-,合并同类项得5x 项为:5521031041051063)C C 3C C (x x -=-+-.(2)2121⎪⎪⎭⎫ ⎝⎛+=++x x x x 1251)21(⎪⎪⎭⎫ ⎝⎛+=++x x x x .由121⎪⎪⎭⎫⎝⎛+x x 展开式的通项公式r rrrrr x x T--+=⎪⎭⎫ ⎝⎛=61212121C 1)2(C ,可得展开式的常数项为924C 612=.说明:问题(2)中将非二项式通过因式分解转化为二项式解决.这时我们还可以通过合并项转化为二项式展开的问题来解决.典型例题五例5 求62)1(x x -+展开式中5x 的系数.分析:62)1(x x -+不是二项式,我们通过22)1(1x x x x -+=-+或)(12x x -+展开. 解:方法一:[]6262)1()1(x x x x -+=-+ -+++-+=44256)1(15)1(6)1(x x x x x其中含5x 的项为55145355566C 15C 6C x x x x =+-.含5x 项的系数为6.方法二:[]6262)(1)1(x x x x -+=-+62524232222)()(6)(15)(20)(15)(61x x x x x x x x x x x x -+-+-+-+-+-+=其中含5x 的项为555566)4(15)3(20x x x x =+-+-.∴5x 项的系数为6.方法3:本题还可通过把62)1(x x -+看成6个21x x -+相乘,每个因式各取一项相乘可得到乘积的一项,5x 项可由下列几种可能得到.5个因式中取x ,一个取1得到556C x .3个因式中取x ,一个取2x -,两个取1得到)(C C 231336x x -⋅⋅. 1个因式中取x ,两个取2x -,三个取1得到222516)(C C x x -⋅⋅. 合并同类项为5525161336566)C C C C (C x x =+-,5x 项的系数为6.典型例题六例6 求证:(1)1212C C 2C -⋅=+++n n n n n n n ;(2))12(11C 11C 31C 21C 1210-+=++++++n n nn n n n n . 分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质nn n n n n 2C C C C 210=++++ .解:(1)11C )!()!1()!1()!()!1(!)!(!!C --=+--⋅=--=-⋅=k n kn n k n k n n k n k n k n k n k k ∴左边111101C C C ----+++=n n n n n n n =⋅=+++=-----11111012)C C C (n n n n n n n 右边.(2))!()!1(!)!(!!11C 11k n k n k n k n k k k n --=-⋅+=+11C 11)!()!1()!1(11+++=-++⋅+=k n n k n k n n . ∴左边112111C 11C 11C 11++++++++++=n n n n n n n =-+=++++=+++++)12(11)C C (C 111112111n n n n n n n 右边. 说明:本题的两个小题都是通过变换转化成二项式系数之和,再用二项式系数的性质求解.此外,有些组合数的式子可以直接作为某个二项式的展开式,但这需要逆用二项式定理才能完成,所以需仔细观察,我们可以看下面的例子:求10C 2C 2C 2C 22108107910810109+++++ 的结果.仔细观察可以发现该组合数的式与10)21(+的展开式接近,但要注意:10101099102210110010102C 2C 2C 2C C )21(⋅+⋅++⋅+⋅+=+ 10101091092102C 2C 2C 21021++++⨯+= )C 2C 2C 210(21101099108210+++++=从而可以得到:)13(21C 2C 2C 21010101099108210-=++++ . 典型例题七例7 利用二项式定理证明:98322--+n n 是64的倍数.分析:64是8的平方,问题相当于证明98322--+n n 是28的倍数,为了使问题向二项式定理贴近,变形1122)18(93++++==n n n ,将其展开后各项含有k 8,与28的倍数联系起来.解:∵98322--+n n 98)18(98911--+=--=++n n n n9818C 8C 8C 81211111--+⋅+⋅++⋅+=+-+++n nn n n n n n981)1(88C 8C 8211111--+++⋅++⋅+=-+++n n n n n n n 2111118C 8C 8⋅++⋅+=-+++n n n n n 64)C 8C 8(112111⋅++⋅+=-+-++n n n n n 是64的倍数.说明:利用本题的方法和技巧不仅可以用来证明整除问题,而且可以用此方程求一些复杂的指数式除以一个数的余数.典型例题八例8 展开52232⎪⎭⎫ ⎝⎛-x x .分析1:用二项式定理展开式.解法1:52232⎪⎭⎫ ⎝⎛-x x 2232524150250523)2(23)2(23)2(⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=x x C x x C x x C52554245322352323)2(23)2(⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+x C x x C x x C10742532243840513518012032xx x x x x -+-+-= 分析2:对较繁杂的式子,先化简再用二项式定理展开.解法2:10535232)34(232x x x x -=⎪⎭⎫ ⎝⎛-233254315530510)3()4()3()4()4([321-+-+=x C x C x C x ])3()3()4()3()4(5554134532335-+-+-+C x C x C)243716204320576038401024(321369121510-+-+-=x x x x x x10742532243840513518012032x x x x x x -+-+-=. 说明:记准、记熟二项式nb a )(+的展开式,是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.典型例题九例9 若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为( ). A .11 B .33 C .55 D .66 分析:10)(z y x ++看作二项式10])[(z y x ++展开.解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即∑=-⋅+=++=++10010101010)(])[()(k k k kz y x C z y x z y x .这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式ky x -+10)(展开,不同的乘积k kk z y x C ⋅+-1010)((10,,1,0 =k )展开后,都不会出现同类项. 下面,再分别考虑每一个乘积k kk z y x C ⋅+-1010)((10,,1,0 =k ).其中每一个乘积展开后的项数由ky x -+10)(决定,而且各项中x 和y 的指数都不相同,也不会出现同类项.故原式展开后的总项数为66191011=++++ ,∴应选D .典型例题十例10 若nx x ⎪⎭⎫⎝⎛-+21的展开式的常数项为20-,求n .分析:题中0≠x ,当0>x 时,把nx x ⎪⎭⎫ ⎝⎛-+21转化为nn x x x x 2121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+;当0<x 时,同理nn n x x x x 21)1(21⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛-+.然后写出通项,令含x 的幂指数为零,解出n . 解:当0>x 时nn x x x x 2121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+,其通项为rn r n r r rn r n r x C xx C T 222221)()1()1()(--+-=-=,令022=-r n ,得r n =, ∴展开式的常数项为n nnC2)1(-;当0<x 时,nn n x x x x 21)1(21⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛-+, 同理可得,展开式的常数项为n n n C 2)1(-.无论哪一种情况,常数项均为nn n C 2)1(-. 令20)1(2-=-nn n C ,以 ,3,2,1=n ,逐个代入,得3=n .典型例题十一例11 1031⎪⎭⎫ ⎝⎛+x x 的展开式的第3项小于第4项,则x 的取值范围是______________.分析:首先运用通项公式写出展开式的第3项和第4项,再根据题设列出不等式即可. 解: 1031⎪⎭⎫ ⎝⎛+x x 有意义必须0>x ;依题意有43T T <即3373102382101)(1)(⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛x x C x x C .∴31123891012910xx ⨯⨯⨯⨯⨯<⨯⨯(∵0>x ).解得5648980<<x .∴x 的取值范围是⎭⎬⎫⎩⎨⎧<<5648980x x .∴应填:5648980<<x .典型例题十二例12 已知n xx)1(2log +的展开式中有连续三项的系数之比为321∶∶,这三项是第几项?若展开式的倒数第二项为112,求x 的值.解:设连续三项是第k 、1+k 、2+k 项(+∈N k 且1>k ),则有32111∶∶∶∶=+-k n k n k n C C C , 即321!)1)(1(!!)(!!!)1)(1(!∶∶∶∶=--+-+--k n k n k n k n k n k n .∴321)1(1)(1)1)((1∶∶∶∶=+-+--k k k n k k n k n .∴⎪⎪⎩⎪⎪⎨⎧=-+=+-⇒⎪⎪⎩⎪⎪⎨⎧=-+=+---32)()1(21132)()1(21)1)(()(k n k k n k k n k k k k n k n k n k 14=⇒n ,5=k 所求连续三项为第5、6、7三项.