第二章实数检测题

合集下载

八年级数学上册《第二章实数》单元测试题(含答案)

八年级数学上册《第二章实数》单元测试题(含答案)

第二章实数测试题一、选择题(每题3分,共30分)1.有一组数如下:-π,13,|-2|,4,7,39,0.808008…(相邻两个8之间0的个数逐次加1).其中无理数有( )A .4个B .5个C .6个D .7个2.下列说法中,正确说法的个数是( ) ①-64的立方根是-4; ②49的算术平方根是±7; ③127的立方根是13; ④116的平方根是14. A .1 B .2 C .3 D .43.下列各组数中,互为相反数的一组是( )A .-3与3-27 B .-3与(-3)2 C .-3与-13D .||-3与34.下列各式计算正确的是( )A .2+3= 5B .43-33=1C .23×33=6 3D .27÷3=35.下列各式中,无论x 为任何数都没有意义的是( )A .-7xB .-1999x 3C .-0.1x 2-1D .3-6x 2-56.若a =15,则实数a 在数轴上的对应点P 的大致位置是( )图17.如图2是一数值转换机,若输出的结果为-32,则输入的x的值为( )图2A.-4B.4C.±4D.±58.若a,b均为正整数,且a>7,b>320,则a+b的最小值是( )A.6 B.5 C.4 D.39.实数a,b在数轴上所对应的点的位置如图3所示,且||a>||b,则化简a2-||a+b 的结果为( )图3A.2a+b B.-2a+bC.b D.2a-b10.已知x=2-3,则代数式(7+4 3)x2+(2+3)x+3的值是( )A.2+ 3 B.2- 3 C.0 D.7+4 3请将选择题答案填入下表:二、填空题(每题3分,共18分)11.计算:252-242=________.图412.如图4,正方形ODBC 中,OC =1,OA =OB ,则数轴上点A 表示的数是________. 13.用计算器计算并比较大小:39________7.(填“>”“=”或“<”) 14.若|x -y|+y -2=0,则xy -3的值是________.15.若规定一种运算为a ★b =2(b -a),如3★5=2×(5-3)=22,则2★3=________.16.设a ,b 为非零实数,则a |a|+b2b 所有可能的值为________.三、解答题(共52分)17.(6分)实数a ,b 在数轴上所对应的点的位置如图5所示,试化简:a 2-b 2-(a -b )2.图518.(6分)计算:(1)()-62-25+(-3)2;(2)50×8-6×32;(3)(3+2-1)(3-2+1).19.(6分)已知a ,b 互为相反数,c ,d 互为倒数,x 是2的平方根,求5(a +b )a 2+b 2-2cd +x 的值.20.(6分)如果a 是100的算术平方根,b 是125的立方根,求a 2+4b +1的平方根.21.(6分)某中学要在操场的一块长方形土地上进行绿化,已知这块长方形土地的长为510 m,宽为415 m.(1)求该长方形土地的面积(精确到0.1 m2);(2)如果绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金约为多少元?22.(6分)如图6所示,某地有一地下工程,其底面是正方形,面积为405 m2,四个角是面积为5 m2的小正方形渗水坑,根据这些条件如何求a的值?与你的同伴进行交流.图6下面是小康提供的解题方案,根据解题方案请你完成本题的解答过程:①设大正方形的边长为x m,小正方形的边长为y m,那么根据题意可列出关于x的方程为__________,关于y的方程为__________;②利用平方根的意义,可求得x=________(取正值,结果保留根号),y=________(取正值,结果保留根号);③所以a=x-2y=____________=__________(结果保留根号);④答:________________________.23.(8分)如图7,在Rt△OA1A2中,∠A1=90°,OA1=A1A2=1,以OA2为直角边向外作直角三角形,…,使A1A2=A2A3=A3A4=…=A n-1A n=1.(1)计算OA2和OA3的长;(2)猜想OA75的长(结果化到最简);(3)请你用类似的思路和方法在数轴上画出表示-3和10的点.图724.(8分)先阅读材料,再回答问题:因为(2-1)(2+1)=1,所以12+1=2-1;因为(3-2)(3+2)=1,所以13+2=3-2;因为(4-3)(4+3)=1,所以14+3=4- 3.依次类推,你会发现什么规律?请用你发现的规律计算式子12+1+13+2+…+1100+99的值.答案1.A 2.B 3.B 4.D 5.C 6.B 7.C 8.A 9.C 10.A 11.7 12.- 213.< 14.12 15.6-216.±2,017.解:由数轴易知a <0,b >0,|a |<|b |, 所以原式=-a -b -(b -a )=-2b . 18.解:(1)原式=6-5+3=4. (2)原式=5 2×2 2-3 22=20-3=17.(3)(3+2-1)(3-2+1)=[]3+(2-1)[]3-(2-1) =3-(2-1)2=3-3+2 2 =2 2.19.解:由题意知a +b =0,cd =1,x =± 2. 当x =2时,原式=-2+2=0; 当x =-2时,原式=-2-2=-2 2, 故原式的值为0或-2 2.20.[解析] 先根据算术平方根、立方根的定义求得a ,b 的值,再代入所求代数式即可计算.解:因为a 是100的算术平方根,b 是125的立方根, 所以a =10,b =5, 所以a 2+4b +1=121, 所以a 2+4b +11=11,所以a2+4b+11的平方根为±11.21.[解析] (1)根据这块长方形土地的长为5 10 m,宽为415 m,直接得出面积即可;(2)利用绿化该长方形土地每平方米的造价为180元,即可求出绿化该长方形土地所需资金.解:(1)该长方形土地的面积为510×415=100 6≈244.9(m2).(2)因为绿化该长方形土地每平方米的造价为180元,所以180×244.9=44082(元).答:绿化该长方形土地所需资金约为44082元.22.解:①x2=405 y2=5②9 5 5③9 5-2 5 7 5④a的值为7 523.解:(1)OA2=12+12=2,OA3=()22+12= 3.(2)OA75=75=5 3.(3)如图所示:24.解:规律:当n是正整数时,1n+1+n=n+1-n,故12+1+13+2+…+1100+99=(2-1)+(3-2)+…+(100-99)=100-1=9.。

北师大版八年级数学上册《第二章实数》测试卷-带答案

北师大版八年级数学上册《第二章实数》测试卷-带答案

北师大版八年级数学上册《第二章实数》测试卷-带答案学校班级姓名考号一、选择题1.下列式子中,属于最简二次根式的是()A.B.C.D.2.若成立,则x的值可以是()A.-2 B.0 C.2 D.33.下列运算正确的是()A.B.C.D.4.如图所示的数轴被墨迹污染了,则下列选项中可能被覆盖住的数是()A.B.﹣C.﹣D.﹣5.已知,且,则的值为()A.1 B.-7 C.-1 D.1或-76.是某三角形三边的长,则等于()A.B.C.10 D.47.已知,则代数式的值是()A.0 B.C.D.8.如图,长方形ABCD的边AD=2,AB=1,点A在数轴上对应的数是﹣1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则点E表示的数是()A.+1 B.﹣1 C.D.1﹣二、填空题9.写出一个在1到4之间的无理数.10.计算:.11.请写出一个正整数m的值使得是整数;.12.已知:,则.13.如果的小数部分为a,的整数部分为b,则的值为.三、计算题14.计算:(1)(2)15.已知:16.已知和.(1)求的值.(2)若x的整数部分是a,y的小数部分是b,求的值.17.已知某正数的两个平方根分别是和,的立方根为-3.(1)求的值.(2)求的立方根.18.我们知道无理数都可以化为无限不循环小数,所以的小数部分不可能全部写出来,若的整数部分为a,小数部分为b,则,且b<1.(1)的整数部分是,小数部分是;(2)若的整数部分为m,小数部分为n,求的值.参考答案:1.【答案】D2.【答案】B3.【答案】C4.【答案】B5.【答案】A6.【答案】D7.【答案】C8.【答案】B9.【答案】10.【答案】611.【答案】812.【答案】13.【答案】114.【答案】(1)原式=﹣()××=﹣=﹣1﹣=﹣1(2)原式=3﹣1﹣3+=﹣115.【答案】解:∴ . ∴原式=16.【答案】(1)解:.(2)解:∵∴∴x的整数部分是,y的小数部分是∴.17.【答案】(1)解:∵某正数的两个平方根分别是和∴∴∵的立方根为-3∴∴∴(2)解:当时∴的立方根为4.18.【答案】(1)4;(2)解:∵∴∴m=5,-5 ∴。

(必考题)初中数学八年级数学上册第二单元《实数》检测(包含答案解析)(3)

(必考题)初中数学八年级数学上册第二单元《实数》检测(包含答案解析)(3)

