二项式定理十大典型问题及例题

合集下载

二项式定理十大典型例题配套练习

二项式定理十大典型例题配套练习

精锐1n n n n +1) n n n n nn n n n n n n n n n n n n n n n n n n n n n n n1. 二项式定理:,2. 基本概念:(a + b )n = C 0a n + C 1a n -1b ++ C r a n -r b r++ C n b n (n ∈ N * )①二项式展开式:右边的多项式叫做的二项展开式。

r +1 ②二项式系数:展开式中各项的系数. ③项数:共项,是关于与的齐次多项式 (r = 0,1C , r 2,⋅⋅⋅, n ) (r b a n④通项: 展开式中的第项叫做二项式展开式的 T C =r r a C +nr -1a r b nr -r b r 通项。

用表示。

3. 注意关键点: ①项数:展开式中总共有项。

r +1 n n(n +1) ②顺序:注意正确选择,,其顺序不能更改。

与是不同 (b r +b a +a 1)n 的。

③指数:的指数从逐项减到,是降幂排列。

的指数从b 0n a 逐项减到,是升幂排列。

各项的次数和等于. ④系数: 注意正确区分二项式系数与项的 C 0 , C 1 , C 2 , ⋅b a ⋅⋅, C r ,⋅⋅⋅, C n . 系数, 二项式系数依次是项的系数是与的系数(包括二项式系数)。

4. 常用的结论:令 令 5. 性质:(1+ x )n = C 0 + C 1x + C 2a x 2=+1,b =+ C x ,r x r ++ C n x n (n ∈ N *) (1- x )n = C 0 - C 1x + C 2x 2a -=1,+b C = r -x x r ,++ (-1)n C n x n(n ∈ N *) ①二项式系数的对称性:与首末两端“对距离”的 C C k 0 ==C C kn-1两个二项式系数相等,即,···nnnn②二项式系数和:令,则二项式系数的C 0 + C 1 + C 2 +a = +b C = r 1+ + C n = 2n和为, 变形式。