又由已知,1122log 1314=xx C .即82log =x x .两边取以2为底的对数,3)(log 22=x ,3log 2±=x ,∴32=x ,或32-=x .说明:当题目中已知二项展开式的某些项或某几项之间的关系时,常利用二项式通项,根据已知条件列出某些等式或不等式进行求解.典型例题十三例13 nx )21(+的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.分析:根据已知条件可求出n ,再根据n 的奇偶性;确定二项式系数最大的项.解:556)2(x C T n =,667)2(x C T n =,依题意有8226655=⇒=n C C n n . ∴8)21(x +的展开式中,二项式系数最大的项为444851120)2(x x C T ==.设第1+r 项系数最大,则有65222211881188≤≤⇒⎪⎩⎪⎨⎧⋅≥⋅⋅≥⋅++--r C C C C r r r r r r r r . ∴5=r 或6=r (∵{}8,,2,1,0 ∈r ).∴系娄最大的项为:561792x T =,671792x T =.说明:(1)求二项式系数最大的项,根据二项式系数的性质,n 为奇数时中间两项的二项式系数最大,n 为偶数时,中间一项的二项式系数最大.(2)求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式,解不等式的方法求得.典型例题十四例14 设nm x x x f )1()1()(+++=(+∈N n m ,),若其展开式中关于x 的一次项的系数和为11,问n m ,为何值时,含2x 项的系数取最小值?并求这个最小值.分析:根据条件得到2x 的系数关于n 的二次表达式,然后用二次函数性质探讨最小值.解:1111=+=+m n C C n m .211)(21222222-+=-+-=+n m n n m m C C n m 499)211(55112211022+-=+-=-=n n n mn .∵+∈N n , ∴5=n 或6,6=m 或5时,2x 项系数最小,最小值为25.说明:二次函数499)211(2+-=x y 的对称轴方程为211=x ,即5.5=x ,由于5、6距5.5等距离,且对+∈N n ,5、6距5.5最近,所以499)211(2+-n 的最小值在5=n 或6=n 处取得.典型例题十五例15 若0166777)13(a x a x a x a x ++++=- ,求(1) 721a a a +++ ;(2) 7531a a a a +++;(3) 6420a a a a +++.解:(1)令0=x ,则10-=a ,令1=x ,则128270167==++++a a a a . ①∴129721=+++a a a .(2)令1-=x ,则701234567)4(-=+-+-+-+-a a a a a a a a ②由2②①-得:8256]4128[2177531=--=+++)(a a a a (3)由2②①+得:6420a a a a +++][210123456701234567)()(a a a a a a a a a a a a a a a a +-+-+-+-++++++++=8128])4(128[217-=-+=. 说明:(1)根据问题恒等式特点来用“特殊值”法.这是一种重要方法,它适用于恒等式.(2)一般地,对于多项式nn n x a x a x a a q px x g ++++=+= 2210)()(,)(x g 的各项的系数和为)1(g :)(x g 的奇数项的系数和为)]1()1([21-+g g .)(x g 的偶数项的系数和为)]1()1([21--g g . 典型例题十六例16 填空:(1) 3230-除以7的余数_____________;(2) 155555+除以8的余数是___. 分析(1):将302分解成含7的因数,然后用二项式定理展开,不含7的项就是余数.解:3230-3)2(103-=3)8(10-=3)17(10-+=37771010910911010010-++++=C C C C2]77[791081109010-+++⨯=C C C又∵余数不能为负数,需转化为正数。

专题41 利用二项式定理证明整除问题(解析版)

专题41 利用二项式定理证明整除问题(解析版)

专题41 利用二项式定理证明整除问题一、单选题1.中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究,设a ,b ,m (0m >)为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为()mod a b m =.若012220202022a C C C =+⋅+⋅+2020202C +⋅,()mod8a b =,则b 的值可以是( )A .2020B .2021C .2024D .2025【答案】D 【分析】根据已知中a 和b 对模m 同余的定义,结合二项式定理,可以求出()1020103981a ===+,结合()mod8a b =,对照四个选项中的数字,可得出答案. 【详解】 由题意可得:()()20102010123981a =+===+,由二项式定理可得:01019911010108881a C C C =⨯+⨯+⨯+,即a 除以8的余数为1, 因为()mod8a b =,所以b 的值除以8的余数也为1, 只有2025除以8的余数为1, 则b 的值可以是2025. 故选:D 【点睛】本题考查了二项式定理的应用,需熟记定理的展开式,属于中档题. 2.已知0m >,且202015m +恰能被14整除,则m 的取值可以是( ) A .1- B .1C .7D .13【答案】D【分析】化简可得()2020202015141+=,再根据二项式定理的展开式,可知0202012019201912020202020201414...14C C C +++能被14整除,由此即可求结果. 【详解】因为()0202012019201912020202020202020202014141514...1411C C C =+++=++其中02020120192019120202*********14...14C C C +++能被14整除,所以要使0m >,且202015m +恰能被14整除, 所以m 的取值可以是13. 故选:D. 【点睛】本题主要考查了二项式定理的应用,属于基础题. 3.1180被9除的余数为( ) A .1- B .1 C .8 D .8-【答案】C 【分析】将1180转化为()11811-,利用二项式定理,即可得解. 【详解】()111180811=-()()()()210111210111110911111111111818118118111C C C C C =⋅+⋅⋅-+⋅⋅-++⋅⋅-+⋅-1210111110911111111181818181C C C C =-⋅+⋅++⋅- 1211109111181818111811C C =-⋅+⋅++⨯- 121110911118181811081811C C =-⋅+⋅++⨯+- 12111091111818181108180C C =-⋅+⋅++⨯+ 121110911118181811081728C C =-⋅+⋅++⨯++12111091111818181108172C C -⋅+⋅++⨯+可以被9整除,所以1180被9除的余数为8. 故选:C. 【点睛】本题考查利用二项式定理解决余数问题,将原式变形为()11811-是本题的解题关键,属于中档题. 4.设a ∈Z ,且0≤a <13,若512020+a 能被13整除,则a =( ) A .0 B .1 C .11 D .12【答案】D 【分析】由51=52﹣1,然后将512020展开,求其余数,然后令余数与a 的和能被13整除即可. 【详解】解:512020=(52﹣1)2020=(1﹣52)20200122202020202020202020202020525252C C C C =-+-+.因为52能被13整除,所以上式从第二项起,每一项都可以被13整除,所以上式被13除,余数为020201C =,所以要使512020+a 能被13整除,因为a ∈Z ,且0≤a <13,只需a +1=13即可, 故a =12. 故选:D. 【点睛】本题考查二项式定理的应用,用二项式定理解决整除问题,掌握二项展开式通项公式是解题关键.5.若n 是正奇数,则112217777n n n n n n n C C C ---++++被9除的余数为( )A .2B .5C .7D .8【答案】C 【分析】根据二项式定理化简01122177777(71)1n n n n n n n n C C C C ---++++=+-,再根据题意对化简的式子进行变形得到(91)1n--,再次展开进行求解即可.【详解】解:由题可知:原式=01122177777n n n n n n n C C C C ---++++()00112221100717171717171n n n n n n n n n n n n n n n C C C C C C ----=⋅+⋅+⋅++⋅+⋅-⋅(71)1n =+- 81n =-(91)1n =--()0011222110919(1)9(1)9(1)9(1)1n n n n n n n n n n n n C C C C C ----⎡⎤=⋅-+⋅-+⋅-++⋅-+⋅--⎣⎦,因为n 为正奇数,所以上式可化简为:0112221199(1)9(1)9(1)2n n n n n n n n n C C C C ----+⋅-+⋅-++⋅-- 0112221199(1)9(1)9(1)97n n n n n n n n n C C C C ----=+⋅-+⋅-++⋅--+所以该式除以9,余数为:7. 故选:C. 【点睛】本题考查运用二项式定理解决余数问题,考查代数式的恒等变形能力,考查了数学运算能力. 6.若254()a a R +∈能被9整除,则||a 的最小值为( ). A .3 B .4 C .5 D .6【答案】B 【分析】将25254(31)a a +=++利用二项式定理展开,根据题意得到242531253176C a a a ++=⨯++=+能被9整除,从而得到满足题意的||a 的最小值. 