第七章应力和应变分析强度理论
合集下载
材料力学第七章应力状态和强度理论
2
x y 2 a 0 2
x y x y 2
x y
2
) x
2
2
例题1: 已知:单元体各侧面应力 x=60MPa,
求: (1) = - 450斜截面上的应力,(2)主应力和主平面
dA
y
x y
2
sin 2 xy cos2
y
yx
应力圆
y
1 R 2
x
y
2
4 2 xy
x
yx xy x
y
R c
x y
2
2
x
xy
x´
dA
yx
y´
y
x y 1 2 2 2
40
x y
2 0.431MPa
sin( 80 ) xy cos(80 )
C
C
C
例题3:已知梁上的M、Q,试用单元体表示截面上1、2、
3、4点的应力状态。
1
2 0
2
1点 2点
1 2 0 3
3Q = 2A
M x Wz
2 xy
x y
2 20.6 0.69 60 0
17.2
x y
2 (
6.4MPa
2 34.4
max(min)
x
17.20
x y
2
) xy
2
2
x
66.4MPa
60 0 60 0 2 ( ) 20.6 2 2 2 66.4(6.4) MPa
x y 2 a 0 2
x y x y 2
x y
2
) x
2
2
例题1: 已知:单元体各侧面应力 x=60MPa,
求: (1) = - 450斜截面上的应力,(2)主应力和主平面
dA
y
x y
2
sin 2 xy cos2
y
yx
应力圆
y
1 R 2
x
y
2
4 2 xy
x
yx xy x
y
R c
x y
2
2
x
xy
x´
dA
yx
y´
y
x y 1 2 2 2
40
x y
2 0.431MPa
sin( 80 ) xy cos(80 )
C
C
C
例题3:已知梁上的M、Q,试用单元体表示截面上1、2、
3、4点的应力状态。
1
2 0
2
1点 2点
1 2 0 3
3Q = 2A
M x Wz
2 xy
x y
2 20.6 0.69 60 0
17.2
x y
2 (
6.4MPa
2 34.4
max(min)
x
17.20
x y
2
) xy
2
2
x
66.4MPa
60 0 60 0 2 ( ) 20.6 2 2 2 66.4(6.4) MPa
材料力学第七章_3_ 应变能密度和强度理论概要
材料力学
第 7章 应力和应变分析·强度理论
[例9-8]证明弹性模量E 、泊松比µ 、切变弹性模量G 之间 的关系为 G E 。
2(1 )
证明: 纯剪应力状态应变能密度为
3
v1
1
2
1 2
2G
1 , 2 0, 3
1
用主应力计算比能
v2
1 2E
[
2 1
2 2
2 3
2 (1 2
2 3
1
3
k
1
3
2
OC
B
3
1
2
1 3
河南理工大学土木工程学院
A
材料力学
第 7章 应力和应变分析·强度理论
各向同性材料的广义胡克定律:
εx
1 E
σx
μ
σy
σz
εy
1 E
σy
μσz
σx
εz
1 E
σz
μ
σx σy
xy
xy
G
,
yz
yz
G
,
zx
zx
G
上述一组方程为用应力表示应变,若用应变表示应力,
河南理工大学土木工程学院
材料力学
第 7章 应力和应变分析·强度理论
二、常用四个强度理论
● 第一强度理论(最大拉应力理论) 该理论不论材料处于什么应力状态,引起材料脆性断裂
破坏的主要原因是最大拉应力,并认为当复杂应力状态的最 大拉应力达到单向应力状态破坏时的最大拉应力时,材料便 发生断裂破坏。由此,材料的断裂判据为
一、强度理论的概念
1. 什么是强度理论 强度理论是关于材料破坏原因的学说。
工程力学c材料力学部分第七章 应力状态和强度理论
无论是强度分析还是刚度分析,都需要求出应力的极值, 无论是强度分析还是刚度分析,都需要求出应力的极值,为了找 到构件内最大应力的位置和方向 需要对各点的应力情况做出分析。 最大应力的位置和方向, 到构件内最大应力的位置和方向,需要对各点的应力情况做出分析。
受力构件内一点处所有方位截面上应力的集合,称为一点的 受力构件内一点处所有方位截面上应力的集合,称为一点的 研究一点的应力状态时, 应力状态 。研究一点的应力状态时,往往围绕该点取一个无限小 的正六面体—单元体来研究。 单元体来研究 的正六面体 单元体来研究。
σ2
σ2
σ1
σ1
σ
σ
σ3
三向应力状态
双向应力状态
单向应力状态 简单应力状态
复杂应力状态 主应力符号按代数值的大小规定: 主应力符号按代数值的大小规定:
σ1 ≥ σ 2 ≥ σ 3
平面应力状态的应力分析—解析法 §7−2 平面应力状态的应力分析 解析法
图(a)所示平面应力单元体常用平面图形(b)来表示。现欲求 )所示平面应力单元体常用平面图形( )来表示。现欲求 垂直于平面xy的任意斜截面 上的应力 垂直于平面 的任意斜截面ef上的应力。 的任意斜截面 上的应力。
二、最大正应力和最大剪应力
σα =
σ x +σ y
2
+
σ x −σ y
2
cos 2α − τ x sin 2α
τα =
令
σ x −σ y
2
sin 2α + τ x cos 2α
dσ α =0 dα
σ x −σ y
2
