电动机的制动方式有哪些

合集下载

他励直流电动机的制动方法

他励直流电动机的制动方法

他励直流电动机的制动方法
他励直流电动机的制动方法1、回馈制动
回馈制动有两种方式可以实现,即位能负载拖动电动机或降低电压减速的过程,都会产生回馈制动。

在具有位能负载的拖动系统中,如提升机下放重物,电车下坡,当转速增大并超过理想空载转速时,电动机就由电动状态转变为回馈制动状态。

当突然降低电枢两端的电压时,在这瞬间,由于转速来不及变化,电枢电势也来不及变化,电枢电流反向,转矩也反向,使电机进入回馈制动状态。

在制动转矩作用下,电机迅速减速。

2、能耗制动
设电动机原处于电动状态运行,制动时,励磁绕组仍接于电源,但将电枢两端从电源断开,并立即把它接到一个附加的制动电阻上。

在这一瞬间,由于磁通与转速都未变,因此电动势没有变,但电枢已切断电源,电流方向改变,转矩方向也改变,成为制动转矩。

在制动过程中,电机由生产机械的惯性作用带动发电,把系统的动能变为电能消耗在电枢回路的电阻上,故称能耗制动,又叫动力制动。

3、反接制动
反接制动可以用两种方法实现,即转速反向与电枢反接。

他励直流电动机制动的特点1、能耗制动
停止时,切断供电,在保持有磁场的状态,把电枢经负载电阻接成闭合回路,此时电机处于发电状态,把电机的动能转化为电能,消耗在电枢和负载电阻的回路。

特点:线路简单,制动时间一般,需加制动接触器、制动电阻、和制动时间继电器。

2、反接制动
停止时,切断供电,经限流电阻改变电枢供电极性,使电枢产生反转力矩,在反转力矩的作用下,使电枢快速停止转动,当转速为零时立即切除反转供电。

特点:制动速度快,需。

三相异步电动机的制动特性

三相异步电动机的制动特性

三相异步电动机的制动特性常见的三种制动方式:能耗制动反馈制动反接制动1.能耗制动特性异步电动机的反接制动用于精确停车有肯定的困难,由于它简单造成反转,而且电能损耗也比较大;反馈制动虽然是比较经济的制动方法,但它只能在高于同步转速下使用;而能耗制动却是比较常用的精确停车的方法。

原理图如下:进行能耗制动时,首先将定子绕阻从三相电流电源断开(1KM打开),接着马上将一抵押直流电源统入定子绕阻(2KM闭合)。

直流电流通过定子绕阻后,在电动机内部建立一个固定不变的磁场,由于转子在运动系统存储的机械能维持下连续旋转,转子导体内就产生感应电势和电流,该电流于恒定磁场相互作用产生作用方向于转子实际旋转方向相反的制动转矩,在它的作用下,电动机转速快速下降,此时运动系统贮存的机械能被电动机转换成电能后消耗在转子电路的电阻中。

2.反馈制动特性由于某种缘由异步电动机的运行速度高于它的同步速度,异步电动机就进入发电状态。

反馈制动时,电机从轴上吸取功率后,一部分转化为转子铜耗,大部分则通过空气隙进入定子,并在供应定子铜耗和铁耗后,反馈给电网,所以,反馈制动又称发电制动。

原理图:反馈制动运行状态的两种状况:1.负载转矩为位能性转矩的起重机械在下放重物时的反馈制动状态;2.电动机在变极调速或变频调速过程中,极对数突然增多或供电频率突然降低,使同步转速突然降低时的反馈制动运行状态。

3.反接制动特性电源反接假如正常运行时异步电动机三相电源的相序突然转变(电源反接),这就转变了旋转磁场的方向,电动机状态下的机械特性曲线就由第一象限的曲线1变成了第三象限的曲线2。

但由于机械惯性的缘由,转速不能突变,系统运行点a只能平移至特性曲线2至b点,电磁转矩由正变负,则转子将在电磁转矩和负载转矩的共同作用下快速减速。

倒拉制动倒拉制动消失在位能负载转矩超过电磁转矩的时候,例如起重机下放重物,为了使下降速度不致太快,就常用这种工作状态。

讲述三相交流电动机的制动方式及工作原理

讲述三相交流电动机的制动方式及工作原理

讲述三相交流电动机的制动方式及工作原理嘿,咱今儿就来讲讲三相交流电动机的制动方式及工作原理哈!你可别小瞧这电动机,它就像是机器世界里的大力士呢!咱先说说能耗制动吧。