(完整版)二项式定理典型例题解析.docx

(完整版)二项式定理典型例题解析.docx

二项式定理 概 念 篇【例 1】求二项式 ( a - 2b)4 的展开式 . 分析:直接利用二项式定理展开.解:根据二项式定理得(a - 2b)4=C 04 a 4+C 14 a 3( - 2b)+C 24 a 2(- 2b)2+C 34 a( - 2b)3+C 44 ( -2b) 4=a 4 - 8a 3b+24a 2b 2- 32ab 3 +16b 4.说明:运用二项式定理时要注意对号入座,本题易误把- 2b 中的符号“-”忽略 .【例 2】展开 (2x - 32) 5.2x分析一:直接用二项式定理展开式.解法一: (2x -35 05143233 232332x2) =C 5 (2x) +C 5 (2x) (- 2x 2)+C 5 (2x) (-2x 2 ) +C 5 (2x) (- 2x2) +C 54 (2x)( -3) 4+C 55(-3)52x 22x 2=32x 5- 120x 2+180 - 135 + 405-243x4 7 10 .x 8x 32x分析二:对较繁杂的式子,先化简再用二项式定理展开 .解法二: (2x -35(4x 3 3)5 2x 2) =32x10=110 [ C 05 (4x 3)5+C 15 (4x 3 )4(- 3)+C 52 (4x 3)3(- 3)2+C 35 (4x 3)2(- 3)3+C 45 (4x 3)(- 3)4+32xC 55 (-3) 5]1 10 (1024x 15- 3840x 12+5760x 9-4320x 6+1620x 3- 243)=32x=32x 5- 120x 2+180-135+ 405 - 243 .xx 4 8x 732x 10说明:记准、记熟二项式(a+b)n 的展开式是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.【例 3】在 (x - 3 )10 的展开式中, x 6的系数是.解法一:根据二项式定理可知x 6 的系数是 C 104 .解法二: (x - 3 )10 的展开式的通项是r-r(- 3 )r .T r+1=C 10 x 10令 10- r =6,即 r=4,由通项公式可知含 x 6 项为第 5 项,即 T 4+1 =C 104 x 6(- 3 )4=9C 104 x 6.∴ x 6 的系数为 9C 104 .上面的解法一与解法二显然不同,那么哪一个是正确的呢? 问题要求的是求含x 6 这一项系数,而不是求含x 6 的二项式系数,所以应是解法二正确.如果问题改为求含 x 6 的二项式系数,解法一就正确了,也即是C 104 . 说明:要注意区分二项式系数与指定某一项的系数的差异 .二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关, 与二项式无关,后者与二 式、二 式的指数及 数均有关.【例 4】已知二 式(3 x - 2)10,3x(1)求其展开式第四 的二 式系数; (2)求其展开式第四 的系数; (3)求其第四 .分析:直接用二 式定理展开式.解: (3 x -210的展开式的通 是Trx10-r- 2r, ,⋯,)=C 10 (3) ( ) (r=0 10).3x3x 1(1)展开式的第 4 的二 式系数C 103 =120.(2)展开式的第 43 72 3的系数 C 103 (-) =- 77760.3(3)展开式的第 4 - 77760( x )7 1,即- 77760x .x 3明:注意把 (3x - 2) 10写成[ 3 x +(-2)] 10,从而凑成二 式定理的形式 .3x3x【例 5】求二 式( x 2+ 1)10 的展开式中的常数 .2 x分析:展开式中第r +1C 10r(x 2 )10-r (21)r ,要使得它是常数 ,必 使“x ”的指x数 零,依据是x 0=1, x ≠ 0.解: 第 r +1 常数 ,1 rr 20 51 r 5 r- rr() =C 10 x( ) (r =0 , 1,⋯, 10),令 20- r=0,得 r=8.T r +1=C 10 (x )2 2x2∴ T 9=C 108( 1)8= 45 .2256∴第 9 常数 ,其45 .256明:二 式的展开式的某一 常数 ,就是 不含 “ 元”,一般采用令通 T r+1中的 元的指数 零的方法求得常数 .【例 6】(1) 求 (1+2x)7 展开式中系数最大 ;(2)求 (1- 2x)7 展开式中系数最大 .分析:利用展开式的通 公式, 可得系数的表达式,列出相 两 系数之 关系的不等式, 而求出其最大 .解: (1) 第 r+1 系数最大, 有C r 7 2r C r 7 1 2r 1,C r 7 2r C r 7 12r 1,7 !2r7 !2r 1,即 r !(7 r ) !(r 1) !(7 r 1) !7 !2r (r7 ! r2r 1, r !(7 r ) !1) !(7 1) !2 1 ,r 16 ,化 得r8 r 解得3又∵ 0≤ r ≤ 7,∴ r=5.71 r2 .r13.r 13∴系数最大T 6=C 75 25x 5=672x 5.(2)解:展开式中共有 8 ,系数最大 必 正 ,即在第一、三、五、七 四 中取得.又因 (1- 2x)7 括号内的两 中后两 系数的 大于前 系数的 ,故系数最大必在中 或偏右,故只需比T 57两 系数的大小即可C 74 ( 2)4C 73 > 1,所以系数和 T. 6( 2) =1C 7 4C 7最大 第五 ,即T 5=560x 4.明:本例中(1) 的解法是求系数最大 的一般解法,(2) 的解法是通 展开式多 分析,使解 程得到 化,比.【例 7】 (1+2x)n 的展开式中第6 与第7 的系数相等,求展开式中二 式系数最大的 和系数最大的 .分析:根据已知条件可求出n ,再根据 n 的奇偶性确定二 式系数最大的 .解: T 6=C n 5 (2x)5, T 7=C n 6 (2x)6,依 意有 C 5n 25=C n 6 26,解得 n=8. (1+2 x)8 的展开式中,二 式系数最大的 T 5=C n 4 (2x)4=1120x 4.C 7r 2rC 7r 1 2r 1 ,第 r +1 系数最大, 有C 7r 2rC 7r 1 2r 1.∴ 5≤ r ≤6.∴ r =5 或 r =6.∴系数最大的 T 6=1792x 5 ,T 7=1792x 6.明: (1)求二 式系数最大的 , 根据二 式系数的性 ,n 奇数 中 两 的二式系数最大; n 偶数 ,中 一 的二 式系数最大 .(2) 求展开式中系数最大 与求二 式系数最大 是不同的,需根据各 系数的正、化情况,一般采用列不等式,再解不等式的方法求得.用 篇【例 8】若 n ∈N * , (2 +1)n= nnn 、 n ∈Z) ,b n 的()2 a +b (abA. 一定是奇数B. 一定是偶数C.与 b n 的奇偶性相反D.与 a 有相同的奇偶性分析一:形如二 式定理可以展开后考 .解法一:由 ( 2 +1)n =n n ,知 n n2 ) n2 a +b 2 a +b =(1+=C n 0 +C 1n 2 +C n 2 ( 2 )2+C n 3 ( 2 )3+ ⋯ +C n n (2 )n .∴ b n =1+C 2n ( 2 )2+C 4n ( 2 )4+ ⋯∴ b n 奇数 . 答案: A分析二: 的答案是唯一的,因此可以用特殊 法 .解法二: n ∈ N * ,取 n=1 , (2 +1) 1=( 2 +1) ,有 b 1=1 奇数 .取 n=2 , ( 2 +1)2=2 2 +5,有 b 2=5 奇数 .答案: A【例 9】若将 (x+y+z)10 展开 多 式, 合并同 后它的 数()A.11B.33C.55D.66分析: (x+y+z)10 看作二 式[( x y)10z ] 展开 .解:我 把 x+y+z 看成 (x+y)+z ,按二 式将其展开,共有11“ ”,即 (x+y+z)10=10[( x10k10-k ky) z ] =C 10 (x+y) z .k 0,由于“和”中各 z 的指数各不相同,因此再将各个二 式(x+y) 10-k 展开,不同的乘 C 10k (x+y)10-k z k (k=0, 1,⋯, 10)展开后,都不会出 同 .下面,再分 考 每一个乘C 10k (x+y)10-k z k (k=0 , 1,⋯, 10).其中每一个乘 展开后的 数由(x+y)10-k 决定,而且各 中 x 和 y 的指数都不相同,也不会出 同 .故原式展开后的 数11+10+9+⋯ +1=66.答案: D明:化三 式 二 式是解决三 式 的常用方法 .【例 10】求 (| x | +1- 2)3 展开式中的常数 .| x |分析:把原式 形 二 式定理 准形状 .解:∵ (| x | + 1- 2)3=(| x | - 1)6,| x || x |∴展开式的通 是T r+1=C 6r ( | x | )6-r (- 1 )r =(- 1)r C 6r ( | x | )6- 2r .| x |若 T r+1 常数 , 6- 2r =0, r =3.∴展开式的第 4 常数 ,即 T 4=-C 36 =- 20.明: 某些不是二 式,但又可化 二 式的 目,可先化 二 式,再求解 .【例 11】求 ( x - 3 x )9 展开式中的有理 .分析:展开式中的有理 ,就是通 公式中x 的指数 整数的.1127 r解:∵ T r+1=C 9r (x 2 )9-r (- x 3 )r =(- 1)r C 9r x6.令 27r∈ Z ,即 4+3r∈ Z ,且 r=0 , 1, 2,⋯, 9.66∴ r=3 或 r =9.当 r=3 , 27 r =4, T 4=(- 1)3C 39 x 4=- 84x 4. 6当 r=9 ,27 r=3, T 10=( - 1)9C 99 x 3=-x 3.6∴ ( x - 3 x )9的展开式中的有理 是第 4 - 84x 4,第 10 - x 3.明:利用二 展开式的通 T r +1 可求展开式中某些特定 .【例 12】若 (3x - 1)77 7 6 61=a x +a x + ⋯ +a x+a ,求(1)a 1 +a 2 ⋯+a 7; (2)a 1 +a 3 +a 5+a 7;0 2 4 6(3)a +a +a +a .分析:所求 果与各 系数有关可以考 用“特殊 ”法,整体解决 .解: (1)令 x=0, a 0=- 1,令 x=1 , a 7+a 6+ ⋯ +a 1+a 0=27=128.①∴ a 1+a 2+⋯ +a 7=129.(2)令 x=- 1, a 7+a 6+a 5+a 4+a 3+a 2+a 1+a 0=( -4) 7.②由(1) ( 2)得: a 1+a 3+a 5+a 7= 1[ 128- (- 4)7] =8256.22(3)由 (1) (2) 得 a 0 +a 2+a 4+a 6 = 1 [ 128+(-4) 7] =- 8128.2 2明: (1)本解法根据 恒等式特点来用“特殊 ”法, 是一种重要的方法,它用于恒等式 .(2)一般地, 于多 式g(x)=( px+q)n =a 0+a 1x+a 2x 2+a 3x 3+a 4x 4 +a 5x 5+a 6x 6+a 7x 7, g(x)各 的系数和g(1),g(x)的奇数 的系数和1[ g(1)+ g(- 1)],g(x)的偶数 的系数和1[ g(1)22- g (- 1)] .【例 13】 明下列各式(1)1+2C 1n +4C 2n + ⋯ +2n -1C n n 1 +2n C n n =3n ;(2)(C 0n )2+(C 1n ) 2+ ⋯ +(C n n )2=C n 2 n ;(3)C 1n +2C 2n +3C 3n + ⋯ +nC n n =n2n -1.分析: (1)(2) 与二 式定理的形式有相同之 可以用二 式定理,形如数列求和,因此可以研究它的通 求 律 .明: (1)在二 展开式 (a+b)n =C 0n a n +C 1n a n -1b+C 2n a n -2b 2+ ⋯ +C n n 1 ab n -1+C n n b n 中,令 a=1, b=2,得 (1+2) n =1+2C 1n +4C 2n + ⋯ +2n -1C n n 1 +2n C n n ,即1 2+ ⋯ +2n -1n 1 n n =3n.1+2C n +4C nC n +2 C n(2)(1+ x)n (1+x)n =(1+ x) 2n ,12r12r2n.∴ (1+C n x+C n x 2+ ⋯ +C n x r + ⋯ +x n )(1+C n x+C n x 2+ ⋯ +C n x r + ⋯ +x n )=(1+ x)而 Cn 是 (1+ x)2n 的展开式中 x n 的系数,由多 式的恒等定理,得2nC 0n C n n +C 1n C n n 1 + ⋯ +C 1n C n n 1 +C n n C 0n =C n 2n . ∵ C m n =C n n m , 0≤ m ≤ n ,∴ (C n 0 )2+(C 1n )2+ ⋯ +(C n n )2=C 2n n .(3) 法一:令 S=C 1n +2C n 2 +3C n 3 + ⋯ +nC n n . ①令 S=C 1n +2C n 2 + ⋯ +(n - 1)C n n 1 +nC n n =nC n n +(n - 1)C n n 1 + ⋯ +2C n 2 +C 1n=nC n n +(n - 1)C 1n + ⋯ +2C n n 2 +C n n 1 .②由① +②得 2S=nC 1n +nC n2 +nC n3 + ⋯ +nC n n =n(C n n +C 1n +C n2 +C n3+ ⋯ +C n n ) 0123n=n(C n+C n +C n +C n + ⋯ +C n )=n2n.∴ S=n2n-1,即 C 1n +2C n2 +3C 3n + ⋯ +nC n n =n2n-1.法二:察通:kC n k =k n n( n1) !nC n k11 .k ! (n k) !(k1)! (n k) !∴原式 =nC +C n n11 )= n2n-1,12即C n +2C n0121 +nC3+⋯n 101231 +⋯n 1 +nC n 1+nC n n 1+nC n 1=n(C n 1+C n 1+C n 1 +C n 3⋯n n-1+3C n ++nC n =n2 .明:解法二中 kC n k =nC n k11可作性住 .【例 14】求 1.9975精确到 0.001的近似 .分析:准确使用二式定理把 1.997 拆成二之和形式如 1.997=2- 0.003.解: 1.9975=(2- 0.003)5=25- C 15 240.003+C 52 230.0032- C 35 220.0033+⋯≈32-0.24+0.00072 ≈ 31.761.明:利用二式定理行近似算,关是确定展开式中的保留,使其足近似算的精确度 .【例 15】求: 5151-1 能被 7 整除 .分析:了在展开式中出7 的倍数,把51 拆成 7 的倍数与其他数的和(或差 )的形式.明: 5151-1=(49+2) 51-1=C 051 4951+C 151 49502+ ⋯ +C 5051 49· 250+C 5151 251- 1,易知除 C 5151 251- 1 以外各都能被7 整除 .又 251- 1=(2 3)17- 1=(7+1) 17- 1=C0717+C1716+⋯+C167+C17-171717171=7(C 170 716+C 171 715+⋯ +C 1716 ).然能被 7 整除,所以5151- 1 能被 7 整除 .明:利用二式定量明有关多式(数 )的整除,关是将所多式通恒等形二式形式,使其展开后的各均含有除式.新篇【例 16】已知 (x lgx+1) n的展开式的最后三系数之和22,中一20000. 求 x.分析:本看似繁,但只要按二式定理准确表达出来,不求解!解:由已知 C n n +C n n 1 +C n n 2 =22,即 n2+n- 42=0. 又 n∈ N*,∴ n=6.T4中一, T4=C 3lg x 3,即 (xlgx 3lg x=10. 6(x ) =20000)=1000. x两取常用数,有1 lg2x=1, lgx=± 1,∴ x=10 或 x= .10明:当目中已知二展开式的某些或某几之的关系,常利用二式通公式,根据已知条件列出等式或不等式行求解.【例 17】 f(x)=(1+ x)m+(1+ x)n(m, n∈ N* ),若其展开式中关于x 的一次的系数和11, m,n 何,含 x2的系数取最小?并求个最小.分析:根据已知条件得到x2的系数是关于 x 的二次表达式,然后利用二次函数性探最小 .解: C 1m +C 1n =n+m=11. C m2+C n 2 =1(m2-m+n2- n)=m2n211 ,22∵ n∈N *,∴ n=6 或 5, m=5 或 6 , x 2 系数最小,最小 25.明:本 是一道关于二次函数与 合的 合 .【例 18】若 (x+ 1- 2)n 的展开式的常数 -20,求 n.x分析: 中 x ≠ 0,当 x > 0 ,把三 式 (x+1- 2)n化 ( x -1)2n ;当 x < 0 ,xx同理 (x+1-2) n nx - 1 2 n x 的 指数 零, 而解出 n.x=(- 1) () .然后写出通 ,令含x解:当 x > 0 , ( x+ 1- 2)n =(x -1 )2n ,xx其通 T r+1=C 2n r( x )2n -r (-1)r =(- 1)r C 2r n ( x )2n -2r .x令 2n - 2r=0 ,得 n=r ,∴展开式的常数 (- 1)r C 2n n ;当 x < 0 , (x+ 1-2) n =(- 1)n(x -1)2n .同理可得,展开式的常数 (- 1)r C 2n n .xx无 哪一种情况,常数 均 (- 1)r C 2n n .令 (- 1)r C 2n n =20.以 n=1,2, 3,⋯,逐个代入,得n=3.明:本 易忽略x < 0 的情况 .【例 19】利用二 式定理 明(2 n -1 2.) <n31分析:2 不易从二 展开式中得到,可以考 其倒数n 1 .n 12明:欲 (2)n -1 < 21成立,只需 (3)n -1<n1成立 .3n22而 ( 3)n - 1=(1+ 1)n - 1=C n1 +C1n 11+C n 21 ( 1)2+ ⋯ +C n n 11 (1)n -122222=1+ n 1 21 2⋯n 1 1) n -12+C n1 () ++C n 1 (22>n 1.2明:本 目的 明 程中将( 3)n -1化 (1+ 1)n -1,然后利用二 式定理展开式是解2 2决本 的关 .【例 20】求 : 2≤ (1+1) n < 3(n ∈N * ).n1 n 与二 式定理 构相似,用二 式定理展开后分析.分析: (1+)n明:当 n=1 , (1+ 1)n =2.n当 n ≥2 , (1+ 1)n=1+C 1n n又C n k ( 1 )k = n(n 1) (nnk ! n k1 +C n2 1 + ⋯ +C n n ( 1 )n =1+1+C n 2 1 + ⋯ +C n n ( 1 )n> 2.n n 2 n n 2n k 1) ≤ 1 ,k !所以 (1+ 1)n≤ 2+1+ 1 + ⋯ + 1< 2+1 + 1 + ⋯ + 1n2 !3 !n!1 2 2 3 ( n 1) n=2+(1 -1)+(1 - 1 )+ ⋯ +( 1 - 1)22 3 n 1 n=3- 1< 3.n上有 2≤ (1+1)n < 3.n明:在此不等式的 明中,利用二 式定理将二 式展开,再采用放 法和其他有关知 ,将不等式 明到底 .【例 21】求 : 于n ∈N *, (1+ 1) n< (1+ 1)n+1 .nn 1分析: 构都是二 式的形式,因此研究二 展开式的通 是常用方法 .明: (1+1) n展开式的通 Tr1A n rnr+1 =C n n r=r ! n r= 1 n(n 1)(n 2) (n r 1)r ! n r=1 (1-12 r 1 ).r !)(1 -)⋯ (1-nnn(1+1 )n+1展开式的通 T ′ r+1=C n r11 1) r =A n r 1 rn 1( n r !(n 1)=1 n(n 1)(n 2) (n r1)r !n r= 1 (1- 1 )(1- 2)⋯ (1-r1 ).r !n 1n 1n1由二 式展开式的通 可明 地看出 T r+1< T ′ r+1所以 (1+ 1 )n< (1+1)n+1nn 1明:本 的两个二 式中的两 均 正 ,且有一 相同. 明 ,根据 特点,采用比 通 大小的方法完成本 明.【例 22】 a 、 b 、c 是互不相等的正数,且a 、b 、c 成等差数列, n ∈ N * ,求 : a n +c n>2b n .分析: 中 未出 二 式定理的形式,但可以根据a 、b 、c 成等差数列 造条件使用二 式定理 .明: 公差d , a=b - d , c=b+d.a n +c n - 2b n =(b - d)n +( b+d)n - 2b nn1n - 12n - 2 2nn n1n - 12n - 22n=[ b - C n b d+C n bd + ⋯ +(- 1) d ]+[ b +C n bd+C n bd + ⋯ +d ]明:由 a 、 b 、 c 成等差,公差 d ,可得 a=b - d , c=b+d , 就 利用二 式定理 明此 造了可能性 . 即(b - d)n +(b+d) n > 2b n ,然后用作差法改(b - d)n +( b+d)n- 2b n > 0.【例 23】求 (1+2x - 3x 2)6 的展开式中x 5 的系数 .分析:先将 1+2x - 3x 2 分解因式, 把三 式化 两个二 式的 , 即(1+2 x - 3x 2)6 =(1+3x)6 (1- x)6.然后分 写出两个二 式展开式的通 ,研究乘x 5 的系数, 可得到解决.解:原式 =(1+3 x)6(1 -x)6,其中 (1+3x)6 展开式之通T k+1=C k 6 3k x k , (1- x)6 展开式之通 T r+1=C r 6 (- x)r .原式 =(1+3x) 6(1- x)6 展开式的通C 6k C 6r (- 1)r 3k x k+r .要使 k+r =5,又∵ k ∈ {0 , 1, 2, 3, 4, 5, 6} , r ∈{0 , 1,2, 3, 4, 5, 6} ,必k 0, 或 k 1, 或 k 2, 或 k 3, 或 k 4, 或 k 5,r 5r4r 3r2r 1r 0 .故 x 5 系数 C 60 30C 65 (- 1)5+C 16 31 C 64 (- 1)4+C 62 32C 63 ( - 1)3+C 63 33C 62 (- 1)4+C 64 34C 16(- 1)+C 65 35 C 60 (- 1)0=- 168.明:根据不同的 构特征灵活运用二 式定理是本 的关.【例 24】 (2004年全国必修 + 修 1)(x -1)6 展开式中的常数 ()xA.15B.- 15C.20D.- 203r3解析: Trr6-r - rrr 32x) =(- 1) C2,当 r=2 ,3-2=15.r +1=(- 1)C 6 (xxr=0 ,T 3=( -1) C62答案: A【例 25】 (2004 年江 )(2x+ x )4 的展开式中 x 3 的系数是 ()A.6B.12C.24D.48解析:T r +12 rr rx ) 4-r (2x) r =( -1) r r r 2,当 r =2 ,2+ r3- 22=24.=(- 1) C 4 (2 C 4 x2 =3 ,T =( 2) C 4答案: C【例 26】 (2004年福建理 )若 (1- 2x )9展开式的第3288, lim 1 1+ ⋯ +1( +2n)nxxx的 是 ()A.2B.11D.2C.52解析: T r+1=( -1) r C r 9 (2 x )r =(-1) r C r 9 2xr ,当 r =2 , T 3=(- 1)2C 92 22x =288.∴ x= 3.21 112 ∴ lim3 =2.( + 2 + ⋯+n)= nxxx123答案: A【例 27】 (2004 年福建文 )已知 (x - a)8 展开式中常数1120,其中 数 a 是常数,x展开式中各 系数的和是( )A.28B.38C.1 或 38D.1 或 28解析: Tr+1=( -1) rr8 -ra r rr8-2r,当 r=4 , T4 4 =1120,∴ a=± 2.C x() =(- a)C x=(- a) Cx∴有函数 f(x)=(x - a)8.令 x=1, f(1)=1 或 38.x答案: C【 例 28 】(2004 年 天 津 ) 若 (1 - 2x)20040 12 22004 2004=a +a x+a x + ⋯ +ax(x ∈ R) , (a +a )+( a +a)+0 10 2(a 0+a 3)+ ⋯ +(a 0+a 2004)= .(用数字作答 )解析:在函数 f(x)=(1 - 2x)2004中, f(0)= a 0 0 1 2+ ⋯ +a 2004,=1, f(1)=a +a +a=1 (a 0+a 1 )+(a 0+a 2)+( a 0 +a 3 )+⋯+( a 0 +a 2004) =2004a 0 +a 1+a 2+ ⋯ +a 2004=2003a 0 +a 0+a 1+a 2+ ⋯ +a 2004 =2003f(0)+ f(1) =2004.答案: 2004。