一、选择题1.在-1.4141,π,2+,3.14这些数中,无理数的个数为( ) A .2 B .3 C .4 D .52.下面是一个按某种规律排列的数表,那么第7行的第2个数是:( )A B C D .3.一个边长为bcm 的正方形的面积与一个长为8cm 、宽为5cm 的长方形的面积相等,则b 的值在( )A .3与4之间B .4与5之间C .5与6之间D .6与7之间4.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★a bb ;若a b <,则a ★b b a.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b +<★ A .① B .② C .①②D .①②③ 5.下列选项中,属于无理数的是( )A .πB .227-CD .06.下列各式计算正确的是( )A B = ±2 C = ±2 D . 7.下列各式计算正确的是( )A +=B .26=(C 4=D =8...的是( )AB .23<<C .5D .|22=9.若a 化成最简二次根式后,能与2合并,则a 的值不可以是( ) A .12 B .8 C .18 D .2810.下列说法正确的是( )A .4的平方根是2B .16的平方根是±4C .-36的算术平方根是6D .25的平方根是±5 11.下列说法正确的是( )A .5是有理数B .5的平方根是5C .2<5<3D .数轴上不存在表示5的点 12.下列各计算正确的是( )A .382-=B .84=C .235+=D .236⨯=二、填空题13.计算:23-=______ ;364=______.14.如果2|3|0a b ++-=,那么b a =________.15.如图,已知OA OB =,若点A 对应的数是a ,则a 与52-的大小关系是a ____52-.16.对于有理数a ,b ,定义min{,}a b 的含义为:当a b <时,min{,}a b a =;当a b >时,min{,}a b b =.例如:min{1,22}-=-,min{3,1}1-=-.已知min{21,}21a =min{21,}b b =,且a 和b 是两个连续的正整数,则a+b =_____.17.计算:22)=___________.18.已知223y x x =--,则xy 的值为__________.19.26a +与33-a 可以等于___________.(写出一个即可)20.若[)x 表示大于x 的最小整数,如[)56=,[)1.81-=-,则下列结论中正确的有______(填写所有正确结论的序号).①[)01=;②33055⎡⎫-=⎪⎢⎣⎭;③[)0x x -<;④[)1x x x <≤+;⑤存在有理数x 使[)0.2x x -=成立.三、解答题21.已知a 的平方等于4,b 的算术平方根等于4,c 的立方等于8,d 的立方根等于8,(1)求a ,b ,c ,d 的值;(2)求d a bc +的值. 22.求下列各式中x 的值. (1)2x 2=72;(2)(x +1)3+3=﹣61.23.规定一种新运算a bad bc c d=-,如213(2)23218=⨯-⨯-=-. (1)若1xy =-,则2363x y-=________; (2)当1x =-时,求223213222x x x x -++--+--的值. 24.(1)计算:23(3)|21|8--+-;(2)计算:0119(3)()|13|3π-+----;(3)求下列x 的值:22516x =.25.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.例如222÷÷,记作2③,读作“2的圈3次方”;再例如(3)(3)(3)(3)-÷-÷-÷-,记作()3-④,读作“3-的圈4次方”;一般地,把n a a a a a ÷÷÷⋅⋅⋅÷个(0a ≠,n 为大于等于2的整数)记作,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:7=③_______________,14⎛⎫-= ⎪⎝⎭⑤__________; (2)关于除方,下列说法错误的是____________;A .任何非零数的圈2次方都等于1;B .对于任何大于等于2的整数c ,; C .89=⑨⑧;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?除方211112222222222⎛⎫→=÷÷÷=⨯⨯⨯=→ ⎪⎝⎭④乘方幂的形式 (1)仿照上面的算式,将下列运算结果直接写成幂的形式:(5)-=⑥___________;12⎛⎫= ⎪⎝⎭⑨___________; (2)将一个非零有理数a 的圈n 次方写成幂的形式为____________;(3)将(m 为大于等于2的整数)写成幂的形式为_________. 26.如图,一只蚂蚁从点A 沿数轴向右爬22个单位长度后到达点B ,点A 表示的数是2-,设点B 所表示的数为m .(1)求m 的值;(2)求2222m m -+【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据无理数的定义判断即可.【详解】解:-1.4141是有限小数,不是无理数;2是无理数;π是无理数;23+4=2,不是无理数;3.14是有限小数,不是无理数;所以,无理数有3个,故选:B .【点睛】本题考查了无理数的定义,解题关键是知道无理数是无限不循环小数,常见的有π和开不尽方的算术平方根.2.B解析:B【分析】根据观察,可得规律(n-1)最后一个数是(n-1),可得第n 行的第二个数的算术平方根【详解】……第n第7行的第2故答案为:B .【点睛】本题是通过算术平方根的变化探究数字变化规律,观察得出规律是解题关键. 3.D解析:D【分析】由于边长为bcm 的正方形的面积与长、宽分别为8cm 、5cm 的长方形的面积相等,根据面积公式列出等量关系式,由此求出b 的值,再估计b 在哪两个整数之间即可解决问题.【详解】解:∵边长为bcm 的正方形的面积与长、宽分别为8cm 、5cm 的长方形的面积相等, ∴b 2=5×8=40,,∵36<40<49, ∴67.故选:D .【点睛】本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.4.A解析:A【分析】①根据新运算a b ★的运算方法,分类讨论:a b ≥,a b <,判断出a b ★是否等于b a ★即可;②由①,推得=a b b a ★★,所以()()1a b b a =★★不一定成立;③应用放缩法,判断出1a b a b+★★与2的关系即可. 【详解】解:①a b ≥时,a a bb ★, b a a b★, ∴=a b b a ★★;a b <时,a b ba ★,b b a a★, ∴=a b b a ★★;∴①符合题意.②由①,可得:=a b b a ★★,当a b ≥时,∴()()()()22a b b a a b a a a bb b ba b ====★★★★, ∴()()a b b a ★★不一定等于1, 当a b <时, ∴()()()()22a b b a a b b b b aa a aa b ====★★★★, ∴()()a b b a ★★不一定等于1, ∴()()1a b b a =★★不一定成立,∴②不符合题意. ③当a b ≥时,0a >,0b >,∴1ab≥,∴(12a b a b a b ab ++====≥≥★★, 当a b <时,∴(12a b a b a b ab ++====≥≥★★,∴12a ba b+<★★不成立,∴③不符合题意,∴说法中正确的有1个:①.故选:A.【点评】此题主要考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.5.A解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A.π是无理数;B.227-是分数,属于有理数;是整数,属于有理数;D.0是整数,属于有理数.故选:A.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.6.A解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1= 2= 2,,故只有A计算正确;故选:A.【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.7.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB 、错误,212=(;C ==D ==故选:D .【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型. 8.C解析:C【分析】根据无理数的定义,算术平方根的估算,平方根和化简绝对值依次判断即可.【详解】解:AB 、23,说法正确,不符合题意;C 、5的平方根是,故原题说法错误,符合题意;D 、|22-=,说法正确, 不符合题意;故选C .【点睛】本题考查了平方根、算术平方根的估算,无理数的定义.注意一个正数的平方根有两个,它们互为相反数. 9.D解析:D【分析】是否为同类二次根式即可.【详解】是同类二次根式,当a=122=是同类二次根式,故该项不符合题意;当a=8=是同类二次根式,故该项不符合题意;当a=18=是同类二次根式,故该项不符合题意;当a=28=不是同类二次根式,故该项符合题意;故选:D.【点睛】此题考查最简二次根式的定义,同类二次根式的定义,化简二次根式,正确化简二次根式是解题的关键.10.D解析:D【分析】根据平方根和算术平方根的定义判断即可.【详解】解:A. 4的平方根是±2,故错误,不符合题意;±2,故错误,不符合题意;C. -36没有算术平方根,故错误,不符合题意;D. 25的平方根是±5,故正确,符合题意;故选:D.【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断.11.C解析:C【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【详解】解:A A错误;B、5的平方根是B错误;C∴23,故C正确;D D错误;故选:C.【点睛】本题考查了实数的意义、实数与数轴的关系利用被开方数越大算术平方根越大是解题关键.12.D解析:D【分析】分别计算即可.【详解】=-,原式错误,不符合题意;解:2B. 2=≠D. =故选:D .【点睛】本题考查了二次根式和立方根的运算,解题关键是熟练掌握二次根式和立方根的运算法则,准确进行计算.二、填空题13.-94【分析】分别根据乘方和开方的意义即可求解【详解】解::-9故答案为:-9;4【点睛】本题考查了乘方和开方的意义理解乘方和开方的意义是解题关键注意在计算-32时底数为3解析:-9 4【分析】分别根据乘方和开方的意义即可求解.【详解】解::23-=-94=.故答案为:-9;4.【点睛】本题考查了乘方和开方的意义,理解乘方和开方的意义是解题关键,注意在计算-32时,底数为3.14.【分析】因为一个数的算术平方根为非负数一个数的绝对值为非负数由几个非负数的和为零要求每一项都为零即=0∣b-3∣=0由此求出ab 即可解答【详解】解:∵∴=0∣b-3∣=0∴∴故答案为:-8【点睛】本解析:8-【分析】因为一个数的算术平方根为非负数,一个数的绝对值为非负数,由几个非负数的和为零,=0,∣b -3∣=0,由此求出a 、b 即可解答.【详解】解:∵|3|0b -=, ∴=0,∣b -3∣=0,∴2a =-,3b =, ∴()328b a =-=-.故答案为:-8.【点睛】本题考查了算术平方根和绝对值的非负性,整数指数幂,求出a ,b 的值是解题关键. 15.>【分析】根据勾股定理求出OB 长确定点A 表示的数再用估算法比较大小即可【详解】解:由图可知∴则点A 表示的数为∵∴∴故答案为:>【点睛】本题考查了勾股定理实数在数轴上的表示和实数大小的比较熟练的运用勾 解析:>【分析】根据勾股定理求出OB 长,确定点A 表示的数,再用估算法比较大小即可.【详解】解:由图可知,OB = ∴OA OB ==A 表示的数为∵225()2<,∴52<,∴52>-, 故答案为:>.【点睛】 本题考查了勾股定理、实数在数轴上的表示和实数大小的比较,熟练的运用勾股定理求出OB 长,确定A 点表示的数,能够利用算术平方根与被开方数大小之间的关系是解题关键.16.9【分析】根据新定义得出ab 的值再求和即可【详解】解:∵min{a}=min{b}=b ∴<ab <又∵a 和b 为两个连续正整数∴a=5b=4则a+b=9故答案为:9【点睛】本题主要考查了算术平方根和实数解析:9【分析】根据新定义得出a ,b 的值,再求和即可.【详解】解:∵,b}=b , ∴a ,b又∵a 和b 为两个连续正整数,∴a=5,b=4,则a+b=9.故答案为:9.【点睛】本题主要考查了算术平方根和实数的大小比较,正确得出a ,b 的值是解题关键. 17.2【分析】根据二次根式的性质化简即可【详解】2故答案为:2【点睛】此题考查二次根式的性质掌握二次根式的性质:是解答此题的关键解析:2【分析】根据二次根式的性质化简即可.【详解】2=2,故答案为:2【点睛】此题考查二次根式的性质.掌握二次根式的性质:2a a==,是解答此题的关键. 18.6【分析】根据二次根式有意义的条件可得关于x的不等式组进而可求出xy 然后把xy的值代入所求式子计算即可【详解】由题意得:所以x=2当x=2时y=3所以故答案为:6【点睛】本题考查了二次根式有意义的条解析:6【分析】根据二次根式有意义的条件可得关于x的不等式组,进而可求出x、y,然后把x、y的值代入所求式子计算即可.【详解】由题意得:2020xx-≥⎧⎨-≥⎩,所以x=2,当x=2时,y=3,所以236xy=⨯=.故答案为:6.【点睛】本题考查了二次根式有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键.19.3(答案不唯一)【分析】根据同类二次根式的概念列式计算即可【详解】解:∵二次根式与是同类二次根式∴可设则∴解得故答案为:3(答案不唯一)【点睛】本题考查的是同类二次根式的概念把几个二次根式化为最简二解析:3(答案不唯一)【分析】根据同类二次根式的概念列式计算即可.【详解】解:∵与-∴==∴2612a+=,解得3a =,故答案为:3(答案不唯一).【点睛】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.20.①④⑤【分析】根据题意表示大于x 的最小整数结合各项进行判断即可得出答案【详解】解:①根据表示大于x 的最小整数故正确;②应该等于故错误;③当x=05时故错误;④根据定义可知但不会超过x+1所以成立故正 解析:①④⑤【分析】根据题意[)x 表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①[)01=,根据[)x 表示大于x 的最小整数,故正确; ②33055⎡⎫-=⎪⎢⎣⎭,应该等于333215555⎡⎫-=-=⎪⎢⎣⎭,故错误; ③[)0x x -<,当x=0.5时,[)10.5=0.50x x -=->,故错误;④[)1x x x <≤+,根据定义可知[)x x <,但[)x 不会超过x+1,所以[)1x x x <≤+成立,故正确;⑤当x=0.8时,[)1-0.8=0.2x x -=,故正确.故答案为:①④⑤.【点睛】本题主要考查了对题意的理解,准确的理解题意是解决本题的关键. 三、解答题21.(1)a =±2,b =16,c =2,d =512;(2)6或2【分析】(1)结合题意,根据乘方、算数平方根、立方根的性质计算,即可得到答案;(2)结合(1)的结论,根据有理数混合运算以及算数平方根的性质计算,即可得到答案.【详解】(1)∵a 2=4,∴a =±2 b 4=,∴b =16∵c 3=8,∴c =23d 8=,∴d =512;(2)当a =2a 26==当a =-2a 22==∴a 的值为6或2. 【点睛】本题考查了乘方、算数平方根、立方根、有理数混合运算的知识;解题的关键是熟练掌握乘方、算数平方根、立方根的性质,从而完成求解.22.(1)x =6或x =﹣6;(2)x =﹣5【分析】(1)直接利用平方根的定义计算得出答案;(2)直接利用立方根的定义计算得出答案.【详解】解:(1)2x 2=72x 2=36,故x =±6,则x =6或x =﹣6;(2)(x +1)3+3=﹣61(x +1)3=﹣64,x +1=﹣4∴x =﹣5.【点睛】此题主要考查了立方根和平方根,正确掌握相关定义是解题关键.23.(1)12;(2)7-【分析】(1)利用新定义的运算得到618xy +,将xy 的值代入即可求解(2)先将x 的值代入求解,再利用新定义的运算求解即可【详解】 (1)2363x y -=618xy + 1xy =-∴原式=()618611812xy +=⨯-+=(2)当1x =-时,223321222x x x x --++--+-=4352----=()()()()42357-⨯---⨯-=-本题考查了新定义的计算,解题关键是能熟练运用新定义中的计算规律结合实数的运算法则求解.24.(1)2-2)2;(3)45x =±【分析】(1)本题涉及二次根式化简、绝对值、立方根3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)本题涉及算术平方根、零指数幂、负整数指数幂、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(3)系数化为1,再开平方求解即可.【详解】解:(1)21|-=)()31+2--=32-=2-(2011)()|13π---3131=+-+-2=-(3)系数化为1得:21625x =, 解得:45x =±. 【点睛】本题主要考查了二次根式、零指数幂、负整数指数幂、立方根等知识点,解决此类题目的关键是熟练掌握负整数指数幂、二次根式、立方根等考点的运算.25.【初步探究】(1)17,64-;(2)C ;【深入思考】(1)415⎛⎫- ⎪⎝⎭,72;(2)21n a -⎛⎫ ⎪⎝⎭;(3)4m n a +-【分析】初步探究:(1)根据新定义的运算法则进行计算,即可得到答案;(2)根据新定义的运算法则进行判断,即可得到答案;深入思考:(1)由题目中的运算法则转换成幂的形式,即可得到答案;(2)把幂的形式转换为一般形式即可;(3)先把代数式进行化简,然后写成幂的形式即可.解:【初步探究】(1)177777=÷÷=③; 111111()()()()()44444464⎛⎫-=-÷-÷-÷-÷-= ⎪⎭-⎝⑤; 故答案为:17;64-; (2)由题意: A 、任何非零数的圈2次方都等于1;正确;B 、对于任何大于等于2的整数c ,;正确; C 、7188888888888=÷÷÷÷÷÷÷÷=⑨, 619999999999=÷÷÷÷÷÷÷=⑧, ∴89≠⑨⑧,则C 错误;D 、负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;正确;故选:C .【深入思考】(1)4111111(5)(5)()()()()()()555555-=-⨯-⨯-⨯-⨯-⨯-=-⑥; 71122222222222⎛⎫=⨯⨯⨯⨯⨯⨯⨯⨯= ⎪⎝⎭⑨; 故答案为:41()5-;72;(2)由(1)可知,根据乘方的运算法则,则将一个非零有理数a 的圈n 次方写成幂的形式为:21n a -⎛⎫= ⎪⎝⎭; 故答案为:21n a -⎛⎫ ⎪⎝⎭;(3)=224m n m n a a a --+-•=; 故答案为:4m n a +-.【点睛】本题考查了新定义的运算法则,幂的乘方,有理数的乘法和除法运算,解题的关键是熟练掌握新定义的运算法则、乘方的运算法则进行解题.26.(12;(2)22【分析】(1)根据题意得出B表示的数,确定出m的值即可;(2)把m的值代入,然后根据绝对值的性质进行计算即可得解.【详解】(1)根据题意得:m==∴m;(2)当m=m m-+2=+===【点睛】本题考查了数轴,绝对值的性质,二次根式的加减,理解数轴上的数向右移动加是解题的关键.。

(常考题)人教版初中数学七年级数学下册第二单元《实数》检测卷(包含答案解析)

(常考题)人教版初中数学七年级数学下册第二单元《实数》检测卷(包含答案解析)

