基础知识专项练习题(反比例函数)
反比例函数练习题及答案6套

反比例函数练习(1)一、判断题1.当x 与y 乘积一定时,y 就是x 的反比例函数,x 也是y 的反比例函数( ) 2.如果一个函数不是正比例函数,就是反比例函数 ( )3.y 与2x 成反比例时y 与x 并不成反比例( ) 二.填空题4.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是h =__________,这时h 是a 的__________; 5.如果y 与x 成反比例,z 与y 成正比例,则z 与x 成_______; 6.如果函数222-+=k kkx y 是反比例函数,那么k =________,此函数的解析式是____ ____;7. 有一面积为60的梯形,其上底长是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是______________;三、选择题: 8.如果函数12-=m x y 为反比例函数,则m 的值是 ( )A1- B 0 C 21 D 19.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。
在课堂上,李老师请学生画出自行车行进路程s 千米与行进时间t 的函数图像的示意图,同学们画出的示意图如下,你认为正确的是( )10、下列函数中,y 是x 反比例函数的是( ) (A )12+=x y (B )22x y =(C )x y 51=(D )x y =2四.辨析题(1)兄弟二人分吃一碗饺子,每人吃饺子的个数如下表:①写出兄吃饺子数y 与弟吃饺子数x 之间的函数关系式(不要求写xy 的取值范围).¥②虽然当弟吃的饺子个数增多时,兄吃的饺子数(y )在减少,但y 与x 是成反例吗(2)水池中有水若干吨,若单开一个出水口,水流速v 与全池水放光所用时t 如下表:①写出放光池中水用时t(小时)与放水速度v(吨/小时)之间的函数关系. ②这是一个反比例函数吗③与(1)的结论相比,可见并非反比例函数有可能“函数值随自变量增大而减小”,反之,所有的反比例函数都是“函数值随自变量的增大而减小吗这个问题,你可以提前探索、尝试,也可以预习下一课时”反比例函数的图象和性质,也可以等到下一节课我们共同解决.。
反比例函数基础篇

专题6.2 反比例函数(基础篇)(专项练习)一、单选题1. 下列函数:①y =2x ,②y =15x ,③y =x ﹣1,④y =11x +.其中,是反比例函数的有( ).A. 0个B. 1个C. 2个D. 3个2. 已知反比例函数的图象过(,)x y -,则它的图象一定不经过点( ).A. (,)y x B. (,)y x - C. (,)y x - D. (,1)xy -3. 如果函数()21m y m x -=-反比例函数,那么m 的值是( )A. 2B. 1- C. 1D. 04. 若反比例函数2y x=-的图象经过点(,)a a -,则a 的值为( ).A.B. C. D. 2±5. 已知点A (3,4)在反比例函数(k y k x=为常数,0)k ≠的图象上,则该反比例函数的解析式是( )A. 3y x=B. y =4xC. y =12xD. y =7x6. 若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x=-的图象上,则1y ,2y ,3y 的大小关系是( )A. 213y y y <<B. 312y y y << C. 123y y y << D. 321y y y <<7. 反比例函数y =kx的图象经过点(3,﹣2),下列各点在图象上的是( )A. (﹣3,﹣2)B. (3,2)C. (﹣2,﹣3)D. (﹣2,3)8. 用电器的输出功率P 与通过的电流I 、用电器的电阻R 之间的关系是2P I R =,下面说法正确的是( )A. P 为定值,I 与R 成反比例 B. P 为定值,2I 与R 成反比例C. P 为定值,I 与R 成正比例D. P 为定值,2I 与R 成正比例9. 某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min )成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若水温为30℃时接通电源,水温y (℃)和时间x (min )的关系如图所示,则水温从100℃降到35℃所用的时间是( )A. 27minB. 20minC. 13minD. 12min10. 地球周围的大气层阻挡了紫外线和宇宙射线对地球生命的伤害,同时产生一定的大气压,海拔不同,大气压不同,观察图中数据,你发现,正确的是( )A. 海拔越高,大气压越大B. 图中曲线是反比例函数的图象C. 海拔为4千米时,大气压约为70千帕D. 图中曲线表达了大气压和海拔两个量之间的变化关系二、填空题11. 在函数2y x=中,自变量x 的取值范围是______.12. 若点()2,6A -与()3,B n 在同一条双曲线上,则n =______.13. 若点A (a ,b )在反比例函数y =5x-的图象上,则代数式ab ﹣4的值为_____.14. 已知反比例函数3k y x-=的图象经过点()1,2,则k 的值为__________.15. 在平面直角坐标系中,反比例函数ky x=-的图象经过点(,4)A m ,(B .则m 的值是____.16. 若函数21(1)mm y m x --=-是反比例函数,则m 的值是_______.17. 小明要把一篇27000字的调查报告录入电脑,则其录入的时间t (分)与录入文字的平均速度v (字/分)之间的函数表达式应为t =______(0v >).18. 如图,OABC 的顶点C 在反比例函数ky x=的图像上,且点A 坐标为(1,3)-,点B 坐标为(5,1)-,则k 的值为_________.三、解答题19. 下列关系式中的y 是x 的反比例函数吗?如果是,比例系数k 是多少?(1)4y x=(2)32y x=-(3)1y x =-(4)xy =1(5)24y x-=20. 写出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1500t ,该农场人数y (人)与平均每人占有粮食量x (t )的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为6.75元,总价从0元开始随着加油量的变化而变化,总价y (元)与加油量x (L )的函数关系式.21. 已知12y y y =+,1y 与x 成正比例,2y 与2x 成反比例,当2x =时,2y =;当1x =-时,1y =.(1)求y 与x 之间的函数关系式;(2)当3x =时,求y 的值.22. 在平面直角坐标系xOy 中,若反比例函数()0ky k x=≠的图象经过点()2,3A 和点()2,B m -,求m 的值.23. 已知y 是x 的反比例函数,下表列出了x 与y 的一些对应值.x …-4-3-2-123…y…1856-18…(1)写出这个反比例函数的表达式;(2)根据表达式完成上表.24. 若分式方程112x xx x +=-+的解为x α=,试判断点(),2P a a 和点(),8Q a a -是否在反比例函数2y x=-的图像上.专题6.2 反比例函数(基础篇)(专项练习)一、单选题【1题答案】【答案】C 【解析】【分析】根据反比例函数的定义,逐项分析判断即可.解析式符合(0)ky k x=≠的形式为反比例函数.【详解】解:①y 是x 正比例函数;②y 是x 反比例函数;③y 是x 反比例函数;④y 是x +1的反比例函数.综上所述,是反比例函数的有②③,共计2个故选:C .【点睛】本题考查了反比例函数的定义,将一般(0ky k x=≠)转化为y =kx ﹣1,是解题的关键.【2题答案】【答案】A 【解析】【分析】根据反比例函数的定义可直接进行求解.【详解】解:设该反比例函数为ky x=,则有:∵反比例函数的图象过(,)x y -,∴k xy =-,∴选项A 的点(,)y x 一定不经过该反比例函数;故选A .【点睛】本题主要考查反比例函数的定义,熟练掌握反比例函数的定义是解题的关键.【3题答案】【解析】【分析】根据反比例函数的定义,即y =kx(k ≠0),只需令21m --=、m -1≠0即可.【详解】解:∵()21m y m x-=-是反比例函数,∴2110m m ⎧-=-⎨-≠⎩,解得:1m =-,故B 正确.故选:B .【点睛】本题考查了反比例函数的定义,重点是将一般式y =kx(k ≠0)转化为y =kx −1(k ≠0)的形式.【4题答案】【答案】C 【解析】【分析】把点的坐标代入函数解析式,解方程即可.【详解】解:把(,)a a -代入2y x =-,得2a a-=-,解得,a =故选:C .【点睛】本题考查了反比例函数图象上点的坐标,解题关键是明确反比例函数图象上点的坐标满足函数解析式.【5题答案】【答案】C 【解析】【分析】直接把点A (3,4)代入反比例函数y =kx ,求出k 的值即可.【详解】解:∵将点A (3,4)代入反比例函数y =k x ,得4=3k,解得k =12.∴反比例函数表达式为:y =12x,【点睛】本题考查的是待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.【6题答案】【答案】B 【解析】【分析】将A 、B 、C 三点坐标分别代入反比例函数的解析式,求出123、、y y y 的值比较其大小即可【详解】∵点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x=-的图象上,∴分别把x=-3、x=-2、x=1代入12y x=-得14y =,26y =,312y =-∴312y y y <<故选B【点睛】本题考查了反比例函数的图像和性质,熟练掌握相关的知识点是解题的关键.