这就好比是让电动机这位大力士突然停下脚步,然后把它运动的能量给消耗掉。

就好像你跑步的时候,突然让你停下来,那你的惯性不就还在嘛,这时候就需要把这股惯性的能量给散掉。

电动机也是这样,通过把它的绕组接到直流电上,产生一个磁场,让电动机的转子在里面转动,把动能转化成电能,再通过电阻消耗掉,达到制动的效果。

再说说反接制动呀。

这就像是给电动机来了个急刹车,还来了个反向的推动。

就好像你正向前跑呢,突然有人在后面使劲拉你,让你快速停下来。

当电动机正常运转的时候,突然把电源的相序给调换了,这时候电动机就会产生一个和原来转动方向相反的力矩,让它迅速停下来。

但这可得小心点哦,电流会变得很大呢,就像你急刹车的时候也会有点惊险呀!还有再生制动呢。

这就有点神奇啦!就好比电动机在减速的时候,还能把多余的能量送回电网去,就像一个会变魔术的大力士,不仅能停下,还能把能量变出来。

当电动机的转速高于同步转速的时候,它就会变成发电机,把能量回馈给电网,起到制动的作用。

你想想看,这些制动方式是不是很有意思呀?它们就像是电动机的各种小魔法,让电动机能按照我们的要求乖乖听话呢!电动机在我们的生活中可太重要啦,从工厂里的大机器到家里的小电器,都有它的身影。

没有它,那可真是没法想象我们的生活会变成啥样呢!所以呀,了解它的制动方式和工作原理,就像是掌握了它的小秘密,能让我们更好地利用它,让它为我们服务呢!咱可不能小瞧了这些知识哦,它们可是能帮我们解决很多实际问题的呢!你说是不是呀?。

《电机学》复习资料+试题

《电机学》复习资料+试题

常用的调速方法有:改变励磁电流调速;改变端电压调速;改变电枢回路电阻调速。

1.直流电机的制动方式有三种在:能耗制动;反接制动;回馈制动。

这三种方法都不改变磁场的大小及方向而仅改变电枢电流的方向,从而得到制动转矩。

2.把磁场分成主磁通和漏磁通两部分.主磁通沿铁心闭合,起能量传递的媒介作用,所经磁路是非线性的;漏磁通主要沿非铁磁物质闭合、仅起电抗压降的作用,所经磁路是线性的。

3.异步电机的重要物理量:转差率11n nn s -=,当S,n1已知时,可算出n:1)1(n s n -=当转子不转(启动瞬间),0=n,则1=s ;当转速接近同步转速时,1n n ≈,则0≈s 。

正常运行时,s 仅在0.01~0.06之间。

转差率是异步电机的一个重要物理量,它反映了转子转速的快慢或负载的大小。

根据转差率的大小和正负,可判定异步电机的三种运行状态:电动机状态;电磁制动状态;发电机状态。

对于三相异步电机机械功率。

:310cos 3-⨯=N N N N N I U P ηϕ▲功率平衡方程式输入功率emFe Cu P p p I U m P ++==111111cos ϕ 电磁功率mec Cu p p S r I m I E m P +===2'2'21'2'2112cos ϕ定子铜耗12111r I m p Cu = 铁耗m m Fer I m p 21= 转子铜耗em Cu SP r I m p ==''22212 机械功率2'22211)1(1'Cu em MEC p S S P S r S S I m P -=-=-= 输出功率admec MEC p p P P --=2 N P 是感应电机的额定功率,是指电动机在额定情况下运行时由轴端输出的机械功率。