一、选择题1.如图,数轴上O 、A 、B 、C 四点,若数轴上有一点M ,点M 所表示的数为m ,且5m m c -=-,则关于M 点的位置,下列叙述正确的是( )A .在A 点左侧B .在线段AC 上 C .在线段OC 上D .在线段OB 上 2.若15的整数部分为a ,小数部分为b ,则a-b 的值为()A .615-B .156-C .815-D .158- 3.在实数3-,-3.14,0,π,364中,无理数有( )A .1个B .2个C .3个D .4个 4.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( )A .2B .4C .8D .6 5.下列说法中,正确的是 ( ) A .64的平方根是8B .16的平方根是4和-4C .()23-没有平方根D .4的平方根是2和-26.如图,在数轴上表示1,3的对应点分别为A B 、,点B 关于点A 的对称点为C ,则点C 表示的数为( )A .31-B .13-C .23-D .32- 7.已知n 是正整数,并且n -1<326+<n ,则n 的值为( )A .7B .8C .9D .108.下列各式中,正确的是( ) A .16=±4 B .±16=4 C .3273-=-D .2(4)4-=- 9.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 1310.下列命题中真命题的个数( )①无理数包括正无理数、零和负无理数;②经过直线外一点有且只有一条直线与已知直线平行;③和为180°的两个角互为邻补角;④49的算术平方根是7;⑤有理数和数轴上的点一一对应;⑥垂直于同一条直线的两条直线互相平行.A.4 B.3 C.2 D.1-的整数部分11.已知无理数m的小数部分与5的小数部分相同,它的整数部分与5π相同,则m为()π-A.5B.10C.51-D.512.若将2-,7,11分别表示在数轴上,其中能被如图所示的墨迹覆盖的数是()A.2-B.7C.11D.无法确定二、填空题13.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________;(2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.-+的点,并比较它②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及35们的大小.14.对于结论:当a+b=0时,a3+b3=0也成立.若将a看成a3的立方根,b看成是b3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两数也互为相反数”.(1)试举一个例子来判断上述结论的猜测是否成立?(2)若332x -与35x +的值互为相反数,求12x -的值. 15.求下列各式中x 的值(1)()328x -=(2)21(3)753x -= 16.把下列各数填入相应的集合里:﹣3,|﹣5|,+(13-),﹣3.14,0,﹣1.2121121112…,﹣(﹣2.5),34,﹣|45-|,3π 正数集合:{_____________…};整数集合:{_____________…};负分数集合:{_____________…};无理数集合:{_____________…}.17.计算:38642-+--.18.计算:31891224-++-+.19.比较大小:3- _______-2.(填“>”“=”或“<”)20.8的相反数是_____;16的平方根为_____;()34-的立方根是_____.三、解答题21.求下列各式中的x 的值(1)21(1)82x +=;(2)3(21)270x -+=22.计算(1)22234x +=;(2)38130125x +=(3)21|12|(2)16-----;(4)(x +2)2=25.23.如图,数轴上点A ,B ,C 所对应的实数分别为a ,b ,c ,试化简()323|-|b a c a b -++.24.观察下列各式:322111124==⨯⨯,33221129234+==⨯⨯,33322112336344++==⨯⨯,33332211234100454+++==⨯⨯;…回答下面的问题:(1)猜想:33333123(1)n n ++++-+=_________;(直接写出你的结果)(2)根据(1)中的结论,直接写出13+23+33+......+93+103的值是_________; (3)计算:213+223+233+......+293+303的值.25.(1)计算:|3|-.(2)求下列各式中x 的值:③22536x =;④3(1)64x --=.26.求满足下列条件的x 的值:(1)3(3)27x +=-;(2)2(1)218x -+=.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据A 、C 、O 、B 四点在数轴上的位置以及绝对值的定义即可得出答案.【详解】∵|m-5|表示点M 与5表示的点B 之间的距离,|m−c|表示点M 与数c 表示的点C 之间的距离,|m-5|=|m−c|,∴MB =MC .∴点M 在线段OB 上.故选:D .【点睛】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应的关系是解答此题的关键. 2.A解析:A【分析】先根据无理数的估算求出a 、b 的值,由此即可得.【详解】91516<<,<<34<<,3,3a b ∴==,)336a b ∴-=-=, 故选:A .【点睛】 本题考查了无理数的估算,熟练掌握估算方法是解题关键.3.B解析:B【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,进行判断即可.【详解】=4,所给数据中无理数有:π,共2个.故选:B .【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式.4.C解析:C【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8.【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,…∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8.故答案是:8.【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….5.D解析:D【分析】根据平方根的定义与性质,结合各选项进行判断即可.【详解】A、64的平方根是±8,故本选项错误;=,4的平方根是±2,故本选项错误;B4-=,9的平方根是±3,故本选项错误;C、()239D、4的平方根是±2,故本选项正确.故选:D.【点睛】本题考查了平方根的知识,如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.注意,一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.6.C解析:C【分析】首先根据表示1A、点B可以求出线段AB的长度,然后根据点B 和点C关于点A对称,求出AC的长度,最后可以计算出点C的坐标.【详解】解:∵表示1A、点B,∴AB−1,∵点B关于点A的对称点为点C,∴CA=AB,∴点C的坐标为:1−1)=故选:C.【点睛】本题考查的知识点为实数与数轴,解决本题的关键是求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较小的数,就用较大的数减去两点间的距离.7.C解析:C【分析】根据实数的大小关系比较,得到5<6,从而得到n的值.【详解】解:∵<5<6,∴8<<9,∴n=9.故选:C.【点睛】8.C解析:C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得.【详解】A4=,此项错误;B、4=±,此项错误;C3=-,此项正确;D4==,此项错误;故选:C.【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键.9.B解析:B【分析】首先确定A,B对应的数,再分别估算四个选项的数值进行判断即可.【详解】解:由数轴得,A点对应的数是1,B点对应的数是3,A.-2<<-1,不符合题意;B.2<3,符合题意;C、34,不符合题意;D. 34,不符合题意;故选:B【点睛】本题主要考查了对无理数的估算.10.D解析:D【分析】根据无理数、平行公理、邻补角、算术平方根、实数与数轴、平行线的判定逐个判断即可得.【详解】①无理数包括正无理数和负无理数,此命题是假命题;②经过直线外一点有且只有一条直线与已知直线平行,此命题是真命题;③和为180︒的两个角不一定互为邻补角,此命题是假命题;=,此命题是假命题;7⑤实数和数轴上的点一一对应,此命题是假命题;⑥在同一平面内,垂直于同一条直线的两条直线互相平行,此命题是假命题; 综上,真命题的个数是1个,故选:D .【点睛】本题考查了无理数、平行公理、邻补角、实数与数轴等知识点,熟练掌握各定义与公理是解题关键.11.C解析:C【分析】m 的整数部分与小数部分,进而可得答案.【详解】解:因为23, 3.14π≈,2,5π-的整数部分为1,所以无理数m 的整数部分是12,所以121m =+=.故选:C .【点睛】m 的整数部分与小数部分是解题的关键.12.B解析:B【分析】首先利用估算的方法分别得到间),从而可判断出被覆盖的数.【详解】 ∵221,23<<,34<<而墨迹覆盖的范围是1-3∴故选B.【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.二、填空题13.(1);(2)①见解析;②见解析【分析】(1)设正方形边长为a 根据正方形面积公式结合平方根的运算求出a 值则知结果;(2)①根据面积相等利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正解析:(1)2,2-;(2)①见解析;②见解析, 350.5-+<-【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,再把N 点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a ,∵a 2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b ,∴b 2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为-3+5,看图可知,表示-0.5的N 点在M 点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.14.(1)见解析;(2)【分析】(1)这个结论很简单可选择则2与﹣2互为相反数进行说明(2)利用(1)的结论列出方程(3﹣2x )+(x+5)=0从而解出x 的值代入可得出答案【详解】解:(1)答案不唯一如解析:(1)见解析;(2)123x =-【分析】(10=,则2与﹣2互为相反数进行说明.(2)利用(1)的结论,列出方程(3﹣2x )+(x +5)=0,从而解出x 的值,代入可得出答案.【详解】解:(10=,则2与﹣2互为相反数;(2)由已知,得(3﹣2x )+(x +5)=0,解得x =8,∴1=1=1﹣4=﹣3.【点睛】本题考查立方根的知识,难度一般,注意一个数的立方根有一个,它和这个数正负一致,本题的结论同学们可以记住,以后可直接运用.15.(1);(2)或【分析】(1)利用立方根的定义得到然后解一次方程即可;(2)先变形为然后利用平方根的定义得到的值【详解】(1)∵∴∴;(2)整理得:∴或∴或【点睛】本题考查了解一元一次方程平方根和立 解析:(1)4x =;(2)18x =或12x =-.【分析】(1)利用立方根的定义得到22x -=,然后解一次方程即可;(2)先变形为()23225x -=,然后利用平方根的定义得到x 的值.【详解】(1)∵()328x -=,∴22x -=,∴4x =;(2)21(3)753x -=,整理得:()23225x -=,∴315x -=或315x -=-,∴18x =或12x =-.【点睛】本题考查了解一元一次方程,平方根和立方根,熟练掌握各自的定义是解本题的关键. 16.|﹣5|﹣(﹣25)3π﹣3|﹣5|0+()﹣314﹣||﹣12121121112…3π【分析】先根据绝对值的定义及化简符号的法则去掉绝对值的符号及多重符号再根据正数整数负分数无理数的定义求解即可【解析:|﹣5|,﹣(﹣2.5),34,3π ﹣3,|﹣5|,0 +(13-),﹣3.14,﹣|45-| ﹣1.2121121112 (3)【分析】先根据绝对值的定义及化简符号的法则去掉绝对值的符号及多重符号,再根据正数、整数、负分数、无理数的定义求解即可.【详解】解:|﹣5|=5,+(13-)13=-,﹣(﹣2.5)=2.5,﹣|45-|45=-, 17.4【分析】原式利用平方根立方根定义及绝对值化简计算即可得到结果【详解】解:原式【点睛】本题考查了实数的运算熟练掌握平方根立方根定义是解本题的关键解析:4【分析】原式利用平方根、立方根定义及绝对值化简计算即可得到结果.【详解】解:原式282=-+-4=【点睛】本题考查了实数的运算,熟练掌握平方根、立方根定义是解本题的关键.18.【分析】先根据开方的意义绝对值的意义进行化简最后计算即可求解【详解】解:原式【点睛】本题考查了实数的混合运算理解开方的意义能正确去绝对值是解题关键解析:1【分析】先根据开方的意义,绝对值的意义进行化简,最后计算即可求解.【详解】解:原式123122=-+++⨯1=+ 【点睛】本题考查了实数的混合运算,理解开方的意义,能正确去绝对值是解题关键. 19.>【分析】两个负数比较绝对值大的反而小由此得到答案【详解】∵∴故答案为:>【点睛】此题考查实数的大小比较:负实数都比0小正实数都比0大两个负实数比较大小绝对值大的反而小解析:>【分析】两个负数比较绝对值大的反而小,由此得到答案.【详解】 ∵2<,∴2>-,故答案为:>.【点睛】此题考查实数的大小比较:负实数都比0小,正实数都比0大,两个负实数比较大小,绝对值大的反而小.20.【分析】分别根据算术平方根相反数平方根和立方根的概念直接计算即可求解【详解】解:=所以的相反数是;16的平方根为;的立方根是故答案为:;±4;-4【点睛】本题考查了算术平方根平方根和立方根的概念进行解析:- 4± 4-【分析】分别根据算术平方根、相反数、平方根和立方根的概念直接计算即可求解.【详解】-;16的平方根为4±;()34-的立方根是4-.故答案为:—±4;-4【点睛】本题考查了算术平方根、平方根和立方根的概念进行求解即可.注意一个正数有两个平方根,它们互为相反数,正的平方根即为它的算术平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0. 三、解答题21.(1)3x =或5x =-;(2)1x =-.【分析】(1)适当变形后,利用平方根的定义即可解方程;(2)适当变形后,利用立方根的定义即可解方程.【详解】解:(1)21(1)82x += 两边乘以2得,2(1)16x +=,开平方得,14x +=±,即14x +=或14x +=-,∴3x =或5x =-;(2)3(21)270x -+=移项得,3(21)27x -=-,开立方得,213x -=-,解得,1x =-.【点睛】本题考查的是利用平方根,立方根的含义解方程,掌握平方根与立方根的定义和等式的性质是解题的关键.22.(1)12x x ==-2)x=35;(3)12;(4)123,7x x ==-. 【分析】 (1)方程整理后,利用平方根定义开方即可求出解;(2)先求出x 3的值,再根据立方根的定义解答;(3)直接利用绝对值的性质、平方根定义和负指数幂的性质分别化简得出答案; (4)依据平方根的定义求解即可.【详解】(1)22234x +=,2x²=32,x²=18,,∴12x x ==-(2)38130125x +=, 327125x =-, x=35;(3)2|12|(2)--- =1-1144-=311442-= (4)(x +2)2=25,(x+2)=±5,x+2=5,x+2=-5,∴123,7x x ==-.【点睛】本题考查了利用平方根和立方根解方程,绝对值的性质和负指数幂的性质,掌握有关性质是解题的关键.23.2a-c【分析】根据数轴得到a<b<0<c ,由此得到a-c<0,a+b<0,依此化简各式,再合并同类项即可.【详解】由数轴得a<b<0<c ,∴a-c<0,a+b<0,∴|-|a c=-b-(c-a )+(a+b)=-b-c+a+a+b=2a-c.【点睛】此题考查数轴上的点表示数,利用数轴比较数的大小,绝对值的性质,立方根的化简,整式的加减法计算法则,解题的关键是依据数轴确定各式子的符号由此化简各式. 24.(1)221(1)4n n ⨯⨯+;(2)3025;(3)172125【分析】(1)根据题中所给各式可直接进行分析求解;(2)由(1)可直接代入求值即可;(3)根据(1)可直接进行求解.【详解】解:(1)根据题意可得出:33333123(1)n n ++++-+=221(1)4n n ⨯⨯+; (2)将n =10代入221(1)4n n ⨯⨯+, 原式221×1010130254=⨯+=(); (3)原式=22221130(301)20(201)44⨯⨯+-⨯⨯+=172125.【点睛】本题主要考查实数的运算,熟练掌握实数的运算是解题的关键.25.(1)①13;②9-2)③65x =±;④5x =. 【分析】①先计算根式,再加减计算.②先计算根式和绝对值,再加减计算.(2)③两边除以25,再开算术平方根.④先除以-1,再开立方根.【详解】(1)-+1322=-+13=|3|-1153=-+-9=-(2)③22536x =23625x =65x =± ④3(1)64x --=3(641)x -=-14x -=-5x =【点睛】本题考查根式的化简求值,关键在于化简. 26.(1)6x =-;(2)3x =-或5【分析】(1)根据立方根,即可解答; (2)根据平方根,即可解答.【详解】解:(1)3(3)27x +=-33x +=-6x =-;(2)2(1)218x -+=2(1)16x -=14x -=±∴3x =-或5.【点睛】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.。

北师大版八年级数学上册第二章 实数测试题题(含答案)

北师大版八年级数学上册第二章 实数测试题题(含答案)

北师大版八年级数学上册第二章实数测试题(含答案)一、选择题(共10小题,每小题3跟,共30分)1.下列式子正确的是()A.√9=±3B.√−19=−13C.√(−2)2=2D.√−93=﹣32.下列说法正确的是()A.1的平方根是1B.负数没有立方根C.√81的算术平方根是3D.(−3)2的平方根是−33.下列计算正确的是()A.√4=±2B.√36=6C.√(−6)2=﹣6D.﹣√−83=﹣24.下列四个实数中,是无理数的为()A.0B.√2C.﹣2D.。

125.下列根式中是最简二次根式的是()A.B.C.D.6.如图所示,在数轴上表示实数√10的点可能是()A.点M B.点N C.点P D.点Q 7.给出下列数-2.010010001…,0 ,3.14,237,π,0.333….其中无理数有()个A.1B.2C.3D.48.下列命题正确的是()A.同旁内角互补B.一组数据的方差越大,这组数据波动性越大C.若∠α=72°55′,则∠α的补角为107°45'D.对角线互相垂直的四边形是菱形9.下列运算正确的是()A.√10÷√2=5B.(t−3)2=t2−9C.(−2ab2)2=4a2b4D.x2⋅x=x210.下列运算正确的是()A .√4 =±2B .(−14)−2=﹣16C .x 6÷x 3=x 2D .(2x 2)3=8x 6二、填空题(共5小题,每小题3分,共15分)11.函数y =√2−x x−1的自变量x 的取值范围是 .12.如果 √a −1 有意义,那么a 的取值范围是 .13.一个正数的两个平方根分别是m −4和5,则m 的立方根是 . 14.请写出一个正整数m 的值使得√8m 也是整数,则m 的最小值是 . 15.49的平方根是 ;27的立方根是 .三、解答题(第16题10分,第17-18题每题7分,第19-21每题9分,第22-23每题12分,满分75分)16.在平面直角坐标系中,点P (- √3 ,-1)到原点的距离是多少?17.方老师想设计一个长方形纸片,已知长方形的长是 √140π cm ,宽是 √35π cm ,他又想设计一个面积与其相等的圆,请你帮助方老师求出圆的半径.18.已知2a -1的平方根是±3,3a +b -9的立方根是2,c 是 √8 的整数部分,求a +b +c 的平方根. 19.有一道练习题:对于式子2a-√a 2−4a +4先化简,后求值,其中a=√2。

(必考题)初中数学八年级数学上册第二单元《实数》检测卷(有答案解析)(3)

(必考题)初中数学八年级数学上册第二单元《实数》检测卷(有答案解析)(3)