【详解】由二项式定理可得25254(31)a a +=++251242322425252533331C C C a =++++++…, 其中251242322525333C C +++…能被9整除,所以要使254()a a R +∈能被9整除,则242531253176C a a a ++=⨯++=+能被9整除, 则当4a =-时,||a 最小,且能被9整除. 故选:B . 【点睛】本题考查二项式定理解决整除问题,属于中档题.7.设,,,0a b m m ∈>Z ,若a 和b 被m 除得的余数相同,则称a 和b 模m 同余,记为(mod )a b m ≡,已知1223320202020202012222,(mod10)a C C C C b a =+⨯+⨯+⨯++⨯≡,则b 的值可能是( )A .2018B .2019C .2020D .2021【答案】D 【分析】根据二项展开式可知203a =,再分析203a =的个位数即可. 【详解】由题,()20122332020202020202012222123a C C C C =+⨯+⨯+⨯++⨯=+=,又(mod10)b a ≡,故,a b 的个位数字相同.又201053981a ===个位数字明显为1.故选:D 【点睛】本题主要考查了二项式定理的展开式的运用,需要观察题中所给的形式判断出展开式的原式,再利用指数函数的计算分析末尾数即可.属于中档题. 8.已知n 为满足1232727272727CC C CS a =+++++(3a ≥)能被9整除的正数a 的最小值,则1nx x ⎛⎫- ⎪⎝⎭的展开式中,系数最大的项为( ) A .第6项 B .第7项C .第11项D .第6项和第7项【答案】B 【分析】利用二项式定理的展开式,可得S 能被9整除的正数a 的最小值是29a -=,11a =, 即11n =,111()x x-的展开式中的通项公式:11112111111()(1)r rr r r r r T C x C x x--+=-=-,只考虑r 为偶数的情况,1232727272727S a C C C C =++++⋯+ 27027(11)a C =++-9(91)1a =-+-8178999(99)2C C a =-+⋯++-3a ,S ∴能被9整除的正数a 的最小值是29a -=,11a ∴=.11n ∴=,∴111()x x -的展开式中的通项公式:11112111111()(1)r r r r r r r T C x C x x--+=-=-,只考虑r 为偶数的情况,43511T C x =,61711T C x -=,85911T C x -=,可知:系数最大的项为第7项. 故选:B . 【点睛】本题考查二项式定理的应用、整除的应用,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力.9.设a,b 是两个整数,若存在整数d,使得b=ad,称“a 整除b”,记作a|b.给出命题:∈2|(n 2+n+1);∈100|(9910-1);∈5|(24n -1)(n∈N +),其中正确命题的个数是( ) A .0 B .1 C .2 D .3【答案】C 【分析】利用新定义,结合整数的性质及二项式定理可得结果. 【详解】对于①,①n 2+n=n (n+1)必为偶数, ①n 2+n+1必为奇数,故①不正确.对于①,9910-1=(100-1)10-1=C 100·10010-C 101·1009+…-C 109·100,故①正确. 对于①,24n -1=(15+1)n -1=C n 0·15n +C n 1·15n -1+…+C n n -1·15,故①正确.故选C本题以新定义为背景,考查二项式定理的应用,考查转化思想,属于中档题. 10.5555除以8,所得余数是( ) A .7 B .1C .0D .1-【答案】A 【解析】()555555561=-,展开式的通项为()5555C 561rrr -⋅⋅-,不能被8整除即55r =时,余数为()5511-=-,由于余数要为正数,故加8,得187-+=.【点睛】本题主要考查利用二项式定理解有关整除问题,关键在于将原式转化为8的倍数来展开. 二项式的应用:(1)求某些多项式系数的和;(2)证明一些简单的组合恒等式;(3)证明整除性,∈求数的末位;∈数的整除性及求系数;∈简单多项式的整除问题;(4)近似计算.11.设a ,b ,m 为整数(m>0),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为a ≡b(modm).若,,则b 的值可以是( )A .2015B .2016C .2017D .2018 【答案】B 【解析】试题分析:a =220=(5−1)10=510−C 10159⋯C 10852−C 1095+1,所以a 除以5的余数为1,2016除以5的余数为1,所以B 正确 考点:二项式定理12.设a ∈Z ,且0≤a <13,若512012+a 能被13整除,则a =( ) A .0 B .1 C .11 D .12【答案】D 【解析】 【分析】由题意首先利用二项式定理将512012展开,然后结合题意得到关于a 的方程,解方程即可求得实数a 的值. 【详解】 由于2012201202012120112011120122012201251(521)5252521a a C C C a ⨯+=-+=-+⨯⨯-++,又由于13|52,所以只需13|1+a ,0≤a <13,所以a =12.【点睛】本题主要考查二项式定理研究整除问题的方法,属于基础题. 二、解答题13.设*n N ∈,k ∈N ,nk .(1)化简:11112··k k n n k k n n C C C C +++++;(2)已知2220122(1)nnn x a a x a x a x -=+++⋯+.记21()(1)nk kkF n n a ==+∑.证明:()F n 能被21n 整除. 【答案】(1)12n n ++;(2)证明见解析. 【分析】(1)利用组合排列数的计算公式即可得出.(2)由(1)得,11211111111111111111()222k k k n n n k k k k k k k n n n n n n n C C C n n n C n C C n C C n C C ++++++++++++++++++=⋅=⋅=⋅+++⋅⋅+.由122121(1)21(1)(1)[]22k k k k k k k n n n k k n k k a C n C C +++-+--==⋅++,可得22111212121(1)(1)()(1)[]2k k nn k k k k kn n k n k k F n n a C C +==+++--=+=⋅+∑∑,求和即可得出. 【详解】(1)解:11112(1)!(1)!(1)!(1)!1!(1)!(1)!()!!(2)!!(2)(1)!2!()!(1)!(1)!k k n n k k n n n n C C n n n n k n k k n k n n C C n n n n k n k k n k +++++++⋅+⋅⋅+++-+-===++⋅+⋅+⋅-++-⋅.(2)证明:由(1)得,11211111111111111111()222k k k n n n k k k k k k k n n n n n n n C C C n n n C n C C n C C n C C ++++++++++++++++++=⋅=⋅=⋅+++⋅⋅+. 因为122121(1)21(1)(1)·[]22k k k k k k k n n n k k n k k a C n C C +++-+--==++, 所以22111212121(1)(1)()(1)[]2k k nn k k k k k n n k n k kF n n a C C +==+++--=+=⋅+∑∑,因为21122232112121212121212121(1)(1)122122[]()()k k nkk n n k n n n n n n n n k k n nC C C C C C C C ++=++++++++----+=++⋅⋅⋅++++⋅⋅⋅+∑ 12222212121212121211212212()()2n n n n n n n n n n n nn C C C C C C +++++++---+=+++⋅⋅⋅+++= 12322121212111112nn n n n n C C C C ++++--=+++⋅⋅⋅++ 设1232212121211111nn n n n A C C C C ++++--=+++⋅⋅⋅+, 则122213222121212121212121211111111120n n n n n n n n n n n n A C C C C C C C C --++++++++⎛⎫⎛⎫⎛⎫⎛⎫----=++++++⋅⋅⋅++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以0A =.所以2121()(1)2(21)2nk kk n F n n n n n a =+=+=⋅=+∑能被21n 整除.【点睛】本题考查了组合排列数的计算公式、二项式定理,考查了推理能力与计算能力,属于中档题. 14.(1)求证:14659n n +⨯+-能被20整除;(2)已知2235n n n a +⋅+-能被25整除,求a 的最小正数值. 【答案】(1)证明见解析;(2)4 【分析】(1) 14659n n +⋅+-=4(51)5(41)9n n ⋅++⋅+-,结合二项式定理可整理出20()M N +,从而可证明. (2) 22354(51)5n n n n a n a +⋅+-=⋅++-,结合二项式定理可得100254M n a ++-,从而可求出a 的最小正数值. 【详解】解:(1)14659n n +⋅+-=4(51)5(41)9n n⋅++⋅+-=()11145551n n n n n C C --⋅+⋅++⋅++()11154441n n n n n C C --⋅+⋅++⋅+9-=4(51)5(41)920()M N M N ⋅++⋅+-=+(此处M ,N 表示整多项式),即14659n n +⨯+-能被20整除. (2)22354(51)5n n n n a n a +⋅+-=⋅++-=112214(55551)n n n n nn n C C C ---+⋅++⋅+⋅+5n a +-=4(2551)5M n n a +++-100254M n a =++-(M 为整多项式),∈a 的最小正数值为4. 【点睛】本题考查了二项式定理的应用,考查了整除问题. 15.求103x -除以2(1)x -所得的余式. 