【7题答案】【答案】D 【解析】【分析】直接利用反比例函数图象上点的坐标特点进而得出答案.【详解】解:∵反比例函数y =kx的图象经过点(3,-2),∴xy =k =-6,A 、(-3,-2),此时xy =-3×(-2)=6,不合题意;B 、(3,2),此时xy =3×2=6,不合题意;C 、(-2,-3),此时xy =-3×(-2)=6,不合题意;D 、(-2,3),此时xy =-2×3=-6,符合题意;故选D .【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确得出k 的值是解题关键.【答案】B 【解析】【详解】解:当P 为定值时,I 2与R 的乘积是定值,所以I 2与R成反比例.故选:B .【9题答案】【答案】C 【解析】【分析】先求出水温开始下降时,水温y (℃)与开机后用时x (min )的反比例函数解析式,再求出水温为35℃时的时间,计算即可.【详解】解:设水温开始下降时,水温y (℃)与开机后用时x (min )的反比例解析式为k y x=,代入(7,100)得:7100700k =⨯=,即700y x=,当y =35时,即70035x=,解得:20x =,∵20-7=13,∴水温从100℃降到35℃所用的时间是13 min ,故选:C .【点睛】本题考查了求反比例函数解析式,反比例函数图像上点的坐标特征,熟练掌握待定系数法是解题的关键.【10题答案】【答案】D 【解析】【分析】根据图象中的数据回答即可.【详解】解:A .海拔越高,大气压越小,该选项不符合题意;B .∵图象经过点(2,80),(4,60),∴2×80=160,4×60=240,而160≠240,∴图中曲线不是反比例函数的图象,该选项不符合题意;C.∵图象经过点(4,60),∴海拔为4千米时,大气压约为60千帕,该选项不符合题意;D.图中曲线表达了大气压和海拔两个量之间的变化关系,该选项符合题意;故选:D.【点睛】本题考查了函数的图象,解题的关键是读懂题意,能正确识图.二、填空题【11题答案】【答案】0x≠【解析】【分析】根据反比例函数的定义,即可得到答案.【详解】解:由题意得:在函数2yx=中,0x≠,故答案是:0x≠.【点睛】本题主要考查反比函数自变量取值范围,掌握反比例函数自变量不等于0,是解题的关键.【12题答案】【答案】4-【解析】【分析】设反比例函数解析式为kyx=(k≠0),由A点求得k,再由B点横坐标求得纵坐标即可.【详解】解:设反比例函数解析式为kyx=(k≠0),由点A(2,-6)可得k=xy=-12,∴12yx-=,当x=3时,1243n-==-,即B(3,-4),故答案为:-4.【点睛】本题考查了反比例函数解析式,掌握待定系数法求函数解析式是解题关键.【13题答案】【答案】-9【解析】【分析】由点A在反比例函数图象上,可得出ab=-5,将其代入代数式ab-4中即可得出结论.【详解】解:∵点A(a,b)在反比例函数y=5x-的图象上∴ab=-5∴ab-4=-5-4=-9.故答案为:-9.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是找出ab=2.本题属于基础题,难度不大,解决该题型题目时,由点在反比例函数图象上可以得出点的横纵坐标之积为定值,将其代入代数式即可.【14题答案】【答案】5【解析】【分析】把点的坐标代入函数解析式得出方程,求出方程的解即可.【详解】解:∵反比例函数3kyx-=的图象经过点(1,2),∴将(1,2)代入得:k−3=2,解得:k=5,故答案为:5.【点睛】本题考查了反比例函数图象上点的坐标特征,能根据已知得出关于k的方程是解此题的关键.【15题答案】【答案】3 2 -【解析】【分析】将点B的坐标代入反比例函数解析式,得出k的值,再将点A的纵坐标代入即可得出m的值.【详解】解:将点B的坐标代入反比例函数解析式,得出:=,将点A 的纵坐标代入可得,64m =-,解得,32m =-.故答案为:32-.【点睛】本题考查的知识点是反比例函数图象上点的坐标,属于基础题目,易于掌握.【16题答案】【答案】0【解析】【分析】根据反比例函数的定义,即可求解.【详解】解:∵函数21(1)mm y m x --=-是反比例函数,∴211m m --=-且10m -≠,解得:m =0.故答案为:0【点睛】本题主要考查了反比例函数的定义,解一元二次方程,熟练掌握形如1y kx -=或k y x =的形式的函数关系,称为反比例函数是解题的关键.【17题答案】【答案】27000v【解析】【分析】根据录入的时间=录入总量÷录入速度即可得出函数关系式.【详解】解:由录入的时间=录入总量÷录入速度,可得t 27000v=(v >0).故答案为:27000v .【点睛】本题考查了根据实际问题列函数关系式的知识,比较简单,解答本题的关键是掌握关系式录入的时间=录入总量÷录入速度.【18题答案】【答案】8【分析】由于四边形OABC 为平行四边形,根据平移的性质,结合点O 、A 、B 的坐标可确定点C 的坐标为(4,2),将其代入带反比例函数解析式求k 值即可.【详解】解:∵四边形OABC 为平行四边形,∴//AO BC ,AO BC =,∵A 坐标为(1,3)-,点B 坐标为(5,1)-,点O 坐标为(0,0),由平移的性质可知,点C 的坐标为(4,2),∴将点C (4,2)代入到函数k y x =中,可得24k =,解得8k .故答案为:8.【点睛】本题主要考查了反比例函数图像上点的坐标特征、平行四边形的性质及平移的性质,解题关键是确定C 点的坐标.三、解答题【19题答案】【答案】(1)是,4k =;(2)是,32k =-; (3)否; (4)是,1k =(可化为1y x=); (5)是,24k =-【解析】【分析】利用反比例函数的定义判定即可.【小问1详解】解:4y x=是反比例函数,比例系数4k =;【小问2详解】解:32y x =-是反比例函数,比例系数32k =-;【小问3详解】解:1y x =-不是反比例函数;【小问4详解】解:∵xy =1,∴1y x =,∴y 是x 的反比例函数,比例系数1k =;【小问5详解】解:24y x-=是反比例函数;比例系数24k =-;【点睛】本题主要考查了反比例函数的定义,解题的关键是熟记反比例函数的定义,反比例函数解析式的一般式y =k x (k ≠0).【20题答案】【答案】(1)1500y x =,是反比例函数;(2) 6.75y x =,是正比例函数,不是反比例函数.【解析】【分析】(1)根据题意列出函数关系式,然后根据反比例函数的定义判断即可;(2)根据题意列出函数关系式,然后根据正比例函数的定义判断即可;【详解】(1)由题意,得1500y x=是反比例函数;(2)由单价乘以加油量等于总价,得 6.75y x =,是正比例函数,不是反比例函数.【点睛】本题考查了反比例函数与正比例函数的定义,根据题意列出函数关系式是解题关键.【21题答案】【答案】(1)271699y x x =+;(2)20581【解析】【分析】(1)设122,a y kx y x ==,则有2a y kx x=+,然后把当2x =时,2y =;当1x =-时,1y =代入求解即可;(2)由(1)可直接把x=3代入求解.【详解】解:(1)设122,a y kx y x ==,由12y y y =+可得:2a y kx x =+,∴把2x =,2y =和1x =-,1y =代入得:2241a k k a ⎧+=⎪⎨⎪-+=⎩,解得:79169k a ⎧=⎪⎪⎨⎪=⎪⎩,∴y 与x 的函数解析式为:271699y x x=+;(2)由(1)可把x=3代入得:2716205399381y =⨯+=⨯.【点睛】本题主要考查反比例函数的定义及函数解析式,熟练掌握反比例函数的定义及求函数解析式的方法是解题的关键.【22题答案】【答案】-3【解析】【分析】由反比例函数的图象及其性质将A 、B 点代入反比例函数()0k y k x =≠即可求得m 的值为-3.【详解】∵反比例函数()0k y k x =≠的图象经过点()2,3A ,∴236k =⨯=.∵点()2,B m -在反比例函数()0k y k x =≠的图象上,∴62k m ==-,解得:3m =-.故m 的轴为-3.【点睛】本题考察了反比例函数值的求法,明确图象上点的坐标和解析式的关系是解题的关键.【23题答案】【答案】(1)18y x =-;(2)见解析【解析】【分析】(1)设反比例函数的表达式为y =k x,找出函数图象上一个点的坐标,然后代入求解即可;(2)将x 或y 的值代入函数解析式求得对应的y 或x 的值即可.【详解】解:(1)设反比例函数的表达式为y =k x,把3,6x y =-=代入得18k =-,18,y x∴=-(2)将y =185代入得:5x =-;将4x =-代入得:y =92;将2x =-代入得:y =9;将1x =-代入得:y =18,将18y =-代入得:x =1;将x =2代入得:9y =-,将x =3代入得:6y =-.【点睛】本题主要考查的是反比例函数的定义、函数图象上点的坐标与函数解析式之间的关系,求得函数的解析式是解题的关键.【24题答案】【答案】点P 不在反比例函数2y x =-的图像上,点Q 在反比例函数2y x =-的图像上【解析】【分析】解分式方程得出a 的值,将其带入点(),2P a a 和点(),8Q a a -,得出两点的坐标,再验证两点坐标是否在反比例函数2y x =-上即可得出答案.【详解】解:由题,解方程112x x x x +=-+去分母,得()()()121x x x x ++=-,即2222x x x x x +++=-,解得12x =-,经检验12x =-是原分式方程的解,∴12a =-∵反比例函数2yx=-,∴2xy=-∵12a=-,∴2211222222a a a⎛⎫⨯==⨯-=≠-⎪⎝⎭,218822a a⎛⎫-⨯=-⨯-=-⎪⎝⎭∴点P不在反比例函数2yx=-的图像上,点Q在反比例函数2yx=-的图像上.【点睛】本题考查解分式方程,以及判断坐标系中点是否在反比例函数上,熟练掌握解分式方程的步骤,尤其注意检验是本题解题关键.。