一、选择题1.下列式子是最简二次根式的是( )A .2B .4C .12D .12 2.已知数据:3,4,5-,2π,0.其中无理数出现的频率为( )A .0.2B .0.4C .0.6D .0.8 3.若2x -+|y+1|=0,则x+y 的值为( )A .-3B .3C .-1D .1 4.下列运算中错误的是( )A .235+=B .236⨯=C .822÷=D .2 (3)3-= 5.式子1x -在实数范围内有意义,则x 的取值范围是( )A .0x ≥B .1x ≤C .1x ≥-D .1≥x 6.在数227,7,0,18,2(2),316,112π-,3.2020020002…(相邻的两个2之间依次多一个0)中,无理数有( )A .3个B .4个C .5个D .6个7.化简58得( ) A .5 B .10 C .54 D .5228.实数a ,b 在数轴上对应点的位置如图所示,则化简代数式2-a b a +的结果是( ).A .-bB .2aC .-2aD .-2a-b9.已知|a+b ﹣220a b +-=,则(a ﹣b )2017的值为( )A .1B .﹣1C .2015D .﹣2015 10.已知三角形的三边长a 、b 、c 满足2(2)a +3b -|c 7|=0,则三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .不能确定 11.2 )A 2B .面积为22C 2是2的算术平方根D 2212.最接近的整数是( )A .9B .8C .7D .6二、填空题13.面积为2的正方形的边长是__________.14.的整数部分是a .小数部分是b ,则2a b -=______.15.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.16.已知b>0=_____.17.已知3y =,则xy 的值为__________.18.已知3y x =+,当x 分别取1,2,3,,2020⋯时,所对应的y 值的总和是_________.19.与-a 可以等于___________.(写出一个即可)20.=_______. 三、解答题21.(1)计算:2(2)先化简,再求值:2111xy y x y x y ⎛⎫÷+ ⎪++-⎝⎭,其中x =,y = 22.计算:(1(2)已知﹣a|=0,求a 2﹣+2+b 2的值.23.(1)计算:;).(2)解方程:①4(x -1)2-9 =0;②8x 3+125=0.24.计算:(102021;(2)求x 值:2425x =.25.计算:(101122-⎛⎫- ⎪⎝⎭26.在数轴上点A为原点,点B表示的数为b,点C表示的数c,且已知b、c满足+b1=0,(1)直接写出b、c的值:b=______,c=_______;(2)若BC的中点为D,则点D表示的数为________;(3)若B、C两点同时以每秒1个单位长度的速度向左移动,则运动几秒时,恰好有AB=AC?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据最简二次根式的定义即可求出答案.【详解】解:A是最简二次根式,A正确,故符合题意;B=2不是最简二次根式,B错误,故不符合题意;C=C错误,故不符合题意;D不是最简二次根式,D错误,故不符合题意;2故选:A.【点睛】本题考查二次根式,解题的关键是正确理解最简二次根式的定义.2.C解析:C【分析】根据无理数的意义和频率意义求解.【详解】=π是无限不循环小数,解:∵2∴π是有理数,∴由30.6=可得无理数出现的频率为0.6,5故选C .【点睛】本题考查无理数和频率的综合应用,熟练掌握无理数和频率的意义是解题关键.解析:D【分析】先根据绝对值和算术平方根的非负性,求得x 、y 的值,最后求和即可.【详解】解:∵∴x-2=0,y+1=0∴x=2,y=-1∴x+y=2-1=1.故答案为D .【点睛】本题主要考查了算术平方根和绝对值的非负性,根据非负性求得x 、y 的值是解答本题的关键.4.A解析:A【分析】根据合并同类二次根式的法则对A 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断;根据二次根式的性质对D 进行判断.【详解】==2÷,故此项正确,不符合要求;D. 2 (3=,故此项正确,不符合要求;故选A .【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.5.D解析:D【分析】利用二次根式有意义的条件可得x-1≥0,再解即可.【详解】解:由题意得:x-1≥0,解得:x≥1,故选:D .【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】227,0,22=,这些数都是有理数;,=112π-,3.2020020002…(相邻的两个2之间依次多一个0),是无理数,无理数共有5个.故选:C .【点睛】本题考查了无理数的定义.解题的关键是掌握无理数的定义和各种类型.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 7.B解析:B【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可.【详解】4===, 故选:B .【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.8.A解析:A【分析】根据数轴得b<a<0,判断a+b<0,即可化简绝对值及二次根式,计算加减法即可得到答案.【详解】由数轴得b<a<0,∴a+b<0,∴a b +=-a-b+a=-b ,故选:A .【点睛】此题考查数轴与数的表示,利用数轴比较数的大小,化简绝对值,化简二次根式,依据数轴化简绝对值及二次根式是解题的关键.9.A解析:A【详解】解:由题意得122a b a b +=⎧⎨+=⎩解得:10a b =⎧⎨=⎩()()20172017101a b ∴-=-=故选A . 10.C解析:C【分析】根据非负数的性质可知a ,b ,c 的值,再由勾股定理的逆定理即可判断三角形为直角三角形.【详解】解:()220a c -+-=∴ 0a =,30b -= , 0c =∴a =,3b = ,c =又∵ 222279a c b +=+==∴该三角形为直角三角形故选C .【点睛】本题考查了非负数的性质及勾股定理的逆定理,解题的关键是解出a ,b ,c 的值,并正确运用勾股定理的逆定理.11.D解析:D【分析】根据无理数的定义,正方形面积的计算公式,算术平方根的定义,倒数的定义依次判断即可得到答案.【详解】解:A 是无理数是正确的,不符合题意;B 、面积为2是正确的,不符合题意;C是2的算术平方根是正确的,不符合题意;D的倒数是,原来的说法是错误的,符合题意.2故选:D.【点睛】此题考查无理数的定义,正方形面积的计算公式,算术平方根的定义,倒数的定义,熟记各定义是解题的关键.12.B解析:B【分析】<<,进而得出最接近的整数.直接得出89【详解】解:∵<<,∴89<<∵2=8.267.24∴8.故选B.【点睛】的取值范围是解题关键.二、填空题13.【分析】设正方形的边长为x根据题意得求解即可【详解】解:设正方形的边长为x由题意得∴x=(负值舍去)故答案为:【点睛】此题考查平方根的实际应用正确求一个数的平方根是解题的关键【分析】x=,求解即可.设正方形的边长为x,根据题意得22【详解】解:设正方形的边长为x,x=,由题意得22∴(负值舍去),【点睛】此题考查平方根的实际应用,正确求一个数的平方根是解题的关键.14.6-16【分析】先估算确定ab的值进而即可求解【详解】∵<<∴3<<4又∵a是的整数部分b是的小数部分∴a=3b=−3∴3-(−3)2=3-(10-6+9)=3-10+6-9=6-16故答案是:6-解析:-16【分析】,确定a ,b 的值,进而即可求解.【详解】 ∵∴3<4,又∵a b 的小数部分,∴a =3,b−3,∴2a b -=−3)2-16.故答案是:-16.【点睛】本题考查无理数的估算、完全平方公式,确定a 、b 的值是解决问题的关键. 15.5cm3【分析】先根据正方体的体积求出正方体的边长要使它锯成8块同样大小的小正方体木块只需要将正方体的每条棱长平均分为两份即可得到小正方体的棱长即可求出表面积【详解】解:∵一个正方体的木块的体积是∴ 解析:5cm 3.【分析】先根据正方体的体积求出正方体的边长,要使它锯成8块同样大小的小正方体木块,只需要将正方体的每条棱长平均分为两份即可,得到小正方体的棱长,即可求出表面积.【详解】解:∵一个正方体的木块的体积是3343cm ,∴(cm 3),要将它锯成8块同样大小的小正方体木块,则每个小正方体的棱长为7÷2=3.5(cm 3), ∴每个小正方体的表面积为6×3.52=73.5(cm 3).故答案为73.5cm 3.【点睛】本题考查了立方根.解题的关键是能够通过空间想象得出如何将正方体分成8块同样大小的小正方体木块.16.【分析】先由二次根式的被开方数为非负数得出≥0结合已知条件b >0根据有理数乘法法则得出a≤0再利用积的算术平方根的性质进行化简即可【详解】解:∵≥0b >0∴a≤0故答案为:【点睛】本题主要考查了二次解析:-【分析】先由二次根式的被开方数为非负数得出32a b -≥0,结合已知条件b >0,根据有理数乘法法则得出a≤0,再利用积的算术平方根的性质进行化简即可.【详解】解:∵32a b -≥0,b >0,∴a≤0,a =⋅=-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,难度适中,得出a≤0是解题的关键.17.6【分析】根据二次根式有意义的条件可得关于x 的不等式组进而可求出xy 然后把xy 的值代入所求式子计算即可【详解】由题意得:所以x=2当x=2时y=3所以故答案为:6【点睛】本题考查了二次根式有意义的条解析:6【分析】根据二次根式有意义的条件可得关于x 的不等式组,进而可求出x 、y ,然后把x 、y 的值代入所求式子计算即可.【详解】由题意得:2020x x -≥⎧⎨-≥⎩,所以x=2, 当x=2时,y=3,所以236xy =⨯=.故答案为:6.【点睛】本题考查了二次根式有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键.18.2022【分析】将原式化简为然后根据x 的不同取值求出y 的值最后把所有的y 值加起来即可【详解】解:当时当时当时∴当分别取时所有值的总和是:故答案是:2022【点睛】本题考查二次根式的化简解题的关键是掌解析:2022【分析】 将原式化简为23y x x =--+,然后根据x 的不同取值,求出y 的值,最后把所有的y 值加起来即可.【详解】解:3323y x x x x =+=+=--+,当2x ≥时,231y x x =--+=,当2x <时,2352y x x x =--+=-,当1x =时,523y =-=,∴当x 分别取1,2,3,,2020⋯时,所有y 值的总和是:312019320192022+⨯=+=. 故答案是:2022.【点睛】本题考查二次根式的化简,解题的关键是掌握二次根式的性质进行化简.19.3(答案不唯一)【分析】根据同类二次根式的概念列式计算即可【详解】解:∵二次根式与是同类二次根式∴可设则∴解得故答案为:3(答案不唯一)【点睛】本题考查的是同类二次根式的概念把几个二次根式化为最简二 解析:3(答案不唯一)【分析】根据同类二次根式的概念列式计算即可.【详解】解:∵与-∴==∴2612a +=,解得3a =,故答案为:3(答案不唯一).【点睛】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.20.【分析】设将等式的两边平方然后根据完全平方公式和二次根式的性质化简即可得出结论【详解】解:设由算术平方根的非负性可得t≥0则故答案为:【点睛】此题考查的是二次根式的化简掌握完全平方公式和二次根式的性【分析】t =,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t =,由算术平方根的非负性可得t≥0,则244t =+8=+8=+81)=+6=+21)=1t ∴=..【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.三、解答题21.(1)2;(2【分析】(1)先去绝对值,再利用二次根式的性质及立方根化简得出结果;(2)先将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【详解】解:(1)原式)12525=+⨯=; (2)原式()()()122x y x y x y y x y x xy+--=⨯=+;将x ,y =原式. 【点睛】本题考查了实数的运算及分式的化简求值,正确掌握相关运算法则是解题的关键.22.(1)2)4【分析】(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据﹣a|=0,可以得到a 、b 的值,然后将所求式子变形,再将a 、b 的值代入即可解答本题.【详解】解:(1=4-=4+(2)∵﹣a|=0, ∴a =0,b ﹣2=0,∴a,b=2,∴a2﹣a+2+b2=(a2+b2)2+22=02+4=0+4=4【点睛】本题考查了如二次根式的化简求值、非负数的性质、解答本题的关键是明确二次根式混合运算的计算方法;23.(1)①5;②6-;(2)52x=或12x=-;②52x=-.【分析】(1)①先把各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算;②根据平方差公式计算即可;(2)①将方程移项,再整理为2x a=的的形式,再根据平方根定义求解即可;②将方程移项,再整理为3x a=根据立方根定义求解即可;【详解】解:(1)解:①原式==5=.②原式1218=-6=-.(2)解:①原方程可化为29(1)4 x-=则312x-=或312x-=-,解得,52x=或12x=-.②原方程可化为3125 8x=-,解得,52x=-.【点睛】本题考查了平方根、立方根及实数的运算,主要考查学生的运算能力,题目比较好,解题关键是理解平方根、立方根的意义.24.(1)0;(2)52x =±. 【分析】(1)先求算术平方根、立方根、0指数,再计算;(2)方程两边除以4,再开方即可.【详解】解:(102021=4-3-1=0(2)2425x =,系数化为1得,2254x =, 开方得,52x =±. 【点睛】本题考查了算术平方根、立方根和0指数,解题关键是熟练的运用相关知识求值,并准确计算,注意:一个正数的平方根有两个.25.3--【分析】先分别计算负指数、二次根式化简、0指数和绝对值,再进行加减即可.【详解】解:原式(212=--- ,212=---+=3-【点睛】本题考查了负指数、二次根式化简、0指数和绝对值有关的实数计算,熟练按照法则进行计算是解题关键.26.(1)-1;7;(2)3;(3)运动3秒时,恰好有AB=AC .【分析】(1)根据非负数的和为零,可知绝对值和根号下的式子同时为零,可得答案; (2)根据中点坐标公式,可得答案;(3)设第x 秒时,AB=AC ,可得关于x 的方程,解方程,可得答案.【详解】解:(1)b 1+=0,∴b+1=0,c−7=0,∴b=−1,c=7,故答案为:−1,7.(2)由中点坐标公式,得173 2-+=,∴D点表示的数为3,故答案为:3.(3)设第x秒时,AB=AC,由题意,得x+1=7−x,解得x=3,∴第3秒时,恰好有AB=AC.【点睛】本题主要考查实数与数轴,难度一般,熟练掌握绝对值和二次根式的非负性以及数轴的基础知识是解题的关键.。

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)班级: 姓名: 座号: 成绩: 一、选择题(30分)1. 16的平方根是( )A .4B .±4C .8D .±8 2.下列各式正确的是( )A.√16=±4B.±√16=4C.√(−4)2=-4D.√−273=-3 3. 下列各数中,为无理数的是( ) A . π B .227C . 0D . -24. 下列各数中的无理数是( )A .0B .12 C 5 D 385. 下列说法正确的是( )A.所有无限小数都是无理数B.所有无理数都是无限小数C.有理数都是有限小数D.不是有限小数就不是有理数 6. 实数9的算术平方根为( ) A .3 B .3±C .3±D .3±7. 下列根式中不是最简二次根式的是 ( )A . √10B . √8C . √6D . √2 8. 下列变形正确的是( )A.√(−16)(−25)=√−16×√−25B.√1614=√16×√14=4×12C.√(−13)2=13 D.√252−242=25-24=19. 若最简二次根式√2x +1和√4x −3能合并,则x 的值为( )A.0.5B.1C.2D.2.510.若将 −√2,√6,−√3,√11 四个无理数表示在数轴上,其中能被如图所示的墨迹覆盖的数是( ) A . −√2B . √6C . −√3D . √11二、填空题(28分)11. √16的算术平方根是 12. 比较大小:4√3 7 13. 若已知0)5(32=-+-b a ,那么以a ,b为边长的直角三角形的第三边长为 .14. 请写出一个大于1且小于2的无理数: .15.若 x =1+√7,则 x 的整数部分是 ,小数部分是 . 16. 计算:√(−4)2-20220= .17.如图,M ,N ,P ,Q 是数轴上的四个点,这四个点中最适合表示 √7 的点是 .三、解答题18.计算:(4×4=16分) (1) ﹣2 (2)(3) )52)(53(-+ (4) 2)35(-19.再计算:(4×4=16分) (1)(2)202201233227)()(-+-⨯---π2328-+(3)(4).20.还是计算:(4×4=16分) (1) 20×(-1348)÷223 (2) 12(75+313-48)(3)27×3-18+82 (4)√(−3)2-(-1)2023-(π-1)0+121-⎪⎭⎫⎝⎛21. 阅读下列材料:(6分)∵√4<√7<√9,即 2<√7<3, ∴√7 的整数部分为 2,小数部分为 (√7−2). 请你观察上述的规律后试解下面的问题:如果 √5 的小数部分为 a ,√13 的小数部分为 b ,求 a +b −√5 的值.22. 阅读理解: 已知23a -2281a a -+的值.1232323(23)(23)a +===+--+23a ∴-=.2(2)3a ∴-=,即2443a a -+=.241a a ∴-=-.222812(4)12(1)11a a a a ∴-+=-+=⨯-+=-.请根据以上解答过程,解决如下问题:(8分) (1)计算:21=+ .(2)计算:21324310099+++++参考答案1 2 3 4 5 6 7 8 9 10 B DACBABCCB11. 2 12. < 13. 5或714. 2(3答案不唯一) 15. 3, 27-16. 3 17. P18. (1)1 (2) 25 (3)51- (4)31028- 19. (1)32 (2) 1 (3)221+ (4)2610+ 20. (1)102- (2)12 (3)4 (4)5 21. 513- 22. (1)12- (2) 9。