【答案】1012x - 【分析】103x -可变形为10[(1)1]3x -+-,再利用二项式定理展开求余数.【详解】因为10103[(1)1]3x x -=-+-1019829101010(1)(1)(1)(1)13x C x C x C x =-+⋅-++⋅-+⋅-+-,所以103x -除以2(1)x -的余式为1012x -. 【点睛】本题考查运用二项式定理求余数,属于基础题.16.已知()()()()2111ng x x x x =++++⋅⋅⋅++2012nn a a x a x a x =+++⋅⋅⋅+.(1)若121253n a a a n -++⋅⋅⋅+=-,求3x 的系数. (2)当1x =,29n =时,求()g x 除以7所得的余数. 【答案】(1)70(2)6 【分析】(1)令1x =,根据等式的特点,结合等比数列前n 项和公式求出0a 、n a 的值,进而求出n 的值,结合二项式的通项公式、组合数的性质进行求解即可;(2)根据等比数列前n 项和公式,结合二项式定理进行求解即可. 【详解】(1)令1x =,()210122(12)12222212n nn n g a a a a +⋅-=++⋅⋅⋅+=+++⋅⋅⋅+==--,又0a n =,1n a =,所以1121122n n n a a a +-+++⋅⋅⋅++=-, 故1121221253n n a a a n n +-++⋅⋅⋅+=---=-,∈7n =,因为()1nx +的通项公式为:1r n r r r rn n C x C x -⋅⋅=⋅所以3x 的系数是33343343334334343474475567667778++=+=+==70C C C C C C C C C C C C C C C C ++⋅⋅⋅+=++⋅⋅⋅+=++;(2)当1x =,29n =时,()292293010212)1222228212g -=++⋅⋅⋅+==-=--(,而()10101019282919101010182(71)2771717112g C C C =-=+-=+⋅⋅+⋅⋅++⋅⋅+-化简得:()1019282822101010177171716g C C C =+⋅⋅+⋅⋅++⋅⋅+,因此()1g 除以7所得的余数6.【点睛】本题考查了二项式定理的应用,考查了等比数列前n 项和公式,考查了数学运算能力.17.已知11*121()(N )r nn r n n n F n a a C a C a C n -+=+++++∈.(1)若21n a n =-,求(5)F ;(2)若17n n a -=,求(20)F 除以9的余数; (3)若2(1)n a n =-,求()F n .【答案】(1)192;(2)1;(3)()222n n n -+⋅.【分析】(1)利用倒序相加以及组合数公式的性质,即可求得答案;(2)将(20)F 构造为()2071+,进而表示为()2091-,对其展开发现1222020202020999C C C -⋅+⋅-⋅⋅⋅+⋅都能被9整除,所以1除以9的余数就是(20)F 除以9的余数,即可得到答案; (3)由已知可表示通项211kk n n T k C nkC --==,进而由倒序相加求出答案. 【详解】(1)因为21n a n =-,所以125555(5)51311F C C C =+++……∈同时,543555119(5)71F C C C =+++……∈,∈∈两式相加得:25555152(5)12121212122F C C C ==++⨯+所以4121259)2(F =⨯=(2)因为17n n a -=,所以22020002011192020020202020220120(20)1777171771F C C C C C C =+++=⋅⋅⋅⋅+⋅+⋅()()2020201222020202020718911999C C C =+==-=-⋅+⋅-⋅⋅⋅+⋅因为1222020202020999C C C -⋅+⋅-⋅⋅⋅+⋅都能被9整除,所以1除以9的余数就是(20)F 除以9的余数, 故(20)F 除以9的余数为1.(3)因为2(1)n a n =-,所以通项()()()()22111!!!!1!!kk nn n n T k C k k n nkC k n k k n k ---==⋅=⋅⋅=⋅--⋅-所以()21222011111()1212nn n n n n n n F n C C n C n C C nC ----=++⋅⋅⋅+=++⋅⋅⋅+ 同时()111111()11n n n n F n n nC n C C ----⎡⎤=+-+⋅⋅⋅+⎣⎦上述两式相加有()()()()()0210211111112()1111n n n n n n n n F n n n C n C n C n n C C C --------⎡⎤=++++⋅⋅⋅++=+++⋅⋅⋅+⎣⎦ ()()121122n n n n n n --=+⋅=+⋅所以()22()2n F n n n -=+⋅【点睛】本题考查二项式定理的综合应用,主要涉及构造法的体现,属于难题.18.已知()112225113mm mma CAm N ---=-∈,777714-除以19的余数为b ,求1bx ⎫⎪⎭展开式的常数项.【答案】常数项为240. 【分析】由组合数和排列数的定义可列出不等式组01125022113m mm m ≤-≤⎧⎨≤-≤-⎩,求出m 的值,进而求出a 的值.再利用二项式定理,由77777714(1941)14-=⨯+-求出余数b .将a 和b 代入1)b x,在其通项公式中令x 的幂指数等于零,求出常数项. 【详解】解:由题意得01125022113m m m m≤-≤⎧⎨≤-≤-⎩,解得111375m ≤≤, ∈m N ∈,∈2m =,∈72105100a C A =-=,∈()77777714194114-=⨯+-()()()77760176777777194194...194114C C C =⨯+⨯++⨯+-,∈6b =,∈611b x x ⎫⎛⎫=⎪ ⎪⎭⎝⎭,通项公式(()63662166112rrrr rr r r T C C x x ---+⎛⎫=-=- ⎪⎝⎭, 令6302r-=,2r ,故常数项为240. 【点睛】本题考查了排列数和组合数的定义,利用二项式定理解决整除问题,求二项式展开式的指定项问题.属于中档题.19.已知()21221012211n n n x a a x a x a x++++=++++,n *∈N .记()021?nn n kk T k a-==+∑.(1)求2T 的值;(2)化简n T 的表达式,并证明:对任意n *∈N 的,n T 都能被42n +整除. 【答案】(1)30;(2)()21221nn n T n C -=+,证明见解析.【分析】(1)由二项式定理得21ii n a C +=,利用公式计算2T 的值;(2)由组合数公式化简n T ,把n T 化为42n +的整数倍即可. 【详解】由二项式定理,得()210,1,2,,21ii n a C i n +==+;(1)210221055535+3530T a a a C C C =++=+=;(2)因为()()()()()()()()()12121!212!1!!!!11n kn n n n n k n k k n k n k n n C k ++++++=++⋅=+-+⋅+-⋅+()221n kn n C +=+,所以()()()1212100212121nnnn k n k n n kn n k k k T k ak Ck C -++-++====+=+=+∑∑∑ ()()()()111212121021212121nnnn kn k n kn n n k k k n k n Cn k Cn C +++++++++===⎡⎤=++-+=++-+⎣⎦∑∑∑()()()()()1221221201122121221221222nnn kn kn n n nn n k k n Cn C n C n +++++===+-+=+⋅+-+⋅⋅∑∑()221nn n C =+, ()()()()122121212121221n n n nn n n n n T n C n C C n C ----∴=+=++=+,因为21n n C N *-∈,所以n T 能被42n +整除. 【点睛】本题考查了二项式定理与组合数公式的应用问题,也考查了整除问题,是难题. 20.已知二项式()23nx x +.(1)若它的二项式系数之和为512.求展开式中系数最大的项; (2)若3,2020x n ==,求二项式的值被7除的余数. 【答案】(1)1678732x ;(2)2. 【分析】(1)由题意利用二项式系数的性质求得n 的值,再根据通项公式可得展开式中第1r +项的系数,从而求得展开式中系数最大的项. (2)二项式即2020(282)+,按照二项式定理展开,问题化为20202被7除的余数.再根据20206736732282(71)=⋅=⋅+,按照二项式定理展开,可得它被7除的余数.【详解】 (1)二项式2(3)nx x +的二项式系数之和为512,2512n ∴=,9n ∴=.由1999119133,1,2,,933r r r r r rr r C C r C C --++⎧⋅⋅=⎨⋅⋅⎩,解得:7r =,展开式中系数最大的项为第8项,为6777789922161(3)787323T C x x C x x ⋅===.(2)若3x =,2020n =,220202020(3)30(282)n x x +==+202012019201920192020202020202020282822822282C C K =+⋅++⋅+⋅+⋅=问题转化为20202被7除的余数,202067367306731672267167267367367367367236732282(71)2[77771]C C C C C ⋅⋅⋅=⋅=+=⋅++⋯++⋅⋅+272k =⨯+,即余数为2.【点睛】本题考查二项式定理的应用、整除的余数问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意连续两次使用二项展开式求余数.21.在平面直角坐标系xOy 中,点P(x 0,y 0)在曲线y =x 2(x >0)上.已知A(0,-1),00(x ,y )n nn P ,n∈N*.记直线AP n 的斜率为k n . (1)若k 1=2,求P 1的坐标; (2)若k 1为偶数,求证:k n 为偶数. 