二项式定理十大典型例题配套练习

二项式定理十大典型例题配套练习

精锐教育学科教师辅导讲义学员编号: 年 级:高二 课 时 数: 3 学员姓名: 辅导科目:数学 学科教师:教学内容1.二项式定理:011()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈L L ,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。

②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =⋅⋅⋅.③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n rr n C a b -叫做二项式展开式的通项。

用1r n r rr nT C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()nb a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.rnn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。

4.常用的结论:令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n nn n n n n C C C C C ++++++=L L , 变形式1221r n nn n n n C C C C +++++=-L L 。

二次项定理10大典型例题

二次项定理10大典型例题

(1)知识点的梳理1.二项式定理:(a b)n C n0a n C n1a n 1b L C n r a n r b r L C n n b n(n N ) ,2.基本概念:①二项式展开式:右边的多项式叫做(a b)n的二项展开式。

②二项式系数 :展开式中各项的系数 C n r (r 0,1,2, ,n).③项数:共(r 1)项,是关于a与b的齐次多项式④通项:展开式中的第r 1项C n r a n r b r叫做二项式展开式的通项。

用T r 1 C n a b 表示。

3.注意关键点:①项数:展开式中总共有(n 1)项。

②顺序:注意正确选择a,b,其顺序不能更改。

(a b)n与(b a)n是不同的。

③指数:a的指数从n逐项减到0 ,是降幕排列。

b的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n.④系数:注意正确区分二项式系数与项的系数,二项式系数依次是时时金,,C:, ,C:.项的系数是a与b的系数(包括二项式系数)。

5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即C0C n k Cn 1②二项式系数和:令a bC0 C:C: L C;C:2n变形式 1 2 rC n C n L C n C:2n4•常用的结论:令a 1,b x, (1 x)n C0C:x C;x2L C;x「L C;x n(n N )令a 1,b x, (1 x)n C0 C:x C:x2L C;x r L ( 1)n C:x n(n N )③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令 a 1,b 1,则C0 C:C:C;L ( 1)n Cn (1 1)n 0,从而得到:Cn Cn c;c2r C1 C n3L C;'1- 2“2厂2④奇数项的系数和与偶数项的系数和:(a n 0 nx) C n a 0 x C^a n 1xC;a n 2x2L C n C n 0 na x a°1 2 [ na〔x a?x L a n X(x a)n C0a0nx C:ax n 1C:a2x n 2 L C n C n n 0 na x a n x2 1L a?x a〔x a°令x 1,则 a o a1 a2 a;L a n (a 1)n①令x 1,则 a o a1 a2 a;L a n (a 1) n ②①②得,a o a2 a4L a n (a 1)n(a21)r1-(奇数项的系数和)①②得,a1 a3 a5L a n■^卫旦工(偶数项的系数和)2⑤二项式系数的最大项:如果二项式的幕指数n是偶数时,则中间一项的二项式n 系数C n2取得最大值。