第二章实数单元测试卷 2024-2025学年北师大版八年级数学上册

第二章实数单元测试卷 2024-2025学年北师大版八年级数学上册

第二章实数单元测试卷一、选择题(每题 3分,共30分)1.下列式子中,是二次根式的是 ( ) A.√−3 B √9 C √3 D √a2.9的平方根是 ( ) A.3 B.±3 C.±√3 D.81 3 下列各数是无理数的是 ( ) A.-2 024 B.√20242 C.|-2024| D.√202434. 某同学利用科学计算器进行计算,其按键顺序如下:SHIFT 显示结果为( )A.32B.8C.4D.25.下列运算正确的是 ( ) A.3+√3=3√3 B.√2+√3=√5 C.√273÷√3=√3 D.√12−√102=√6−√56.估计 5−√13的值在 ( ) A.0和1之间 B.1和2之间 C.2和3之间 D.3和 4 之间7. 我国古代的《洛书》记载了世界上最早的幻方——“九宫格”.在如图所示的“九宫格”中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则M 代表的实数为( )A.6√2B.2√3 C √6 D. √68.一个等腰三角形,已知其底边长为 √5 分米,底边上的高 √15分米,那么它的面积为 ( ) A.45√52平方分米 B.45√3平方分米 C.45√32平方分米 D.45√5平方分米9.若x 是整数,且 √x −3⋅√5−x 有意义,则 √x −3⋅√5−x 的值是 ( ) A.0或1 B.±1 C.1或2 D.±210.如果一个三角形的三边长分别为 12,k,72,则化简 √k 2−12k +36−|2k −5|的结果是( )A.-k--1B. k+1C.3k-11D.11-3k+)二、填空题(每题3分,共15分)11.计算√−198−13=¯.12 √64₄的倒数是,|π−11|=¯,√5−3的相反数是.13. 手工制作手工课上老师拿走了一块大的正方形布料做教学材料,小红和小芸按照如图所示的方式各剪下一块面积为42cm²和28cm²的小正方形布料做沙包,那么剩下的两块长方形布料的面积和为.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的三斜求积公式, 即如果一个三角形的三边长分别为a,b,c,那么该三角形的面积. S=√14[a2b2−(a2+b2−c22)2],现已知△ABC的三边长分别为2, √6,3,则△ABC的面积为.15.若等式(√x3−2)x−1=1成立,则x的取值可以是.三、解答题(16, 17题每题8分, 19, 21题每题12分, 22题15分, 其余每题10分, 共75分)16.计算: (1)(√3+2)(√3−1)+|√3−2|;(2)√48÷√3−2√15×√30+(2√2+√3)2.17.解方程: 2√3x−√48=√3x+√12.18.先化简,再求值:(√2x+√y)(√2x−√y)−(√2x−√y)2,其中x=34,y=12.19.(1)若|2x−4|+(y+3)2+√x+y+z=0,求. x−2y+z的平方根;(2)如图,实数a,b,c是数轴上A,B,C三点所对应的数,化简√c33+|c−b|−√(a−b)2+|a+c|.20.已知7+√5和7−√5的小数部分分别为a,b,试求代数式. ab−a+4b−3的值.21. 高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足式子t=√ℎ(不考虑风速的影响).5(1)从50 m高空抛物,落地所需时间l₁是多少秒? 从100m高空抛物,落地所需时间l₂是多少秒?(2)t₂是t₁的多少倍?22. 一只蜗牛A从原点出发向数轴负方向运动,同时,另一只蜗牛B 也从原点出发向数轴正方向运动,3√2秒后,两蜗牛相距15个单位长度.已知蜗牛A,B的速度比是1:4.(速度单位:单位长度/秒)(1)求两只蜗牛的运动速度,并在如图所示的数轴上标出蜗牛A,B从原点出发运动3√2秒时的大致位置.(2)若蜗牛A,B从(1)中的位置同时向数轴负方向运动,几秒时,原点恰好处在两只蜗牛的正中间?(3)若蜗牛A,B从(1)中的位置同时向数轴负方向运动时,另一只蜗牛C也同时从蜗牛B 的位置出发向蜗牛A 运动,当遇到蜗牛A后,立即返回向蜗牛B运动,遇到蜗牛B后又立即返回向蜗牛A运动,如此往返,直到蜗牛B追上蜗牛A 时,蜗牛C立即停止运动.若蜗牛C一直以2√5单位长度/秒的速度匀速运动,那么蜗牛C从开始运动到停止运动,运动的路程是多少个单位长度?一、1. C 2. B 3. D 4. C 5. C 6. B 7. B 8. C 9. A10. D 【点拨】因为一个三角形的三边长分别 12₂, k 72所以 72−12<k <12+72,所以3<k<4,所以k-6<0,2k-5>0.所以 √k 2−12k +36−|2k −5|=√(k −6)2−|2k −5|=6-k-(2k-5)=11-3k.二、11. 3212 14₄;11-π;3 √5 13.2 √6 cm14.√954【点拨】因为△ABC 的三边长分别为2 √6₆,3所以 S ADC =√14{22×(√6)2−[22+(√6)2−322]2} =√954. 15.1或3 或27 【点拨】①当底数为1时,无论指数为何数,等式都成立.令 √x3−2=1,解得x=27.②当底数 为 一1,指数 为偶数时,等式成立. 由 √x3−2=−1,得x=3.当x=3时,x--1=2,则x=3符合题意. ③当指数为0,底数不为0时,等式成立. 令x-1=0,得x=1.将x=1代入 √x3−2,得 √13− 2=√33−2≠0,所以当x=1时,等式成立.综上可知,x 的值为1或3或27.三、16.【解】(1)原式 =(√3)2−√3+2√3−2+2− √3=3. (2)原式 =4−2√6+8+3+4√6=2√6+15. 17.【解】移项,得 2√3x −√3x =√48+√12,所以 √3x =4√3+2√3, 所以 √3x =6√3,解得x=6.18.【解】原式 =(√2x)2−(√y)2−(√2x −√y)2=2x −y −2x +2√2xy −y =2√2xy −2y.当 x =34,y =12时,原式 =2√2×34×12−2× 12=√3−1, 19.【解】(1)因为 |2x −4|+(y +3)2+√x +y +z =0,所以2x-4=0,y+3=0,x+y+z=0, 所以x=2,y=-3,z=1, 所以x-2y+z=2+6+1=9,所以x-2y+z的平方根为±3.(2)由数轴可知,b<a<0<c,|c|>|a|,所以c--b>0,a-b>0,a+c>0,所以√c33+|c−b|−√(a−b)2+|a+c| =c+c-b-(a-b)+a+c=c+c-b-a+b+a+c=3c.20.【解】因√5₅的整数部分为2所以7+√5=9+a,7−√5=4+b即a=−2+√5,b=3−√5.所以ab−a+4b−3=(−2+√5)×(3−√5)−(−2+√5)+4×(3−√5)−3=−11+5√5+2−√5+12−4√5−3=0.21. 【解】(1)当h=50m时, t1=√505=√10(s).当h=100m时, ι2=√1005=√20=2√5(s).(2)因为l2t1=√5√10=√2,所以l₂是l₁√2₂倍22.【解】(1)设蜗牛A的速度为x单位长度/秒,蜗牛B的速度为4x单位长度/秒.依题意,得3√2(x+4x)=15.解得x=√22.所以4x=2√2.所以蜗牛A的运动速度√2₂单位长度/秒,蜗牛的运动速度为√2₂单位长度/秒运动√2₂秒时,蜗牛A的位置在一3处,蜗牛B的置在12处.在图上标注略.(2)设t秒时原点恰好处在两只蜗牛的正中间.依题意,得12−2√2t=3+√22t.解得t=9√25.答:9√25秒时,原点恰好处在两只蜗牛的正中间.(3)设y秒时蜗牛B 追上蜗牛A,依题意,得2√2y−√22y=15,解得y=5√2.所以蜗牛C从开始运动到停止运动,运动的路程为2√5×5√2=10√10(个).单位长度.。

八年级数学上册 第二章 实数单元测试(含答案)

八年级数学上册 第二章 实数单元测试(含答案)

第二章实数单元测试一、选择题.1.下列各数0、4,,3、14,0、80108,π﹣|1﹣π|,0、1010010001…,,0、451452453454…,其中无理数的个数是()A.1B.2C.3D.42.下列各式中正确的是()A.=±4B. =4C. =3D. =53.对于来说()A.有平方根B.只有算术平方根C.没有平方根D.不能确定4.能与数轴上的点一一对应的是()A.整数B.有理数C.无理数D.实数5.的算术平方根是()A.4B.±4C.2D.±26.下列运算中,正确的是()A.=±3B. =2C.(﹣2)0=0D.2﹣1=7.下列说法正确的是()A.(﹣3)2的算术平方根是﹣3B.的平方根是±15.C.当x=2时,x=0D.是分数8.面积为11的正方形边长为x,则x的范围是()A.1<x<3B.3<x<4C.5<x<10D.10<x<1009.下列说法中正确的是()A.实数﹣a2是负数B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a10.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是()A.5:8B.3:4C.9:16D.1:2二.填空题.11.比较下列实数的大小(填上>或<符号=)①______12;②______0、5;③﹣+1______﹣.12.在数轴上表示﹣的点离原点的距离是______.13.已知|x|的算术平方根是8,那么x的立方根是______.14.若m、n互为相反数,则|m﹣5+n|=______.15.如果的平方根等于±2,那么a=______.16.计算+=______.17.点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______.18.若0<a<1,且,则=______.三、计算题.19.计算题:(1)+﹣(2)(3)+•(4)3+﹣4.四、求x值:20.求x值(1)2x2=8 (2)x2﹣=0 (3)(2x﹣1)3=﹣8 (4)340+512x3=﹣3.五、解答题21.一个正数a的平方根是3x﹣4与2﹣x,则a是多少?22.已知: =0,求实数a,b的值.六、阅读下列解题过程:23.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m, =,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.参考答案一、选择题.1.下列各数0、4,,3、14,0、80108,π﹣|1﹣π|,0、1010010001…,,0、451452453454…,其中无理数的个数是()A.1B.2C.3D.4【解答】解:下列各数0、4,,3、14,0、80108,π﹣|1﹣π|,0、1010010001…,,0、451452453454…,无理数是:,0、1010010001…,0、451452453454…,共3个.故选C.2.下列各式中正确的是()A.=±4B. =4C. =3D. =5【解答】解:A、,错误;B、,正确;C、负数没有算术平方根,错误;D、,错误;故选B.3.对于来说()A.有平方根B.只有算术平方根C.没有平方根D.不能确定【解答】解:由题意得:<0,故可得()没有平方根.故选C.4.能与数轴上的点一一对应的是()A.整数B.有理数C.无理数D.实数【解答】解:根据实数与数轴上的点是一一对应关系.5.的算术平方根是()A.4B.±4C.2D.±2【解答】解:∵(±2)2=4=,∴的算术平方根是2.故选C.6.下列运算中,正确的是()A.=±3B. =2C.(﹣2)0=0D.2﹣1=【解答】解:A、=3,故本选项错误;B、=﹣2,故本选项错误;C、(﹣2)0=1,故本选项错误;D、2﹣1=,故本选项正确.故选D.7.下列说法正确的是()A.(﹣3)2的算术平方根是﹣3B.的平方根是±15.C.当x=2时,x=0D.是分数【解答】解:A、(﹣3)2=9,9算术平方根是3,错误;B、=15,15的平方根是±,错误;C、当x=2时,x=0,正确;D、是无理数,错误,故选C8.面积为11的正方形边长为x,则x的范围是()A.1<x<3B.3<x<4C.5<x<10D.10<x<100【解答】解:∵正方形的面积为11,而3<x<4.故选B.9.下列说法中正确的是()A.实数﹣a2是负数B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a【解答】解:A、实数﹣a2是负数,a=0时不成立,故选项错误;B、,符合二次根式的意义,故选项正确,C、|﹣a|一定不一定是正数,a=0时不成立,故选项错误;D、实数﹣a的绝对值不一定是a,a为负数时不成立,故选项错误.故选B.10.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是()A.5:8B.3:4C.9:16D.1:2【解答】解:方法1:利用割补法可看出阴影部分的面积是10个小正方形组成的,所以阴影部分面积与正方形ABCD的面积比是10:16=5:8;方法2: =,()2:42=10:16=5:8.故选A.二.填空题.11.比较下列实数的大小(填上>或<符号=)①<12②>0、5③﹣+1 <﹣.【解答】解:① =140,122=144,∵140<144,∴<12.②∵﹣0、5=﹣1>1﹣1=0,∴>0、5.③∵﹣+1<﹣2+1=﹣1,∴﹣+1<﹣1,又∵﹣>﹣1,∴﹣+1<﹣.故答案为:<、>、<.12.在数轴上表示﹣的点离原点的距离是.【解答】解:数轴上表示﹣的点离原点的距离是|﹣|即;故答案为.13.已知|x|的算术平方根是8,那么x的立方根是4或﹣4 . 【解答】解:由题意得:|x|=64,即x=64或﹣64,则64或﹣64的立方根为4或﹣4.故答案为:4或﹣4.14.若m、n互为相反数,则|m﹣5+n|= 5 .【解答】解:m、n互为相反数,|m﹣5+n|=|﹣5|=5,故答案为:5.15.如果的平方根等于±2,那么a= 16 .【解答】解:∵(±2)2=4,∴=4,∴a=()2=16. 故答案为:16.16.计算+= 1 .【解答】解:原式=3π﹣9+10﹣3π =1.故答案为:1.17.点A 在数轴上表示的数为,点B 在数轴上表示的数为,则A ,B 两点的距离为 4 .【解答】解:∵A 在数轴上表示的数为,点B 在数轴上表示的数为,∴A,B 两点的距离是:|3﹣(﹣)|=4, 故答案为:4.18.若0<a <1,且,则= ﹣2 . 【解答】解:∵a+=6,∴(﹣)2=a ﹣2+=6﹣2=4, ∵0<a <1,∴0<<1,>1,∴﹣=﹣=﹣2.故答案为:﹣2.三、计算题.19.计算题:(1)+﹣(2)(3)+•(4)3+﹣4.【解答】解:(1)原式=2+4﹣=5;(2)原式==×=8×9=72;(3)原式=+3×3=;(4)原式=9+﹣2=8.四、求x值:20.求x值(1)2x2=8(2)x2﹣=0(3)(2x﹣1)3=﹣8(4)340+512x3=﹣3.【解答】解:(1)方程变形得:x2=4,开方得:x=2或x=﹣2;(2)方程变形得:x2=,开方得:x=±;(3)(2x﹣1)3=﹣8,开立方得:2x﹣1=﹣2,解得:x=﹣;(4)x3=﹣,开立方得:x=﹣.五、解答题21.一个正数a的平方根是3x﹣4与2﹣x,则a是多少?【解答】解:根据一个正数有两个平方根,它们互为相反数得:3x﹣4+2﹣x=0,即得:x=1,即3x﹣4=﹣1,则a=(﹣1)2=1.22.已知: =0,求实数a,b的值.【解答】解:由题意得,3a﹣b=0,a2﹣49=0,a+7≠0,解得,a=7,b=21.六、阅读下列解题过程:23.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m, =,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.【解答】解:根据,可得m=13,n=42,∵6+7=13,6×7=42,∴==.。

第二章 实数 单元检测卷(A卷)(考试版)

第二章 实数 单元检测卷(A卷)(考试版)

八年级数学上册第二单元检测卷(A卷)(考试时间:60分钟试卷满分:100分)一、选择题(本题共10小题,每小题3分,共30分)。

1.下列实数中,是无理数的是()A.3.14159265B.C.D.2.4的算术平方根是()A.B.±2C.2D.±3.8的立方根是()A.2B.﹣2C.±2D.24.下列根式中,最简二次根式是()A.B.C.D.5.如图,数轴上的点M表示的数可能是()A.﹣1B.C.πD.16.下列各等式中,正确的是()A.﹣=﹣3B.±=3C.()2=﹣3D.=±3 7.当x=﹣2时,二次根式的值为()A.1B.±1C.3D.±38.|2﹣|等于()A.2B.C.2﹣D.﹣2 9.若平行四边形的一边长为2,面积为4,则此边上的高介于()A.3与4之间B.4与5之间C.5与6之间D.6与7之间10.已知,则的平方根是()A.B.C.D.二、填空题(本题共6题,每小题3分,共18分)。

11.若在实数范围内有意义,则x的取值范围是.12.的平方根是;的算术平方根是;﹣125的立方根是.13.已知a、b为两个连续整数,且a<<b,则a+b=.14.若81x2=49,则x=.15.已知2a﹣1的平方根是±3,c是的整数部分,求a+c的值为.16.a是不为1的数,我们把称为a的差倒数,如:2的差倒数为;﹣1的差倒数是;已知a1=3,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…依此类推,则a=.真题三、解答题(本题共6题,17、18题6分,19-22题10分)。

17.计算:18.求下列各式中的x(1)(x+2)3+1=0 (2)9(3x﹣2)2=64.19.一个正方体的表面积是2400cm2.(1)求这个正方体的体积;(2)若该正方体表面积变为原来的一半,则体积变为原来的多少?20.已知:a、b、c是△ABC的三边长,化简.21.已知x﹣1的平方根为±2,3x+y﹣1的平方根为±4,求3x+5y的算术平方根.22.先阅读下列的解答过程,然后作答:形如的化简,只要我们找到两个数a、b使a+b=m,ab=n,这样()2+()2=m,•=,那么便有==±(a>b)例如:化简解:首先把化为,这里m=7,n=12;由于4+3=7,4×3=12,即()2+()2=7,•=,∴===2+由上述例题的方法化简:(1);(2);(3).。

八年级数学上册第二章《实数》综合测试卷-北师大版(含答案)

八年级数学上册第二章《实数》综合测试卷-北师大版(含答案)