只有在额定情况下,N P P =2。

4.电磁转矩方程式 电磁转矩与电磁功率、机械功率的关系Ω=Ω=MEC em em P P T 1 电磁转矩平衡方程式02T T T em +=。

电动机制动控制

电动机制动控制

三相异步电动机电磁抱闸通电制动
如图3所示:合上电源开关QS,按动启动按钮SB1,接触器线圈KM1通电, KM1主触头闭合,电动机正常动转。因其常闭辅助触头(KM1)断开,使接触器 KM2线圈断电,因此电磁抱闸线圈回路不通电,电磁抱闸的闸瓦与闸轮分开, 电动机正常运转。
当按下停止复合按钮SB2时,因其常闭触头断开,KM1线圈断电,电动机定 子绕组脱离三相电源,同时KM1的常闭辅助触头恢复闭合。这时如果将SB2按到 底,则由于其常开触头闭合,而使KM2线圈获电,KM2触头闭合使电磁抱闸线 圈通电,吸引衔铁,使闸瓦抱住闸轮实现制动。
3、电动机制动时,KM2释放后电动机发生反转。
这是由于Ks复位太迟引起的故障,原因是Ks触点复位弹簧压力过小,应 按上述方法将复位弹簧的压力调大,并反复调整试验,直至达到合适程度。
可逆运行电动机反接制动控制
可逆运行电动机反接制动控制
双向运行的反接制动控制电路
三相异步电动机能耗制动
三相异步电动机能耗制动就是切断电动机交流电源的同时,向定子 绕组通入直流电流,将电动机转子因惯性而旋转的动能,转化为电能消 耗在转子电阻上的一种制动方法,此时转子切割静止的磁力线,产生感 应电动势和转子电流,转子电流与磁场相互作用,产生制动力矩,使电 动机迅速减速停车。
三相异步电动机电磁抱闸断电制动
如图2所示:合上电源开关QS,按动启动按钮SB1,接触器线圈KM通电, KM的主触头闭合,电动机通电运行。同时电磁抱闸线圈获电,吸引衔铁,使之 与铁心闭合,衔铁克服弹簧拉力,使杠杆顺时针方向旋转,从而使闸瓦与闸轮 分开,电动机正常运行。
当按下停止按钮SB2时,接触器线圈断电,KM主触头恢复断开,电动机断 电,同时电磁抱闸线圈也断电,杠杆在弹簧恢复力作用下向下移动,闸瓦抱住 闸轮开始制动。

伺服电机的制动方式与原理伺服电机的控制方法

伺服电机的制动方式与原理伺服电机的控制方法

伺服电机的制动方式与原理伺服电机的控制方法伺服电机是一种能够实现精确控制位置、速度和力矩的电机。

它的控制方式和原理可以分为制动方式和控制方法两个方面。

一、伺服电机的制动方式与原理:1.机械制动法:通过机械装置,在电机输入轴或者输出轴上加装制动装置,如制动盘、制动片等。

当需要制动时,通过电磁力或者机械力使制动器与电机输入轴或者输出轴接触,从而实现制动效果。

这种制动方式的原理是利用摩擦力或者电磁力来减小或者阻止电机的运动,从而实现制动目的。

2.电磁制动法:通过电磁装置,在电机输入轴或者输出轴上加装电磁制动器。

当需要制动时,施加电压使制动器产生磁场,通过磁场对电机输入轴或者输出轴施加制动力矩,从而实现制动效果。

这种制动方式的原理是利用电磁场对电机的运动进行阻止,从而实现制动目的。

3.回馈制动法:回馈制动法是在伺服电机的控制回路中加入一个回馈装置,通过控制回路的反馈信号控制电机的转动和制动。

当需要制动时,通过调整控制回路中的参数,使反馈信号与设定值产生偏差,从而控制电机停止运动或者产生相反的力矩,实现制动效果。

这种制动方式的原理是通过改变控制回路中的参数,使电机的输出与期望值产生偏差,从而实现制动目的。

二、伺服电机的控制方法:1.位置控制:位置控制是通过控制伺服电机使其达到设定位置的控制方式。

它的原理是通过测量电机的位置信号与设定值进行比较,通过调整控制回路的参数或者改变输入信号,控制电机的角度或者位置,使其达到期望的位置。

2.速度控制:速度控制是通过控制伺服电机使其达到设定速度的控制方式。

它的原理是通过测量电机的速度信号与设定值进行比较,通过调整控制回路的参数或者改变输入信号,控制电机的转速,使其达到期望的速度。

3.力矩控制:力矩控制是通过控制伺服电机使其产生特定力矩的控制方式。

它的原理是通过测量电机输出的力矩信号与设定值进行比较,通过调整控制回路的参数或者改变输入信号,控制电机的输出力矩,使其达到期望的力矩。

直流电机制动方式

直流电机制动方式

直流电机制动方式直流电机的制动,有机械制动,再生制动,能耗制动,反接制动机械制动就是抱闸,是电动的抱闸。

反接制动:当切断正向电源后,立即加上反向电源,使电动机快速停止,当电动机速度降到零时,装在电动机轴上的“反接继电器”立即发出信号,切断反向电源,防止电动机真的反转。