二项式定理典型例题(含解答)

二项式定理典型例题(含解答)

二项式定理典型例题典型例题一例1 在二项式nx x ⎪⎭⎫ ⎝⎛+421的展开式中前三项的系数成等差数列,求展开式中所有有理项. 分析:典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决.解:二项式的展开式的通项公式为:4324121C 21)(C rn r r n rr n r n r x x x T --+=⎪⎭⎫ ⎝⎛= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,123121-=====n n t n t t nn , 由已知:)1(8112312-+=+=n n n tt t ,∴8=n 通项公式为1431681,82,1,021C +-+==r rr rr T r x T 为有理项,故r 316-是4的倍数,∴.8,4,0=r 依次得到有理项为228889448541256121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有典型例题四例4(1)求103)1()1(x x +-展开式中5x 的系数;(2)求6)21(++xx 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式.解:(1)103)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项: 用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5x 项,可以得到5510C x ;用3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;用3)1(x -中的2x 乘以10)1(x +展开式中的3x 可得到531033102C 3C 3x x x =⋅;用 3)1(x -中的3x 项乘以10)1(x +展开式中的2x 项可得到521022103C C 3x x x -=⋅-,合并同类项得5x 项为:5521031041051063)C C 3C C (x x -=-+-.(2)2121⎪⎪⎭⎫ ⎝⎛+=++x x x x 1251)21(⎪⎪⎭⎫ ⎝⎛+=++x x x x .由121⎪⎪⎭⎫⎝⎛+x x 展开式的通项公式r rrrrr x x T--+=⎪⎭⎫ ⎝⎛=61212121C 1)2(C ,可得展开式的常数项为924C 612=.说明:问题(2)中将非二项式通过因式分解转化为二项式解决.这时我们还可以通过合并项转化为二项式展开的问题来解决.典型例题五例5 求62)1(x x -+展开式中5x 的系数.分析:62)1(x x -+不是二项式,我们通过22)1(1x x x x -+=-+或)(12x x -+展开. 解:方法一:[]6262)1()1(x x x x -+=-+ -+++-+=44256)1(15)1(6)1(x x x x x其中含5x 的项为55145355566C 15C 6C x x x x =+-.含5x 项的系数为6.方法二:[]6262)(1)1(x x x x -+=-+62524232222)()(6)(15)(20)(15)(61x x x x x x x x x x x x -+-+-+-+-+-+=其中含5x 的项为555566)4(15)3(20x x x x =+-+-.∴5x 项的系数为6.方法3:本题还可通过把62)1(x x -+看成6个21x x -+相乘,每个因式各取一项相乘可得到乘积的一项,5x 项可由下列几种可能得到.5个因式中取x ,一个取1得到556C x .3个因式中取x ,一个取2x -,两个取1得到)(C C 231336x x -⋅⋅. 1个因式中取x ,两个取2x -,三个取1得到222516)(C C x x -⋅⋅. 合并同类项为5525161336566)C C C C (C x x =+-,5x 项的系数为6.典型例题六例6 求证:(1)1212C C 2C -⋅=+++n n n n n n n ;(2))12(11C 11C 31C 21C 1210-+=++++++n n nn n n n n . 分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质nn n n n n 2C C C C 210=++++ .解:(1)11C )!()!1()!1()!()!1(!)!(!!C --=+--⋅=--=-⋅=k n kn n k n k n n k n k n k n k n k k ∴左边111101C C C ----+++=n n n n n n n =⋅=+++=-----11111012)C C C (n n n n n n n 右边.(2))!()!1(!)!(!!11C 11k n k n k n k n k k k n --=-⋅+=+11C 11)!()!1()!1(11+++=-++⋅+=k n n k n k n n . ∴左边112111C 11C 11C 11++++++++++=n n n n n n n =-+=++++=+++++)12(11)C C (C 111112111n n n n n n n 右边. 说明:本题的两个小题都是通过变换转化成二项式系数之和,再用二项式系数的性质求解.此外,有些组合数的式子可以直接作为某个二项式的展开式,但这需要逆用二项式定理才能完成,所以需仔细观察,我们可以看下面的例子:求10C 2C 2C 2C 22108107910810109+++++ 的结果.仔细观察可以发现该组合数的式与10)21(+的展开式接近,但要注意:10101099102210110010102C 2C 2C 2C C )21(⋅+⋅++⋅+⋅+=+ 10101091092102C 2C 2C 21021++++⨯+= )C 2C 2C 210(21101099108210+++++=从而可以得到:)13(21C 2C 2C 21010101099108210-=++++ . 典型例题七例7 利用二项式定理证明:98322--+n n 是64的倍数.分析:64是8的平方,问题相当于证明98322--+n n 是28的倍数,为了使问题向二项式定理贴近,变形1122)18(93++++==n n n ,将其展开后各项含有k 8,与28的倍数联系起来.解:∵98322--+n n 98)18(98911--+=--=++n n n n9818C 8C 8C 81211111--+⋅+⋅++⋅+=+-+++n nn n n n n n981)1(88C 8C 8211111--+++⋅++⋅+=-+++n n n n n n n 2111118C 8C 8⋅++⋅+=-+++n n n n n 64)C 8C 8(112111⋅++⋅+=-+-++n n n n n 是64的倍数.说明:利用本题的方法和技巧不仅可以用来证明整除问题,而且可以用此方程求一些复杂的指数式除以一个数的余数.典型例题八例8 展开52232⎪⎭⎫ ⎝⎛-x x .分析1:用二项式定理展开式.解法1:52232⎪⎭⎫ ⎝⎛-x x 2232524150250523)2(23)2(23)2(⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=x x C x x C x x C52554245322352323)2(23)2(⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+x C x x C x x C10742532243840513518012032xx x x x x -+-+-= 分析2:对较繁杂的式子,先化简再用二项式定理展开.解法2:10535232)34(232x x x x -=⎪⎭⎫ ⎝⎛-233254315530510)3()4()3()4()4([321-+-+=x C x C x C x ])3()3()4()3()4(5554134532335-+-+-+C x C x C)243716204320576038401024(321369121510-+-+-=x x x x x x10742532243840513518012032x x x x x x -+-+-=. 说明:记准、记熟二项式nb a )(+的展开式,是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.典型例题九例9 若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为( ). A .11 B .33 C .55 D .66 分析:10)(z y x ++看作二项式10])[(z y x ++展开.解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即∑=-⋅+=++=++10010101010)(])[()(k k k kz y x C z y x z y x .这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式ky x -+10)(展开,不同的乘积k kk z y x C ⋅+-1010)((10,,1,0 =k )展开后,都不会出现同类项. 下面,再分别考虑每一个乘积k kk z y x C ⋅+-1010)((10,,1,0 =k ).其中每一个乘积展开后的项数由ky x -+10)(决定,而且各项中x 和y 的指数都不相同,也不会出现同类项.故原式展开后的总项数为66191011=++++ ,∴应选D .典型例题十例10 若nx x ⎪⎭⎫⎝⎛-+21的展开式的常数项为20-,求n .分析:题中0≠x ,当0>x 时,把nx x ⎪⎭⎫ ⎝⎛-+21转化为nn x x x x 2121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+;当0<x 时,同理nn n x x x x 21)1(21⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛-+.然后写出通项,令含x 的幂指数为零,解出n . 解:当0>x 时nn x x x x 2121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+,其通项为rn r n r r rn r n r x C xx C T 222221)()1()1()(--+-=-=,令022=-r n ,得r n =, ∴展开式的常数项为n nnC2)1(-;当0<x 时,nn n x x x x 21)1(21⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛-+, 同理可得,展开式的常数项为n n n C 2)1(-.无论哪一种情况,常数项均为nn n C 2)1(-. 令20)1(2-=-nn n C ,以 ,3,2,1=n ,逐个代入,得3=n .典型例题十一例11 1031⎪⎭⎫ ⎝⎛+x x 的展开式的第3项小于第4项,则x 的取值范围是______________.分析:首先运用通项公式写出展开式的第3项和第4项,再根据题设列出不等式即可. 解: 1031⎪⎭⎫ ⎝⎛+x x 有意义必须0>x ;依题意有43T T <即3373102382101)(1)(⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛x x C x x C .∴31123891012910xx ⨯⨯⨯⨯⨯<⨯⨯(∵0>x ).解得5648980<<x .∴x 的取值范围是⎭⎬⎫⎩⎨⎧<<5648980x x .∴应填:5648980<<x .典型例题十二例12 已知n xx)1(2log +的展开式中有连续三项的系数之比为321∶∶,这三项是第几项?若展开式的倒数第二项为112,求x 的值.解:设连续三项是第k 、1+k 、2+k 项(+∈N k 且1>k ),则有32111∶∶∶∶=+-k n k n k n C C C , 即321!)1)(1(!!)(!!!)1)(1(!∶∶∶∶=--+-+--k n k n k n k n k n k n .∴321)1(1)(1)1)((1∶∶∶∶=+-+--k k k n k k n k n .∴⎪⎪⎩⎪⎪⎨⎧=-+=+-⇒⎪⎪⎩⎪⎪⎨⎧=-+=+---32)()1(21132)()1(21)1)(()(k n k k n k k n k k k k n k n k n k 14=⇒n ,5=k 所求连续三项为第5、6、7三项.又由已知,1122log 1314=xx C .即82log =x x .两边取以2为底的对数,3)(log 22=x ,3log 2±=x ,∴32=x ,或32-=x .说明:当题目中已知二项展开式的某些项或某几项之间的关系时,常利用二项式通项,根据已知条件列出某些等式或不等式进行求解.典型例题十三例13 nx )21(+的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.分析:根据已知条件可求出n ,再根据n 的奇偶性;确定二项式系数最大的项.解:556)2(x C T n =,667)2(x C T n =,依题意有8226655=⇒=n C C n n . ∴8)21(x +的展开式中,二项式系数最大的项为444851120)2(x x C T ==.设第1+r 项系数最大,则有65222211881188≤≤⇒⎪⎩⎪⎨⎧⋅≥⋅⋅≥⋅++--r C C C C r r r r r r r r . ∴5=r 或6=r (∵{}8,,2,1,0 ∈r ).∴系娄最大的项为:561792x T =,671792x T =.说明:(1)求二项式系数最大的项,根据二项式系数的性质,n 为奇数时中间两项的二项式系数最大,n 为偶数时,中间一项的二项式系数最大.(2)求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式,解不等式的方法求得.典型例题十四例14 设nm x x x f )1()1()(+++=(+∈N n m ,),若其展开式中关于x 的一次项的系数和为11,问n m ,为何值时,含2x 项的系数取最小值?并求这个最小值.分析:根据条件得到2x 的系数关于n 的二次表达式,然后用二次函数性质探讨最小值.解:1111=+=+m n C C n m .211)(21222222-+=-+-=+n m n n m m C C n m 499)211(55112211022+-=+-=-=n n n mn .∵+∈N n , ∴5=n 或6,6=m 或5时,2x 项系数最小,最小值为25.说明:二次函数499)211(2+-=x y 的对称轴方程为211=x ,即5.5=x ,由于5、6距5.5等距离,且对+∈N n ,5、6距5.5最近,所以499)211(2+-n 的最小值在5=n 或6=n 处取得.典型例题十五例15 若0166777)13(a x a x a x a x ++++=- ,求(1) 721a a a +++ ;(2) 7531a a a a +++;(3) 6420a a a a +++.解:(1)令0=x ,则10-=a ,令1=x ,则128270167==++++a a a a . ①∴129721=+++a a a .(2)令1-=x ,则701234567)4(-=+-+-+-+-a a a a a a a a ②由2②①-得:8256]4128[2177531=--=+++)(a a a a (3)由2②①+得:6420a a a a +++][210123456701234567)()(a a a a a a a a a a a a a a a a +-+-+-+-++++++++=8128])4(128[217-=-+=. 说明:(1)根据问题恒等式特点来用“特殊值”法.这是一种重要方法,它适用于恒等式.(2)一般地,对于多项式nn n x a x a x a a q px x g ++++=+= 2210)()(,)(x g 的各项的系数和为)1(g :)(x g 的奇数项的系数和为)]1()1([21-+g g .)(x g 的偶数项的系数和为)]1()1([21--g g . 典型例题十六例16 填空:(1) 3230-除以7的余数_____________;(2) 155555+除以8的余数是___. 分析(1):将302分解成含7的因数,然后用二项式定理展开,不含7的项就是余数.解:3230-3)2(103-=3)8(10-=3)17(10-+=37771010910911010010-++++=C C C C2]77[791081109010-+++⨯=C C C又∵余数不能为负数,需转化为正数。