sin 2α +τ x cos2α = 0
可见在 τ α
=0
材料力学应力和应变分析强度理论
§7–5 广义虎克定律
y
一、单拉下旳应力--应变关系
x
x
E
y
E
x
ij 0 (i,j x,y,z)
二、纯剪旳应力--应变关系
z
E
x
z
y
xy
xy
G
i 0 (i x,y,z)
z
yz zx 0
x
x
xy
x
三、复杂状态下旳应力 --- 应变关系
y
y
x
y x
z
xy
z
x
依叠加原理,得:
x
1
(MPa)
解法2—解析法:分析——建立坐标系如图
45 25 3
95
60°
i j
x
2
y
(
x
2
y
)2
2 xy
y
1
25 3 y 45MPa
° 5
0
Ox
6095MPa 6025 3MPa
yx 25 3MPa xy
x ?
x
y
2
sin 2
xy cos 2
25 3 x 45 sin 120o 25 3 cos120o
y
z
z
y
证明: 单元体平衡 M z 0
xy x
x
( xydydz)dx( yxdzdx)dy0
xy yx
五、取单元体: 例1 画出下图中旳A、B、C点旳已知单元体。
F
A
y
F x
x
A
B
C z
x B x
zx
xz
F
Mex
yx
C
xy
FP
第七章+应力应变分析+强度理论
Chapter7 Analysis of Stress and Strain Failure Criteria
(Analysis of stress-state and strain-state)
§7-1 应力状态概述 (Introduction of stress-state)
一、应力状态的概念 (Concepts of stresses-state)
σ1 ≥ σ 2 ≥ σ 3
(Analysis of stress-state and strain-state)
三、应力状态的分类 (The classification of stresses-state)
1.空间应力状态(Triaxial stress-state or three-dimensional stress-state ) 三个主应力σ1 ,σ2 ,σ3 均不等于零 2.平面应力状态(Biaxial stress-state or plane stress-state) 三个主应力σ1 ,σ2 ,σ3 中有两个不等于零 3.单向应力状态(Uniaxial stress-state or simple stress-state) 三个主应力 σ1 ,σ2 ,σ3 中只有一个不等于零
x
− 62.5
σ3
因为 σx < σy ,所以 α0= 27.5°与σmin对应
σx −σ y 2 ⎧σ max σ x + σ y ⎧ 26MPa 2 ) + τ xy = ⎨ = ± ( ⎨ 2 2 ⎩ − 96MPa ⎩σ min σ 1 = 26MPa , σ 2 = 0, σ 3 = −96MPa
1.求单元体上任一截面上的应力(Determine the stresses on any inclined plane by using stress-circle) 从应力圆的半径 CD 按方位角α的转向转动2α得到半径CE. 圆周上 E 点的坐标就依次为斜截面上的正应力σα 和切应力τα.
(Analysis of stress-state and strain-state)
§7-1 应力状态概述 (Introduction of stress-state)
一、应力状态的概念 (Concepts of stresses-state)
σ1 ≥ σ 2 ≥ σ 3
(Analysis of stress-state and strain-state)
三、应力状态的分类 (The classification of stresses-state)
1.空间应力状态(Triaxial stress-state or three-dimensional stress-state ) 三个主应力σ1 ,σ2 ,σ3 均不等于零 2.平面应力状态(Biaxial stress-state or plane stress-state) 三个主应力σ1 ,σ2 ,σ3 中有两个不等于零 3.单向应力状态(Uniaxial stress-state or simple stress-state) 三个主应力 σ1 ,σ2 ,σ3 中只有一个不等于零
x
− 62.5
σ3
因为 σx < σy ,所以 α0= 27.5°与σmin对应
σx −σ y 2 ⎧σ max σ x + σ y ⎧ 26MPa 2 ) + τ xy = ⎨ = ± ( ⎨ 2 2 ⎩ − 96MPa ⎩σ min σ 1 = 26MPa , σ 2 = 0, σ 3 = −96MPa
1.求单元体上任一截面上的应力(Determine the stresses on any inclined plane by using stress-circle) 从应力圆的半径 CD 按方位角α的转向转动2α得到半径CE. 圆周上 E 点的坐标就依次为斜截面上的正应力σα 和切应力τα.