1、能耗制动。

指运行中的直流电机突然断开电枢电源,然后在电枢回路串入制动电阻,使电枢绕组的惯性能量消耗在电阻上,使电机快速制动。

由于电压和输入功率都为0,所以制动平衡,线路简单;2、反接制动。

为了实现快速停车,突然把正在运行的电动机的电枢电压反接,并在电枢回路中串入电阻,称为电源反接制动。

制动期间电源仍输入功率,负载释放的动能和电磁功率均消耗在电阻上,适用于快速停转并反转的场合,对设备冲击力大。

3、倒拉反转反接制动适用于低速下放重物。

制动时在电路串入一个大电阻,此时电枢电流变小,电磁转矩变小。

由于串入电阻很大,可以通过改变串入电阻值的大小来得到不同的下放速度。

反接制动时,切换极性相反的电源电压,使电枢回路内产生反向电流:反接制动时,从电源输入的电功率和从轴上输入的机械功率转变成的电功率一起消耗在电枢回路制动电阻上。

4、回馈制动。

电动状态下运行的电动机,在某种条件下会出现由负载拖动电机运行的情况,此时出现 n >n0、Ea >U、 Ia 反向,电机由驱动变为制动。

从能量方向看,电机处于发电状态——回馈制动状态。

正向回馈:当电机减速时,电机转速从高到低所释放的动能转变为电能,一部分消耗在电枢回路的电阻上,一部分返回电源;反向回馈:电机拖位能负载(如下放重物)时,可能会出现这种状态。

重物拖动电机超过给定速度运行,电机处于发电状态。

电磁功率反向,功率回馈电源。

电动机制动的方法

电动机制动的方法

电动机制动的方法
主要有以下几种电动机制动的方法:
1. 电阻制动:通过外接电阻将电动机的绕组短接,使电动机产生电流,通过对电流的调节可以实现制动效果。

2. 制动电阻器制动:将电动机转子的能量耗散成热量,通过调节制动电阻器的阻值控制制动力。

3. 逆变器制动:通过逆变器将电动机的运行频率调整为负值,使电动机反向运转,产生制动力。

4. 励磁制动:逆转电动机的励磁电流,产生制动力。

5. 机械制动:通过机械装置,如制动器或刹车盘,对电动机进行制动。

这些方法可以根据具体的应用场景和要求进行选择和组合,实现电动机的制动功能。

直流电动机制动

直流电动机制动

二、能耗制动 U0
Ia
U
Ea Ra
Ia
Ea Ra RL
TCtIa
Ct
Ea Ra RL
Ct
Cen
Ra RL
CeCt 2n
Ra RL
nCUeR CaeC tR 2LT
Ra RL
CeCt2
T
n
n 01
n1
U1
ቤተ መጻሕፍቲ ባይዱ
0
T
TL
C
C
U
M
Ea
C
RL
三、反接制动 反接制动的作用 1、减速 2、限速反转
n
n 01
n1
U1
0
TL T
要获得最慢的下放速度不需要在 电枢内加任何电阻。
2、一台他励直流电动机 UN 220V nN150r0/min INa10A Ra 1
如果当重物停在空中时突然重物脱落, 问电动机的转速为多少?
n
n 01
0
nN150r/0min U1
TL T
UEaNIaNRa
EaNU-IaNRa 22-10 01210V
n
n 01
0
n1 n2 U1
U2
T
Ea U Ia T -T制动转矩 n
Ea U
恢复电动机状态
电气火车下坡时速
度是否会无止尽上
升?
n
n2
n 01
n U
Ce
CeR Cat2
T
n1 U1
0
T
T
TL
n Ea U Ia T 制动转矩
为什么串励电机不能回馈制动
n
0
T
n 始终不能生成制动的电磁转矩

三相异步电动机的三种制动方式

三相异步电动机的三种制动方式

三相异步电动机的三种制动方式最经济:回馈制动最迅速:反接制动能制停:能耗制动时间:2010-04-27 16:47来源:作者:点击:次三相异步电动机与直流电动机一样,也有再生回馈制动、反接制动和能耗制动三种方式。