(完整版)二项式定理典型例题解析

(完整版)二项式定理典型例题解析

二项式定理 概念篇【例1】求二项式(a — 2b)4的展开式. 分析:直接利用二项式定理展开•解:根据二项式定理得 (a — 2b)4=c 0 a 4+c 4 a 3( — 2b)+C 4 a 2( — 2b)2+C 3 a( — 2b)3+C 4 (— 2b)4=a 4 — 8a 3b+24a 2b 2— 32ab 3+i6b 4.说明:运用二项式定理时要注意对号入座,本题易误把— 2b 中的符号“―”忽略【例2】展开(2x -2代2x分析一:直接用二项式定理展开式•解法一:(2x - 32)5=C °(2x)5+c l (2x)4(— q )+C ;(2x)3( — q )2+c 5(2x)2(—与)3+2x2x 2x 2xC 5 (2x)( — 2)4+C ;( — 2)52x 2 2x 2分析二:对较繁杂的式子,先化简再用二项式定理展开解法二:35--和件[C 5 (4x 3)5+C 1 (4x 3)4(— 3)+C 5 (4x 3)3(— 3)2+C 3 (4x 3)2( — 3)3+C 4 (4x 3)( — 3)4 + C 5( — 3)5]荷(1024x 15— 3840x 12+5760x 9— 4320x 6+l620x 3— 243) 32x 10说明:记准、记熟二项式(a+b)n 的展开式是解答好与二项式定理有关问题的前提条件对较复杂的二项式,有时先化简再展开会更简便【例3】在(x — ■ 3)10的展开式中,x 6的系数是 ________ . 解法一:根据二项式定理可知x 6的系数是c 4°.解法二:(x —,3)10 的展开式的通项是 T r+1=C ;0X 10—r ( — 3 )r .令10— r=6,即r=4,由通项公式可知含 x 6项为第5项,即T 4+1=C :0x 6( — . 3 )4=9C 40x 6. ••• x 6的系数为9C :0.上面的解法一与解法二显然不同,那么哪一个是正确的呢?问题要求的是求含 x 6这一项系数,而不是求含 x 6的二项式系数,所以应是解法二正确 如果问题改为求含 x 6的二项式系数,解法一就正确了,也即是C :0.说明:要注意区分二项式系数与指定某一项的系数的差异 二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关,与二项=32x 5— 12Ox 2+180 x135 405+87243 10 .32x=327°=32x 5— 120x 2+180 x 135 405x 4 +8x 7243 32x 10 .式无关,后者与二项式、二项式的指数及项数均有关【例4】已知二项式(3 . x — —)10,3x(1) 求其展开式第四项的二项式系数; (2) 求其展开式第四项的系数; (3) 求其第四项.分析:直接用二项式定理展开式•解:(3..X — -2)10 的展开式的通项是 T r+i =C ;o (3.、x )10—r ( — 2)r (r=o , 1,…,10).3x3x•••第9项为常数项,其值为256说明:二项式的展开式的某一项为常数项, 就是这项不含“变元”,一般采用令通项T r+1中的变元的指数为零的方法求得常数项.【例6】(1)求(1+2x)7展开式中系数最大项; (2)求(1 — 2x)7展开式中系数最大项.分析:利用展开式的通项公式, 可得系数的表达式, 列出相邻两项系数之间关系的不等 式,进而求出其最大值.7!2r7! 2r 1即 r!(7r)!(r 1)!(7 r 1)!7! 2r7! 2r 1r !(7 r)!(r 1)!(7 r 1)!(1)展开式的第 4项的二项式系数为 C ?0=120.(2)展开式的第 (3)展开式的第 2 4 项的系数为 C ;037(— — )3= — 77760.34 项为—77760( x )7十,即一77760 • x .z\.(3 .. x — —)10写成]3 x +(— A): 10,从而凑成二项式定理的形式3x 3x【例5】求二项式(x 2+ 1 )10的展开式中的常数项.2丘说明:注意把 分析:展开式中第r+1项为C ;0(x 2)10—r ( 1)r ,要使得它是常数项,必须使2Jxx ”的指数为零,依据是X 0=1 , x M 0.解:设第r+1项为常数项,则 Eg 2)102053r 1 r人 52(一)r (r=0, 1,…,10),令 20 —r=0,2 2••• T9=C 80(1)8=45 256解:(1)设第r+1项系数最大,则有C 72r (C r 1?r 1 C 72r ( C r 1?r 1系数最大项为 T 6=C 7 25X 5=672X 5.(2)解:展开式中共有 8项,系数最大项必为正项,即在第一、三、五、七这四项中取得•又因(1 - 2x)7括号内的两项中后两项系数的绝对值大于前项系数的绝对值, 故系数最大值 必在中间或偏右,故只需比较C 4( 2)4C 3T 5和T 7两项系数的大小即可-C6( 2)6 =4C >1, 所以系数最大项为第五项,即 T 5=560X 4.说明:本例中(1)的解法是求系数最大项的一般解法, (2)的解法是通过对展开式多项分析,使解题过程得到简化,比较简洁 .【例7】(1+2x)n 的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大 的项和系数最大的项.分析:根据已知条件可求出n ,再根据n 的奇偶性确定二项式系数最大的项.解:T 6=C ;j (2x)5, T 7=C 6 (2X )6,依题意有。

二项式定理十大典型例题配套练习

二项式定理十大典型例题配套练习

精锐教育学科教师辅导讲义学员编号: 年 级:高二 课 时 数: 3 学员姓名: 辅导科目:数学 学科教师:教学内容1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()n a b +的二项展开式。

②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅.③项数:共(1)r +项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。

用1r n r r r n T C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()n b a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。

4.常用的结论:令1,,a b x == 0122(1)()n r rn nn n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n nC C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221rnn n n n n C C C C +++++=-。

2018年高考二项式定理十大典型问题及例题

2018年高考二项式定理十大典型问题及例题
2018年高考二项式定理十大典型问题及例题
二项式定理
1.二项式定理:

2.基本概念:
①二项式展开式:右边的多项式叫做 的二项展开式。
②二项式系数:展开式中各项的系数 .
③项数:共 项,是关于 与 的齐次多项式
④通项:展开式中的第 项 叫做二项式展开式的通项。用 表示。
3.注意关键点:
①项数:展开式中总共有 项。
②二项式系数和:令 ,则二项式系数的和为 ,
变形式 。
③奇数项的二项式系数和=偶数项的二项式系数和:
在二项பைடு நூலகம்定理中,令 ,则 ,
从而得到:
④奇数项的系数和与偶数项的系数和:
⑤二项式系数的最大项:如果二项式的幂指数 是偶数时,则中间一项的二项式系数 取得最大值。
如果二项式的幂指数 是奇数时,则中间两项的二项式系数 , 同时取得最大值。
⑥系数的最大项:求 展开式中最大的项,一般采用待定系数法。设展开式中各项系数分别
为 ,设第 项系数最大,应有 ,从而解出 来。
题型一:二项式定理的逆用;
例:
练:
题型二:利用通项公式求 的系数;
例:在二项式 的展开式中倒数第 项的系数为 ,求含有 的项的系数?
练:求 展开式中 的系数?
题型三:利用通项公式求常数项;
②顺序:注意正确选择 , ,其顺序不能更改。 与 是不同的。
③指数: 的指数从 逐项减到 ,是降幂排列。 的指数从 逐项减到 ,是升幂排列。各项的次数和等于 .
④系数:注意正确区分二项式系数与项的系数,二项式系数依次是 项的系数是 与 的系数(包括二项式系数)。
4.常用的结论:


5.性质:
①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即 ,···

2018年高考二项式定理十大典型问题及例题

2018年高考二项式定理十大典型问题及例题

学科教师辅导讲义1 •二项式定理:(a b)n C:a n C;a n 1b L C:a n r b r L C:b n(n N ),2 .基本概念:①二项式展开式:右边的多项式叫做(a b)n的二项展开式。

②二项式系数:展开式中各项的系数C n r (r 0,1,2, ,n).③项数:共(r 1)项,是关于a与b的齐次多项式④通项:展开式中的第r 1项C:a n r b r叫做二项式展开式的通项。

用T r 1 Qa" r b r表示。

3 .注意关键点: ①项数:展开式中总共有(n 1)项。

②顺序:注意正确选择a,b,其顺序不能更改。

(a b)n与(b a)n是不同的。

③指数:a的指数从n逐项减到0,是降幕排列。

b的指数从0逐项减到n,是升幕排列。

各项的次数和等于n.④系数:注意正确区分二项式系数与项的系数,(包括二项式系数)。

4 .常用的结论:令a 1,b x, (1 x)n C O C:X C:X2L C;x r L C n n x n(n N )令a 1,b X, (1 x)n C O C"X C'X2L C:x r L ( 1)n C:x n(n N )5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即C O c n,•…Cn②二项式系数和:令a b 1,则二项式系数的和为C: C n C' L C n L C: 2n,变形式c n Cn L c n L c n 2n 1 o③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令a 1,b 1,则C: C1 C" C3 L ( 1)n C:(1 1)n 0 ,从而得到:c O C 2C4c n2r C" C3L c2r 1- 2n2n 12④奇数项的系数和与偶数项的系数和:二项式系数依次是C°,C n,Cn, ,C n, ,C;;.项的系数是a与b的系数C n'⑥系数的最大项:求(a bx )n 展开式中最大的项,一般采用待定系数法。

二项式定理十大典型例题配套练习

二项式定理十大典型例题配套练习

精锐教育学科教师辅导讲义学员编号: 年 级:高二 课 时 数: 3 学员姓名: 辅导科目:数学 学科教师:教学内容1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。

②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅.③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项rn rr n C a b -叫做二项式展开式的通项。

用1r n r rr nT C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()nb a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.rnn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。

4.常用的结论:令1,,a b x == 0122(1)()n r r n nn n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221r nn n n n n C C C C +++++=-。

二项式定理题型

二项式定理题型

二项式定理题型一、求二项展开式中的特定项1. 题目- 求二项式(2x - (1)/(x))^6展开式中的常数项。

2. 解析- 根据二项式定理(a + b)^n=∑_k = 0^nC_n^ka^n - kb^k,对于(2x-(1)/(x))^6,a = 2x,b=-(1)/(x),n = 6。

- 展开式的通项公式为T_r+1=C_6^r(2x)^6 - r(-(1)/(x))^r。

- 化简T_r + 1=C_6^r(2x)^6 - r(-(1)/(x))^r=C_6^r2^6 - rx^6 - r(-1)^rx^-r=C_6^r2^6 - r(-1)^rx^6 - 2r。

- 要求常数项,则令x的指数6-2r = 0,解得r = 3。

- 把r = 3代入通项公式中,可得常数项为C_6^32^6 - 3(-1)^3。

- 计算C_6^3=(6!)/(3!(6 - 3)!)=(6×5×4)/(3×2×1)=20。

- 所以常数项为20×2^3×(-1)=-160。

二、求二项展开式的系数和1. 题目- 已知二项式(1 + 2x)^n,设(1 + 2x)^n=a_0+a_1x + a_2x^2+·s+a_nx^n,求a_0+a_1+a_2+·s+a_n的值。

2. 解析- 令x = 1,则(1+2×1)^n=(1 + 2)^n=3^n。

- 此时(1 + 2x)^n变为a_0+a_1×1+a_2×1^2+·s+a_n×1^n,即a_0+a_1+a_2+·s+a_n=3^n。

三、二项式系数的性质相关题目1. 题目- 在二项式(x + y)^n的展开式中,二项式系数最大的项是第5项和第6项,求n的值。

2. 解析- 当n为偶数时,二项式系数最大的是中间一项,即第(n)/(2)+1项;当n为奇数时,二项式系数最大的是中间两项,即第(n + 1)/(2)项和第(n+3)/(2)项。

二项式定理题目

二项式定理题目

二项式定理题目1. 二项式定理的基本内容- 对于(a + b)^n=∑_k = 0^nC_n^ka^n - kb^k,其中C_n^k=(n!)/(k!(n - k)!)叫做二项式系数。

- 例如(x+2)^3,根据二项式定理n = 3,则(x +2)^3=C_3^0x^32^0+C_3^1x^22^1+C_3^2x^12^2+C_3^3x^02^3。

- 计算二项式系数C_3^0=(3!)/(0!(3 - 0)!)=1,C_3^1=(3!)/(1!(3 - 1)!)=3,C_3^2=(3!)/(2!(3 - 2)!)=3,C_3^3=(3!)/(3!(3 - 3)!)=1。

- 所以(x + 2)^3=x^3+6x^2+12x + 8。

2. 求二项展开式中的特定项- 例:求(2x-(1)/(x))^6展开式中的常数项。

- 首先根据二项式定理(a + b)^n=∑_k = 0^nC_n^ka^n - kb^k,这里a = 2x,b=-(1)/(x),n = 6。

- 展开式的通项公式为T_r+1=C_6^r(2x)^6 - r(-(1)/(x))^r=C_6^r2^6 - rx^6 - r(-1)^rx^-r=C_6^r2^6 - r(-1)^rx^6 - 2r。

- 要求常数项,则令x的指数6 - 2r = 0,解得r = 3。

- 把r = 3代入通项公式中的系数部分C_6^32^6 - 3(-1)^3。

- 计算C_6^3=(6!)/(3!(6 - 3)!)=20,2^6 - 3=8,(-1)^3=-1。

- 所以常数项为C_6^32^6 - 3(-1)^3=20×8×(-1)= - 160。

3. 二项式系数的性质- 性质一:对称性,与首末两端“等距离”的两个二项式系数相等,即C_n^k=C_n^n - k。

- 例如在(a + b)^5中,C_5^1=C_5^4,C_5^2=C_5^3。

《二项式定理》典型例题

《二项式定理》典型例题

《二项式定理》典型例题【考情分析】本节内容是二项式定理,是高考中的重点,主要涉及二项式定理及其系数的应用,考查内容主要包括:求二项展开式某项的系数、求二项展开式中特定项等,考题角度灵活、综合性较强.题型1求二项展开式某项的系数(数学运算)典例1 [分析计算能力](2020-全国卷I)(x+y 2x)(x+y)5的展开式中x3y3的系数为()A.5 B.10 C.15 D.20解析本题主要考查二项式定理及其展开式的通项公式,分析题意通过赋值法找到所求项,并转化为求所求项的系数进行计算.(x+y)5展开式的通项公式为T r+1=C5r x5−r y r(r∈N且r⩽5),所以(x+y2x)的各项与(x+y)5展开式的通项的乘积可表示为:xT r+1=xC5r x5−r y r=C5r x6−r y r和y2x T r+1=y2xC5r x5−r y r=C5r x4−r y r+2,在xT r+1=C5r x6−r y r中,令r=3,可得xT4=C53x3y3,该项中x3y3的系数为10,在y2 x T r+1=C5r x4−r y r+2中,令r=1,可得y2xT2=C51x3y3,该项中x3y3的系数为5,所以x3y3的系数为10+5=15.答案C.题型2求二项展开式中特定项(数学抽象)典例2 [概括理解能力、分析计算能力](2020-全国卷III)(x2+2x )6的展开式中常数项是__________.(用数字作答)解析本题考查对二项式定理的概括理解,利用通项公式求解计算二项展开式中的指定项,解题关键是掌握二项式展开通项公式.∵(x2+2x )6的二项式展开通项:T r+1=C6r⋅(x2)6−r⋅(2x)r=C6r⋅x12−2r2r⋅x−r=2r C6r⋅x12−3r,当12−3r=0,解得r=4,∴(x2+2x )6的展开式中常数项是:C64⋅24=C62⋅16=15×16=240.答案240.题型3用计数原理求项(逻辑推理)典例3 [推测解释能力]在(x2+2x+√y)6的展开式中,x3y2的系数为________________.(用数字作答)解析本题考查二项展开式的通项公式,通过多项相加,运用逻辑推理,对具体问题情境进行推测和解释,求出要求的项的系数.(x2+2x+√y)6=[(x2+2x)+y 12]6,它展开式中的第r+1项为T r+1=C6r(x2+2x)6−r y r2,令r2=2,则r=4,T5=C64(x2+2x)2y2=C64(x4+4x3+4x2)y2,x3y2的系数为C64×4=60.答案60.。