八年级数学上册第二章《实数》综合测试卷-北师大版(含答案)一、选择题(每题3分,共30分)1.在π,227,-3,38,3.14,0这些数中,无理数的个数是( )A .1B .2C .3D .4 2.下列各式中,无意义的是( )A .- 3B .-3C .3-3 D .(-3)2 3.下列计算错误的是( )A .8=2 2B .2-1=12 C .16=±4 D .|3-2|=2-3 4.与a 3b 不是同类二次根式的是( )A .ab2 B .b a C .1abD .b a 35.下列计算错误的是( )A .62×3=6 6B .27÷3=3C .32-2=3 2D .(2-3)(2+3)=1 6.当1<x <4时,化简(1-x )2-(x -4)2结果是( )A .-3B .3C .2x -5D .57.已知y =(x -4)2-x +5,当x 分别取1,2,3,…,2 022时,所对应y 值的总和是( )A .2 034B .2 033C .2 032D .2 031 8.已知a +b =4,ab =2,则a -b 的值为( )A .2 2B .2 3C .±2 2D .±2 39.将4块尺寸完全相同的长方形薄木板(薄木板如图,厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个框内.已知薄木板的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .219+2B .19+4C .219+4D .19+210.正方形ABCD 在数轴上的位置如图所示,点A ,D 对应的数分别为1和0,若正方形ABCD 绕着顶点按顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2,则翻转2 022次后,数轴上数2 022对应的点是( ) A .D B .C C .B D .A 二、填空题(每题3分,共15分) 11.化简:32=________________,23=____________.12.计算3-64125的结果等于________________.13.已知a ,b 满足-()4+a 2=2 022||b -3,a 2+b 2的平方根为________. 14.对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b =a +ba -b ,如:3⊕2=3+23-2=5,那么12⊕4=________. 15.观察下列各式:①223=2+23;②338=3+38;③4415=4+415;….根据这些等式反映的规律,若x 2 022y =x +2 022y ,则x 2-y =________.三、解答题(16题10分,17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.实数与数轴上的点一一对应,无理数也可以在数轴上表示出来.(1)如图1,点A表示的数是________;(2)如图2,直线l垂直数轴于表示4的点,请用尺规作出表示1-13的点(不写作法,保留作图痕迹).17.计算:(1)18+|3-8|-(3)2;(2)2+32-3-(3+6)(3-6).18.解方程:(1)9(x+2)2-64=0;(2)12(x +3)3=108.19.求代数式a+a2-2a+1的值,其中a=-2 022.小亮的解法为:原式=a+(1-a)2=a+1-a=1.小芳的解法为:原式=a+(1-a)2=a+a-1=-4 045.(1)________的解法是错误的;(2)求代数式a+2a2-6a+9的值,其中a=-2 022.20.已知m-15的平方根是±2,33+4n=3,求m+n的算术平方根.21.已知:如图.化简:a2-(a+b)2+(b-c)2+(a+c)2.22.阅读下面的内容:我们规定:用[x]表示实数x的整数部分,用<x>表示实数x的小数部分,如[3.14]=3,<3.14>=0.14;[2]=1,而大家知道2是无理数,无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1来表示2的小数部分,即<2>=2-1.事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是2的小数部分,又例如:∵22<(7)2<32,即2<7<3,∴[7]=2,<7>=7-2.请解答以下问题:(1)[11]=________,<11>=________;(2)如果<5>=a,[41]=b,求a+b-5的平方根.23.(5+2)(5-2)=1,a·a=a(a≥0),(b+1)(b-1)=b-1(b≥0)……像这样,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如,5与5,2+1与2-1,23+3与23-3等都互为有理化因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1)化简:233;(2)计算:12-3+13-2;(3)比较 2 023- 2 022与 2 022- 2 021的大小,并说明理由.参考答案一、1. B 2. B 3. C 4. A 5. D 6. C 7. A 8. C 9. C 10. C 二、11. 42;63 12. -45 13. ±19 14. 2 15. 1 三、16. 解:(1) 5(2)如图,点P 即为所求.17. 解:(1)原式=32+3-22-3=2.(2)原式=(2+3)2(2-3)×(2+3)-(9-6)=4+43+3-3=4+43.18. 解:(1)因为9(x +2)2-64=0,所以9(x +2)2=64, 所以(x +2)2=649, 所以x +2=±83, 所以x =23或x =-143. (2)因为12(x +3)3=108, 所以(x +3)3=216, 所以x +3=6,所以x =3. 19. 解:(1)小芳(2)a +2a 2-6a +9=a +2(a -3)2, 因为a =-2 022,所以a -3<0,所以原式=a +2(3-a )=a +6-2a =6-a =6-(-2 022)=6+2 022= 2 028,即代数式的值是2 028. 20. 解:因为m -15的平方根是±2,所以m-15=(±2)2,所以m=19.因为33+4n=3,所以3+4n=27,所以n=6.所以m+n的算术平方根为m+n=19+6=5.21.解:根据数轴可得a<0,a+b<0,b-c<0,a+c<0,所以原式=|a|-|a+b|+|b-c|+|a+c|=-a+a+b+c-b-a-c=-a.22.解:(1)3;11-3(2)因为2<5<3,6<41<7,且<5>=a,[41]=b,所以a=5-2,b=6,所以a+b-5=5-2+6-5=4,所以a+b-5的平方根是±2.23.解:(1)233=2×333×3=239.(2)12-3+13-22+3(2-3)×(2+3)3+2(3-2)×(3+2)=2+3+3+2=2+23+2.(3) 2 023- 2 022< 2 022- 2 021.理由如下:因为 2 023- 2 022=12 023+ 2 022,2 022- 2 021=12 022+ 2 021,2 023+ 2 022> 2 022+ 2 021,所以 2 023- 2 022< 2 022- 2 021.。

第二章实数基础知识测试卷

第二章实数基础知识测试卷

《实数》基础知识测试卷 姓名一.选择题1.下列各数654.0 、23π、0)(π-、14.3、80108.0、ππ--1、 1010010001.0、4、544514524534.0,其中无理数的个数是 ( )(A) 1 ( B) 2 (C) 3 (D) 42.。

在下列各数 51515354.0、0、2.0 、π3、722、 1010010001.6、11131、27中,无理数的个数是( )(A) 1 ( B) 2 (C) 3 (D) 43.数 032032032.123是( )(A)有限小数 (B)无限不循环小数 (C)无理数 (D)有理数 4.边长为3的正方形的对角线的长是( )(A)整数 (B)分数 (C)有理数 (D)以上都不对 5.下列说法正确的是( )(A) 无限小数都是无理数 (B) 正数、负数统称有理数(C) 无理数的相反数还是无理数 (D) 无理数的倒数不一定是无理数 6.下列语句中,正确的是 ( )(A)无理数与无理数的和一定还是无理数 (B)无理数与有理数的和一定是无理数 (C)无理数与有理数的积一定仍是无理数 (D)无理数与有理数的商可能是又理数7.一个长方形的长与宽分别时6、3,它的对角线的长可能是 ( ) (A)整数 (B)分数 (C)有理数 (D)无理数8.下列说法中不正确的是 ( ) (A) -1的立方是1-,-1的平方是1 (B)两个有理之间必定存在着无数个无理数 (C)在1和2之间的有理数有无数个,但无理数却没有(D) 如果62=x ,则x 一定不是有理数9.两个正有理数之和 ( ) (A) 一定是无理数 (B) 一定是有理数 (C) 可能是有理数 (D) 不可能是自然数 10.36的平方根是 ( )(A) 6 (B) 6± (C) 6 (D) 6±11.下列语句中正确的是 ( )(A) 9-的平方根是3- (B)9的平方根是3 (C)9的算术平方根是3± (D) 9的算术平方根是312.下列语句中正确的是 ( ) (A) 任意算术平方根是正数 (B)只有正数才有算术平方根 (C)∵3的平方是9,∴9的平方根是3 (D) 1-是1的平方根13.下列运算中,错误的是 ( ) ①1251144251=,②4)4(2±=-,③22222-=-=-,④2095141251161=+=+(A) 1个 ( B) 2个 (C) 3个 (D) 4个 14.22)4(+x 的算术平方根是( )(A) 42)4(+x (B) 22)4(+x (C) 42+x (D)42+x15.2)5(-的平方根是( )(A) 5± (B)5 (C)5- (D) 5±16.下列说法正确的是 ( ) (A) 一个数的立方根有两个,它们互为相反数 (B) 一个数的立方根与这个数同号 (C) 如果一个数有立方根,那么它一定有平方根 (D) 一个数的立方根是非负数 17.下列运算正确的是 ( )(A)3311--=- (B)3333=- (C)3311-=- (D)3311-=-18下列计正确的是( ) (A)5.00125.03= (B)4364273=-(C)2118333= (D)5212583-=--19下列说法正确的是 ( ) (A)27的立方根是3±(B)6427-的立方根是43(C)2-的立方根是8-(D)8-的立方根是220.若51=+m m,则mm1-的平方根是 ( )(A) 2± (B)1± (C)1 (D)2 21.若a 、b 为实数,且471122++-+-=a aab ,则b a +的值为 ( )(A) 1± (B)4 (C)3或5 (D) 522.已知一个正方形的边长为a ,面积为S ,则 ( ) (A) a S = (B) S 的平方根是a (C) a 是S 的算术平方根 (D) S a ±=23.若9,422==b a ,且0<ab ,则b a -的值为 ( ) (A) 2- (B) 5± (C) 5 (D) 5-24.算术平方根等于它本身的数是 ( ) (A) 1和0 (B) 0 (C) 1 (D) 1±和0二.填空题:1.如右图:以直角三角形斜边为边的正方形面积是 ; 2.有理数包括整数和 ;有理数可以用 小数和 小数表示;3. 叫无理数;4.无限小数包括无限循环小数和 ,其中 是有理数, 是无理数;5.请你举出三个无理数: ;6.在棱长为5的正方体木箱中,想放入一根细长的铁丝,则这根铁丝的最大长度可能是 ; 7.已知032=++-b a ,则______)(2=-b a ;8.若01)1(2=++-b a ,则_____20052004=+ba ;9.当x 时,32-x 有意义; 10.当x 时,x-11有意义;11.9的算术平方根是 ,16的算术平方根是 ; 12.已知0113=-++b a ,则_______20042=--ba ;13.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ; 14.当10≤≤x 时,化简__________12=-+x x ;15.当________x 时,式子21--x x 有意义;16.计算:______1112=-+-+-x x x ;17.210-的算术平方根是 ,0)5(-的平方根是 ;18.若a a -=-2)2(2,则a 的取值范围是 ;F19.若06432=+++-++z y x x y x ,则____=yxz ;20.如果a 的平方根等于2±,那么_____=a ;21.已知x 、y 满足0242422=+-++y x y x ,则_______16522=+y x ;22.计算:_______10_________,112561363=-=--;23.3-是 的平方根,3-是 的立方根;24.20041-的立方根是 ,2004)1(-的立方根是 ; 25.若33-x 有意义,则x 的取值范围是 ; 26.若02733=+-x ,则______=x ;27.64的平方根是 ,64的立方根是 ; 28.81-的立方根是 ,125的立方根是 ;29.若某数的立方根是027.0-,则这个数的倒数是 ; 30.若a 、b 互为相反数,c 、d 互为负倒数,则______322=++cd b a ;三.解答题: 1.已知a a a =-+-20052004,求22004-a 的值;2.求x(1) 822=x (2) 126942-=x(3) 8)12(3-=-x(4) 35123403-=+x (5)24612⨯ (5))32)(32(-+(7)2)525(- (8))52)(53(-+(9)2224145- (10))81()64(-⨯-。

(典型题)初中数学八年级数学上册第二单元《实数》检测(有答案解析)

(典型题)初中数学八年级数学上册第二单元《实数》检测(有答案解析)