它们的共同点是电动机的转矩M与转速n的方向相反,以实现制动。

此时电动机由轴上吸收机械能,并转换成电能。

一、再生回馈制动再生回馈制动是在外加转矩的作用下,转子转速超过同步转速,电磁转矩改变方向成为制动转矩的运行状态。

再生回馈制动与反接制动和能耗制动不同,再生回馈制动不能制动到停止状态。

以下是再生回馈制动存在:(1)当电网的频率突然下降或者电机的极数突然增高,电机可能工作在发电状态,此时的电机将机械能转变成电能回馈给电网。

如图1,当电机在电动状态下运行时工作于P点,在突然变极或者变频时,电机的工作特性会突然在a线1段部分(蓝线部分),电机的转矩突然变负,其制动作用,直到最后重新稳定工作于P点为止,电机又回到电动状态。

2图1(2)当电机在位能负载(如吊车、提升机)的作用下,使其转速n高于同步转速n,此时,电机的输出转矩变负,电机由轴上吸收机械能,当电机的转矩(制0点),此动转矩)与负载的位能转矩相平衡时,电机既稳定运行(如图2中P3时电机以高于同步转速的速度运行。

在转子电路中串入不同的电阻,可得到不同的人为机械特性,并可得到不同的稳定速度,串入的电阻越大,稳定速度越高,一般在回馈制动时不串入电阻,以免转速过高。

图2二、反接制动反接制动是在电机定子三根电源线中的任意两根对调而使电机输出转矩反向产生制动,或者在转子电路上串接较大附加电阻使转速反向,而产生制动。

(1)电源两相反接的反接制动:点稳定运行,为使电机停转,将定子三根电源线中如图3所示,电机原在P1的任意两根对调,使旋转磁场反向,电机的转矩反向,起制动作用,电机运行在a线段。