完整版)二项式定理知识点及典型题型总结

完整版)二项式定理知识点及典型题型总结

完整版)二项式定理知识点及典型题型总结二项式定理一、基本知识点1、二项式定理:(a+b)^n = C(n,0)a^n + C(n,1)a^(n-1)b +。

+ C(n,n)b^n (n∈N*)2、几个基本概念1)二项展开式:右边的多项式叫做(a+b)^n的二项展开式2)项数:二项展开式中共有n+1项3)二项式系数:C(n,r) = n!/r!(n-r)!4)通项:展开式的第r+1项,即T(r+1) = C(n,r) * a^(n-r) * b^r3、展开式的特点1)系数都是组合数,依次为C(n,1)。

C(n,2)。

…。

C(n,n)2)指数的特点①a的指数由n到0(降幂)。

②b的指数由0到n(升幂)。

XXX和b的指数和为n。

3)展开式是一个恒等式,a,b可取任意的复数,n为任意的自然数。

4、二项式系数的性质:1)对称性: 在二项展开式中,与首末两端等距离的任意两项的二项式系数相等.2)增减性与最值: 二项式系数先增后减且在中间取得最大值当n是偶数时,中间一项取得最大值C(n,n/2)当n是奇数时,中间两项相等且同时取得最大值C(n,(n-1)/2)C(n-1.m) = C(n。

m) + C(n。

m-1)C(n,0) + C(n,1) +。

+ C(n,n) = 2^n3)二项式系数的和:奇数项的二项式系数的和等于偶数项的二项式系数和.即 C(n,0) - C(n,2) + C(n,4) -。

= 2^(n-1)二项式定理的常见题型一、求二项展开式1.“(a+b)^n”型的展开式例1.求(3x+2y)^42.“(a-b)^n”型的展开式例2.求(3x-2y)^43.二项式展开式的“逆用”例3.计算1-3C(n,1) + 9C(n,2) - 27C(n,3) +。

+(-1)^n*3nC(n,n)二、通项公式的应用1.确定二项式中的有关元素例4.已知((-ax)/(9x^2+1))^9的展开式中x^3的系数为9,常数a的值为1/32.确定二项展开式的常数项例5.(x-3/x)^10展开式中的常数项是2433.求单一二项式指定幂的系数例6.(x^2-3y)^6中x^3y^3的系数为-540三、求几个二项式的和(积)的展开式中的条件项的系数例7.(x-1)^-1(x-1)^2(x-1)^3(x-1)^4(x-1)^5的展开式中,x^2的系数等于-101.展开式中,求(x-2)(x^2+1)^7展开式中x^3的系数。

完整版二项式定理十大典型问题及例题

完整版二项式定理十大典型问题及例题
ห้องสมุดไป่ตู้专题一
题型一:二项式定理的逆用;
1232nn?1C?C?6?C?6?L?C?6?.例:nnnnn012233nn(1?6)?C?C?6?C?6?C?6?L?C?6与已知的有一些差距,解:nnnnn112n2n123n2n?1?6?L?6C)?C?C??C6??6??6(C??C6L??Cnnnnnnn6111nn0n122n1)(7??6)[(11)?CL?C6??C?(C?6??6????1]nnnn666123n?1nC?3C?9C?L?3C?.练:nnnn
题型三:利用通项公式求常数项;
1102)(x?的展开式中的常数项?例:求二项式x25145511?20r88rrrr210?r?C()T?8r?020?r?x)()?C()T?C(x2,令解:,所以,得10r?110109225622x216)(2x?练:求二项式的展开式中的常数项?x21133rr?6?rrr6?2rrrr620?C?T?(?1)3r?r6?2?0x1)2)?TCC((?1))()?(?(2x解:,令,得,所以6461?6r22x1n2____.?n5)x?(练:若的二项展开式中第项为常数项,则x16n?4?412n2?442n0?12?2nx)(x)C?TC?(.,令解:,得nn5x题型四:利用通项公式,再讨论而确定有理数项;
93x?)x(展开式中的有理项?例:求二项式
3
127?r127?rrrr9?rrx1)CT?C(x)x)?(?(?0?r?9r?3或r?9Z?632,,( ),令得解:9r?19627?r3443C?1)T?(x??84xr?34?时,所以当,,946r27?3339C??x1)T?(?x9r?3?,。当时,9106题型五:奇数项的二项式系数和=偶数项的二项式系数和;

二项式定理九种常见的考查题型归纳

二项式定理九种常见的考查题型归纳

二项式定理常见的题型归纳吴友明 整理题型一:指定项有关的问题 例1.在12)13(xx -展开式中,3-x 的系数为 . 解析:由二项式定理的通项公式得1121212211212(3)(3(1)r r rr r r r rr T C x C x x ----+=⋅⋅=⋅-⋅⋅⋅ 312122123(1)rrrr C x--=⋅-⋅⋅.令31232r -=-可得10r =,即121010103311123(1)594T C x x ---=⋅-⋅⋅=.故3-x 项的系数为594.点评:解决此类问题的一般策略是:先求二项式展开式的通项,再利用化简后的通项与指定项之间的联系求解。

特别题型解题之前先确认题目是求二项式的展开式的系数或二项式的系数,另外二项式的展开式的通项化简时,要注意指数运算的性质的准确运用.练习.若n xx x )1(3+的展开式的常数项为84,则n = .解析:由二项式定理的通项公式得333321()r r n rrr n rr nnT C x C xx---+=⋅⋅=⋅⋅932n rr nC x-=⋅.令9302n r -=可设3,2n k r k ==,其中k N +∈. 故有23384r k kn k k C C C ===,解得3k =.故39n k ==.题型二:有理项有关的问题例2. 二项式24展开式中,有理项的项数共有( )项A. 3B. 4C. 5D. 7 解析:由二项式定理的通项公式得241136424r !2424T ---+⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭rrr r r C x x C x,其中0,1,2,,24r =L , 由题意得364r Z -∈,则0,4,8,12,16,20,24r =,所以共有7个有理项点评: 有理项是指变量的指数是整数(可以是正整数,也可以是负整数和零)的项,所以此类问题的一般解题思路是:先求二项式的展开式的通项,化简后令x 的指数为整数解决问题。

二项式定理十大典型问题及例题

二项式定理十大典型问题及例题

學科教師輔導講義學員編號: 年 級:高二 課 時 數: 3 學員姓名: 輔導科目:數學 學科教師:教學內容1.二項式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二項式展開式:右邊の多項式叫做()n a b +の二項展開式。

②二項式係數:展開式中各項の係數rnC (0,1,2,,)r n =⋅⋅⋅. ③項數:共(1)r +項,是關於a 與b の齊次多項式④通項:展開式中の第1r +項r n r rn C a b -叫做二項式展開式の通項。

用1r n r r r nT C a b -+=表示。

3.注意關鍵點:①項數:展開式中總共有(1)n +項。

②順序:注意正確選擇a ,b ,其順序不能更改。

()n a b +與()nb a +是不同の。

③指數:a の指數從n 逐項減到0,是降冪排列。

b の指數從0逐項減到n ,是升冪排列。

各項の次數和等於n .④係數:注意正確區分二項式係數與項の係數,二項式係數依次是012,,,,,,.r n n n n n n C C C C C ⋅⋅⋅⋅⋅⋅項の係數是a 與b の係數(包括二項式係數)。

4.常用の結論:令1,,a b x == 0122(1)()n r rn nn n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性質:①二項式係數の對稱性:與首末兩端“對距離”の兩個二項式係數相等,即0n n n C C =, (1)k k n n C C -= ②二項式係數和:令1a b ==,則二項式係數の和為0122rnn n n n n n C C C C C ++++++=,變形式1221rnn n n n n C C C C +++++=-。

(完整版)二项式定理十大典型问题及例题

(完整版)二项式定理十大典型问题及例题

学科教师辅导讲义学员编号:年级:高二课时数:3学员姓名:辅导科目:数学学科教师:教学内容③奇数项的二项式系数和 =偶数项的二项式系数和:在二项式定理中,令 a 1,b1,则 C n 0 C n 1 C n 2 C n 3 L ( 1)n C n n (1 1)n 0 ,④奇数项的系数和与偶数项的系数和:如果二项式的幂指数 n 是奇数时,则中间两项的二项式系数⑥系数的最大项:求 (a bx)n 展开式中最大的项,一般采用待定系数法。

设展开式中各项系数分别专题一题型一:二项式定理的逆用; 例: C n 1 C n 2 6 C n 3 62 L C n n 解:(1 6)n C 0C nC 1C n6C n 2 62C n 1 C n 2 6C 3C n62L C nn16(C n 06C 1C n6 C n 2 62L练: 12C 1n 3C n 29C 3 n L 3n1 Cn nn1C n 3 63 LC n n 6n 与已知的有一些差距,6n 1 1(C n 1 6 C n 2 62 L C n n 6n )6 n n nn n 1 n 1 nC n n 6n 1) [(1 6)n 1] (7n 1)66从而得到: C n 0 C n 2 C n 4C n 2rC n 1 C n 3 LCn 2r12 2n2n 1为 A 1, A 2, ,A n 1,设第 r 1项系数最大,应有A r 1A r 1Ar,从而解出 r 来。