材料力学第七章 应力状态
主平面的方位:
tan
2a0
2 xy x
y
主应力与主平面的对应关系: max 与切应力的交点同象限
例题:一点处的平面应力状态如图所示。
已知 x 60MPa, xy 30MPa, y 40MPa, a 30。
试求(1)a 斜面上的应力; (2)主应力、主平面; (3)绘出主应力单元体。
x y cos 2a
2
x sin 2a
x
a
x y sin 2a
2
x cos 2a
300
10 30 2
10 30 cos 60020sin 600
2
2.32 MPa
300
10 30 sin 600 2
20cos 600
1.33 MPa
a
20 MPa
c
30 MPa
b
n1
y xy
a x
解:(1)a 斜面上的应力
y xy
a
x
2
y
x
2
y
cos 2a
xy
sin 2a
60 40 60 40 cos(60 ) 30sin(60 )
2
2
a x 9.02MPa
a
x
y
2
sin
2a
xy
cos
2a
60 40 sin(60 ) 30cos(60 ) 2
58.3MPa
2
1.33 MPa
300 600 x y 40 MPa
在二向应力状态下,任意两个垂直面上,其σ的和为一常数。
在二向应力状态下,任意两个垂直面上,其σ 的和为
一常数。
证明: a
x y
第七章 应力状态、应变分析和强度理论
§7-3 平面应力状态分析--解析法
二、 正应力极值
1 1 ( x y ) ( x y ) cos 2 xy sin 2 2 2 d ( x y ) sin 2 2 xy cos 2 d
设α=α0 时,上式值为零,即
2
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念
3、三向(空间)应力状态 三个主应力1 、2 、3 均不等于零
2 1
3 1
3 2
1 0, 2 0, 3 0
§7-1 应力状态的概念
仅在微体四侧面作用应力,且 应力作用线均平行于微体的不 受力表面-平面应力状态
1
1
1
1
3
3
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念 2、二向(平面)应力状态 三个主应力1 、2 、3 中有两个不等于零
3 2 3 2
3
2
1
3
1
1
1
1 0, 2 0, 3 0
Ft 0
dA ( x dAcos )cos ( x dAcos )sin ( y dAsin )sin ( y dAsin )cos 0
§7-3 平面应力状态分析--解析法
一、任意斜截面上的应力公式 已知: x , y , x , y , dA 求: ,
sin 2 xy cos 2
2 xy 2 ( 50) tan 2 0 1 x y 40 60 2 0 45 135
y =60 MPa xy = -50MPa =-30°
应力应变分析与强度理论
ax in
m
ax
2
m in
极值切应力等于极值正应力差的一半。
材料力学电子教案 C 机械工业出版社
§7.2 平面应力状态分析的解析法
三、极值切应力和主平面夹角
注意到 则 所以
tan
2 0
2 xy x
y
tan
21
x 2 xy
y
tan
20
第7章 应力应变分析与强度理论
§7.1 应力状态的概念 §7.2 平面应力状态分析的解析法 §7.3 平面应力状态分析的图解法 §7.4 三向应力状态简介 §7.5 平面应力状态的应变分析 §7.6 广义胡克定律 §7.7 强度理论概述 §7.8 四个常用的强度理论 §7.9 莫尔强度理论
材料力学电子教案 C 机械工业出版社
7.2.3 极值切应力及其作用面 一、极值切应力方位角
d 0 d
( x y ) cos 2 2 xy sin 2 0
得
tan
21
x 2 xy
y
二、最大、最小切应力
m m
ax in
x
2
y
2
2 xy
m m
主应力通常用1、 2 和 3 表示,它们的顺序按代 数值大小排列,即 1 2 3 。
材料力学电子教案 C 机械工业出版社
§7.1 应力状态的概念
7.1.4 应力状态的分类 1. 单向应力状态 (简单应力状态 ) 三个主应力中,只有一个不等于零 2. 二向应力状态 (复杂应力状态 ) 有两个应力不等于零 3. 三向应力状态 (复杂应力状态 ) 三个主应力都不等于零
材料力学 第七章 应力状态和强度理论
y
2
2 xy
tan 2a0
2 xy x