【答案】(1)(1,1)(2)详见解析 【解析】试题分析:(1)由两点间斜率公式得20000112y x x x ++==,解方程得P 1的坐标(2)先求出k n =2000000111n nnn n ny x x x x x ++==+,再利用k 1为偶数表示x 0,设k 1=2p(p ∈N*),则x 0=项式展开定理证明k n 为偶数试题解析:解:(1)因为k 1=2,所以20000112y x x x ++==, 解得x 0=1,y 0=1,所以P 1的坐标为(1,1).(2)设k 1=2p(p ∈N*),即20000112y x p x x ++==, 所以20x -2px 0+1=0,所以x 0=因为y 0=x 02,所以k n =200000111n n n n n ny x x x x x ++==+ 所以当x 0=pk n =(pn+)n =(pn +(pn .同理,当 x 0=pk n =(pn +(pn .∈当n =2m(m ∈N *)时, k n =22220(1)mkn k k nk Cp p -=-∑,所以k n 为偶数.∈当n =2m +1(m ∈N)时,k n =22220(1)mk n k k nk Cp p -=-∑,所以k n 为偶数.综上, k n 为偶数. 考点:二项式展开定理应用 22.若()201022010012201024x a a x a x a x +=++++,则0242010a a a a +++被3除的余数是多少?【答案】2 【分析】根据题意,给自变量x 赋值,取1x =和1x =-,两个式子相加,得到0242010a a a a +++的值,整理出可以看出能不能被3除的结果,得到余数. 【详解】 解:在已知等式中 取1x =得201001220106a a a a ++++= 取1x =-得201001220102a a a a -+-+= 两式相加得2010201002420102()62a a a a +++=+即2010200902420101622a a a a +++=⨯+注意到2010162⨯能被3整除; ()()()10041004200921004100322223123331C C =⨯=⨯+=⨯+⋅++⋅+所以被3除的余数是2,因此0242010a a a a +++被3除的余数是2.【点睛】本题考查二项式定理的应用和带余除法,本题解题的关键是利用二项式定理利用赋值的方法得到式子的结果,属于中等题. 略 23.已知展开式的二项式系数和为512,且(1)求的值;(2)求的值;(3)求被6整除的余数.【答案】(1)144,(2)2,(3)5 【详解】解:(1)由二项式系数和为512知,所以(2)令令得所以(3)因为能被6整除,所以-19被6整除后余数为5.三、填空题24.已知202074a +能够被15整除,其中(0,15)a ∈,则a =__________. 【答案】14 【分析】202020202200202074a +能够被15整除,只需1a +能被15整除即可,可得答案.【详解】 解:由题可知,()0202020275714=-()()()()120192020020201201920191202002020202020202020751751751751C C C C =-+-++-+-0202012019201912020202020207575751C C C =-+-+所以0202012019201912020202022020200775754751C C C a a =-++-++,而75能被15整除,要使202074a +能够被15整除,只需1a +能被15整除即可, 所以115a +=,解得:14a =. 【点睛】本题考查二项式展开式的应用,以及二项式定理的整除问题,考查学生的化简运算能力. 25.2020503+被7除后的余数为________________________. 【答案】4 【分析】 先化简20202020503(491)3+=++,再利用二项式定理求出余数.【详解】 由题得2020202002020120192019202002020202020202020503(491)3494949493C C C C +=++=+++++020201201920192020202020204949494C C C =++++因为02020120192019202020202020494949C C C +++能被7整除,所以2020503+被7除后的余数为4. 故答案为:4. 【点睛】本题主要考查二项式定理求余数,意在考查学生对这些知识的理解掌握水平. 26.已知202074a +能够被15整除,则a =________. 【答案】14 【分析】202020202200202074a +能够被15整除,只需1a +能被15整除即可,即可求出a 的值.【详解】 解:由题可知,()0202020275714=-()()()()120192020020201201920191202002020202020202020751751751751C C C C =-+-++-+-0202012019201912020202020207575751C C C =-+-+所以0202012019201912020202022020200775754751C C C a a =-++-++,而75能被15整除,要使202074a +能够被15整除,只需1a +能被15整除即可, 所以115a +=,解得:14a =. 故答案为:14. 【点睛】本题考查二项展开式的应用,以及二项式定理的整除问题,考查化简运算能力.27.若等差数列{}n a 的首项为112225113nn nnCA----,公差为52mx ⎛- ⎝展开式中的常数项,其中m 是777715-除以19的余数,则此等差数列的通项n a =________.【答案】1044n - 【分析】 由题意可得01125022113n nn n≤-≤⎧⎨≤-≤-⎩,解不等式可得n 的值,进而可以求得1a ;由二项式展开式可得m 的值,再由二项式展开通式可得r 的值,进而可以求得公差d ,最后表示出等差数列的通项公式即可. 【详解】 解:由112225113n n nnCA----得,01125022113n n n n ≤-≤⎧⎨≤-≤-⎩,解得111375n ≤≤,又n 为自然数,所以2n =. 故1122272151********nn nn a C A C A ---=-=-=.77770771762757677777777777717715(761)157677676615C C C C C -=+-=+++++-… 07717627576777777777676761647C C C C =++++-…,上式的前77项均有因式76,故可以被19整除, 故余数为14195-+=,即5m =.5525x ⎛- ⎪⎝⎭的通项公式为55553155552225r r r r r r r r T C C x x ---+⎛⎫⎛⎛⎫⎛⎫==-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎝⎭⎝⎭, 令5503r-=,解得3r =. 故公差233552425d C ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭则100(4)(1)1044n a n n =+--=-. 故答案为:1044n - 【点睛】本题主要考查二项式定理和等差数列的通项公式,考查学生计算能力,属于中档题.28.记[x ]为不超过实数x 的最大整数.若27788A ⎡⎤⎡⎤=+++⎢⎥⎢⎥⎣⎦⎣⎦201920207788⎡⎤⎡⎤+⎢⎥⎢⎥⎣⎦⎣⎦,则A 除以50的余数为____________ . 【答案】40 【分析】根据21277,88k k -均不是整数,利用放缩法分析出21221217772788k k k k ---⎡⎤⎡⎤-<+<⎢⎥⎢⎥⎣⎦⎣⎦,结合二项式定理得A除以50的余数. 【详解】注意到21277,88k k-均不是整数. 按定义212212212212177777772117888888k k k k k kk k -----⎛⎫⎛⎫⎡⎤⎡⎤-=-+-<+<+= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦, 所以对任意正整数k 均有21221777188k k k --⎡⎤⎡⎤+=-⎢⎥⎢⎥⎣⎦⎣⎦22771k -=⋅-17(49)1k -=⋅- ()()()1101111117(501)175050111r k k k r k r k k k k C C C ---------=⋅--=⋅⨯+⋅⋅⋅+⨯⨯-+⋅⋅⋅+⨯--17(1)1(mod 50)k -=⋅--.从而71010(11)101040(mod50)A ≡⋅⋅--≡. 故答案为:40 【点睛】此题考查数论相关知识点,涉及同余问题结合二项式定理处理,需要熟练掌握初等数论相关知识. 29.7271除以100的余数是________ 【答案】41 【分析】利用二项式定理化简()727271701=+,求出展开式的后2项,即可得到7271除以100的余数; 【详解】解:()727217172727270727127270170177070C C C C +==++++21072701()m m N =+⨯+∈ 2105041m =+即7271除以100的余数为41. 故答案为:41. 【点睛】本题考查二项式定理的应用,注意二项式定理的展开式的后2项,属于基础题. 30.2020502+被7除后的余数为__________. 【答案】3 【分析】先由()202020205024912+=++,再按照二项式定理展开即可得出结果.【详解】()202020205024912+=++012019202020202019120202020202020204949492C C C C =⋅+⋅++⋅++显然,除了最后两项外,其余的各项都能被7整除, 故2020502+除以7的余数为2020202023C+=,故答案为:3. 【点睛】本题主要考查的是二项式定理的应用,熟记二项展开式是解题的关键,属于基础题. 31.设()()()()201922019012201912888x a a x a x a x +=+-+-++-,则()20191kk k a =-∑除以8所得的余数为________. 【答案】7 【分析】令7x =可得()201901kk k a =-=∑201915,再将2019201915(161)=-展开分析即可.