A r 2(a nx)nCn 0a n x 0 Cn 1a n 1x C n 2a n 2x 2 n 0 n C na x a 0a 1x a 2x 2 2a 2x nL a n x 1a 1x a 0令x 1, 则 a 0 a 1a 2a 3La n(a1)n ① 令x 1,则a 0a 1 a 2a 3La n(a 1)n②① ②得,a 0 a 2a 4L a n(a1)n(a 1)n2 (奇数项的系数和 ①②得,a 1a 3 a 5La n(a 1)n (a 1)n2(偶数项的系数和nC n 2 取得最大值。

二项式定理大典型问题及例题

二项式定理大典型问题及例题

二项式定理大典型问题及例题1. 问题介绍二项式定理是高中数学中的重要概念,它描述了如何展开二项式的幂。

在学习和应用二项式定理时,会遇到一些典型问题,本文将详细介绍这些问题,并给出相应的例题,以便读者更好地理解和掌握二项式定理的应用。

2. 公式回顾在探讨二项式定理的问题之前,我们先回顾一下二项式定理的公式:$$(a + b)^n = C_n^0 a^n b^0 + C_n^1 a^{n-1} b^1 +C_n^2 a^{n-2} b^2 + \\ldots + C_n^n a^0 b^n$$其中Ck表示从n个不同元素中选择k个元素的组合数。

n在这个公式中,指数n表示二项式的幂,而a和b是二项式定理的底数。

3. 典型问题现在,我们来看一些典型的二项式定理问题。

3.1 求展开式的某一项系数问题:已知展开式(2x+3y)6,求展开式中x2y4的系数。

解析:要求展开式中x2y4的系数,需要找到对应的组合数。

根据二项式定理,x2y4的系数等于 $C_6^2 \\times 2^2\\times 3^4$。

计算得到该系数为 5400。

3.2 求展开式的某一项的值问题:已知展开式 $(1 + \\frac{1}{x})^8$,求展开式中的第四项的值。

解析:展开式中的第四项为 $C_8^3 \\times 1^5 \\times (\\frac{1}{x})^3$。

化简后得到 $C_8^3 \\times\\frac{1}{x^3}$。

根据组合数公式,$C_8^3 =\\frac{8!}{3!5!}$。

计算该值得到 56。

所以,展开式中的第四项的值为 $\\frac{56}{x^3}$。

3.3 求展开式的和问题:求展开式(−2x+5)4的和。

解析:根据二项式定理展开式的形式,展开式的和等于各项的系数之和。

展开式中各项的系数可以通过计算对应的组合数得到。

展开式(−2x+5)4的和等于 $C_4^0 \\times (-2)^4 \\times 5^0 + C_4^1 \\times (-2)^3 \\times 5^1 + C_4^2 \\times (-2)^2 \\times 5^2 + C_4^3 \\times (-2)^1\\times 5^3 + C_4^4 \\times (-2)^0 \\times 5^4$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.常用的结论:


5.性质:
①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即 ,···
②二项式系数和:令 ,则二项式系数的和为 ,
变形式 。
③奇数项的二项式系数和=偶数项的二项式系数和:
在二项式定理中,令 ,则 ,
从而得到:
④奇数项的系数和与偶数项的系数和:
⑤二项式系数的最大项:如果二项式的幂指数 是偶数时,则中间一项的二项式系数 取得最大值。
练:求式子 的常数项?
解: ,设第 项为常数项,则 ,得 , , .
题型八:两个二项式相乘;
例:
解:
.
练:
解:
.
练:
解:
题型九:奇数项的系数和与偶数项的系数和;
例:
解:
题型十:赋值法;
例:设二项式 的展开式的各项系数的和为 ,所有二项式系数的和为 ,若
,则 等于多少?
解:若 ,有 , ,
令 得 ,又 ,即 解得 , .
3.注意关键点:
①项数:展开式中总共有 项。
②顺序:注意正确选择 , ,其顺序不能更改。 与 是不同的。
③指数: 的指数从 逐项减到 ,是降幂排列。 的指数从 逐项减到 ,是升幂排列。各项的次数和等于 .
④系数:注意正确区分二项式系数与项的系数,二项式系数依次是 项的系数是 与 的系数(包括二项式系数)。
解: ,令 ,得 ,所以
练:若 的二项展开式中第 项为常数项,则
解: ,令 ,得 .
题型四:利用通项公式,再讨论而确定有理数项;
例:求二项式 展开式中的有理项?
解: ,令 ,( )得 ,
所以当 时, , ,
当 时, , 。
题型五:奇数项的二项式系数和=偶数项的二项式系数和;
例:若 展开式中偶数项系数和为 ,求 .
解:设 展开式中各项系数依次设为
,则有 ①, ,则有 ②
将①-②得:
有题意得, , 。
练:若 的展开式中,所有的奇数项的系数和为 ,求它的中间项。
解: , ,解得
所以中间两个项分别为 , ,
题型六:最大系数,最大项;
例:已知 ,若展开式中第 项,第 项与第 项的二项式系数成等差数列,求展开式中二项式系数最大项的系数是多少?
练:写出在 的展开式中,系数最大的项?系数最小的项?
解:因为二项式的幂指数 是奇数,所以中间两项( )的二项式系数相等,且同时取得最大值,从而有 的系数最小, 系数最大。
练:若展开式前三项的二项式系数和等于 ,求 的展开式中系数最大的项?
解:由 解出 ,假设 项最大,
,化简得到 ,又 , ,展开式中系数最大的项为 ,有
练:若 的展开式中各项系数之和为 ,则展开式的常数项为多少?
解:令 ,则 的展开式中各项系数之和为 ,所以 ,则展开式的常数项为 .
练:
解:
练:
解:
题型十一:整除性;
例:证明: 能被64整除
证:
由于各项均能被64整除
1、(x-1)11展开式中x的偶次项系数之和是
1、设f(x)=(x-1)11,偶次项系数之和是
如果二项式的幂指数 是奇数时,则中间两项的二项式系数 , 同时取得最大值。
⑥系数的最大项:求 展开式中最大的项,一般采用待定系数法。设展开式中各项系数分别
为 ,设第 项系数最大,应有 ,从而解出 来。
专题一
题型一:二项式定理的逆用;
例:
解: 与已知的有一些差距,
练:
解:设 ,则
题型二:利用通项公式求 的系数;
练:在 的展开式中系数最大的项是多少?
解:假设 项最大,
,化简得到 ,又 , ,展开式中系数最大的项为
题型七:含有三项变两项;
例:求当 的展开式中 的一次项的系数?
解法①: , ,当且仅当 时, 的展开式中才有x的一次项,此时 ,所以 得一次项为
它的系数为 。
解法②:
故展开式中含 的项为 ,故展开式中 的系数为240.
11、求(2x+1)12展开式中系数最大的项
2、 2、
2、4n
3、 的展开式中的有理项是展开式的第项
3、3,9,15,21
4、(2x-1)5展开式中各项系数绝对值之和是
4、(2x-1)5展开式中各项系数系数绝对值之和实为(2x+1)5展开式系数之和,故令x=1,则所求和为35
5、求(1+x+x2)(1-x)10展开式中x4的系数
5、 ,要得到含x4的项,必须第一个因式中的1与(1-x)9展开式中的项 作积,第一个因式中的-x3与(1-x)9展开式中的项 作积,故x4的系数是
6、求(1+x)+(1+x)2+…+(1+x)10展开式中x3的系数
6、 = ,原式中x3实为这分子中的x4,则所求系数为
7、若 展开式中,x的系数为21,问m、n为何值时,x2的系数最小?
7、由条件得m+n=21,x2的项为 ,则 因n∈N,故当n=10或11时上式有最小值,也就是m=11和n=10,或m=10和n=11时,x2的系数最小
解: 解出 ,当 时,展开式中二项式系数最大的项是 , 当 时,展开式中二项式系数最大的项是 , 。
练:在 的展开式中,二项式系数最大的项是多少?
解:二项式的幂指数是偶数 ,则中间一项的二项式系数最大,即 ,也就是第 项。
练:在 的展开式中,只有第 项的二项式最大,则展开式中的常数项是多少?
解:只有第 项的二项式最大,则 ,即 ,所以展开式中常数项为第七项等于
学科教师辅导讲义
学员编号: 年 级:高二 课 时 数: 3
学员姓名: 辅导科目:数学 学科教师:
教学内容
1.二项式定理:

2.基本概念:
①二项式展开式:右边的多项式叫做 的二项展开式。
②二项式系数:展开式中各项的系数 .
③项数:共 项,是关于 与 的齐次多项式
④通项:展开式中的第 项 叫做二项式展开式的通项。用 表示。
8、自然数n为偶数时,求证:
8、原式=
9、求 被9除的余数
9、 ,
∵k∈Z,∴9k-1∈Z,∴ 被9除余8
10、在(x2+3x+2)5的展开式中,求x的系数
10、
在(x+1)5展开式中,常数项为1,含x的项为 ,在(2+x)5展开式中,常数项为25=32,含x的项为
∴展开式中含x的项为 ,此展开式中x的系数为240
例:在二项式 的展开式中倒数第 项的系数为 ,求含有 的项的系数?
解:由条件知 ,即 , ,解得 ,由
,由题意 ,
则含有ቤተ መጻሕፍቲ ባይዱ的项是第 项 ,系数为 。
练:求 展开式中 的系数?
解: ,令 ,则
故 的系数为 。
题型三:利用通项公式求常数项;
例:求二项式 的展开式中的常数项?
解: ,令 ,得 ,所以
练:求二项式 的展开式中的常数项?
相关文档
最新文档