y
max
1
2
3
主应力符号与规定: 1 2 3 (按代数值)
§7-3 空间应力状态
与任一截面相对应 的点,或位于应力 圆上,或位于由应 力圆所构成的阴影 区域内
max 1 min 3
max
1
3
2
最大切应力位于与 1 及 3 均成45的截面上
针转为正,顺时针转为负。
tg 2a 0
2 x x
y
在主值区间,2a0有两个解,与此对应的a0也有两个解,其中落
在剪应力箭头所指象限内的解为真解,另一解舍掉。
三、应力圆
由解析法知,任意斜截面的应力为
a
x y
2
a x
x
y
2
y cos2a
2
sin 2a x c
x s os2a
in
2a
广义胡克定律
1、基本变形时的胡克定律
1)轴向拉压胡克定律
x E x
横向变形
y
x
x
E
2)纯剪切胡克定律
G
y
x x
2、三向应力状态的广义胡克定律-叠加法
2
2
1
1
3
3
1
1
E
2
E
3
E
1
1 E
1
2
3
同理
2
1 E
2
3
1
广义胡克定律
3
1 E
3
1
2
7-5, 7-6
§7-4 材料的破坏形式
⒈ 上述公式中各项均为代数量,应用公式解题时,首先应写清已 知条件。
材料力学第七章知识点总结
研究应力状态的目的:找出一点处沿不同方向应力的变化
规律,确定出最大应力,从而全面考虑构件破坏的原因,建 立适当的强度条件。
材料力学
3、一点的应力状态的描述
研究一点的应力状态,可对一个 包围该点的微小正六面体——单 元体进行分析
在单元体各面上标上应力 各边边长 dx , dy , dz
——应力单元体
三、几个对应关系
点面对应——应力圆上某一点的坐标值对应着单元体某一截面
上的正应力和切应力;
y
σy
n
τ
H (σα ,τα )
τ yxHτ xy来自αxσx
(σy ,Dτyx)
2α A (σx ,τxy)
c
σ
σx +σ y
2
转向对应——半径旋转方向与截面法线的旋转方向一致; 二倍角对应——半径转过的角度是截面法线旋转角度的两倍。
α =α0
=
−2⎢⎡σ x
⎣
−σ y
2
sin 2α0
+τ xy
cos
2α
0
⎤ ⎥
⎦
=0
=
−2τ α 0
τα0 = 0
tg
2α 0
=
− 2τ xy σx −σ y
可以确定出两个相互垂直的平面——主平面,分别为
最大正应力和最小正应力所在平面。
主平面的方位
(α0 ; α0′ = α0 ± 900 )
主应力的大小
材料力学
四、在应力圆上标出极值应力
τ
τ max
x
R
O σ min
2α12α0A(σx ,τxy)
c
σ
σ
max
(σy ,τyx) D
规律,确定出最大应力,从而全面考虑构件破坏的原因,建 立适当的强度条件。
材料力学
3、一点的应力状态的描述
研究一点的应力状态,可对一个 包围该点的微小正六面体——单 元体进行分析
在单元体各面上标上应力 各边边长 dx , dy , dz
——应力单元体
三、几个对应关系
点面对应——应力圆上某一点的坐标值对应着单元体某一截面
上的正应力和切应力;
y
σy
n
τ
H (σα ,τα )
τ yxHτ xy来自αxσx
(σy ,Dτyx)
2α A (σx ,τxy)
c
σ
σx +σ y
2
转向对应——半径旋转方向与截面法线的旋转方向一致; 二倍角对应——半径转过的角度是截面法线旋转角度的两倍。
α =α0
=
−2⎢⎡σ x
⎣
−σ y
2
sin 2α0
+τ xy
cos
2α
0
⎤ ⎥
⎦
=0
=
−2τ α 0
τα0 = 0
tg
2α 0
=
− 2τ xy σx −σ y
可以确定出两个相互垂直的平面——主平面,分别为
最大正应力和最小正应力所在平面。
主平面的方位
(α0 ; α0′ = α0 ± 900 )
主应力的大小
材料力学
四、在应力圆上标出极值应力
τ
τ max
x
R
O σ min
2α12α0A(σx ,τxy)
c
σ
σ
max
(σy ,τyx) D
经济学应力状态和强度理论
利用三角关系式,可以将前面所得的关于
和 的方程中的 消去,得:
(
x
y
2
)2
2
(
x
y )2
2
2x
这个方程恰好表示一个圆,这个圆称为应力圆
28
目录
二.应力圆
(
x
y )2
2
2
(
x
y )2
2
2x
R C
R
(
x
y
)2
2 x
2
x y
2
29
目录
二.应力圆
应力圆的画法
y y
y
D
x x
A x
9
目录
应力
指明
哪一个面上?