反比例函数的定义专项练习30题(有答案)

反比例函数定义专项练习30题(有答案)1.下列函数中,是反比例函数的为()A .y=2x+1 B.y=C.y=D.2y=x2.下列关系式中,y是x反比例函数的是()A .y=B.y=C.y=﹣D.y=3.下列函数关系中,成反比例函数的是()A.矩形的面积S一定时,长a与宽b的函数关系B.矩形的长a一定时,面积S与宽b的函数关系C.正方形的面积S与边长a的函数关系D.正方形的周长L与边长a的函数关系4.如果函数y=x2m﹣1为反比例函数,则m的值是()A .﹣1 B.0 C.D.15.下列函数,①y=2x,②y=x,③y=x﹣1,④y=是反比例函数的个数有()A .0个B.1个C.2个D.3个6.若y与成反比例,x与成正比例,则y是z的()A .正比例函数B.反比例函数C.一次函数D.二次函数7.下列关系式中,y是x的反比例函数的是()A .x(y﹣1)=1 B.y=C.y=D.y=8.下列两个变量x、y不是反比例的关系是()A.书的单价为12元,售价y(元)与书的本数x(本)B.xy=7C.当k=﹣1时,式子y=(k﹣1)x k2﹣2中的y与xD.小亮上学用的时间x(分钟)与速度y(米/分钟)9.下列各问题中,变量间是反比例函数关系的是()①三角形的面积S一定时,它的底a与这个底边上的高h的关系;②正三角形的面积与边长之间的关系;③直角三角形中两锐角间的关系;④当路程s一定时,时间t与速度v的关系.A .①②B.②③C.③④D.①④10.下列函数中,不是反比例函数的是()A .x=B.y=(k≠0)C.y=D.y=﹣11.下列函数:①y=3x;②y=;③y=x﹣1;④y=+1,是反比例函数的个数有()A .0个B.1个C.2个D.3个12.若y+b与成反比例,则y与x的函数关系式是()A .正比例B.反比例C.一次函数D.二次函数13.下列关系中的两个量,成反比例的是()A.面积一定时,矩形周长与一边长B.压力一定时,压强与受力面积C.读一本书,已读的页数与余下的页数D.某人年龄与体重14.设某矩形的面积为S,相邻的两条边长分别为x和y.那么当S一定时,给出以下四个结论:①x是y的正比例函数;②y是x的正比例函数;③x是y的反比例函数;④y是x的反比例函数其中正确的为()A .①,②B.②,③C.③,④D.①,④15.若y=是反比例函数,则m必须满足()A .m≠0B.m=﹣2 C.m=2 D.m≠﹣216.若xy≠0,x+y≠0,与x+y成反比,则(x+y)2与x2+y2()A.成正比B.成反比C.既不成正也不成反比D.的关系不确定17.将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3,…,如此继续下去,则y2012的值为()A .2 B.C.D.618.下列函数关系是反比例关系的是()A.三角形的底边为一常数,则三角形的面积y与三角形这条底边上的高x的函数关系B.矩形的面积为一常数,则矩形的长与宽的函数关系C.力F为常数,则力所做的功W与物体在力F的方向上移动的距离间的函数关系D.每本作业本的价格一定,小亮所花的钱与他所买的作业本数之间的函数关系19.当m= _________ 时,函数y=(m+)是反比例函数,且函数在二、四象限.20.若关于x、y的函数y=2x k﹣4是反比例函数,则k= _________ .21.若是反比例函数,则m= _________ .22.已知函数,当m= _________ 时,它是正比例函数;当m= _________ 是,它是反比例函数.23.若反比例函数y=(2k﹣1)的图象位于二、四象限,则k= _________ .24.已知函数y=,若y=﹣3,则x的取值为_________ .25.若反比例函数,当x>0时,y随着x的增大而增大,则k的取值范围是_________ .26.已知3x=,y=x2a﹣1是反比例函数,则x a的值为_________ .27.已知y是x的反比例函数,且x=8时,y=12.(1)写出y与x之间的函数关系式;(2)如果自变量x的取值范围是2≤x≤3,求y的取值范围.28.我们知道,如果一个三角形的一边长为xcm,这边上的高为ycm,那么它的面积为:S=xycm2,现已知S=10cm2.(1)当x越来越大时,y越来越_________ ;当y越来越大时,x越来越_________ ;但无论x,y如何变化,它们都必须满足等式_________ .(2)如果把x看成自变量,则y是x的_________ 函数;(3)如果把y看成自变量,则x是y的_________ 函数.29.已知变量y与变量x之间的对应值如下表:x … 1 2 3 4 5 6 …y … 6 3 2 1.5 1.2 1 …试求出变量y与x之间的函数关系式:_________ .30.已知y=y1+y2,y1与(x﹣1)成正比例,y2与(x+1)成反比例,当x=0时,y=﹣3,当x=1时,y=﹣1.(1)求y的表达式;(2)求当x=时y的值.反比例函数定义30题参考答案:1.A、是一次函数,错误;B、不是反比例函数,错误;C、符合反比例函数的定义,正确;D、是正比例函数,错误.故选C.2.A、y=,y是x反比例函数,正确;B、不符合反比例函数的定义,错误;C、y=﹣是二次函数,不符合反比例函数的定义,错误;D,y是x+1的反比例函数,错误.故选A.3.A、a=,故是反比例函数;B、S=ab,故是正比例函数;C、S=a2,故是二次函数;D、L=4a,故是正比例函数.故选A4.∵y=x2m﹣1是反比例函数,∴2m﹣1=﹣1,解之得:m=0.故选B.5.①y=2x是正比例函数;②y=x是正比例函数;③y=x﹣1是反比例函数;④y=是反比例函数.所以共有2个.故选C.6. ∵y与成反比例,x与成正比例,∴y=,x=.∴y==.故选B.7. A、x(y﹣1)=1,不是反比例函数,错误;B、y=,不是反比例函数,错误;C、y=,不是反比例函数,错误;D、y=,是反比例函数,正确.故选D8.A、书的单价为12元,售价y(元)与书的本数x(本),此时y=12x,y与x成正比例,正确;B、y=,符合反比例函数的定义,错误;C、当k=﹣1时,y=符合反比例函数的定义,错误;D、由于路程一定,则时间和速度为反比例关系,错误.故选A.9.①a=,变量间是反比例函数关系;②正三角形的面积与边长,不是反比例函数关系;③直角三角形中两锐角,不是反比例函数关系;④t=,变量间是反比例函数关系.所以①④为反比例函数关系.故选D.10.A、B、C选项都符合反比例函数的定义;D选项不是反比例函数.故选D11.①是正比例函数;②和③是反比例函数;④不是反比例函数.所以反比例函数的个数有2个.故选C.12. ∵y+b与成反比例,∴y+b=k(x+a)(k为不等于0的常数),∴y=kx+ka﹣b,∴y与x的函数关系式是一次函数.故选C13. A选项的函数关系式是C=2a+,C与a不是反比例函数,错误;B选项,所以压力一定时,压强与受力面积成反比例,正确;C、D选项都不是反比例函数,错误.故选B.14.设某矩形的面积为S,相邻的两条边长分别为x和y.那么当S一定时,x与y的函数关系式是y=,由于S≠0,且是常数,因而这个函数是一y是x的反比例函数.同理x是y的反比例函数.正确的是:③,④.故选C15.依题意有m+2≠0,所以m≠﹣2.故选D16.∵与x+y成反比,∴=,∴=,∴xy=,∵(x+y)2=x2+y2+2xy,∴(x+y)2=x2+y2+,等式两边同除以(x+y)2得:1=∴∴(x+y)2=(x2+y2)×,∵是常数,∴(x+y)2与x2+y2成正比例函数.故选A.17.y1=﹣=﹣,把x=﹣+1=﹣带入y=﹣中得y2=﹣=2,把x=2+1=3代入反比例函数y=﹣中得y3=﹣,把x=﹣+1=代入反比例函数y=﹣得y4=﹣…,如此继续下去每三个一循环,2012=670…2,所以y2012=2.故选:A18.A、设底边为a,则y=ax,x、y成正比例函数关系,故本选项错误;B、设面积为S,长与宽分别为xy,则y=,x、y成反比例函数关系,故本选项正确;C、W=F•S,F为常数,所以,W、S成正比例函数关系,故本选项错误;D、每本作业的价格为a,则所花钱数y与作业本数x的关系为y=ax,x、y成正比例函数关系,故本选项错误.故选B.19.根据题意得:,解得:m=﹣1.故答案是:﹣120.∵y=2x k﹣4是反比例函数,∴k﹣4=﹣1,解得k=3.故答案为:321.由题意得:|m|﹣2=1且,m﹣3≠0;解得m=±3,又m≠3;∴m=﹣3.故填m=﹣322. 当为正比例函数时,m²﹣m﹣1=1,并且m2﹣1≠0,∴m=2或﹣1(舍),当为反比例函数时,m²﹣m﹣1=﹣1,并且m2﹣1≠0,∴m=0或1(舍),故答案为:2;023.∵函数y=(2k﹣1)是反比例函数,∴3k2﹣2k﹣1=﹣1,解得:k=0或,∵图象位于二、四象限,∴2k﹣1<0,解得:k<,∴k=0,故答案为:024.把y=﹣3代入所给函数解析式得:﹣3=,解得x=.故答案为:25.根据题意得:1﹣k<0解得:k>1.故答案为:k>1.26.∵3x=,∴x=﹣3,∵y=x2a﹣1是反比例函数,∴2a﹣1=﹣1,解得:a=0,则x a=(﹣3)0=1.故答案为:127.(1)设反比例函数的解析式是y=把x=8,y=12代入得:k=96.则函数的解析式是:y=;,(2)在函数y=中,令x=2和3,分别求得y的值是:48和32.因而如果自变量x的取值范围是2≤x≤3,y的取值范围是32≤x≤48.28.(1)由S=xycm2,知S=10cm2,代入化简得y=,因为20>0,图象在第一象限,所以当x越来越大时,y越来越小,当y越来越大时,x越来越小.无论x,y如何变化,它们都必须满足等式xy=20;(2)如果把x看成自变量,则y是x的反比例函数;(3)如果把y看成自变量,则x是y的反比例函数.29.观察图表可知,每对x,y的对应值的积是常数6,因而xy=6,即y=,故变量y与x之间的函数关系式:y=.故答案为:y=30.(1)∵y1与(x﹣1)成正比例,y2与(x+1)成反比例,∴y1=k1(x﹣1),y2=,∵y=y1+y2,当x=0时,y=﹣3,当x=1时,y=﹣1.∴,∴k2=﹣2,k1=1,∴y=x﹣1﹣;(2)把x=﹣代入(1)中函数关系式得,y=﹣.。