当电机制动停止时,应及时将电机与电网分离,否则电机会反转。

电源两相反接反接制动的优点是制动效果强,缺点是能量损耗大,制动准确度差。

简述电机制动的工作原理

简述电机制动的工作原理

简述电机制动的工作原理
电机制动是指通过控制电机的工作状态,将电机从运动状态迅速转变为静止状态的一种制动方式。

其工作原理主要包括以下几个方面:
1.电磁能转化为机械能:电机通过外部电源供电,电流通过电
机的线圈,产生磁场。

磁场和电流相互作用,使得电机转子受到力矩作用而旋转,将电能转化为机械能。

2.机械能转化为电能:当电机处于运动状态时,可以通过改变
电机转子的运动速度来达到制动的目的。

通过改变电机绕组的连接方式,即改变电机的工作状态,使其从发电机状态变为电动机状态。

这样,电机的机械能会转化为电能并回馈给电源系统。

3.电机制动方式:常用的电机制动方式包括电压制动、电流制
动和反接制动。

电压制动是通过降低电压,降低电机转子的速度以达到制动目的。

电流制动是通过改变电机绕组的工作方式,使电机电流快速消失,达到制动的目的。

反接制动是将电机的绕组接反,使电机成为发电机,将机械能转化为电能,通过外部电阻将电能耗散而达到制动。

综上所述,电机制动的工作原理是通过改变电机的工作状态,使机械能转化为电能并通过外部电路耗散掉,从而使电机从运动状态转变为静止状态。

电机制动可通过调整电机的电压、电流和绕组的连接方式来实现。

电机刹车原理

电机刹车原理

电机刹车原理电机刹车是指在电机运行过程中,通过某种方式使电机停止转动的过程。

电机刹车原理主要包括机械制动、电磁制动和液压制动等多种方式,下面将对这几种电机刹车原理进行详细介绍。

首先,机械制动是一种通过机械装置实现的刹车方式。

常见的机械制动方式包括摩擦制动和离合器制动。

摩擦制动是通过摩擦力将电机转动部件停止转动,常见的摩擦制动装置有制动片和制动鼓等。

而离合器制动则是通过离合器将电机与负载分离,从而实现刹车的目的。

这两种机械制动方式都是通过摩擦力或离合器将电机转动部件停止转动,是电机刹车原理中常见的方式。

其次,电磁制动是一种通过电磁力实现的刹车方式。

电磁制动主要包括电磁感应制动和电磁涡流制动两种方式。

电磁感应制动是通过感应电流产生的电磁力来实现刹车,常见的应用在电梯和电动车等领域。

而电磁涡流制动则是通过感应涡流产生的电磁力来实现刹车,常见的应用在高速列车和大型机械设备等领域。

这两种电磁制动方式都是通过电磁力将电机转动部件停止转动,是电机刹车原理中较为高效的方式。

最后,液压制动是一种通过液压装置实现的刹车方式。

液压制动主要包括液压制动器和液压缸制动两种方式。

液压制动器是通过液压传动将电机转动部件停止转动,常见的应用在汽车和工程机械等领域。

而液压缸制动则是通过液压缸将电机转动部件停止转动,常见的应用在船舶和起重机等领域。

这两种液压制动方式都是通过液压力将电机转动部件停止转动,是电机刹车原理中较为可靠的方式。

综上所述,电机刹车原理主要包括机械制动、电磁制动和液压制动等多种方式。

不同的刹车方式在不同的场合有着不同的应用,需要根据实际需求选择合适的刹车原理。

希望本文对电机刹车原理有所帮助,谢谢阅读。

永磁同步电机直流制动短路制动原理

永磁同步电机直流制动短路制动原理

永磁同步电机直流制动短路制动原理1. 引言在现代工业领域,永磁同步电机已经成为一种非常重要的电机类型,被广泛应用于各种领域,例如电动汽车、电梯、风力发电机等。

而在永磁同步电机的使用过程中,制动是一个非常重要的环节,直流制动和短路制动就是其中的两种关键制动方式。

在本篇文章中,我们将深入探讨永磁同步电机直流制动和短路制动的原理,希望通过这篇文章能够更深入地理解永磁同步电机的制动原理和应用。

2. 永磁同步电机简介让我们简单地了解一下永磁同步电机。

永磁同步电机是一种运行稳定、效率高的电机,它利用永磁材料产生的磁场和电流产生的磁场相互作用来实现电动机运行。

它的结构简单、体积小、功率密度高,因此被广泛应用于各种领域。

在永磁同步电机工作过程中,制动是不可避免的环节,而直流制动和短路制动就是常见的两种制动方式。

3. 直流制动原理直流制动是永磁同步电机常用的一种制动方式。

当电机需要停下来或者减速时,施加一个外加直流电压到电机的绕组上,这样就会产生一个额外的磁场,与永磁体的磁场相互作用,从而产生一个转矩,使得电机减速并最终停下来。

简单地说,直流制动利用外加的直流电压来改变电机的磁场分布,从而实现制动的目的。

4. 短路制动原理除了直流制动外,短路制动也是永磁同步电机制动的重要方式。

在短路制动中,电机的三相绕组被短接在一起,使得电机成为一个大功率的发电机组,将机械能转换为电能,从而实现制动的目的。

通过短路制动,电机可以快速制动并停下来,因此在一些需要快速制动的场合非常适用。

5. 我的观点和理解对于永磁同步电机的制动方式,我认为直流制动和短路制动都有各自的优势和适用场合。

直流制动相对简单易实现,适用于对制动时间要求不苛刻的场合;而短路制动则可以快速、高效地实现制动,适用于对制动时间有较高要求的场合。

在实际应用中,根据不同的需求选择合适的制动方式非常重要。

6. 总结通过本文的介绍,我们深入地了解了永磁同步电机的直流制动和短路制动原理。

三相异步电动机制动方式

三相异步电动机制动方式

三相异步电动机制动方式
三相异步电动机的制动方式主要有以下几种:
1. 直接制动:即电动机的定子绕组通电,但转子不转动。

这种制动方式适用于制动时需要较大的制动力矩的情况,如电梯制动等。

2. 动态制动:将电动机的定子绕组接通外部电阻或电抗,使电动机减速至停止。

动态制动又分为旁路制动和串联制动两种方式。

旁路制动是将外部电阻或电抗与电动机的定子绕组并联,串联制动则是将外部电阻或电抗与电动机的定子绕组串联。

动态制动的优点是可以调整制动力矩,适用于制动时需要提供可调制动力矩的情况。

3. 动态制动加感应制动:将动态制动的电阻或电抗与电动机的定子绕组并联,同时通过感应制动装置将电动机的定子绕组接入外部电抗,从而实现制动。

这种制动方式不仅可以提供较大的制动力矩,还可以实现能量回收,提高能量利用率。

综上所述,三相异步电动机的制动方式多种多样,可以根据具体要求选择合适的制动方式。

电动机的制动方式.