哪一点?
哪一点? 哪个方向面?
过一点不同方向面上应力的集合,
称之为这一点的应力状态
10
目录
§7.2 平面应力状态的应力分析,主应力
一点应力状态的描述
微元
dz dy dx
dx,dy,dz 0
11
目录
§7.2 平面应力状态的应力分析,主应力
三向(空间)应力状态
xx
z
z
zx zy
τ T Wp
3
σ Mz Wz
21
目录
§7.2 平面应力状态的应力分析,主应力
z
z
zx zy
x
x
xz yz
xy
yx
y
y
2
3
1
单元体上没有切应力的面称为主平面;主平面
上的正应力称为主应力,分别用 1, 2 , 3 表示, 并且 1 2 3。该单元体称为主应力单元。
和 的方程中的 消去,得:
(
x
y
2
)2
2
(
x
y )2
2
2x
这个方程恰好表示一个圆,这个圆称为应力圆
28
目录
二.应力圆
(
x
y )2
2
2
(
x
y )2
2
2x
R C
R
(
x
y
)2
2 x
2
x y
2
29
目录
二.应力圆
应力圆的画法
y y
y
D
x x
A x
9
目录
应力
指明
哪一个面上?
哪一点?
哪一点? 哪个方向面?
过一点不同方向面上应力的集合,
称之为这一点的应力状态
10
目录
§7.2 平面应力状态的应力分析,主应力
一点应力状态的描述
微元
dz dy dx
dx,dy,dz 0
11
目录
§7.2 平面应力状态的应力分析,主应力
三向(空间)应力状态
xx
z
z
zx zy
τ T Wp
3
σ Mz Wz
21
目录
§7.2 平面应力状态的应力分析,主应力
z
z
zx zy
x
x
xz yz
xy
yx
y
y
2
3
1
单元体上没有切应力的面称为主平面;主平面
上的正应力称为主应力,分别用 1, 2 , 3 表示, 并且 1 2 3。该单元体称为主应力单元。
工程力学(材料力学部分第七章)
4 主应力及应力状态的分类
主应力和主平面
切应力全为零时的正应力称为主应力;
主应力所在的平面称为主平面;
主平面的外法线方向称为主方向。
主应力用1 , 2 , 3 表示 (1 2 3 ) 。
应力状态分类
单向应力状态
11
应力状态分类
单向应力状态 二向应力状态(平面应力状态)
三向应力状态(空间应力状态)
D点
由 y 40, yx 60
D'点
画出应力圆
52
圆心坐标
OC x y 80 (40)
2
2
20
半径
R
x
2
y
2
2 xy
80 (40) 2
(60)2
84.85 85
2
53
圆心坐标 OC 20
半径
R 85
1 OA1 OC R
E
105 MPa
3 OC R
65 MPa
D (x ,xy)
x y
2
R 1 2
x y
2
4
2 xy
38
3 应力圆上的点与单元体面上的应力的对应关系 (1) 点面对应
应力圆上某一点 的坐标值对应着 单元体某一方向面上的正应力和切应力。
39
(1) 点面对应
应力圆上某一点的坐 标 值对应着单元体某 一方向面上的正应力 和切应力。
D点对应的面与E点 对应的面的关系
主应力。
从半径CD转到CA1 的角度即为从x轴转
到主平面的角度的
两倍。
44
主应力 即为A1, B1处的正应力。
max min
x
y
2
x
2
应力和应变分析和强度理论
机械设计
01
02
03
零件强度校核
通过应力和应变分析,可 以校核机械零件的强度, 确保零件在正常工作载荷 下不会发生破坏。
优化装配设计
通过应力和应变分析,可 以优化机械装配设计,减 少装配误差和应力集中, 提高装配质量和可靠性。
振动和噪声控制
通过应力和应变分析,可 以预测和控制机械系统的 振动和噪声,提高机械系 统的性能和舒适性。
总结词
最大拉应力理论
详细描述
该理论认为最大拉应力是导致材料破坏的主要因素,当最大 拉应力达到材料的极限抗拉强度时,材料发生断裂。