【详解】由已知,令7x =,得2019012201915a a a a =-+--=()20191kk k a =-∑,又2019201920191201820182019201915(161)1616161C C =-=-++-201812017201916(16162019)1C =-++- 20181201720198[2(16162019)1]7C =-++-+.所以()20191kk k a =-∑除以8所得的余数为7.故答案为:7 【点睛】本题考查二项式定理的综合应用,涉及到余数问题,做此类题一定要合理构造二项式,并展开进行分析判断,是一道中档题.32.设()1223310101010101010190909019090kk k n C C C C C =-+-+⋅⋅⋅+-+⋅⋅⋅+,则n 除以88的余数是______. 【答案】1【分析】利用二项式定理得到1089n =,将89写成1+88,然后再利用二项式定理展开即可. 【详解】101010(190)89(188)n =-==+12233101010101010188888888C C C C =⋅++++⋅⋅+,因展开式中后面10项均有88这个因式,所以n 除以88的余数为1. 故答案为:1 【点睛】本题考查二项式定理的综合应用,涉及余数的问题,解决此类问题的关键是灵活构造二项式,并将它展开分析,本题是一道基础题.33.记122331909090(90)90k k n nn n n n n X C C C C C =-+-+⋅⋅⋅+-+⋅⋅⋅-(n 为正奇数),则X 除以88的余数为______ 【答案】87 【分析】由组合数的性质知:()1223318888888888k k n nn n n n n X C C C C C =-++++⋅⋅⋅++⋅⋅⋅+,由此能求出结果. 【详解】解:由组合数的性质知:122331909090(90)90k k n nn n n n n X C C C C C =-+-+⋅⋅⋅+-+⋅⋅⋅-()()()()1230012390909090(90)90nk k nn n n n n nC C C C C C =+-+-+-+⋅⋅⋅+-+⋅⋅⋅+- ()()()1223319018818888888888nnk k n nn n n n n C C C C C =-=-+=-++++⋅⋅⋅++⋅⋅⋅+则X 除以88的余数为18887-+=. 故答案为:87. 【点睛】本题考查余数的求法,是中档题,解题时要认真审题,注意组合数性质及二项式定理的合理运用.34.当n 为正奇数时,01122177777n n n n n n n C C C C ---++++除以9的余数是__________.【答案】7 【分析】根据二项式定理化简01122177777n n n n n n n C C C C ---++++,再根据题意对化简的式子进行变形,再展开进行求解即可. 【详解】01122177777n n n n n n n C C C C ---++++01122211771717111n n n n n n n nn n n n n n n C C C C C C ----=+⋅+⋅++⋅+⋅-⋅(71)1n =+- 81n =-(91)1n =--0112221199(1)9(1)9(1)(1)1n n n n n nn n n n n n C C C C C ----=+⋅-+⋅-++⋅-+⋅--,因为n 为正奇数,所以上式可化简为:0112221199(1)9(1)9(1)97n n n n n n n n n C C C C ----+⋅-+⋅-++⋅--+该式除以9,余数为:7. 故答案为:7 【点睛】本题考查了应用二项式定理应用解决余数问题,考查了代数式的恒等变形能力,考查了数学运算能力. 35.设a ,b ,m 为整数(m >0),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为(mod )a b m ≡.若0122202020202020222a C C C C =+⋅+⋅++⋅,(mod10)a b ≡,则b 的值可以是_______.【答案】2011(答案不唯一,101()k k Z +∈都可以) 【分析】应用二项式定理求出a ,再由二项式定理求出a 除以10所得余数,然后写出b . 【详解】0122202020201020202020222(12)39a C C C C =+⋅+⋅++⋅=+==100100991010101010(101)10(1)10(1)(1)C C C =-=-++-+-,展开式中只有最后一项不是10的整数倍,所以a 除以10的余数为1,∈(mod10)a b ≡,∈2011b =. 故答案为:2011(答案不唯一,101()k k Z +∈都可以) 【点睛】本题考查二项式定理的应用,考查整除问题.掌握二项式定理是解题关键. 36.设a Z ∈,且013a <<,若201953a +能被13整除,则a =____________. 【答案】12 【分析】由534131=⨯+,可将201953a +表示为()2019201953521a a +=++,可知1a +能被13整除,再结合a 的取值范围可求得整数a 的值. 【详解】535214131=+=⨯+,()20192019201912018201820192019535215252521a a C C a ∴+=++=+⋅++⋅++,由于201912018201820192019525252C C +⋅++⋅能被13整除,则1a +也能被13整除,013a <<,1114a ∴<+<且a Z ∈,113a ∴+=,解得12a =.故答案为:12. 【点睛】本题考查利用二项式定理处理数的整除问题,考查二项式展开式通项的应用,考查计算能力,属于中等题. 37.3321-除以9的余数为______.【答案】7 【分析】把3321-化为11(91)1--,根据二项式定理,即可求得答案.【详解】由于3311112181(91)1-=-=--01101101292101101101111111111119(1)9(1)9(1)9(1)9(1)1C C C C C =⋅⋅-+⋅⋅-+⋅⋅-+⋯+⋅⋅-+⋅⋅--由于前11项都有因数9,故所给的式子故除以9的余数即为11011119(1)12C ⋅⋅--=-除以9的余数,故所给的式子除以9的余数为7, 故答案为:7. 【点睛】本题主要考查二项式定理的应用,把所给的式子化为11(91)1--,是解题的关键,体现了转化的数学而思想,考查了分析能力和计算能力,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二项式定理 概 念 篇【例1】求二项式(a -2b )4的展开式. 分析:直接利用二项式定理展开.解:根据二项式定理得(a -2b )4=C 04a 4+C 14a 3(-2b )+C 24a 2(-2b )2+C 34a (-2b )3+C 44(-2b )4=a 4-8a 3b +24a 2b 2-32ab 3+16b 4.说明:运用二项式定理时要注意对号入座,本题易误把-2b 中的符号“-”忽略.【例2】展开(2x -223x)5. 分析一:直接用二项式定理展开式.解法一:(2x -223x )5=C 05(2x )5+C 15(2x )4(-223x )+C 25(2x )3(-223x )2+C 35(2x )2(-223x )3+ C 45 (2x )(-223x )4+C 55(-223x)5 =32x 5-120x 2+x 180-4135x+78405x -1032243x . 分析二:对较繁杂的式子,先化简再用二项式定理展开.解法二:(2x -223x)5=105332)34(x x=10321x[C 05(4x 3)5+C 15(4x 3)4(-3)+C 25(4x 3)3(-3)2+C 35(4x 3)2(-3)3+C 45(4x 3)(-3)4+ C 55(-3)5]=10321x(1024x 15-3840x 12+5760x 9-4320x 6+1620x 3-243) =32x 5-120x 2+x 180-4135x+78405x -1032243x . 说明:记准、记熟二项式(a +b )n 的展开式是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.【例3】在(x -3)10的展开式中,x 6的系数是 .解法一:根据二项式定理可知x 6的系数是C 410.解法二:(x -3)10的展开式的通项是T r +1=C r 10x 10-r (-3)r .令10-r =6,即r =4,由通项公式可知含x 6项为第5项,即T 4+1=C 410x 6(-3)4=9C 410x 6. ∴x 6的系数为9C 410.上面的解法一与解法二显然不同,那么哪一个是正确的呢?问题要求的是求含x 6这一项系数,而不是求含x 6的二项式系数,所以应是解法二正确.如果问题改为求含x 6的二项式系数,解法一就正确了,也即是C 410.说明:要注意区分二项式系数与指定某一项的系数的差异.二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关,与二项式无关,后者与二项式、二项式的指数及项数均有关.【例4】已知二项式(3x -x32)10, (1)求其展开式第四项的二项式系数; (2)求其展开式第四项的系数; (3)求其第四项.分析:直接用二项式定理展开式.解:(3x -x 32)10的展开式的通项是T r +1=C r10(3x )10-r (-x32)r (r =0,1,…,10).(1)展开式的第4项的二项式系数为C 310=120. (2)展开式的第4项的系数为C 31037(-32)3=-77760. (3)展开式的第4项为-77760(x )731x ,即-77760x . 说明:注意把(3x -x 32)10写成[3x +(-x 32)]10,从而凑成二项式定理的形式. 【例5】求二项式(x 2+x21)10的展开式中的常数项.分析:展开式中第r +1项为C r10(x 2)10-r (x21)r ,要使得它是常数项,必须使“x ”的指数为零,依据是x 0=1,x ≠0.解:设第r +1项为常数项,则T r +1=C r10(x 2)10-r(x21)r =C r10x r 2520-(21)r (r =0,1,…,10),令20-25r =0,得r =8. ∴T 9=C 810(21)8=25645. ∴第9项为常数项,其值为25645. 说明:二项式的展开式的某一项为常数项,就是这项不含“变元”,一般采用令通项T r +1中的变元的指数为零的方法求得常数项.【例6】 (1)求(1+2x )7展开式中系数最大项; (2)求(1-2x )7展开式中系数最大项.