反比例函数基础练习题

反比例函数基础练习题一、选择题1. 反比例函数的图像是()A. 直线B. 抛物线C. 双曲线D. 圆2. 已知反比例函数y = k/x(k≠0),当x增大时,y的值()A. 增大B. 减小C. 保持不变D. 无法确定3. 反比例函数y = 3/x的图像位于()A. 第一、三象限B. 第二、四象限C. 第一、二象限D. 第三、四象限4. 反比例函数y = 2/x的图像在()A. x轴上方B. x轴下方C. y轴左侧D. y轴右侧二、填空题1. 反比例函数的一般形式是______,其中k叫做______。
2. 当k > 0时,反比例函数的图像位于______;当k < 0时,反比例函数的图像位于______。
3. 已知反比例函数y = 6/x,当x = 2时,y的值为______。
4. 反比例函数y = k/x的图像是______,它有两个______,分别位于______。
三、解答题1. 已知反比例函数y = 4/x,求当x = 1时,y的值。
2. 已知反比例函数的图像位于第二、四象限,求该函数的比例系数k的取值范围。
3. 设反比例函数y = k/x的图像上两点坐标分别为(1,k)和(2,k/2),求比例系数k的值。
4. 已知反比例函数y = 2/x的图像经过点(3,y),求y的值。
5. 画出反比例函数y = 5/x的图像,并标出其两个分支。
6. 已知反比例函数y = k/x(k≠0),当x = 4时,y = 2,求该反比例函数的表达式。
7. 比较反比例函数y = 3/x和y = 4/x的图像,说出它们之间的异同。
8. 已知反比例函数y = 3/x的图像上有一点(a,b),且a > 0,求a和b的取值范围。
四、判断题1. 反比例函数的图像一定经过原点。
()2. 反比例函数的图像在每一个象限内,y的值随着x的增大而减小。
()3. 两个反比例函数的图像如果相同,那么它们的比例系数一定相等。
完整版)反比例函数练习题含答案

完整版)反比例函数练习题含答案测试1 反比例函数的概念一、填空题1.一般的,形如 y=k/x 的函数称为反比例函数,其中x是自变量,y是因变量。
自变量x的取值范围是x≠0.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别。
1) 商场推出分期付款购电脑活动,每台电脑元,首付4000元,以后每月付y元,x个月全部付清,则y=(8000+)/x,是反比例函数。
2) 某种灯的使用寿命为1000小时,它的使用天数y与平均每天使用的小时数x之间的关系式为 y=1000/x,是反比例函数。
3) 设三角形的底边、对应高、面积分别为a、h、S。
当a=10时,S与h的关系式为 S=10h/2,是正比例函数;当S=18时,a与h的关系式为 h=36/a,是反比例函数。
4) 某工人承包运输粮食的总数是w吨,每天运x吨,共运了y天,则 y=w/x,是反比例函数。
3.下列各函数 y=1/(k2+1)、y=x/(x5+x12)、y=14-3x、y=2x和y=3x-1 中,是y关于x的反比例函数的有:①y=1/(k2+1)、② y=x/(x5+x12)、③ y=2x。
4.若函数 y=m/(x-1) (m是常数) 是反比例函数,则 m=1,解析式为 y=1/(x-1)。
5.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜片的焦距为0.25m,则 y=1000/x。
二、选择题6.已知函数 y=3x/(kx+1),当x=1时,y=-3,那么这个函数的解析式是 y=3x/(3k+1)。
(解析:由 y=-3=3/(3k+1) 可得 k=-1/3,代入原式得 y=3x/(3x-1)。
)7.已知 y 与 x 成反比例,当 x=3 时,y=4,那么 y=3 时,x 的值等于 4/3.三、解答题8.已知 y 与 x 成反比例,当 x=2 时,y=3.1) 求y 与x 的函数关系式:y=k/x,代入已知条件得k=6,因此函数关系式为 y=6/x。
反比例函数的定义专项练习30题(有答案)ok

反比例函数定义专项练习30题(有答案)1.下列函数中,是反比例函数的为()A.y=2x+1 B.y=C.y=D.2y=x2.下列关系式中,y是x反比例函数的是()A.y=B.y=C.y=﹣D.y=3.下列函数关系中,成反比例函数的是()A.矩形的面积S一定时,长a与宽b的函数关系B.矩形的长a一定时,面积S与宽b的函数关系C.正方形的面积S与边长a的函数关系D.正方形的周长L与边长a的函数关系4.如果函数y=x2m﹣1为反比例函数,则m的值是()A.﹣1 B.0C.D.15.下列函数,①y=2x,②y=x,③y=x﹣1,④y=是反比例函数的个数有()A.0个B.1个C.2个D.3个6.若y与成反比例,x与成正比例,则y是z的()A.正比例函数B.反比例函数C.一次函数D.二次函数7.下列关系式中,y是x的反比例函数的是()A.x(y﹣1)=1 B.y=C.y=D.y=8.下列两个变量x、y不是反比例的关系是()A.书的单价为12元,售价y(元)与书的本数x(本)B.xy=7C.当k=﹣1时,式子y=(k﹣1)x k2﹣2中的y与xD.小亮上学用的时间x(分钟)与速度y(米/分钟)9.下列各问题中,变量间是反比例函数关系的是()①三角形的面积S一定时,它的底a与这个底边上的高h的关系;②正三角形的面积与边长之间的关系;③直角三角形中两锐角间的关系;④当路程s一定时,时间t与速度v的关系.A.①②B.②③C.③④D.①④10.下列函数中,不是反比例函数的是()A.x=B.y=(k≠0)C.y=D.y=﹣11.下列函数:①y=3x;②y=;③y=x﹣1;④y=+1,是反比例函数的个数有()A.0个B.1个C.2个D.3个12.若y+b与成反比例,则y与x的函数关系式是()A.正比例B.反比例C.一次函数D.二次函数13.下列关系中的两个量,成反比例的是()A.面积一定时,矩形周长与一边长B.压力一定时,压强与受力面积C.读一本书,已读的页数与余下的页数D.某人年龄与体重14.设某矩形的面积为S,相邻的两条边长分别为x和y.那么当S一定时,给出以下四个结论:①x是y的正比例函数;②y是x的正比例函数;③x是y的反比例函数;④y是x的反比例函数其中正确的为()A.①,②B.②,③C.③,④D.①,④15.若y=是反比例函数,则m必须满足()A.m≠0 B.m=﹣2 C.m=2 D.m≠﹣216.若xy≠0,x+y≠0,与x+y成反比,则(x+y)2与x2+y2()A.成正比B.成反比C.既不成正也不成反比D.的关系不确定17.将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3,…,如此继续下去,则y2012的值为()A.2B.C.D.618.下列函数关系是反比例关系的是()A.三角形的底边为一常数,则三角形的面积y与三角形这条底边上的高x的函数关系B.矩形的面积为一常数,则矩形的长与宽的函数关系C.力F为常数,则力所做的功W与物体在力F的方向上移动的距离间的函数关系D.每本作业本的价格一定,小亮所花的钱与他所买的作业本数之间的函数关系19.当m=_________时,函数y=(m+)是反比例函数,且函数在二、四象限.20.若关于x、y的函数y=2x k﹣4是反比例函数,则k=_________.21.若是反比例函数,则m=_________.22.已知函数,当m=_________时,它是正比例函数;当m=_________是,它是反比例函数.23.若反比例函数y=(2k﹣1)的图象位于二、四象限,则k=_________.24.已知函数y=,若y=﹣3,则x的取值为_________.25.若反比例函数,当x>0时,y随着x的增大而增大,则k的取值范围是_________.26.已知3x=,y=x2a﹣1是反比例函数,则x a的值为_________.27.已知y是x的反比例函数,且x=8时,y=12.(1)写出y与x之间的函数关系式;(2)如果自变量x的取值范围是2≤x≤3,求y的取值范围.28.我们知道,如果一个三角形的一边长为xcm,这边上的高为ycm,那么它的面积为:S=xycm2,现已知S=10cm2.(1)当x越来越大时,y越来越_________;当y越来越大时,x越来越_________;但无论x,y如何变化,它们都必须满足等式_________.(2)如果把x看成自变量,则y是x的_________函数;(3)如果把y看成自变量,则x是y的_________函数.29.已知变量y与变量x之间的对应值如下表:x … 1 2 3 4 5 6 …y … 6 3 2 1.5 1.2 1 …试求出变量y与x之间的函数关系式:_________.30.