第二强度理论
总结词
最大伸长应变理论
详细描述
该理论认为最大伸长应变是导致材料 破坏的主要因素,当最大伸长应变达 到材料的极限抗拉应变时,材料发生 断裂。
第三强度理论
总结词
03
应力和应变的应用
结构分析
结构稳定性
01
通过应力和应变分析,可以评估结构的稳定性,预测结构在不
同载荷下的变形和破坏模式。
结构优化设计
02
通过对应力和应变的精确计算,可以优化结构设计,降低结构
重量,提高结构效率。
结构疲劳寿命预测
03
通过应力和应变分析,可以预测结构的疲劳寿命,为结构的维
护和更换提供依据。
能量法
总结词
能量法是一种基于能量守恒和变分原理 的数值分析方法,通过将问题转化为能 量泛函的极值问题,并采用变分法或有 限元法进行求解。
VS
详细描述
在应力和应变分析中,能量法可以用于求 解各种力学问题,如弹性力学、塑性力学 等。通过构造合适的能量泛函和约束条件 ,能量法能够提供精确和高效的数值解。 同时,能量法还可以用于优化设计、稳定 性分析和控制等领域。
材料力学-07-应力分析和强度理论
§7-2 平面应力状态 平面应力状态--解析法 平面应力状态 解析法: 解析法
1.斜截面上的应力 1.斜截面上的应力
y
σx
a
τ yx
τ xy
σx α
τa
n
τ xy
σa
dA
x
σy
n
τ yx
σy
t
t
∑F = 0
∑F =0
13
§7-2 平面应力状态 平面应力状态--解析法 平面应力状态 解析法: 解析法
tan 2α0 = − 2τ xy
σ x −σ y
由上式可以确定出两个相互垂直的平面, 由上式可以确定出两个相互垂直的平面,分别 为最大正应力和最小正应力所在平面。 为最大正应力和最小正应力所在平面。 所以,最大和最小正应力分别为: 所以,最大和最小正应力分别为:
σmax = σ x +σ y
2 1 + 2 − 1 2
单元体
单元体——构件内的点的代表物, 单元体——构件内的点的代表物,是包围被研究点的 ——构件内的点的代表物 无限小的几何体。 常用的是正六面体。 无限小的几何体。 常用的是正六面体。 单元体的性质—— 平行面上,应力均布; 单元体的性质——1) 平行面上,应力均布; —— 2) 平行面上,应力相等。 平行面上,应力相等。
2 2
σy
τ xy
α
60 − 40 60 + 40 = + cos(−60o ) + 30 sin(−60o ) 2 2
σx
= 9.02 MPa
τα =
σ x −σ y
2 60 + 40 = sin(−60o ) − 30 cos(−60o ) 2
材料力学第七章应力应变分析
x
y
2
x
2
y
cos 2
xy sin 2
x
y
2
sin 2
xy cos 2
1、最大正应力的方位
令
d d
2[
x
y sin 2
2
xy cos 2 ] 0
tg 2 0
2 xy x
y
0 0
90
0 和 0+90°确定两个互相垂直的平面,一个是最大正应 力所在的平面,另一个是最小正应力所在的平面.
的方位.
m
m a
A
l
解: 把从A点处截取的单元体放大如图
x 70, y 0, xy 50
A
tan 20
2 xy x y
2 50 1.429
1
3
(70) 0
0
A
x
0
27.5 62.5
3
1
因为 x < y ,所以 0= 27.5° 与 min 对应
max min
x
2
y
(
x
2
y )2
三、应力状态的分类
1、空间应力状态
三个主应力1 、2 、3 均不等于零
2、平面应力状态
三个主应力1 、2 、3 中有两个不等于零
3、单向应力状态
三个主应力 1 、2 、3 中只有一个不等于零
2 3
2
1
1
1
1
1
3 2
2
1
例题 1 画出如图所示梁S截面的应力状态单元体.