电动机的制动方式.

电动机的制动方式2009年06月26日 10:44电动机的制动方式电动机的制动方式主要有机械制动和电气制动,机械制动是通过机械装置来卡住电机主轴,使其减速,如电磁抱闸、电磁离合器等电磁铁制动器。

电气制动时在应用中多采用电气制动,常用的电气制动方式有:1. 短接制动制动时将电机的绕组短接,利用绕组自身的电阻消耗能量。

由于绕组的电阻较小,耗能很快,有一定的危险性,可能烧毁电机。

2. 反接制动直流电机制动,将电机的电源正负极反接,改变电枢电流的方向,这样转矩的方向也改变,使得转速与转矩的方向相反。

交流电机制动采用改变相序的方法产生反向转矩,原理类似。

反接制动制动力强,制动迅速,控制电路简单,设备投资少,但制动准确性差,制动过程中冲击力强烈,易损坏传动部件。

3. 能耗制动制动时在电机的绕组中串接电阻,电动机相当于发电机,将拥有的能量转换成电能消耗在所串接电阻上。

这种方法在各种电机制动中广泛应用,变频控制也用到了。

从高速到低速(零速),这时电气的频率变化很快,但电动机的转子带着负载(生产机械)有较大的机械惯性,不可能很快的停止,这样就产生反电势EU (端电压)电动机处于发电状态,其产生反向电压转矩与原电动状态转矩相反,而使电动机具有较强的制动力矩,迫使转子较快停下来但由于通常变频器是交-直-交主电力AC/DC整流电路是不可逆的因此无法回馈到电网上去,结果造成主电路电容器二端电压升高,称泵升电压,当超过设定上限值电压时,制动回路导通,这就是制动单元的工作过程,制动电阻流过电源,从而将动能变热能消耗电压随之下降,待到设定下限值时即断.这种制动方法属不可控,制动力矩有波动,制动时间是可人为设定的。

制动电阻的选取经验:① 电阻值越小,制动力矩越大,流过制动单元的电流越大;② 不可以使制动单元的工作电流大于其允许最大电流,否则要损坏器件;③ 制动时间可人为选择;④ 小容量变频器(≤7.5KW)一般是内接制动单元和制动电阻的;⑤ 当在快速制动出现过电压时说明电阻值过大来不及放电,应减少电阻值.4. 直流制动主要用于变频控制中。