一、选择题1.16的平方根是( ) A .4B .4±C .2±D .-22.下列二次根式中,不能..与3合并的是( ) A .12 B .8 C .48 D .108 3.若2x -+|y+1|=0,则x+y 的值为( ) A .-3B .3C .-1D .1 4.下列各式计算正确的是( )A .235+=B .2236=()C .824+=D .236⨯=5.在数227,7,0,18,2(2),316,112π-,3.2020020002…(相邻的两个2之间依次多一个0)中,无理数有( ) A .3个 B .4个 C .5个 D .6个6.实数a ,b 在数轴上对应点的位置如图所示,则化简代数式2-a b a +的结果是( ).A .-bB .2aC .-2aD .-2a-b7.已知:23-,23+,则a 与b 的关系是( ) A .相等 B .互为相反数 C .互为倒数 D .平方相等 8.已知21a -与2a -+是一个正数的平方根,则这个正数的值是( ) A .9B .3C .1D .819.下列说法正确的是( )A 5B .55C .25 3D 5的点10.已知()253y x x =+-x 分别取1,2,3,…,2021时,所对应y 值的总和是( ) A .16162 B .16164C .16166D .1616811.在代数式13x -中,字母x 的取值范围是( ) A .x >1B .x ≥1C .x <1D .x 13≤12.下列各计算正确的是( )A .382-=B .842= C .235+= D .236⨯=二、填空题13.若最简二次根式41a -和135a b -+可以合并,则b a -=______. 14.化简题中,有四个同学的解法如下: ①33(52)5252(52)(52)-==-++-②3(52)(52)525252+-==-++③()()()()a b a b a b a b a b a b a b ---==-++-④()()a b a b a b a b a b a b-+-==-++他们的解法,正确的是___________.(填序号) 15.83=______. 16.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________.17.比较大小:22-_____________1(填“>”、“=”或“<”).18.已知实数a 、b 在数轴上的位置如图所示,化简2()a b a b -++=_____________19.比较3、4 、350的大小_______________.(用“<”连接)20.如图所示,在数轴上点A 所表示的数为a ,则a 的值为____________________.三、解答题21.化简求值:21a,b =,求1a bb a++的值.22.已知2a =2b =-a 2+b 2﹣3ab 的值. 23.计算:(1(2)已知﹣a|=0,求a 2﹣+2+b 2的值.24.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数. 25.(1)判断下列各式是否成立?并选择其中一个说明理由;=== (2)用字母表示(1)中式子的规律,并给出证明. 26.计算下列各题:(1(2)()(3)(2【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先计算16的算术平方根a ,再计算a 的平方根即可. 【详解】 ∵4=,∴4的平方根为±2. 故选C. 【点睛】本题考查了实数的算术平方根,平方根,准确掌握这两个基本概念是解题的关键.2.B【分析】并的二次根式.【详解】解:AB被开方数不相同,不是同类二次根式,不能进行合并,故本选项正确;C被开方数相同,是同类二次根式,能进行合并,故本选项错误;D故选B.【点睛】本题主要考查二次根式的化简,同类二次根式的定义,关键在于熟练掌握同类二次根式的定义,正确的对每一选项中的二次根式进行化简.3.D解析:D【分析】先根据绝对值和算术平方根的非负性,求得x、y的值,最后求和即可.【详解】解:∵∴x-2=0,y+1=0∴x=2,y=-1∴x+y=2-1=1.故答案为D.【点睛】本题主要考查了算术平方根和绝对值的非负性,根据非负性求得x、y的值是解答本题的关键.4.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB、错误,212(;=C==D==故选:D.本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型.5.C解析:C 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】227,0,22=,这些数都是有理数;,=112π-,3.2020020002…(相邻的两个2之间依次多一个0),是无理数,无理数共有5个. 故选:C .【点睛】本题考查了无理数的定义.解题的关键是掌握无理数的定义和各种类型.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.A解析:A 【分析】根据数轴得b<a<0,判断a+b<0,即可化简绝对值及二次根式,计算加减法即可得到答案. 【详解】 由数轴得b<a<0, ∴a+b<0,∴a b + =-a-b+a =-b , 故选:A . 【点睛】此题考查数轴与数的表示,利用数轴比较数的大小,化简绝对值,化简二次根式,依据数轴化简绝对值及二次根式是解题的关键.7.C解析:C 【解析】 因为1a b ⨯==,故选C.8.A解析:A 【分析】首先根据正数有两个平方根,它们互为相反数可得2120a a --+=,解方程可得1a =-,然后再求出这个正数即可. 【详解】解:由题意得:2120a a --+=, 解得:1a =-,213a -=-,23a -+=, 则这个正数为9. 故选:A . 【点睛】此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数.9.C解析:C 【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案. 【详解】解:A A 错误;B 、5的平方根是B 错误;C ∴23,故C 正确;D D 错误; 故选:C . 【点睛】本题考查了实数的意义、实数与数轴的关系利用被开方数越大算术平方根越大是解题关键.10.A解析:A 【分析】根据二次根式的性质和绝对值的性质尽心化简,然后代入求值即可求出答案案. 【详解】对于5y x =+-当3x ≤时,5322y x x x =++-=+,∴当1x =时,4y =;当2x =时,6y =;当3x =时,8y =; 当3x >时,538y x x=+-+=∴y值的总和为:46888=4582019=16162y=++++⋅⋅⋅⋅⋅⋅+++⨯;故选A.【点睛】本题考查了二次根式,关键是熟练运用二次根式的性质,属于基础题型.11.B解析:B【分析】根据二次根式有意义的条件求解即可;【详解】由题意得,x﹣1≥0,解得x≥1,故选:B.【点睛】本题考查了二次根式有意义的条件,正确掌握知识点是解题的关键;12.D解析:D【分析】分别计算即可.【详解】解:2=-,原式错误,不符合题意;=≠D. =故选:D.【点睛】本题考查了二次根式和立方根的运算,解题关键是熟练掌握二次根式和立方根的运算法则,准确进行计算.二、填空题13.【分析】由最简二次根式的定义以及同类二次根式的定义先求出ab的值然后进行计算即可得到答案【详解】解:∵最简二次根式和可以合并∴和是同类二次根式∴∴∴;故答案为:【点睛】本题考查了最简二次根式的定义以解析:1 9【分析】由最简二次根式的定义,以及同类二次根式的定义,先求出a 、b 的值,然后进行计算,即可得到答案. 【详解】解:∵和∴和∴124135a ab -=⎧⎨-=+⎩,∴32a b =⎧⎨=⎩, ∴2139ba --==; 故答案为:19. 【点睛】本题考查了最简二次根式的定义,以及同类二次根式的定义,解题的关键是熟记所学的定义,正确求出a 、b 的值.14.①②④【分析】对于分子分母都乘以分母的有理化因式计算约分后可判断①对于把分子化为再分解因式约分后可判断②对于当时分子分母都乘以分母的有理化因式计算约分后可判断③对于把分子化为再分解因式约分后可判断④解析:①②④ 【分析】-,计算约分后可判断①,对于,把分子化为22-,再分解因式,约分后可判断②,对于0≠,计算约分后可判断③,把分子化为22-,再分解因式,约分后可判断④,从而可得答案. 【详解】()()22333====-故①符合题意;22-===,故②符合题意;≠时,()a ba b-===-故③不符合题意;22-===故④符合题意;故答案为:①②④.【点睛】本题考查的是分母有理化,掌握平方差公式的应用,分母有理化的方法是解题的关键.15.【分析】根据二次根式的性质进行化简【详解】解:故答案为:【点睛】本题考查了二次根式的性质与化简解题的关键是掌握二次根式的性质和分母有理化【分析】根据二次根式的性质进行化简.【详解】3=..【点睛】本题考查了二次根式的性质与化简.解题的关键是掌握二次根式的性质和分母有理化.16.10202550【分析】①由魔术数的定义分别对345三个数进行判断即可得到5为魔术数;②由题意根据魔术数的定义通过分析即可得到答案【详解】解:根据题意①把3写在1的右边得13由于13不能被3整除故3解析:10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”;②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据题意,①把3写在1的右边,得13,由于13不能被3整除,故3不是魔术数; 把4写在1的右边,得14,由于14不能被4整除,故4不是魔术数; 把5写在1的右边,得15,写在2的右边得25,…… 由于个位上是5的数都能被5整除,故5是魔术数; 故答案为:5;②根据题意,这个两位数的“魔术数”为x ,则1001001n x nx x +=+, ∴100nx为整数, ∵n 为整数,∴100x为整数, ∴x 的可能值为:10、20、25、50;故答案为:10、20、25、50. 【点睛】本题考查了新定义的应用和整数的特点,解题的关键是熟练掌握新定义进行解题.17.【分析】先估算出无理数的大小再进行比较即可【详解】解:∵1<2<4∴1<<2∴0<<1故答案为:<【点睛】此题考查实数的大小比较关键是估算出无理数的大小 解析:<【分析】的大小,再进行比较即可. 【详解】 解:∵1<2<4, ∴1<2, ∴0<21, 故答案为:< 【点睛】的大小.18.【分析】先根据数轴的定义可得从而可得再化简绝对值和二次根式然后计算整式的加减即可得【详解】由数轴的定义得:则因此故答案为:【点睛】本题考查了数轴绝对值二次根式整式的加减熟练掌握数轴的定义是解题关键 解析:2a -【分析】先根据数轴的定义可得0a b <<,从而可得0,0a b a b -<+<,再化简绝对值和二次根式,然后计算整式的加减即可得.【详解】由数轴的定义得:0a b <<,则0,0a b a b -<+<,因此()a b b a a b -=-+--,b a a b =---,2a =-,故答案为:2a -.【点睛】本题考查了数轴、绝对值、二次根式、整式的加减,熟练掌握数轴的定义是解题关键. 19.3<<4;【分析】先估算出的范围即可求出答案【详解】∵∴故答案为:【点睛】本题考查了估算无理数的大小能估算出的大小是解此题的关键解析:34;【分析】【详解】 ∵3=4= ∴34<<.故答案为:34<<.【点睛】20.【分析】根据图示得到圆的半径为所以A 点表示的数为【详解】∵圆的半径为∴A 点表示的数为故答案为【点睛】此题主要考查了实数与数轴之间的对应关系关键是要判断出圆的半径然后根据实数计算法则求解即可解析:1-【分析】A 点表示的数为1--【详解】∵圆的半径为,∴A 点表示的数为1-故答案为1-【点睛】此题主要考查了实数与数轴之间的对应关系,关键是要判断出圆的半径,然后根据实数计算法则求解即可.三、解答题21.()2a b ab ab +-;7【分析】 将a 、b 进行分母有理化,然后求出+a b 、ab 的值,对代数式变形,采用整体代入的方法求值【详解】 ∵21a,b =,∴1a ==,1b ==, ∴)()21211ab =+=,11a b +=++= ∴1a b b a++ 221a b ab +=+ 22a b ab ab++= ()2a b ab ab +-=(2171-==. 故1a b b a++的值为7. 【点睛】本题考察二次根式的有理化,根据二次根式的乘除法则进行二次根式有理化,代数式求值的问题可以先对代数式进行变形,采用整体代入的方法,可使运算简便22.11【分析】利用二次根式的运算法则首先计算出a+b ,ab 的值,然后利用配方法对多项式进行变形整理,再代入,进行计算即可.【详解】解:∵2a =+2b =-∴a +b =4,(2431ab =+=-=,∴a 2+b 2﹣3ab =(a +b )2﹣5ab =42﹣5×1=11.【点睛】本题考查二次根式的混合运算,掌握运算顺序和计算法则并能灵活应用完全平方公式进行计算是解题关键.23.(1)2)4【分析】(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据﹣a|=0,可以得到a、b的值,然后将所求式子变形,再将a、b 的值代入即可解答本题.【详解】解:(1=4-=4+(2)∵﹣a|=0,∴a=0,b﹣2=0,∴a,b=2,∴a2﹣a+2+b2=(a2+b2)2+22=02+4=0+4=4【点睛】本题考查了如二次根式的化简求值、非负数的性质、解答本题的关键是明确二次根式混合运算的计算方法;24.(1)8888;(2)1134 .【分析】(1)根据进步数的定义分别求出四位正整数中的最大“进步数”与最小“进步数”即可得解;(2)根据进步数的定义可以推得所求数为1114、1124、1134、1144中的某一个,再根据这个四位正整数能被7整除逐一对4个数进行验证可以得解.【详解】解:(1)由进步数的定义可知四位正整数中最大的“进步数”应该是9999,又最高位不能为0,所以四位正整数中的千位最小为0,所以四位正整数中最小的“进步数”应该是1111,∴9999-1111=8888,∴四位正整数中的最大的“进步数”与最小的“进步数”的差为8888;(2)由已知可得所求数的千位为1,十位为1-4中的某个数字,∴所求数为1114、1124、1134、1144中的某一个,∵这个四位正整数能被7整除,∴由1114=159×7+1,1124=160×7+4,1134=162×7,1144=163×7+3可知所求数为1134 .【点睛】本题考查新定义下的实数规律探索,由材料归纳出新定义并应用于具体问题求解是解题关键.25.(1)成立,理由见解析;(21)n =>,理由见解析 【分析】(1)通过二次根式的性质与化简即可判断;(2)类比上述式子,即可写出几个同类型的式子,然后根据已知的几个式子即可用含n 的式子将规律表示出来,再证明即可求解.【详解】(1)成立,===;(2)∵====,1)n =>,1)n ==>. 【点睛】本题主要考查了列代数式,二次根式的性质与化简,正确得出数字之间变化规律是解题关键.26.(1)0;(2)【分析】(1)根据平方根、立方根的意义进行计算即可;(2)利用平方差公式和实数的计算方法进行计算即可.【详解】解:(1=2+(﹣5)+3=0;(2)()(3)(2=32)2﹣2=9﹣﹣2=【点睛】本题考查了包含算术平方根、立方根、平方差公式的实数计算,熟练运用法则和公式是解决问题关键.。

(必考题)初中数学八年级数学上册第二单元《实数》检测卷(含答案解析)(2)

(必考题)初中数学八年级数学上册第二单元《实数》检测卷(含答案解析)(2)

一、选择题1.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为( )A .8B .4C .12D .142.2x -,则x+y 的值为( ) A .-3 B .3 C .-1 D .1 3.下列各式计算正确的是( )A 31-B 38= ±2C 4= ±2D .94.下列计算正确的是( )A 235+=B 623=C 23(3)86-=-D 321-=5.已知实数x 、y 满足|x -8y -0,则以x 、y 的值为两边长的等腰三角形周长是( ) A .20或16 B .20C .16D .186.计算))202020203232⨯的结果为( )A .-1B .0C .1D .±17.下列计算中,正确的是( ) A .((22253532=-=B .(3710101010= C .a ba c a bc =D .(3232321=-=8.对于两个不相等的有理数a ,b ,我们规定符号{},max a b 表示a ,b 两数中较大的数,例如{}2,42max -=.则方程{},34max x x x -=+的解为( ) A .-1B .-2C .-1或-2D .1或29.下列计算正确的是( ). A .()()22a b a b b a +-=- B .224x yxy +=C .()235a a -=-D .81111911=10.已知:23-,23+,则a 与b 的关系是( ) A .相等B .互为相反数C .互为倒数D .平方相等11.下列叙述中,①1的立方根为±1;②4的平方根为±2;③-8立方根是-2;④116的算术平方根为14.正确的是( ) A .①②③B .①②④C .①③④D .②③④12.已知﹣1<a <0,化简2211()4()4a a a a+---+的结果为( ) A .2aB .﹣2aC .2a-D .2a二、填空题13.计算:12466-的结果是_____.14.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是_____.若点B 表示 3.14-,则点B 在点A 的______边(填“左”或“右”).15.用“<”连接2的平方根和2的立方根_________.16.13的整数部分为a ,13的小数部分为b ,那么2(2)b a +-的值是________. 17.若[x ]表示实数x 的整数部分,例如:[3.5]=3,则[17]=___. 18.如图,已知圆柱体底面圆的半径为aπ,高为2,AB CD 、分别是两底面的直径,,AD BC 是母线.若一只蚂蚁从A 点出发,从侧面爬行到C 点,则蚂蚁爬行的最短路线的长度是_____.(结果保留根式)19.2(1)10a b -+=,则20132014a b +=___________. 20.求220191222++++的值,可令22019S 1222=++++,则23202022222S =++++,因此2020221S S -=-.仿照以上推理,计算出23201911112222++++的值为______.三、解答题21.计算:348273(33)13⎛--÷++- ⎪⎝⎭. 22.计算:(1)(π﹣2020)0﹣233+-84+|1﹣3|. (2)12273+﹣()()3-232+.23.张老师在与同学进行“蚂蚁怎样爬路程最短”的课题研究时设计了以下两个问题,请你根据下列所给的条件分别求出蚂蚁需要爬行的最短路程的长.(1)如图①,正方体的棱长为5cm ,一只蚂蚁欲从正方体底面上的点A 处沿着正方体表面爬到点1C 处;(2)如图②,正四棱柱的底面边长为5cm ,棱长为6cm ,一只蚂蚁欲从正四棱柱底面上的点A 处沿着棱柱表面爬到1C 处.24.计算:(116(8)2-÷;(2)2112(4)1223⎛⎫-÷--⨯-⎪⎝⎭. 25.计算:20116(2019)|52732π-⎛⎫--- ⎪⎝⎭. 26.38642--.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据2ndf 键是功能转换键列算式,然后解答即可. 【详解】1==.4故选:D.【点睛】本题考查了利用计算器进行数的开方,是基础题,要注意2ndf键的功能.2.D解析:D【分析】先根据绝对值和算术平方根的非负性,求得x、y的值,最后求和即可.【详解】解:∵∴x-2=0,y+1=0∴x=2,y=-1∴x+y=2-1=1.故答案为D.【点睛】本题主要考查了算术平方根和绝对值的非负性,根据非负性求得x、y的值是解答本题的关键.3.A解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1= 2= 2,,故只有A计算正确;故选:A.【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.4.B解析:B【分析】根据二次根式加减运算和二次根式的性质逐项排除即可.【详解】与A选项错误;===B选项正确;321=-=,所以C 选项错误;与D 选项错误;故选答案为B . 【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.5.B解析:B 【分析】根据绝对值与二次根式的非负性即可求出x 与y 的值.由于没有说明x 与y 是腰长还是底边长,故需要分类讨论. 【详解】由题意可知:x-4=0,y-8=0, ∴x=4,y=8,当腰长为4,底边长为8时, ∵4+4=8, ∴不能围成三角形, 当腰长为8,底边长为4时, ∵4+8>8, ∴能围成三角形, ∴周长为:8+8+4=20, 故选:B . 【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.6.C解析:C 【分析】利用二次根式的运算法则进行计算,即可得出结论. 【详解】解:))2020202022⨯202022)⎡⎤⎦⎣=2020222⎡⎤=-⎣⎦2020(1)=-1=.故选:C .【点睛】本题考查了二次根式的运算,熟练掌握二次根式的运算法则,并能结合乘法公式进行简便运算是解答此题的关键.7.D解析:D 【分析】根据二次根式的性质逐一判断即可; 【详解】2228=-=-A 错误;=B 错误;=a C 错误;321=-=,故D 正确;故答案选D . 【点睛】本题主要考查了二次根式的性质,结合平方差公式和完全平方公式计算是解题的关键.8.A解析:A 【分析】利用题中的新定义化简已知方程,求解即可. 【详解】①当0x >时,即x x >-,此时max }{34x x x x -==+,, 解得2x =-,不符合题意舍去.②当0x <时,即x x <-,此时max }{34x x x x -=-=+,, 解得1x =-且符合题意. 故选:A . 【点睛】此题考查了新定义下实数的运算以及解一元一次方程,运用分类讨论的思想是解答本题的关键.9.D解析:D 【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案. 【详解】A.原式=a 2−b 2,故A 错误;B.2x 与2y 不是同类项,不能合并,故B 错误;C.原式=a 6,故C 错误;D.原式=D 正确; 故选:D . 【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.10.C解析:C 【解析】 因为1a b ⨯==,故选C. 11.D解析:D 【分析】分别求出每个数的立方根、平方根和算术平方根,再判断即可. 【详解】∵1的立方根为1,∴①错误; ∵4的平方根为±2,∴②正确; ∵−8的立方根是−2,∴③正确;∵116的算术平方根是14,∴④正确; 正确的是②③④, 故选:D . 【点睛】本题考查了平方根、算术平方根和立方根.解题的关键是掌握平方根、算术平方根和立方根的定义.第II 卷(非选择题)请点击修改第II 卷的文字说明12.A解析:A 【分析】先把被开方数化为完全平方式的形式,再根据a 的取值范围去根号再合并即可. 【详解】===∵-1<a <0,∴2110a a a a--=>,10a a +<∴原式1111()2a a a a a a a a a⎡⎤=---+=-++=⎢⎥⎣⎦. 故选:A . 【点睛】本题考查了二次根式的化简,能够熟练运用完全平方公式对被开方数进行变形,是解答此题的关键.二、填空题13.【分析】化简成最简二次根式后合并同类二次根式即可【详解】==2-=故答案为:【点睛】本题考查了最简二次根式同类二次根式熟练进行最简二次根式的化简是解题的关键. 【分析】化简成最简二次根式,后合并同类二次根式即可. 【详解】=6,故答案为. 【点睛】本题考查了最简二次根式,同类二次根式,熟练进行最简二次根式的化简是解题的关键.14.-π右【分析】因为圆从原点沿数轴向左滚动一周可知OA=π再根据数轴的特点及π的值即可解答【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周∴OA 之间的距离为圆的周长=πA 点在原点的左边∴A解析:-π 右 【分析】因为圆从原点沿数轴向左滚动一周,可知OA=π,再根据数轴的特点及π的值即可解答. 【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周, ∴OA 之间的距离为圆的周长=π,A 点在原点的左边. ∴A 点对应的数是-π. ∵π>3.14, ∴-π<-3.14.故A 点表示的数是-π.若点B 表示-3.14,则点B 在点A 的右边. 故答案为:-π,右. 【点睛】本题考查数轴、圆的周长公式、利用数轴比较数的大小.需记住两个负数比较大小,绝对值大的反而小.15.<<【分析】先表示出2的平方根与立方根再根据有理数的大小比较可得答案【详解】解:2的平方根为±2的立方根为∴<<故答案为:<<【点睛】本题主要考查立方根解题的关键是掌握平方根算术平方根与立方根的定义解析: 【分析】先表示出2的平方根与立方根,再根据有理数的大小比较可得答案. 【详解】解:2的平方根为,2 ∴,故答案为:. 【点睛】本题主要考查立方根,解题的关键是掌握平方根、算术平方根与立方根的定义.16.【分析】直接利用的取值范围得出ab 的值进而求出答案【详解】解:故答案为:【点睛】本题主要考查了估算无理数的大小正确得出ab 的值是解题关键解析:11-【分析】a 、b 的值,进而求出答案. 【详解】 解:3134<<,3a ∴=,3b ∴=-, ()))22223231311b a ∴+-=+-=-=-故答案为:11- 【点睛】本题主要考查了估算无理数的大小,正确得出a ,b 的值是解题关键.17.4【分析】根据无理数的估算可得即可求解【详解】解:∵∴∴故答案为:4【点睛】本题考查无理数的估算掌握无理数的估算方法是解题的关键解析:4 【分析】根据无理数的估算可得4175<<,即可求解. 【详解】解:∵161725<<, ∴4175<<,∴174⎡⎤=⎣⎦,故答案为:4. 【点睛】本题考查无理数的估算,掌握无理数的估算方法是解题的关键.18.【分析】要求一只蚂蚁从A 点出发从侧面爬行到C 点蚂蚁爬行的最短路线利用在圆柱侧面展开图中线段AC 的长度即为所求【详解】解:圆柱的展开图如下在圆柱侧面展开图中线段AC 的长度即为所求在Rt △ABC 中AB= 解析:2+4a【分析】要求一只蚂蚁从A 点出发,从侧面爬行到C 点,蚂蚁爬行的最短路线,利用在圆柱侧面展开图中,线段AC 的长度即为所求. 【详解】解:圆柱的展开图如下,在圆柱侧面展开图中,线段AC 的长度即为所求, 在Rt △ABC 中,AB=π•aπ=a ,BC=2,则:2222=+=4AC AB BC a +,所以2+4a 2+4a 2+4a . 【点睛】本题以圆柱为载体,考查旋转表面上的最短距离,解题的关键是利用圆柱侧面展开图.19.2【分析】先根据算术平方根的非负性绝对值的非负性求出ab 的值再代入计算有理数的乘方运算即可得【详解】由算术平方根的非负性绝对值的非负性得:解得则故答案为:2【点睛】本题考查了算术平方根的非负性绝对值解析:2【分析】先根据算术平方根的非负性、绝对值的非负性求出a 、b 的值,再代入计算有理数的乘方运算即可得.【详解】由算术平方根的非负性、绝对值的非负性得:10a -=,10b +=,解得1a =,1b =-,则()201420132014201311112a b +=+-=+=,故答案为:2.【点睛】本题考查了算术平方根的非负性、绝对值的非负性、有理数的乘方,熟练掌握算术平方根和绝对值的非负性是解题关键. 20.【分析】根据题目所给计算方法令再两边同时乘以求出用求出的值进而求出的值【详解】解:令则∴∴则故答案为:【点睛】本题考查了同底数幂的乘法利用错位相减法消掉相关值是解题的关键 解析:2019112-【分析】 根据题目所给计算方法,令23201911112222S,再两边同时乘以12,求出12S ,用12S S ,求出12S 的值,进而求出S 的值. 【详解】 解:令23201911112222S , 则22023401111122222S , ∴2020111222S S , ∴2020111222S , 则2019112S .故答案为:2019112-【点睛】 本题考查了同底数幂的乘法,利用错位相减法,消掉相关值,是解题的关键.三、解答题21.3【分析】先根据二次根式的乘除、立方根的定义进行计算,再根据运算法则计算即可求解.【详解】3(31⎛+- ⎝()(3331⎛-÷+ ⎝⎭ ()131+12+3【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题关键. 22.(1)-2;(2)4【分析】(1)根据零指数幂、二次根式、立方根、绝对值的计算法则来化简,之后按照二次根式的加减计算法则来计算即可;(2)先计算二次根式的乘除,再计算二次根式的加减即可.【详解】解:(1)原式=()1221--+=121+=2-;(2)原式()32-=231+-=4.【点睛】本题考查的是实数的混合计算,熟练掌握相关的计算法则是解题的关键.23.(1);(2)【分析】(1)将正方体的右侧面翻折,使它与前面在同一平面内,连结1AC ,两点之间线段最短, AC 1是最短路径,利用勾股定理求AC 1即可;(2)分两种情况讨论:①将正四棱柱的右面翻折,使它与前面在同一平面内,连结1AC ,两点之间线段最短, AC 1是最短路径,利用勾股定理求AC 1,②将正四棱柱的上面翻折,使它与前面在同一平面内,连结1AC ,两点之间线段最短, AC 1是最短路径,利用勾股定理求AC 1比较两种方法之下的AC 1,确最短的即可.【详解】(1)将正方体的右侧面翻折,使它与前面在同一平面内,连结1AC ,两点之间线段最短, AC 1是最短路径, 如图所示,2211AC AC CC =+22(55)555(cm)=++=);(2)分两种情况讨论:①将正四棱柱的右面翻折,使它与前面在同一平面内,连结1AC ,两点之间线段最短, AC 1是最短路径,如答图所示,有222211106AC AC CC =+=+136(cm)=.②将正四棱柱的上面翻折,使它与前面在同一平面内,连结1AC ,两点之间线段最短, AC 1是最短路径,如答图所示222211511146(cm)AC AB BC =+=+=.因为146136>,所以最短路程为136cm ,即最短路程为234cm .本题考查正方体中最短路径,底面是正方形的四棱柱最短路径,都应用两点之间线段最短,找出最短路径,用勾股定理来解决路径长,在进行实数大小比较是解题关键.24.(1)0;(2)1-【分析】(1)先进行开方运算,再进行除法运算,然后进行减法运算;(2)先进行乘方运算,再利用乘法的分配律进行计算,再计算除法,最后进行加减运算.【详解】解:(1)原式44=-=0;(2)原式11 4(4)121223 =-÷--⨯+⨯14(4)126=-÷--⨯164=-+12=-1=-【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.25.2.【分析】实数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:216(2019)|52π-⎛⎫--- ⎪⎝⎭=61|54+---154=+-2=-【点睛】本题考查实数的混合运算、二次根式的性质和负整数指数幂的运算等知识,掌握运算顺序和计算法则正确计算是解题关键.26.4【分析】原式利用平方根、立方根定义及绝对值化简计算即可得到结果.=-+-解:原式282=4【点睛】本题考查了实数的运算,熟练掌握平方根、立方根定义是解本题的关键.。