已知y=y1+y2,y1与(x﹣1)成正比例,y2与(x+1)成反比例,当x=0时,y=﹣3,当x=1时,y=﹣1.(1)求y的表达式;(2)求当x=时y的值.参考答案:1.A、是一次函数,错误;B、不是反比例函数,错误;C、符合反比例函数的定义,正确;D、是正比例函数,错误.故选C.2.A、y=,y是x反比例函数,正确;B、不符合反比例函数的定义,错误;C、y=﹣是二次函数,不符合反比例函数的定义,错误;D,y是x+1的反比例函数,错误.故选A.3.A、a=,故是反比例函数;B、S=ab,故是正比例函数;C、S=a2,故是二次函数;D、L=4a,故是正比例函数.故选A4.∵y=x2m﹣1是反比例函数,∴2m﹣1=﹣1,解之得:m=0.故选B.5.①y=2x是正比例函数;②y=x是正比例函数;③y=x﹣1是反比例函数;④y=是反比例函数.所以共有2个.故选C.6. ∵y与成反比例,x与成正比例,∴y=,x=.∴y==.故选B.7. A、x(y﹣1)=1,不是反比例函数,错误;B、y=,不是反比例函数,错误;C、y=,不是反比例函数,错误;D、y=,是反比例函数,正确.故选D8.A、书的单价为12元,售价y(元)与书的本数x(本),此时y=12x,y与x成正比例,正确;B、y=,符合反比例函数的定义,错误;C、当k=﹣1时,y=符合反比例函数的定义,错误;D、由于路程一定,则时间和速度为反比例关系,错误.故选A.9.①a=,变量间是反比例函数关系;②正三角形的面积与边长,不是反比例函数关系;③直角三角形中两锐角,不是反比例函数关系;④t=,变量间是反比例函数关系.所以①④为反比例函数关系.故选D.10.A、B、C选项都符合反比例函数的定义;D选项不是反比例函数.故选D11.①是正比例函数;②和③是反比例函数;④不是反比例函数.所以反比例函数的个数有2个.故选C.12. ∵y+b与成反比例,∴y+b=k(x+a)(k为不等于0的常数),∴y=kx+ka﹣b,∴y与x的函数关系式是一次函数.故选C13. A选项的函数关系式是C=2a+,C与a不是反比例函数,错误;B选项,所以压力一定时,压强与受力面积成反比例,正确;C、D选项都不是反比例函数,错误.故选B.14.设某矩形的面积为S,相邻的两条边长分别为x和y.那么当S一定时,x与y的函数关系式是y=,由于S≠0,且是常数,因而这个函数是一y是x的反比例函数.同理x是y的反比例函数.正确的是:③,④.故选C15.依题意有m+2≠0,所以m≠﹣2.故选D16.∵与x+y成反比,∴=,∴=,∴xy=,∵(x+y)2=x2+y2+2xy,∴(x+y)2=x2+y2+,等式两边同除以(x+y)2得:1=∴∴(x+y)2=(x2+y2)×,∵是常数,∴(x+y)2与x2+y2成正比例函数.故选A.17.y1=﹣=﹣,把x=﹣+1=﹣带入y=﹣中得y2=﹣=2,把x=2+1=3代入反比例函数y=﹣中得y3=﹣,把x=﹣+1=代入反比例函数y=﹣得y4=﹣…,如此继续下去每三个一循环,2012=670…2,所以y2012=2.故选:A18.A、设底边为a,则y=ax,x、y成正比例函数关系,故本选项错误;B、设面积为S,长与宽分别为xy,则y=,x、y成反比例函数关系,故本选项正确;C、W=F•S,F为常数,所以,W、S成正比例函数关系,故本选项错误;D、每本作业的价格为a,则所花钱数y与作业本数x的关系为y=ax,x、y成正比例函数关系,故本选项错误.故选B.19.根据题意得:,解得:m=﹣1.故答案是:﹣120.∵y=2x k﹣4是反比例函数,∴k﹣4=﹣1,解得k=3.故答案为:321.由题意得:|m|﹣2=1且,m﹣3≠0;解得m=±3,又m≠3;∴m=﹣3.故填m=﹣322. 当为正比例函数时,m²﹣m﹣1=1,并且m2﹣1≠0,∴m=2或﹣1(舍),当为反比例函数时,m²﹣m﹣1=﹣1,并且m2﹣1≠0,∴m=0或1(舍),故答案为:2;023.∵函数y=(2k﹣1)是反比例函数,∴3k2﹣2k﹣1=﹣1,解得:k=0或,∵图象位于二、四象限,∴2k﹣1<0,解得:k<,∴k=0,故答案为:024.把y=﹣3代入所给函数解析式得:﹣3=,解得x=.故答案为:25.根据题意得:1﹣k<0解得:k>1.故答案为:k>1.26.∵3x=,∴x=﹣3,∵y=x2a﹣1是反比例函数,∴2a﹣1=﹣1,解得:a=0,则x a=(﹣3)0=1.故答案为:127.(1)设反比例函数的解析式是y=把x=8,y=12代入得:k=96.则函数的解析式是:y=;,(2)在函数y=中,令x=2和3,分别求得y的值是:48和32.因而如果自变量x的取值范围是2≤x≤3,y的取值范围是32≤x≤48.28.(1)由S=xycm2,知S=10cm2,代入化简得y=,因为20>0,图象在第一象限,所以当x越来越大时,y越来越小,当y越来越大时,x越来越小.无论x,y如何变化,它们都必须满足等式xy=20;(2)如果把x看成自变量,则y是x的反比例函数;(3)如果把y看成自变量,则x是y的反比例函数.29.观察图表可知,每对x,y的对应值的积是常数6,因而xy=6,即y=,故变量y与x之间的函数关系式:y=.故答案为:y=30.(1)∵y1与(x﹣1)成正比例,y2与(x+1)成反比例,∴y1=k1(x﹣1),y2=,∵y=y1+y2,当x=0时,y=﹣3,当x=1时,y=﹣1.∴,∴k2=﹣2,k1=1,∴y=x﹣1﹣;(2)把x=﹣代入(1)中函数关系式得,y=﹣.。
反比例函数题型 专项练习

反比例函数题型专项练习专题一、反比例函数的图像1.反比例函数的定义域为x≠0,因此选项A中的x≥1是错误的。
应该改为x>0.2.由于y=kx+1与y=(k≠0)的图象大致是两条直线,因此它们交于点A(2,1)的横坐标应该在x>0的范围内。
因此选项B、C、D中的x<或x≤2都是错误的。
应该改为x>2.答案:A。
3.当ab>0时,函数y=ax+b与函数y=的图象大致是两条直线,其中一条斜率为a,另一条斜率为(1/a)。
因此选项D 中的图象是错误的。
应该改为y=。
答案:C。
4.方程x+1=0的解为x=−1,不在1<x<2的范围内,因此选项A、B、C都是错误的。
应该改为选项D,k=6.答案:D。
5.正比例函数y=kx的图象是一条直线,反比例函数y=的图象是一条双曲线。
因此选项A是错误的。
应该改为选项B、C、D。
答案:B、C、D。
6.函数y=的图象是一条双曲线,当y=a时,对应的x有两个不相等的值,即x=±(1/a)。
因此选项A、B、D都是错误的。
应该改为选项C。
答案:C。
7.函数y=k1x﹣1的图象是一条双曲线,函数y=的图象是一条直线。
因此选项A是错误的。
应该改为选项B、C、D。
答案:B、C、D。
8.函数y=的图象是一条双曲线,函数y=kx﹣k(k≠0)的图象是一条直线。
因此选项A、C、D都是错误的。
应该改为选项B。
答案:B。
9.函数y=ax+b的图象是一条直线,函数y=的图象是一条双曲线。
因此选项B、C、D都是错误的。
应该改为选项A。
答案:A。
10.函数y=的图象在第一、二象限,因为x>0,y>0.因此选项B是错误的。
应该改为选项A、C、D。
答案:A、C、D。
11.当k<0时,函数y1=kx﹣k的图象是一条双曲线,因此选项A、B、D都是错误的。
应该改为选项C。
答案:C。
12.图中反比例函数与一次函数的图象相交于A、B两点,使反比例函数的值小于一次函数的值的x的取值范围为x<﹣1,或1<x<2.因此选项B、C、D都是错误的。
关于反比例函数的基础练习题

关于反比例函数的基础练习题1. 题目:设 y 是 x 的反比例函数,已知 y = 4 当 x = 2,则当 x = 5 时,y 的值是多少?解答:反比例函数的定义为 y = k/x,其中 k 是常数。
根据已知条件,代入 x = 2 和 y = 4,可以得出 k = 8。
现在需要找出当 x = 5 时 y 的值。
将 x = 5 和 k = 8 代入反比例函数公式,计算得 y = 8/5 = 1.6。
答案:当 x = 5 时,y 的值为 1.6。
2. 题目:设 y 是 x 的反比例函数,已知 y = 6 当 x = 3,则当 x = 4 时,y 的值是多少?解答:根据已知条件,代入 x = 3 和 y = 6,可以得出 k = 18。
现在需要找出当 x = 4 时 y 的值。
将 x = 4 和 k = 18 代入反比例函数公式,计算得 y = 18/4 = 4.5。
答案:当 x = 4 时,y 的值为 4.5。
3. 题目:已知 y 是 x 的反比例函数,当 x = 2 时,y = 10,求 x = 5 时 y 的值。
解答:根据已知条件,代入 x = 2 和 y = 10,可以得出 k = 20。
现在需要找出当 x = 5 时 y 的值。
将 x = 5 和 k = 20 代入反比例函数公式,计算得 y = 20/5 = 4。
答案:当 x = 5 时,y 的值为 4。
4. 题目:已知 y 是 x 的反比例函数,当 x = 6 时,y = 2,求 x = 9 时 y 的值。
解答:根据已知条件,代入 x = 6 和 y = 2,可以得出 k = 12。
现在需要找出当 x = 9 时 y 的值。
将 x = 9 和 k = 12 代入反比例函数公式,计算得 y = 12/9 = 4/3。
答案:当 x = 9 时,y 的值为 4/3。
中考数学《反比例函数》专项练习题(附带答案)