分析:利用展开式的通项公式,可得系数的表达式,列出相邻两项系数之间关系的不等式,进而求出其最大值.解:(1)设第r +1项系数最大,则有⎪⎩⎪⎨⎧≥≥++--,2C 2C ,2C 2C 11771177r r r r r r r r即⎪⎪⎩⎪⎪⎨⎧--+≥-+--≥---,2!)17(!)1(!72!)7(!!7,2!)17(!)1(!72!)7(!!711r r r rr r r r r r r r化简得⎪⎪⎩⎪⎪⎨⎧≥≤⎪⎪⎩⎪⎪⎨⎧+≥--≥.313,316.1271,812r r r r r r 解得又∵0≤r ≤7,∴r =5.∴系数最大项为T 6=C 5725x 5=672x 5.(2)解:展开式中共有8项,系数最大项必为正项,即在第一、三、五、七这四项中取得.又因(1-2x )7括号内的两项中后两项系数的绝对值大于前项系数的绝对值,故系数最大值必在中间或偏右,故只需比较T 5和T 7两项系数的大小即可.667447)2(C )2(C --=1737C 4C >1,所以系数最大项为第五项,即T 5=560x 4.说明:本例中(1)的解法是求系数最大项的一般解法,(2)的解法是通过对展开式多项分析,使解题过程得到简化,比较简洁.【例7】 (1+2x )n 的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.分析:根据已知条件可求出n ,再根据n 的奇偶性确定二项式系数最大的项.解:T 6=C 5n (2x )5,T 7=C 6n (2x )6,依题意有C 5n 25=C 6n 26,解得n =8. (1+2x )8的展开式中,二项式系数最大的项为T 5=C 4n (2x )4=1120x 4.设第r +1项系数最大,则有⎪⎩⎪⎨⎧≥≥++--.2C 2C ,2C 2C 11771177r r r r r r r r∴5≤r ≤6.∴r =5或r =6.∴系数最大的项为T 6=1792x 5,T 7=1792x 6.说明:(1)求二项式系数最大的项,根据二项式系数的性质,n 为奇数时中间两项的二项式系数最大;n 为偶数时,中间一项的二项式系数最大.(2)求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式,再解不等式的方法求得.应 用 篇【例8】若n ∈N *,(2+1)n =2a n +b n (a n 、b n ∈Z ),则b n 的值( ) A.一定是奇数 B.一定是偶数C.与b n 的奇偶性相反D.与a 有相同的奇偶性分析一:形如二项式定理可以展开后考查.解法一:由(2+1)n =2a n +b n ,知2a n +b n =(1+2)n=C 0n +C 1n2+C 2n (2)2+C 3n (2)3+ … +C n n (2)n .∴b n =1+C 2n (2)2+C 4n (2)4+ …∴b n 为奇数. 答案:A分析二:选择题的答案是唯一的,因此可以用特殊值法. 解法二:n ∈N *,取n =1时,(2+1)1=(2+1),有b 1=1为奇数.取n =2时,(2+1)2=22+5,有b 2=5为奇数.答案:A【例9】若将(x +y +z )10展开为多项式,经过合并同类项后它的项数为( ) A.11 B.33 C.55 D.66分析:(x +y +z )10看作二项式10)(][z y x ++展开.解:我们把x +y +z 看成(x +y )+z ,按二项式将其展开,共有11“项”,即(x +y +z )10=10)(][z y x ++=∑=1010Ck k(x +y )10-k z k .这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式(x +y ) 10-k 展开,不同的乘积C k10(x +y )10-k z k (k =0,1,…,10)展开后,都不会出现同类项.下面,再分别考虑每一个乘积C k10(x +y )10-k z k (k =0,1,…,10).其中每一个乘积展开后的项数由(x +y )10-k 决定,而且各项中x 和y 的指数都不相同,也不会出现同类项.故原式展开后的总项数为11+10+9+…+1=66.答案:D说明:化三项式为二项式是解决三项式问题的常用方法.【例10】求(|x |+||1x -2)3展开式中的常数项.分析:把原式变形为二项式定理标准形状. 解:∵(|x |+||1x -2)3=(||x -||1x )6, ∴展开式的通项是T r +1=C r6(||x )6-r (-||1x )r =(-1)r C r6(||x )6-2r . 若T r +1为常数项,则6-2r =0,r =3.∴展开式的第4项为常数项,即T 4=-C 36=-20.说明:对某些不是二项式,但又可化为二项式的题目,可先化为二项式,再求解. 【例11】求(x -3x )9展开式中的有理项.分析:展开式中的有理项,就是通项公式中x 的指数为整数的项.解:∵T r +1=C r9(x21)9-r (-x 31)r =(-1)r C r9x627r -.令627r -∈Z ,即4+63r-∈Z ,且r =0,1,2,…,9. ∴r =3或r =9.当r =3时,627r -=4,T 4=(-1)3C 39x 4=-84x 4.当r =9时,627r -=3,T 10=(-1)9C 99x 3=-x 3.∴(x -3x )9的展开式中的有理项是第4项-84x 4,第10项-x 3. 说明:利用二项展开式的通项T r +1可求展开式中某些特定项. 【例12】若(3x -1)7=a 7x 7+a 6x 6+ … +a 1x +a 0,求 (1)a 1+a 2…+a 7; (2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6.分析:所求结果与各项系数有关可以考虑用“特殊值”法,整体解决. 解:(1)令x =0,则a 0=-1,令x =1,则a 7+a 6+ … +a 1+a 0=27=128.①∴a 1+a 2+…+a 7=129.(2)令x =-1,则a 7+a 6+a 5+a 4+a 3+a 2+a 1+a 0=(-4)7.②由2)2()1(-得:a 1+a 3+a 5+a 7=21[128-(-4)7]=8256.(3)由2)2()1(+得a 0+a 2+a 4+a 6=21[128+(-4)7]=-8128.说明:(1)本解法根据问题恒等式特点来用“特殊值”法,这是一种重要的方法,它用于恒等式.(2)一般地,对于多项式g (x )=(px +q )n =a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6+a 7x 7,g (x )各项的系数和为g (1),g (x )的奇数项的系数和为21[g (1)+g (-1)],g (x )的偶数项的系数和为21[g (1)-g (-1)].【例13】证明下列各式(1)1+2C 1n +4C 2n + … +2n -1C 1-n n +2n C n n =3n;(2)(C 0n )2+(C 1n )2+ … +(C n n )2=C n n 2; (3)C 1n +2C 2n +3C 3n + … +n C n n =n 2n -1. 分析:(1)(2)与二项式定理的形式有相同之处可以用二项式定理,形如数列求和,因此可以研究它的通项寻求规律.证明:(1)在二项展开式(a +b )n =C 0n a n +C 1n a n -1b +C 2n a n -2b 2+ … +C 1-n n ab n -1+C n n b n 中,令a =1,b =2,得(1+2)n =1+2C 1n +4C 2n + … +2n -1C 1-n n +2n C n n ,即1+2C 1n +4C 2n + … +2n -1C 1-n n +2n C n n =3n .(2)(1+x )n (1+x )n =(1+x )2n ,∴(1+C 1n x +C 2n x 2+ … +C r n x r + … +x n )(1+C 1n x +C 2n x 2+ … +C r n x r + … +x n )=(1+x )2n .而C n n 2是(1+x )2n 的展开式中x n 的系数,由多项式的恒等定理,得 C 0n C n n +C 1n C 1-n n + … +C 1n C 1-n n +C n n C 0n =C n n 2. ∵C m n =C m n n-,0≤m ≤n , ∴(C 0n )2+(C 1n )2+ … +(C n n )2=C n n 2.(3)证法一:令S =C 1n +2C 2n +3C 3n + … +n C n n . ①令S =C 1n +2C 2n + … +(n -1)C 1-n n +n C n n =n C n n +(n -1)C 1-n n + … +2C 2n +C 1n =n C n n +(n -1)C 1n + … +2C 2-n n+C 1-n n . ②由①+②得2S =n C 1n +n C 2n +n C 3n + … +n C n n =n (C n n +C 1n +C 2n +C 3n + … +C nn ) =n (C 0n +C 1n +C 2n +C 3n + … +C n n )=n 2n .∴S =n 2n -1,即C 1n +2C 2n +3C 3n + … +n C n n =n 2n -1. 证法二:观察通项:k C k n =k 11C !)(!)1(!)1(!)(!--=---=-k n n k n k n n k n k n .∴原式=n C 01-n +n C 11-n +n C 21-n +n C 31-n + … +n C 11--n n =n (C 01-n +C 11-n +C 21-n +C 31-n +…+C 11--n n )=n 2n -1, 即C 1n +2C 2n +3C 3n + … +n C n n =n 2n -1. 说明:解法二中k C k n =n C 11--k n 可作为性质记住. 【例14】求1.9975精确到0.001的近似值.分析:准确使用二项式定理应把1.997拆成二项之和形式如1.997=2-0.003.解:1.9975=(2-0.003)5=25-C 15240.003+C 25230.0032-C 35220.0033+…≈32-0.24+0.00072≈31.761.说明:利用二项式定理进行近似计算,关键是确定展开式中的保留项,使其满足近似计算的精确度.【例15】求证:5151-1能被7整除.