F
5
S平面
4
3
l/2
2
l/2 1
任意一对平行平面上的应力相等
第七章:应力状态、强度理论
s
2 2
s
2 3
2 s1s 2
s 3s 2
s1s 3 )
1 t 2 0 (t )2 2 0 0 t (t ))
2E
s1
1 t 2
E
G
E
21
)
§7–6 强度理论及其相当应力
强度理论:是关于“材料发生强度破坏或失效”的假设
材料的破坏形式: ⑴ 脆性断裂 如铸铁在拉伸和扭转时的突然断裂 ⑵ 塑性屈服 如低碳钢在拉伸和扭转时明显的塑性变形
sx
t 绕研究对象顺时针转为正;
y
txy
逆时针为正。
Ox
图1
s
sx
y
sy
ttxy
Ox 图2
设:斜截面面积为dA,由分离体平衡得:
Fn 0
n s dA (t xydAcos )sin (s xdAcos ) cos t (t yxdAsin ) cos (s ydAsin )sin 0
容器表面用电阻应变片测得环向应变 t =350×10-6,若已知容器平均 直径D=500 mm,壁厚=10 mm,容器材料的 E=210GPa,=0.25
试求:1.导出容器横截面和纵截面上的正应力表达式; 2.计算容器所受的内压力。
s1 sm
p p
p
x
l
图a
D
y
xp
AO
B
解:容器的环向和纵向应力表达式 1、轴向应力:(longitudinal stress) 用横截面将容器截开,受力如图b所示,根据平衡方程
第七章 应力状态和强度理论
§7–1 概述 §7–2 平面应力状态的应力分析.主应力 §7–3 空间应力状态的概念
§7–4 复杂应力状态下的应力 -- 应变关系 ——(广义虎克定律)
材料力学第七章_3_+应变能密度和强度理论
max
强度条件为:
1 3
2
S
2
1 3
河南理工大学土木工程学院
材料力学
第 7章 应力和应变分析·强度理论
● 第四强度理论(形状改变能密度理论) 该理论认为材料发生塑性屈服破坏是由形状改变能密度 引起的:复杂应力状态下,当形状改变能密度vd 达到单向 拉伸时发生塑性屈服破坏的形状改变能密度vd,材料发生塑 性屈服破坏。 相关理论分析可得三向应力状态下的形状改变能密度为
河南理工大学土木工程学院
材料力学
第 7章 应力和应变分析·强度理论
v1 v2
1 2 1 2 2G E
E G 2(1 )
河南理工大学土木工程学院
材料力学
第 7章 应力和应变分析·强度理论
§11-5 强度理论
一、强度理论的概念
1. 什么是强度理论
强度理论是关于材料破坏原因的学说。
河南理工大学土木工程学院
材料力学
第 7章 应力和应变分析·强度理论
§7-9 空间应力状态的应变能密度
一、应变能密度的定义 物体在单位体积内所积蓄的应变能。
二、应变能密度的计算公式 1、单向应力状态下,物体内积蓄的应变能密度为
1 vε σε 2
河南理工大学土木工程学院
材料力学
第 7章 应力和应变分析·强度理论
强度条件为:
1 [( 1 2 ) 2 ( 2 3 ) 2 ( 3 1 ) 2 ] 2
河南理工大学土木工程学院
材料力学
第 7章 应力和应变分析·强度理论
三、强度理论的应用
1. 强度理论的统一形式:
r
r 称为相当应力
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
令 d d 2 [x 2y s2 i n xc y2 o ] 0 s
ta43;90°确定两个互相垂直的平面,一个是最大正应力
所在的平面,另一个是最小正应力所在的团平结面信. 赖 创造 挑战
2.最大正应力
将 0和 0+90°代入公式
x 2yx 2y c2 o s xs y2 in
F n 0d A (xd y A c o )ss i n (x d A c o )cs o s (yd x A si)c no (sy 团d A 结s信i赖)s n 创造i n 挑0 战
F t 0d A (xd y A c o )cs o ( sx d A c o )ss i n (yd x A s i)s n i n (y d A s i)c n o 0 s
得到max和min (主应力)
m m a in xx 2y(x 2y)2x 2y
下面还必须进一步判断最大sigma的方位: 团结 信赖 创造 挑战
具体规则如下:
当x> y 时, 绝对值较小的那个角度是最大
应力的平面。
团结 信赖 创造 挑战
二、最大切应力及方位
xx 2 2yysi2n x 2yxcycoo 22 ssxysi2n
"
p
直径平面
FN
O
FN
d
F y 0 0πplD 2sindplD
2lplD0 pD
y
2
团结 信赖 创造 挑战
§7-2 平面应力状态分析-解析法
y
y
yx xy x
x
y yx
x xy
z
平面应力状态的普遍形式如图所示 .单元体上有x ,xy 和 y , yx
角标的意义;应力正负号的规定。
切应力对单元体内任一点取矩,顺时针转团结为正信赖 创造 挑战
化简以上两个平衡方程最后得
x 2y x 2yco2 s xysin 2 x 2ysin 2xyco2 s
不难看出 9 0 xy
即两相互垂直面上的正应力之和保持一个常数 团结 信赖 创造 挑战
二、最大正应力及方位
xx 2 2yysi2n x 2yxcycoo 22 ssxysi2n
1.最大正应力的方位
x2ysin2xyco2s
得到max和min
max( min
x 2
y)2x 2y
比较
ta2n0x2xyy 和
tan21
x y 2xy
可见
ta2n0
1
ta2n1
2120π 2, 10π 4
(2)正应力仍规定拉应力为正 (3)切应力对单元体内任一点取矩,顺时针转为正
团结 信赖 创造 挑战
e
x
xy
α
n
α
α
α
ayx
f
y
t
e
dA
dAcos α
a dAsinf
3.任意斜截面上的应力
设斜截面的面积为dA , a-e的面积为dAcos, a-f 的面积为 dAsin
对研究对象列 n和 t 方向的平衡方程得
第七章应力和应变分析强度 理论
团结 信赖 创造 挑战
§7-1 应力状态概述
一、应力状态的概念
请看下面几段动画 1.低碳钢和铸铁的拉伸实验 2.低碳钢和铸铁的扭转实验
团结 信赖 创造 挑战
低碳钢和铸铁的拉伸
低碳钢
铸铁
塑性材料拉伸时为什么会出现滑移线? 团结 信赖 创造 挑战
低碳钢和铸铁的扭转
低碳钢
铸铁
为什么脆性材料扭转时沿45°螺旋面断开? 团结 信赖 创造 挑战
3.重要结论
(1)拉中有剪,剪中有拉;
(2)不仅横截面上存在应力,斜截面上也存在应力;
(3)同一面上不同点的应力各不相同;
(4) 同一点不同方向面上的应力也是各不相同.