中考数学《反比例函数》专项练习题(附带答案)一、单选题1.如图,反比例函数y= 2x的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.2B.4C.5D.82.小兰画了一个函数y= ax−1的图象如图,那么关于x的分式方程ax−1=2的解是()A.x=1B.x=2C.x=3D.x=43.若A(a1,b1),B(a2,b2)是反比例函数y = –√2x图象上的两点,且a1<a2,则b1与b2的大小关系是()A.b1<b2B.b1 = b2C.b1>b2D.不能确定4.某公司计划新建一个容积V(m3)一定的长方体污水处理池,池的底面积S(m2)与其深度h(m)之间的函数关系式为S=Vℎ(ℎ≠0),这个函数的图象大致是()A.B.C.D.5.若反比例函数y=k x(k为常数,且k≠0)的图象过点(3,-4),则下列各点在该图象上的是()A.(6,-8)B.(-6,8)C.(-3,4)D.(-3,-4)6.已知反比例函数y=k x(k>0)的图象与直线y=﹣x+6相交于第一象限A、B的两点.如图所示,过A、B两点分别作x、y轴的垂线,线段AC、BD相交与P,给出以下结论:①OA=OB;②四边形OCPD 是正方形;③若k=5.则△ABP的面积是8;④P点一定在直线y=x上,其中正确命题的个数是几个()A.4B.3C.2D.17.已知点P(3,2)在反比例函数y=k x(k≠0)图象上,则下列各点中在此反比例函数图象上的是()A.(−3,−2)B.(3,−2)C.(−2,3)D.(2,−3)8.下列函数:①y=−x;②y=−1x;③y=√2x;④y=120x2+240x+3(x<0)中,y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个9.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴的正半轴上,顶点B在函数y=k x(x >0)的图象上,若△C=60°,AB=2,则k的值为()A.√2B.√3C.1D.2 10.对于反比例函数y=﹣1x,下列说法正确的是()A.图象经过点(1,1)B.图象位于第一、三象限C.图象是中心对称图形D.当x<0时,y随x的增大而减小11.一次函数y=ax+a与反比例函数y=−ax(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.12.面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是() A.B.C.D.二、填空题13.如图,在平面直角坐标系中,菱形ABCD的顶点A与D在函数y=k x(x>0)的图象上,AC⊥x轴,垂足为C,∠BCO=30°,点B的坐标为(0,1),则k的值为.14.如图,反比例函数y=6x在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则△AOB 的面积是.15.反比例函数y=7x图象与正比例函数y=kx图象交于A(x1,y1),B(x2,y2),则x1y2+x2y1的值为.16.如图,正比例函数y1=ax(a≠0)与反比例函数y2=k x(k≠0)的图象相交于A,B两点,其中点A的坐标为(1,3).当y1<y2时,x的取值范围是.17.如图,在平面直角坐标系中,O为坐标原点,平行四边形ABCD的边AB在x轴上、顶点D在y 轴的正半轴上,点C在第二象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处、点B恰好为OE的中点.DE与BC交于点F.若y=kx(k≠0)图象经过点C,且S△BEF=12,则k的值为.18.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点M,N,与反比例函数y=kx的图象在第一象限内交于点B,过点B作BA△x轴,BC△y轴.垂足分别为点A,C.当矩形OABC与△OMN 的面积相等时,点B的坐标为.三、综合题19.如图,双曲线y1=k x(k为常数,且k≠0)与直线y2=﹣13x+b交于点A(﹣2,a)和B(3c,2﹣c).(1)求k,b的值;(2)求直线与x轴的交点坐标.20.如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y= k1x的图象的一个交点为A(1,m).过点B作AB的垂线BD,与反比例函数y= k2x(x>0)的图象交于点D(n,﹣2).(1)求k1和k2的值;(2)若直线AB、BD分别交x轴于点C、E,试问在y轴上是否存在一个点F,使得△BDF△△ACE?若存在,求出点F的坐标;若不存在,请说明理由.21.如图,直线y=2x+1与双曲线相交于点A(m,32)与x轴交于点B.(1)求双曲线的函数表达式:(2)点P在x轴上,如果△ABP的面积为6,求点P坐标.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,观察分析函数特征,概括函数性质的过程,已知函数y=﹣2|x−2|x−1上,结合已有的学习经验,完成下列各小题.(1)请在表格中空白处填入恰当的数据:x…﹣3﹣2﹣101243322345…y (5)2834﹣40﹣1﹣43…(2)根据表中的数据,在所给的平面直角坐标系中画出函数y=﹣2|x−2|x−1的图象;(3)根据函数图象,写出该函数的一条性质:;(4)结合所画函数图象,直接写出不等式﹣2|x−2|x−1<﹣53x+5的解集为:.(保留1位小数,误差不超过0.2)23.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在抛物线y=−x2+2ax−a2−a+2(a 是常数)上.(1)若该二次函数图象的顶点在第二象限时,求a的取值范围;(2)若抛物线的顶点在反比例函数y=−8x(x<0)的图象上,且y1=y2,求x1+x2的值;(3)若当1<x1<x2时,都有y2<y1<1,求a的取值范围.24.如图,点A(m,m+1),B(m+3,m﹣1)是反比例函数y=k x(x>0)与一次函数y=ax+b的交点.求:(1)反比例函数与一次函数的解析式;(2)根据图象直接写出当反比例函数的函数值大于一次函数的函数值时x的取值范围.参考答案1.【答案】B2.【答案】A3.【答案】D4.【答案】C5.【答案】C6.【答案】A7.【答案】A8.【答案】A9.【答案】B10.【答案】C11.【答案】A12.【答案】B13.【答案】2√314.【答案】815.【答案】-1416.【答案】x<-1或0<x<117.【答案】-1218.【答案】(−1+√3,1+√3)19.【答案】(1)解:∵点B(3c,2﹣c)在直线y2=﹣13x+b的图象上∴−13×3c+b=2−c解得:b=2∴直线解析式为y2=﹣13x+2∵点A(﹣2,a)在直线y2=﹣13x+2的图象上∴a=−13×(−2)+2=83∴点A坐标为(-2,8 3)∵点A(-2,83)在y1=kx图象上∴83=k−2解得:k=−16 3 .(2)解:∵直线解析式为y2=﹣13x+2∴当y2=0时,x=6∴直线与x轴的交点坐标为(6,0).20.【答案】(1)解:将A(1,m)代入一次函数y=2x+2中,得:m=2+2=4,即A(1,4)将A(1,4)代入反比例解析式y= k1x得:k1=4;过A作AM△y轴,过D作DN△y轴∴△AMB=△DNB=90°∴△BAM+△ABM=90°∵AC△BD,即△ABD=90°∴△ABM+△DBN=90°∴△BAM=△DBN∴△ABM△△BDN∴AMBN=BMDN,即14=2DN∴DN=8∴D(8,﹣2)将D坐标代入y= k2x得:k2=﹣16(2)解:符合条件的F坐标为(0,﹣8),理由为:由y=2x+2,求出C坐标为(﹣1,0)∵OB=ON=2,DN=8∴OE=4可得AE=5,CE=5,AC=2 √5,BD=4 √5,△EBO=△ACE=△EAC若△BDF△△ACE,则BDAC=BFAE,即√52√5=BF5解得:BF=10则F(0,﹣8).综上所述:F点坐标为(0,﹣8)时,△BDF△△ACE.21.【答案】(1)解:把A(m,32)代入直线y=2x+1得:32=2m+1,即m=14∴A(14,32)∵点A(14,32)为直线与反比例函数y=kx的交点把A点坐标代入y=k x,得k=14× 32=38则双曲线解析式为y=38x;(2)解:对于直线y=2x+1,令y=0,得到x=−12,即B(−12,0)设P(x,0),可得PB=|x+1 2|∵△ABP面积为6∴12×|x+12|×32=6,即|x+12|=8解得:x=7.5或x=﹣8.5则P坐标为(7.5,0)或(﹣8.5,0). 22.【答案】(1)解:如下表所示:x…﹣3﹣2﹣101243322345…y (5)283346﹣4-20﹣1﹣43-32…(3)当x<1时,y随x的增大而增大(4)x<0.3或1<x<3.723.【答案】(1)解:∵y=−x2+2ax−a2−a+2=−(x−a)2−a+2第 11 页 共 11 页 ∴ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点为 (a ,−a +2) ∵ 抛物线的顶点在第二象限∴{a <0−a +2>0解得 2<a <0 ;(2)解: ∵ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点在反比例函数 y =−8x(x <0) 的图象上 ∴a(−a +2)=−8解得 a =4 或 a =−2∵a <0∴a =−2∴ 顶点为 (−2,4)∵y 1=y 2∴ 点 A(x 1,y 1) , B(x 2,y 2) 关于直线 x =−2 对称∴x 1+x22=−2∴x 1+x 2=−4 ;(3)解: ∵ 当 1<x 1<x 2 时,都有 y 2<y 1<1∴ 抛物线的对称轴 x =a <1 ,经过点为 (1,1)∴{a <1−1+2a −a 2−a +2=1解得 a =0 或 a =−3故 a 的取为0或-3.24.【答案】(1)解:由题意可知,m (m+1)=(m+3)(m ﹣1). 解得m=3.∴A (3,4),B (6,2); ∴k=4×3=12, ∴y =12x∵A 点坐标为(3,4),B 点坐标为(6,2), ∴{3a +b =46a +b =2 , ∴{a =−23b =6 ,∴y=﹣ 23 x+6 (2)解:根据图象得x 的取值范围:0<x <3或x >6.。