八年级数学上册第二章《实数》水平测试(C)

八年级数学上册第二章《实数》水平测试(C)

八年级数学上第二章《实数》水平测试(C)一、 选择题(每小题3分:共30分) 1、-|-3|的倒数是( ) A 、3 B 、31 C 、-31D 、-3 2、估算24+3的值( ) A 、 在5和6之间B 、 在6和7之间C 、 在7和8之间D 、在8和9之间3、已知x :y 是实数:43+x +(y-3)2=0:若axy-3x=y :则实数a 的值是( )A 、41 B 、-41 C 、47 D 、-474、某正数的平方根为3a 和392-a :则这个数为( )A 、1B 、2C 、4D 、95、已知|a|=5:2b =3:且ab >0:则a+b 的值为( )A 、8B 、-2C 、8或-8D 、2或-26、制作一个表面积为12的正方体纸盒:则这个正方体的棱长是( ) A 、23 B 、2 C 、2 D 、3127、一个数的立方根是4:这个数的平方根是( ) A 、8 B 、-8 C 、8或-8 D 、4或-48、在实数0.3、3π、71×103、2、-1中无理数的个数为( ) A 、 1个 B 、2个 C 、3个 D 、4个 9、下列语句中:正确的是( )A 、 一个无理数与一个有理数的和一定是无理数B 、 一个无理数与一个有理数的积一定是无理数C 、 两个无理数的积一定是无理数D 、 两个无理数的差一定是无理数10、有下列说法:①有理数和数轴上的点一一对应:②不带根号的数一定是有理数:③负数没有立方根:④-17是的平方根:其中正确的有( ) A 、 0个 B 、1个 C 、2个 D 、3个 二、 填空题(每小题3分:共30分)11、已知2x+1的平方根是±5:则5x+4的立方根是 .12、点P 在数轴上和原点相距5单位:点Q 在数轴和原点相距4个单位:且点Q 在点P 左边:则P 、Q 之间的距离为 .13、一个数的立方根等于它本身:这个数是 . 14、由下列等式322+=232:833+=383:1544+=4154…所提示的规律:可得出一般性的结论是 (用含n 的式子表示) 15、已知x 3+1=87:则x= . 16、若a 、b 互为相反数:c 、d 互为倒数:|x|=1:则(a+b )3-x 2+4cd= . 17、若xx 4|33--=-2:则x 0.18、用计算器探索:按一定规律排列的一组数:1:2:-3:2:5:-6:7:…如果从1开始一次连续选取若干个数:使它们的和大于5:那么至少要选 个数. 19、当x= 时:4-29x -有最小值:其最小值为 .20、一个圆的面积变为原来的n 倍:则半径变为原来的 倍:一个正方体的体积变为原来的n 倍:则棱长变为原来的 倍. 三﹑解答题(共60分) 21、(每小题3分:共12分)计算下列各题(细心算对哟) (1)18315.012+-- (2))278(183⨯÷(3))62()8213316(-⨯--(4)|)32(31|)313(3.01])1()22([22222--⨯÷-⨯---22、(6分)已知一个正方体盒子的容积为64cm 3:问做一个这样的正方体盒子(无盖)需要多大的木板?23、(6分)已知|a-b-1|与3(a-2b+3)2互为相反数:求a 和b 的值. 24、(6分)若a 的倒数是a 、b 的相反数是b :c 的算术平方根等于c :求a+b+c 的值(你有能力考虑全) 25、(6分)已知2a-1的平方根是±3:4是3a+b-1的算术平方根:求a+2b 的值.26、(6分)设2+6的整数部分和小数部分分别是x 、y :试求x 、y 的值与x-1的算术平方根.27、(6分)已知三角形三边长分别为a 、b 、c :其中a 、b 满足08)6(2=-+-b a :那么这个三角形最长边c 的取值范围是多少?28、(6分)填写下表并回答问题(相信你能解出)(1) 当n (自然数的平方)逐渐增大时:n :10n有什么变化? (2) 试比较n 与10n的大小参考答案一、 选择题1~5 CCAAC 6~10 BCBAB 二、 填空题11~15 4 4+5 0:1:-112-+n n n =n 12-n n(n 为大于等于2的自然数) -21 16~20 43< 7 0:1 n n 3,三、 解答题21、解:(1)原式=22253352333223+=+--(2)原式=321)322(2=⨯÷ (3)原式=-12+2342+ (4)原式=(-8-1)×(-09.01)×109×|31-94|=9×91=1 22、解:设正方体的棱长为xcm :则x 3=64 x=4 5x 2=5×16=80答:需80cm 2的木板23、∵|a-b-1|≥0:3(a-2b+3)2≥0 又因为|a-b-1|与3(a-2b+3)2互为相反数:所以a-b-1=0 a-2b+3=0:解它们组成的方程组得a=5:b=4 24、解:因为a 的倒数是a :所以a=±1 因为b 的相反数是b :所以b=0因为c 的算术平方根等于c :所以c=0或1 当a=1:b=0:c=0时:a+b+c=1+0+0=1 当a=1:b=0:c=1时:a+b+c=1+0+1=2 当a=-1:b=0:c=0时:a+b+c=-1+0+0=-1 当a=-1:b=0:c=1时:a+b+c=-1+0+1=0 所以a+b+c 的值为1:或2:或-1:或0.25、解:因为2a-1的平方根是±3:所以2a-1=9:a=5:因为4是3a+b-1的算术平方根:所以3a+b-1=16 把a=5代入得b=2 所以a+2b=5+2×2=926、解:因为4<6<9:即2<6<3 ∴2+6的整数部分是4由题意知x=4:y=2+6-4=6-2:则x-1=3 所以x-1的算术平方根为327、解:因为2)6(-a +8-b =0所以2)6(-a =0:8-b =0:所以(a-b )2=0:b-8=0所以a=6:b=8:所以2<c <14 又因为c 为最长边:所以c >8 所以8<c <14(1)当n 逐渐增大时:n 逐渐增大:依次大1:10n 也逐渐增大:依次大101 (2)n >10n。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册第二章实数测试题
一、精心选一选!(15×4分=60分)
1、下列说法错误的是 ( )
A 、无理数的相反数还是无理数
B 、无限小数都是无理数
C 、正数、负数统称有理数
D 、实数与数轴上的点一一对应
2、下列各组数中互为相反数的是( )
A 、2)2(2--与
B 、382--与
C 、2)2(2-与
D 、22与-
3、下列说法不正确的是( )
A.-1的立方根是-1;
B.-1的平方是1;
C.-1的平方根是-1;
D.1的平方根是±1
4、要使33)3(x -=3-x ,则 x 的取值范围 ( )
A.x ≤3
B.x ≥3
C.0≤x ≤3
D.任意数
5、已知|x |=2,则下列四个式子中一定正确的是( )
A .x =2
B .x =—2
C .x 2=4
D .x 3=8
6、-8的立方根与4的平方根之和为( )
A .0
B .4
C .-4
D .0或-4
7、下列结论正确的是( ) A.6)6(2-=-- B.9)3(2=- C.16)16(2±=- D.251625162
=⎪⎪⎭
⎫ ⎝⎛-- 8、2)9(-的平方根是x , 64的立方根是y ,则y x +的值为( )
A 、3
B 、7
C 、3或7
D 、1或7
9、若规定误差小于1, 那么60的估算值为( )
A. 3
B. 7
C. 8
D. 7或8
10、以下语句及写成式子正确的是( )
A.7是49的算术平方根,即749±=
B.7是2)7(-的平方根,即7)7(2=-
C.7±是49的平方根,即749=±
D.7±是49的平方根,即749±=
11、下列各式中,无意义的是( ) A.23- B.33)3(- C.2)3(- D.310-
12、若x <0,则332x x -等于( )
A.x
B.2x
C.0
D.-2x 13、下列计算中,正确的是( ). A. 532=+ B. 3332=+
C. 3935
153515==⨯=⨯÷ D. 231)32)(31(-=-=-+
14、若1122
a b ==,则a 2-ab+b 2= … ……………………… ( )
A 72
B 92
C 112
D 12
-
15251的大小关系是………………………………………………………( )
251 B 251251251二、细心填一填!(5×4分=20分)
16.已知直角三角形的两边长为5cm 和12cm ,则第三边的长是___________.
17、若(x -1)与(x+7)是一个数的平方根,则这个数是_______.
18、如果52-a 与2+b 互为相反数,则ab= __________。

19、已知x <1,则12x -x 2+化简的结果是 .
20、观察下列各式====, …. 请你将猜想到的规律用含自然数(1)n n ≥的代数式表示出来是 .
三、用心做一做!
21、化简:(3×2分=6分)
(1)
0)31(33122-++ (2)2224145- (3)123127+-
22、计算:(4×2分=8分)
(1)(21)-1-2--1
21-+(-1-2)2; (2)(-2)3+21(2004-3)0-|-21|;
(3)8350324-+; (4)3
600614
24--
23、求满足下列条件的x 的值:(4×2分=8分)
(1)025362
=-x ; (2) (x-2)2-25=0
(3) 01252163=+x ; (4) 2(x+5)3= —27;.
24、若01=+++b a a ,求20082008b a
+的值。

(6分)
25、设x 、y ,试求x 、y 的值与x-1的算术平方根.(6分)
2621x y
+的值。

(6分)
27、若a 、b 、c 是△ABC 的三边,化简:
6分)
28、如图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段。

请在图中画出1352===
AD AC AB 、、这样的线段。

(6分)
29、先阅读下列的解答过程,然后再解答:(9分)
形如n m 2±的化简,只要我们找到两个数a 、b ,使m b a =+,n ab =,使得m b a =+22)()(,n b a =⋅,那么便有:
b a b a n m ±=±=±2)(2)(b a > 例如:化简347+ 解:首先把347+化为1227+,这里7=m ,12=n ,由于4+3=7,1234=⨯ 即7)3()4(22=+,1234=⨯ ∴347+=1227+=32)34(2
+=+ 由上述例题的方法化简:42213-;
30、观察下列各式及验证过程:(9分) 32213121=-验证:3213121⨯=-3
2213222=⨯ )4131(21-=8331验证:8
33143224321)4131(212=⨯⨯=⨯⨯=- 15441)5141(31=-验证:15
44154345431)5141(312=⨯⨯=⨯⨯=- (1)按照上述三个等式及其验证过程的基本思路,猜想)6
151(41-的变形结果并进行验证; (2)针对上述各式反映的规律,写出用n (n ≥2的自然数)表示的等式,并进行验证.。

相关文档
最新文档