分析:为了在展开式中出现7的倍数,应把51拆成7的倍数与其他数的和(或差)的形式.证明:5151-1=(49+2)51-1=C 0514951+C 15149502+ … +C 505149·250+C 5151251-1,易知除C 5151251-1以外各项都能被7整除.又251-1=(23)17-1=(7+1)17-1=C17717+C117716+ … +C16177+C1717-1=7(C 017716+C 117715+…+C 1617).显然能被7整除,所以5151-1能被7整除.说明:利用二项式定量证明有关多项式(数值)的整除问题,关键是将所给多项式通过恒等变形变为二项式形式,使其展开后的各项均含有除式.创 新 篇【例16】已知(x lg x +1)n 的展开式的最后三项系数之和为22,中间一项为20000.求x . 分析:本题看似较繁,但只要按二项式定理准确表达出来,不难求解!解:由已知C n n +C 1-n n +C 2-n n=22,即n 2+n -42=0. 又n ∈N *,∴n =6. T 4为中间一项,T 4=C 36 (x lg x )3=20000,即(x lg x )3=1000. x lg x =10.两边取常用对数,有lg 2x =1,lg x =±1,∴x =10或x =101.说明:当题目中已知二项展开式的某些项或某几项之间的关系时,常利用二项式通项公式,根据已知条件列出等式或不等式进行求解.【例17】设f (x )=(1+x )m +(1+x )n (m ,n ∈N *),若其展开式中关于x 的一次项的系数和为11,问m ,n 为何值时,含x 2项的系数取最小值?并求这个最小值.分析:根据已知条件得到x 2的系数是关于x 的二次表达式,然后利用二次函数性质探讨最小值问题.解:C 1m +C 1n =n +m =11. C 2m+C 2n=21(m 2-m +n 2-n )=21122-+n m ,∵n ∈N *,∴n =6或5,m =5或6时,x 2项系数最小,最小值为25. 说明:本题是一道关于二次函数与组合的综合题.【例18】若(x +x1-2)n 的展开式的常数项为-20,求n . 分析:题中x ≠0,当x >0时,把三项式(x +x 1-2)n 转化为(x -x1)2n ;当x <0时,同理(x +x 1-2)n =(-1)n (x -x1)2n .然后写出通项,令含x 的幂指数为零,进而解出n .解:当x >0时,(x +x 1-2)n =(x -x1)2n ,其通项为T r +1=C r n 2(x )2n -r (-x1)r =(-1)r C r n2(x )2n -2r . 令2n -2r =0,得n =r ,∴展开式的常数项为(-1)r C n n 2; 当x <0时,(x +x 1-2)n =(-1)n (x -x1)2n .同理可得,展开式的常数项为(-1)r C n n 2. 无论哪一种情况,常数项均为(-1)r C n n 2.令(-1)r C n n 2=20.以n =1,2,3,…,逐个代入,得n =3. 说明:本题易忽略x <0的情况.【例19】利用二项式定理证明(32)n -1<12+n .分析:12+n 不易从二项展开式中得到,可以考虑其倒数21+n . 证明:欲证(32)n -1<12+n 成立,只需证(23)n -1<21+n 成立.而(23)n -1=(1+21)n -1=C 01-n +C 11-n 21+C 21-n (21)2+ … +C 11--n n (21)n -1 =1+21-n +C 21-n (21)2+ … +C 11--n n (21)n -1>21+n .说明:本题目的证明过程中将(23)n -1转化为(1+21)n -1,然后利用二项式定理展开式是解决本问题的关键.【例20】求证:2≤(1+n1)n <3(n ∈N *).分析:(1+n1)n 与二项式定理结构相似,用二项式定理展开后分析.证明:当n =1时,(1+n 1)n =2.当n ≥2时,(1+n 1)n =1+C 1n n 1+C 2n 21n + … +C n n (n 1)n =1+1+C 2n 21n+ … +C n n (n 1)n>2. 又C k n (n 1)k =knk k n n n !)1()1(+-- ≤!1k ,所以(1+n 1)n ≤2+!21+!31+ … +!1n <2+211⋅+321⋅+ … +n n ⋅-)1(1=2+(1-21)+(21-31)+ … +(11-n -n1) =3-n1<3. 综上有2≤(1+n1)n<3. 说明:在此不等式的证明中,利用二项式定理将二项式展开,再采用放缩法和其他有关知识,将不等式证明到底.【例21】求证:对于n ∈N *,(1+n 1)n <(1+11+n )n +1.分析:结构都是二项式的形式,因此研究二项展开式的通项是常用方法.证明:(1+n 1)n 展开式的通项T r +1=C r n r n1=r r n n r A ! =!1r r n r n n n n )1()2)(1(+---=!1r (1-n 1)(1-n 2)…(1-nr 1-). (1+11+n )n +1展开式的通项T ′r +1=C r n 1+rn )1(1+=r r n n r )1(!A 1++ =!1r r n r n n n n )1()2)(1(+---=!1r (1-11+n )(1-12+n )…(1-11+-n r ). 由二项式展开式的通项可明显地看出T r +1<T ′r +1所以(1+n 1)n <(1+11+n )n +1说明:本题的两个二项式中的两项均为正项,且有一项相同.证明时,根据题设特点,采用比较通项大小的方法完成本题证明.【例22】设a 、b 、c 是互不相等的正数,且a 、b 、c 成等差数列,n ∈N *,求证:a n +c n>2b n .分析:题中虽未出现二项式定理的形式,但可以根据a 、b 、c 成等差数列创造条件使用二项式定理.证明:设公差为d ,则a =b -d ,c =b +d .a n +c n -2b n =(b -d )n +(b +d )n -2b n=[b n -C 1n b n -1d +C 2n b n -2d 2+ … +(-1)n d n ]+[b n +C 1n b n -1d +C 2n bn -2d 2+ … +d n ] =2(C 2n b n -2d 2+C 4n bn -4d 4…)>0. 说明:由a 、b 、c 成等差,公差为d ,可得a =b -d ,c =b +d ,这就给利用二项式定理证明此问题创造了可能性.问题即变为(b -d )n +(b +d )n >2b n ,然后用作差法改证(b -d )n +(b +d )n -2b n >0.【例23】求(1+2x -3x 2)6的展开式中x 5项的系数.分析:先将1+2x -3x 2分解因式,把三项式化为两个二项式的积,即(1+2x -3x 2)6=(1+3x )6(1-x )6.然后分别写出两个二项式展开式的通项,研究乘积项x 5的系数,问题可得到解决.解:原式=(1+3x )6(1-x )6,其中(1+3x )6展开式之通项为T k +1=C k 63k x k,(1-x )6展开式之通项为T r +1=C r6(-x )r .原式=(1+3x )6(1-x )6展开式的通项为C k 6C r6(-1)r 3k x k +r .现要使k +r =5,又∵k ∈{0,1,2,3,4,5,6},r ∈{0,1,2,3,4,5,6},必须⎩⎨⎧==5,0r k 或⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==.0,51,42,33,24,1r k r k r k r k r k 或或或或 故x 5项系数为C 0630C 56(-1)5+C 1631C 46(-1)4+C 2632C 36(-1)3+C 3633C 26(-1)4+C 4634C 16(-1)+C 5635C 06(-1)0=-168.说明:根据不同的结构特征灵活运用二项式定理是本题的关键.【例24】(2004年全国必修+选修1)(x -x 1)6展开式中的常数项为( ) A.15B.-15C.20D.-20解析:T r +1=(-1)r C r6(x )6-r x-r=(-1)r C r6x r 233-,当r =2时,3-23r =0,T 3=(-1)2C 26=15. 答案:A【例25】 (2004年江苏)(2x +x )4的展开式中x 3的系数是( ) A.6B.12C.24D.48解析:T r +1=(-1)r C r 4(x )4-r(2x )r =(-1)r 2r C r 4x22r +,当r =2时,2+2r=3,T 3=(-2)2C 24=24. 答案:C【例26】 (2004年福建理)若(1-2x )9展开式的第3项为288,则∞→n lim (x 1+21x + … +n x1)的值是( )A.2B.1C.21D.52 解析:T r +1=(-1)r C r 9(2x )r =(-1)r C r 92xr ,当r =2时,T 3=(-1)2C 2922x=288.∴x =23. ∴∞→n lim (x 1+21x + … +n x 1)=32132-=2.答案:A【例27】 (2004年福建文)已知(x -xa )8展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( )A.28B.38C.1或38D.1或28解析:T r +1=(-1)r C r 8x 8-r (xa )r =(-a )r C r 8x 8-2r ,当r =4时,T 3=(-a )4C 48=1120,∴a =±2. ∴有函数f (x )=(x -xa )8.令x =1,则f (1)=1或38. 答案:C【例28】 (2004年天津)若(1-2x )2004=a 0+a 1x +a 2x 2+…+a 2004x 2004(x ∈R ),则(a 0+a 1)+(a 0+a 2)+(a 0+a 3)+ … +(a 0+a 2004)= .(用数字作答)解析:在函数f (x )=(1-2x )2004中,f (0)=a 0=1,f (1)=a 0+a 1+a 2+ … +a 2004=1, (a 0+a 1)+(a 0+a 2)+(a 0+a 3)+…+(a 0+a 2004) =2004a 0+a 1+a 2+ … +a 2004 =2003a 0+a 0+a 1+a 2+ … +a 2004 =2003f (0)+f (1) =2004.答案:2004。

相关文档
最新文档