(完整word版)反比例函数基础练习题及答案

反比例函数练习一.选择题(共22小题)1.下列函数中,y是x的反比例函数的为()A.y=2x+1 B.C.D.2y=x2.)函数y=k是反比例函数,则k的值是()A.﹣1 B.2 C.±2D.±3.若y=(m﹣1)x|m|﹣2是反比例函数,则m的值为()A.m=2 B.m=﹣1 C.m=1 D.m=04.若y与x成反比例,x与z成反比例,则y是z的()A.正比例函数B.反比例函数C.一次函数D.不能确定5.反比例函数(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是()A.m<0 B.C.D.m≥6.已知k1<0<k2,则函数y=和y=k2x﹣1的图象大致是()A.B.C.D.7.在同一直角坐标系中,函数y=kx+k与y=(k≠0)的图象大致为()A. B.C.D.8.下列函数的图象中,与坐标轴没有公共点的是()A.B.y=2x+1 C.y=﹣x D.y=﹣x2+19.若ab>0,则函数y=ax+b与函数在同一坐标系中的大致图象可能是()A.B.C.D.10.若方程=x+1的解x0满足1<x0<2,则k可能是()A.1 B.2 C.3 D.611.如图,有反比例函数y=,y=﹣的图象和一个圆,则图中阴影部分的面积是()第11题图第12题图A.πB.2πC.4πD.条件不足,无法求12.如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=13.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小14.如图是反比例函数y=(k为常数,k≠0)的图象,则一次函数y=kx﹣k的图象大致是()A B C D15.已知函数y=的图象如图,以下结论:①m<0;分支上y随x的增大而增大;③若点A(﹣1,a)、点B(2,b)在图象上,则a<b;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上.其中正确的个数是()A.4个 B.3个C.2个D.1个16.函数的自变量x满足≤x≤2时,函数值y满足≤y≤1,则这个函数可以是()A.y=B.y=C.y=D.y=17.反比例函数y=在每个象限内的函数值y随x的增大而增大,则m的取值范围是()A.m<0 B.m>0 C.m>﹣1 D.m<﹣118.以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()第18题图第19题图A.10 B.11 C.12 D.1319.如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()A.B.C.3 D.420.如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是()第20题图第21题图A.S1=S2B.2S1=S2C.3S1=S2D.4S1=S221.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小22.如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB 与x轴交于点C,则△AOC的面积为()A.8 B.10 C.12 D.24二.填空题(共4小题)23.已知y=(a﹣1)是反比例函数,则a= .24.已知反比例函数的解析式为y=,则最小整数k= .25.函数y=,当y≥﹣2时,x的取值范围是(可结合图象求解).26.若反比例函数的图象在其每个象限内,y随x的增大而增大,则k的值可以是.(写出一个符合条件的值即可)三.解答题(共4小题)27.已知反比例函数y=﹣(1)说出这个函数的比例系数;(2)求当x=﹣10时函数y的值;(3)求当y=6时自变量x的值.28.已知函数y=(5m﹣3)x2﹣n+(n+m),(1)当m,n为何值时是一次函数?(2)当m,n为何值时,为正比例函数?(3)当m,n为何值时,为反比例函数?29.如图,是反比例函数y=的图象的一支.根据给出的图象回答下列问题:(1)该函数的图象位于哪几个象限?请确定m的取值范围;(2)在这个函数图象的某一支上取点A(x1,y1)、B(x2,y2).如果y1<y2,那么x1与x2有怎样的大小关系?30.如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.答案:一.选择题(共22小题)1.C 2.D 3.B 4.A 5.C 6.C 7.B 8.A 9.C 10.C 11.B 12.D 13.D 14.B 15.B 16.A 17.D 18.C 19.B 20.B 21.C 22.C二.填空题(共4小题)23.-1 24.1 25.x≤-2或x>0 26.-1(答案不唯一)三.解答题(共4小题)27. 28. 29. 30.。
中考数学《反比例函数》专项练习及答案

中考数学《反比例函数》专项练习及答案一、单选题1.函数y=﹣6x的图象经过点A(x1,y1)、B(x2,y2),若x1<x2<0,则y1、y2、0三者的大小关系是()A.y1<y2<0B.y2<y1<0C.y1>y2>0D.y2>y1>02.方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数y=1x的图象交点的横坐标,那么用此方法可推断出方程x2+2x﹣1=0的实数根x0所在的范围是()A.﹣1<x0<0B.0<x0<1C.1<x0<2D.2<x0<33.如图正方形OABC,ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y= 4x(x>0)的图象上,则点E的坐标是()A.(√5+1,√5−1)B.(3+√5,3−√5)C.(√5−1,√5+1)D.(3−√5,3+√5) 4.函数y=kx﹣1与y=﹣k x在同一坐标系中的大致图象可能是下图中的()A.B.C.D.5.已知反比例函数y= 6x在第一象限的图象如图,点A在其图象上,点B为x轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB=()A.3B.6C.12D.96.如图,过反比例函数y= k x(x>0)的图像上一点A作AB△x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2B.3C.4D.57.若点P1(x1,y1),P2(x2,y2)在反比例函数y=k x(k>0)的图象上,且x1=﹣x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y28.甲乙两地相距s,汽车从甲地以v(千米/时)的速度开往乙地,所需时间是t(小时),则正确的是为()A.当t为定值时,s与v成反比例B.当v为定值时,s与t成反比例C.当s为定值时,v与t成反比例D.以上三个均不正确9.已知反比例函数y=1x,当x=m时,y=n,则化简(m−1m)(n+1n)的结果是()A.2m2B.2n2C.n2−m2D.m2−n210.已知:如图,直线l经过点A(﹣2,0)和点B(0,1),点M在x轴上,过点M作x轴的垂线交直线l于点C,若OM=2OA,则经过点C的反比例函数表达式为()A.y=24x B.y=3x C.y=12x D.y=6x11.如图,平面直角坐标系中,直线CD分别与x轴、y轴分别交于点D、C,点A、B为线段CD的三等分点,且A、B在反比例函数y=kx(x>0,k>0)的图象上,若△AOD的面积为12,则k的值为()A.2B.4C.6D.812.如图,过点P(2,3)分别作PC△x轴于点C,PD△y轴于点D,PC、PD分别交反比例函数y= 2x(x>0)的图象于点A、B,则四边形BOAP的面积为()A.3B.3.5C.4D.5二、填空题13.在滑草过程中,小明发现滑道两边形如两条双曲线.如图,点A1,A2,A3…在反比例函数y=1x(x>0)的图象上,点B1,B2,B3…在反比例函数y=k x(k>1,x>0)的图象上,A1B1∥A2B2∥⋅⋅⋅∥y轴,已知点A1,A2…的横坐标分别为1,2…,令四边形A1B1B2A2、A2B2 B3A3、…的面积分别为S1、S2、…,(1)用含k的代数式表示S1=;(2)若S19=39,则k=.14.已知点A为双曲线y= k x图象上的点,点O为坐标原点,过点A作AB△x轴于点B,连接OA.若△AOB的面积为5,则k的值为.15.若反比例函数y=1−kx,当x>0时,y随着x的增大而增大,则k的取值范围是. 16.如图,在平面直角坐标系中,四边形AOBD的边OB与x轴的正半轴重合,AD∥OB,DB⊥x轴,对角线AB,OD交于点M.已知AD:OB=2:3,△AMD的面积为4.若反比例函数y=kx的图象恰好经过点M,则k的值为.17.已知反比例函数的表达式为y=1+2mx,A(x1,y1)和B(x2,y2)是反比例函数图象上两点,若x1<0<x2时,y1<y2,则m的取值范围是.18.已知点D是反比例函数上一点,矩形ABCD的周长是16,正方形ABOF和正方形ADGH的面积之和为50,则反比例函数的解析式是.三、综合题19.