2018年高考二项式定理十大典型问题及例题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科教师辅导讲义
(r n r r
n n
n n C a b C b n N -++
+∈①二项式展开式:右边的多项式叫做()n
a b +的二项展开式。展开式中各项的系数r
n C (0,1,2,,)r n =⋅⋅⋅. 项,是关于a 与b 的齐次多项式 (r r n n
n n C x C x n +++∈(1)r r n n n n n C x C x ++
+-①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即则二项式系数的和为0122r
n
n n n n n n C C C C C +++++
+=21r n
n n n C C ++
+=-。
偶数项的二项式系数和:
,则0123
(1)(11)0n n
n n n n n n C C C C C -+-+-=-=,13
21
11222
r r n n n n n C C C +-+⋅⋅⋅=++
++⋅⋅⋅=⨯=
④奇数项的系数和与偶数项的系数和:
012012021210
(1)(1)n n
n
n n n n n n n n n n n C a x a a x a x a x C a x a x a x a x a a a a +=+++++=+
++++=+---------++=-----①(1)(1)()
2
(1)(1)()
2
n n
n n n
n a a a a a a ----++-+=+--+=②
奇数项的系数和偶数项的系数和
⑤二项式系数的最大项:如果二项式的幂指数如果二项式的幂指数)n
a bx +展开式中最大的项,一般采用待定系数法。设展开式中各项系数分别6n n n C +⋅2266n
n n n C C C +⋅++⋅112216(666)6
n
n n n n n n n C C C C -++⋅=
⋅+⋅++⋅ 2
211661)[(16)1](71)66
n
n n n n n C ⋅++⋅-=+-=-
13 .n n
n C -+=
3
193n n
n n C C -++
+,则
33
0122333333331(13)1
n n n n
n n n n n n n n C C C C C C C ++
+=++++
+-=+-141
3
n -=
的系数;
解:
024213
21
12r r n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++
++⋅⋅⋅=,2n -∴所以中间两个项分别为6,7n n ==,5653551211()()462n
T C x x x
+==⋅题型六:最大系数,最大项;
例:已知1(2)2
n x +,若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项
解:
46n n C C +45T T 和T ∴的项是8T ,练:在2()n
a b +
项最大,
1(2)2x +10.4r ≤≤,又012r ≤≤项最大,110r T C +=101022r r r r C C C C ⎧≥⎪⎨≥⎪⎩,又010r ≤≤,展开式中系数最大的项为题型七:含有三项变两项;
的展开式中才有解:
3(12)x +4(1)x -的展开式的通项是
,展开式中不含常数项24,8n ≠,即题型九:奇数项的系数和与偶数项的系数和;
,x 含的奇次幂的项之和为32006a x a x +++20062006a x +20052005)(a x x +=1
()2S x =展开式的奇次幂项之和为20062)(22)-+
2009a x +10,22a a ∴+20092009
2
a ⋅⋅⋅+=-1
10,a x a +则
二项式定理
(r n r r
n n
n n C a b C b n N -++
+∈①二项式展开式:右边的多项式叫做()n
a b +的二项展开式。展开式中各项的系数r
n C (0,1,2,,)r n =⋅⋅⋅. 项,是关于a 与b 的齐次多项式 (r r n n
n n C x C x n +++∈(1)r r n n n n n C x C x ++
+-①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即则二项式系数的和为0122r
n
n n n n n n C C C C C +++++
+=21r n
n n n C C ++
+=-。
偶数项的二项式系数和:
,则0123
(1)(11)0n n
n n n n n n C C C C C -+-+-=-=,13
21
11222
r r n n n n n C C C +-+⋅⋅⋅=++
++⋅⋅⋅=⨯=
④奇数项的系数和与偶数项的系数和:
012012021210
(1)(1)n n
n
n n n n n n n n n n n C a x a a x a x a x C a x a x a x a x a a a a +=+++++=+
++++=+---------++=-----①(1)(1)()
2
(1)(1)()
2
n n
n n n
n a a a a a a ----++-+=+--+=②
奇数项的系数和偶数项的系数和
⑤二项式系数的最大项:如果二项式的幂指数如果二项式的幂指数)n
a bx +展开式中最大的项,一般采用待定系数法。设展开式中各项系数分别6n n n C +⋅13 .n n
n C -+=题型二:利用通项公式求n x 的系数;