应力
哪一个面上? 哪一点?
哪一点? 哪个方向面?
4.一点的应力状态
2.平面应力状态
三个主应力1 ,2 ,3 中有两个不等于零
3.单向应力状态
三个主应力 1 ,2 ,3 中只有一个不等于零
2 3
2
1
1
1
1
1
3 2
2 团结 信赖 创造挑1 战
例题 1 画出如图所示梁S截面的应力状态单元体.
F
l/2
S平面 l/2
5 4 3 2
1
团结 信赖 创造 挑战
5
S平面
4
3 2
一、斜截面上的应力
1.截面法
假想地沿斜截面 e-f 将单元体截开,留下左边部分的单体元 eaf 作为研究对象
y n
e
x
a
yx
x xy
f
e
x
x
xy
α
α n
α
α
ayx
f
y
团结 信赖 创造 挑战
e
x
a
y
yx x
xy
f
n
x
2.符号的确定
e
x
xy
α
n
α
α
α
ayx
f
y
t
(1)由x轴转到外法线n,逆时针转向时为正
1.最大切应力的方位
令 d d 2 [x 2y c2 o s xs y2 i] n 0
tan21
x y 2xy
11 90
1 和 1+90°确定两个互相垂直的平面,一个是最大切应力
所在的平面,另一个是最小切应力所在的团平结面信. 赖 创造 挑战
2.最大切应力
将1和 1+90°代入公式
4.主平面 切应力为零的截面
5.主应力 主平面上的正应力
说明:一点处必定存在这样的一个单元体, 三个相互垂直的面
均为主平面, 三个互相垂直的主应力分别记为1 ,2 , 3 且规定按
代数值大小的顺序来排列, 即
123
团结 信赖 创造 挑战
三、应力状态的分类
1.空间应力状态
三个主应力1 ,2 ,3 均不等于零
过一点不同方向面上应力的情况,称之为这一点的应力状
态, 亦指该点的应力全貌.
团结 信赖 创造 挑战
二、应力状态的研究方法
1. 单元体 2. 单元体特征
(1)单元体的尺寸无限小,每个面上应力均匀分布
(2)任意一对平行平面上的应力相等 2 3
3.主单元体
1
1
各侧面上切应力均为零的单元体
3
2
团结 信赖 创造 挑战
3
T Wt
团结 信赖 创造 挑战
例题3 分析薄壁圆筒受内压时的应力状态
y
m
n
p
z
D
ml n
n
(1)沿圆筒轴线作用于筒底的总压力为F
F p πD2 4
′
D
p
薄壁圆筒的横截面面积
A π D F
A
p πD2 4
πD
pD
团4结信赖
n
创造
挑战
(2)假想用一直径平面将圆筒截分为二,并取下半环为研究对象
1
x1
1
x1 x2
2
x2
2
2
5 4 3 2
1
3
3
3
团结 信赖 创造 挑战
例题 2 画出如图所示梁危 险截面危险点的应力状态单 元体
y
S
1
4
2
z
3
x
FS
l
F
a
z2
T3
4 Mz
团结 信赖 创造 挑战
yy
FS
1
4
2
z
3
z2
4 Mz
x
T3
x
1 3
z
2
1
T Wt
x1
Mz Wz
2
T Wt
4FS 3A
x3
Mz Wz