直流电动机实现能耗制动的方法

直流电动机实现能耗制动的方法

直流电动机实现能耗制动的方法引言直流电动机是一种常见的电机类型,广泛应用于机械和工业领域。

在实际应用中,控制电机的运动状态以及停止方式是非常重要的。

本文将介绍直流电动机实现能耗制动的方法,旨在有效地停止电机运动并回收能量。

1.什么是能耗制动能耗制动是一种通过将电机转动过程中的机械能转化为电能,然后通过电阻等方式将电能消耗掉的方法。

相对于传统的机械制动方式,能耗制动具有更高的能量回收效率,并且对电机和外部设备造成的损伤更小。

2.能耗制动的原理能耗制动的基本原理是利用电机的运动便利性,将机械能转化为电能,再通过电路将电能消耗掉。

具体原理如下:1.当电机运转时,电机会产生旋转动能。

2.将电机的输出轴与发电机相连,电机的机械能转化为电能。

3.通过电路将发电机输出的电能转化为热能或其他方式消耗掉。

3.能耗制动的方法直流电动机实现能耗制动可以采用多种方法,下面将介绍其中的几种常见方法。

3.1电阻制动电阻制动是一种常见的能耗制动方法。

其原理是通过串联电阻来消耗电机输出的电能,并将电能转化为热能散发到空气中。

电阻制动的步骤如下:1.在电机的电动机端子和负载端子之间连接一个适当大小的电阻。

2.当需要制动时,通过控制外部电路,使得电阻与电机同时工作。

3.电机的电能将通过电阻转化为热能,并散发到空气中,从而实现制动效果。

3.2逆变器制动逆变器制动是一种通过逆变器将电能转化为频率可调的交流电,再通过电阻等方式将交流电能消耗掉的方法。

逆变器制动的步骤如下:1.将逆变器与电机相连,逆变器可以将直流电能转化为交流电能。

2.通过控制逆变器的输出频率,使得电机产生适当的电能。

3.将逆变器输出的电能通过电阻等方式将电能消耗掉,实现制动效果。

3.3动态制动动态制动是一种利用电机的感应电动势反作用来实现制动的方法。

动态制动的步骤如下:1.在电机的转子绕组中加入一个感应电阻器。

2.当电机停止供电时,电机的转子绕组会产生感应电动势。

3.感应电动势会使得电路中产生感应电流,通过感应电阻器将电能消耗掉。

电车的刹车原理

电车的刹车原理

电车的刹车原理电车的刹车原理是指电车通过控制电动机反转或者通过外部制动装置来减速或停车的过程。

电车的刹车系统通常包括动力制动和机械制动两种方式。

首先,我们来看动力制动,动力制动是通过改变电动机的工作方式来实现刹车的。

在电车的动力系统中,电动机可以根据需要改变运行的方式,即可以根据控制信号从能源转变成负载,这样就可以产生制动力。

当电车需要刹车时,控制系统发送指令,电动机转为发电机状态,这时电动机开始消耗动能,并转化为电能,通过电路反馈给电池充电或直接回馈到电网中。

在这个过程中,电动机输出的电力会通过栅架系统断续地与电机相反方向串联,也就是利用发电机的原理来制动电车。

这样一来,车轮的转速就会减慢,从而达到刹车的目的。

其次,机械制动是电车刹车的另一个重要方式。

机械制动一般由制动盘、制动片、制动油压缸、制动总泵等构成。

当电车需要刹车时,制动踏板被踩下,使制动油压缸受到液压作用,将油压通过制动管道传递至车轮制动器。

制动器内的制动片会产生摩擦力,从而将车轮制动,达到减速或者停车的目的。

机械制动在电车刹车系统中的作用是不可替代的,即使动力制动失效时,机械制动也能够保证车辆的刹车安全。

总的来说,电车刹车系统是由动力制动和机械制动两种方式组成的,它们互为补充,一起保证了电车的刹车安全。

除了以上的刹车方式外,电车还具有一些先进的刹车技术,比如再生制动。

再生制动是利用电动机变成发电机状态,把制动过程中产生的动能转化为电能进行回收,从而延长电池组的寿命,提高电车的能效。

此外,还有惰性下滑制动技术,当电车处于高速行驶状态,刹车踏板未踩下时,系统会自动切断动力。

车轮通过摩擦力逐渐减速,效果类似于动力制动。

这种技术在降低动力系统负荷、减少电能消耗和提高能效方面具有显著的效果。

需要指出的是,电车在刹车过程中会产生较大的能量,如果能够对这些能量进行回收利用,将有助于提高电车的能效。

因此,一些先进的电车刹车系统还配备了超级电容器或者储能电池,能够把刹车能量储存起来,在起步、加速或者超车时释放出来,从而提高整车的动力性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电动机的制动方式有哪些
三相感应电动机电气制动方式有:能耗制动、反接制动、再生制动三种。

(1)能耗制动时切断电动机的三相交流电源,将直流电送入定子绕组。

在切断交流电源的瞬间,由于惯性作用,电动机仍按原来方向转动,这种方式的特点是制动平稳,但需直流电源、大功率电动机,所需直流设备成本大,低速时制动力小。

(2)反接制动又分负载反接制动和电源反接制动两种。

1)负载反接制动又称负载倒拉反接制动。

此转矩使重物以稳定的速度缓慢下降。

这种制动的特点是:电源不用反接,不需要专用的制动设备,而且还可以调节制动速度,但只适用于绕线型电动机,其转子电路需串入大电阻,使转差率大于1。

2)电源反接制动当电动机需制动时,只要任意对调两相电源线,使旋转磁场相反就能很快制动。

当电动机转速等于零时,立即切断电源。

这种制动的特点是:停车快,制动力较强,无需制动设备。

但制动时由于电流大,冲击力也大,易使电动机过热,或损伤传动部分的零部件。

(3)再生制动又称回馈制动,在重物的作用下(当起重机电动机下放重物),电动机的转速高于旋转磁场的同步转速。

这时转子导体产生感应电流,在旋转磁场的作用下产生反旋转方向转矩,但电动机转速高,需用变速装置减速。

(资料来源:中国联保网)。

相关文档
最新文档