如图,反比例函数y=mx的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求n的值;(2)结合图象,直接写出不等式mx<kx+b的解集;(3)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.x﹣√3与x,y轴分别交于点A,B,与反比例函数y= k x(k>0)图象交于20.如图,直线y= √33点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标.(2)若AE=AC.①求k的值.②试判断点E与点D是否关于原点O成中心对称?并说明理由.21.某种型号的温控水箱的工作过程是:接通电源后,在初始温度20△下加热水箱中的水;当水温达到设定温度80△时,加热停止;此后水箱中的水温开始逐渐下降,当下降到20△时,再次自动加热水箱中的水至80△时,加热停止:当水箱中的水温下降到20△时,再次自动加热,…,按照以上方式不断循环.小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探究,发现水温y是时间x的函数,其中y(单位:△)表示水箱中水的温度,x(单位:min)表示接通电源后的时间.下面是小明的探究过程,请补充完整:(1)下表记录了16 min内9个时间点的温控水箱中水的温度y随时间x的变化情况:接通电源后的时间x(单位:min)01234581016…水箱中水的温度y(单位:°C)2035m658064403220…的值为.(2)①当0≤x≤4时,写出一个符合表中数据的函数解析式▲ ;当4<x≤16时,写出一符合表中数据的函数解析式_ ▲ .②如图,在平面直角坐标系xOy中,描出了上表中部分数据对应的点,根据描出的点,画出当0≤x≤16时,温度y随时间x变化的函数图象;(3)如果水温y随时间x的变化规律不变,预测水温第8次达到40△时,距离接通电源min.22.已知反比例函数y=k x的图像经过点(23,92).(1)求k的值,并判断点A(−2,16)是否在该反比例函数的图象上;(2)该反比例函数图象在第象限,在每个象限内,y随x的增大而;(3)当−4<x<−1时,求y的取值范围.23.如图,反比例函数y=k x的图象与一次函数y=mx+b的图象交于A(1,3),B(n,−1)两点.求:(1)反比例函数关系式;(2)n的值;(3)一次函数关系式;(4)根据图像回答,当反比例函数的值大于一次函数的值时,x的取值范围.24.如图,反比例函数y=kx(k≠0)的图象与正比例函数y=2x相交于A(1,a),B两点,点C在第四象限,CA△y轴,AB△BC.(1)求反比例函数解析式及点B坐标;(2)求△ABC的面积.参考答案1.【答案】D2.【答案】B 3.【答案】A 4.【答案】D 5.【答案】B 6.【答案】C 7.【答案】D 8.【答案】C 9.【答案】D 10.【答案】C 11.【答案】D 12.【答案】C13.【答案】34(k −1);76114.【答案】10或-10 15.【答案】k>1 16.【答案】54517.【答案】m >−1218.【答案】y =8x或 56x19.【答案】(1)解:把点 A(2,6) 代入 y =m x ,得 m =12 ,则 y =12x把点 B(n,1) 代入 y =12x,得 n =12则 n =12 .(2)2<x <12 或 x <0(3)解:设过点 A(2,6) ,点 B(12,1) 的直线为: y =kx +b 根据题意,得: {6=2k +b 1=12k +b.∴k =−12,b =7则直线 AB 解析式为 y =−12x +7 .如图,设直线 AB 与y 轴的交点为P ,设点E 的坐标为 (0,m) ,连接 AE,BE ,则点P 的坐标为 (0,7) .∴PE=|m−7|.∵S△AEB=S△PEB−S△PEA=5.∴12|m−7|×12−12×|m−7|×2=5.∴12|m−7|×(12−2)=5∴|m−7|=1.∴m1=6,m2=8∴点E的坐标为(0,6)或(0,8)20.【答案】(1)解:当y=0时,得0= √33x﹣√3,解得:x=3.∴点A的坐标为(3,0).(2)解:①过点C作CF△x轴于点F,如图所示.设AE=AC=t,点E的坐标是(3,t)在Rt△AOB中,tan△OAB= OBOA=√33∴△OAB=30°.在Rt△ACF中,△CAF=30°∴CF= 12t,AF=AC•cos30°=√32t∴点C的坐标是(3+ √32t,12t).∴(3+ √32t)× 12t=3t解得:t1=0(舍去),t2=2 √3.∴k=3t=6 √3.②点E与点D关于原点O成中心对称,理由如下:设点D 的坐标是(x , √33x ﹣ √3 )∴x ( √33x ﹣ √3 )=6 √3 ,解得:x 1=6,x 2=﹣3∴点D 的坐标是(﹣3,﹣2 √3 ). 又∵点E 的坐标为(3,2 √3 ) ∴点E 与点D 关于原点O 成中心对称.21.【答案】(1)50(2)解:①y=15x+20| y =320x;②画出的函数图象如解图所示.(3)5622.【答案】(1)解:将 (23,92) 代入函数解析式,得k=3反比例函数解析式为 y =3x当x=-2时, y =−32≠16∴点 A(−2,16) 不在该反比例函数的图象上(2)一、三;增大(3)解:当x=-4时, y =−34,当x=-1时, y =−3在每个象限内, y 随 x 的增大而增大得 −3<y <−3423.【答案】(1)解:∵点A (1,3)在反比例函数 y =kx的图象上∴k=3∴反比例函数的解析式为 y =3x(2)解:∵点B (n ,-1)在反比例函数 y =3x的图象上∴3n=-1 ∴n=-3∴点B 的坐标为(-3,-1)(3)解:点A 、B 在一次函数 y =mx +b 的图象上 ∴{m +b =3−3m +b =−1 ∴{m =1b =2∴一次函数的解析式为 y =x +2(4)解:根据图象可知 ,当x<-3或0<x<1时,反比例函数的值大于一次函数的值24.【答案】(1)解:∵点A(1,a)在y =2x 上∴a =2 ∴A(1,2)把A(1,2)代入y =kx 得k =2∴反比例函数的解析式为y =2x∵A 、B 两点关于原点成中心对称 ∴B(﹣1,﹣2);(2)解:如图所示,作BH△AC 于H ,设AC 交x 轴于点D∵AB△BC .∴△ABC =90°,△BHC =90° ∴△C =△ABH ∵BH△x 轴 ∴△AOD =△ABH ∴△AOD =△C∴tanC =tan∠AOD =ADOD=2 ∵A(1,2),B(﹣1,﹣2)∴AH =4,BH =2,OD=1,AD=2第 11 页 共 11 ∴AB =√AH 2+BH 2=√42+22=2√5,S △AOD =12OD ⋅AD =1 ∵△AOD =△C ,△ADO =△ABC =90° ∴△ADO ~△ABC∴有S △ADO S △ABC =(AD AB )2,即1S △ABC =(22√5)2 解得S △ABC =5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础知识专项练习题(反比例函数)
一、选择题
1.下列四组点中,可以在同一个反比例函数图象上的一组点是( ) A .(2,﹣1),(1,﹣2) B .(2,﹣1),(1,2)
C .(2,﹣1),(2,1)
D .(2,﹣1),(﹣2,﹣1)
2.如果点A (﹣5,y 1),B (﹣,y 2),C (,y 3),在双曲线x
k
y =上(k <0),则y 1,y 2,y 3的大小关系是( ) A .y 3<y 1<y 2
B .y 2<y 1<y 3
C .y 1<y 2<y 3
D .y 1<y 3<y 2
3.已知正比例函y =kx (k 是常数,k ≠0)中y 随x 的増大而增大,那么它和函数x
k y =(k
是常数,k ≠0)在同一平面直角坐标系内的大致图象可能是( )
A .
B .
C .
D .
4.如图1,反比例函数x
k
y =经过Rt △BOC 斜边上的点A ,且满足,与BC 交于点D ,S △BOD =4,则k 的值
为( ) A . B .1
C .2
D .8
二、填空题
5.函数y =(k ﹣1)x |k |﹣2
是y 关于x 反比例函数,则它的图象不经过 象限.
6.已知反比例函数x
k
y =
为常数,k ≠0)的图象经过点P (2,2),当1<x <2时,则y 的取值范围是 .
7.如图2,平行于x 轴的直线与函数x k y 1=
(k 1>0,x >0),x
k
y 2=(k 2>0,x >0)的图图1
图1
象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为6,则k1﹣k2的值为
.
8.如图3,已知点A,点C在反比例函数
x
k
y=(k>0,x>0)的图象上,AB⊥x轴于点B,OC交AB于点D,若CD=OD,则△AOD与△BCD的面积比为.
三、解答题
9.如图4,一次函数y1=x+4的图象与反比例函数
x
k
y=
2
的图象交于A(﹣1,a),B两点,与x轴交于点C.
(1)求k的值;
(2)根据图象直接写出y1>y2时,x的取值范围;
(3)若反比例函数
x
k
y=
2
与一次函数y1=x+4的图象总有交点,求k的取值.
图4
10.如图5,直线AB与反比例函数
x
k
y=(x>0)的图象交于点A,已知点A(3,4),B
(0,﹣2),点C是反比例函数
x
k
y=(x>0)的图象上的一个动点,过点C作x轴的图2图3
垂线,交直线AB于点D.
(1)求反比例函数的解析式;
(2),求△ABC的面积;
(3)在点C运动的过程中,是否存在点C,使BC=AC?若存在,请求出点C的坐标;若不存在,请说明理由.
图5
(命题者:95中杜琼审题者:陈小蓉)。