2014《步步高》物理大一轮复习讲义第十二章第2课时

合集下载

2025版高考物理大一轮复习课件第十二章电磁感应第2讲法拉第电磁感应定律自感和涡流

2025版高考物理大一轮复习课件第十二章电磁感应第2讲法拉第电磁感应定律自感和涡流

25
考点一 考点二 考点三 考点四 限时规范训练
维度2 转动切割问题
例 3 如图所示,光滑铜环水平固定,半径为l,长为l、电阻为r的
铜棒OA的一端在铜环的圆心O处,另一端与铜环良好接触,整个装置处
在磁感应强度大小为B、方向竖直向上的匀强磁场中。现使铜棒OA以角
速度ω逆时针(俯视)匀速转动,A端始终在铜环上,定值电阻的阻值为3r,
B0;左侧匀强磁场的磁感应强度B随时间t变化的规律如图乙所示,规定垂 直纸面向外为磁场的正方向。一硬质细导线的电阻率为ρ、横截面积为
S0,将该导线做成半径为r的圆环固定在纸面内,圆心O在MN上。求:
(1)t=t20时,圆环受到的安培力; 甲

(2)在 0~32t0 内,通过圆环的电荷量。
11
考点一 考点二 考点三 考点四 限时规范训练
03
考点三 自感
30
考点一 考点二 考点三 考点四 限时规范训练
知识梳理
1.自感现象 由于导体线圈本身的电流发生变化而引起的电磁感应现象,叫作自 感。 2.自感电动势 (1)在自感现象中产生的电动势叫作自感电动势。
(2)表达式:EL=LΔΔIt。
31
考点一 考点二 考点三 考点四 限时规范训练
考点一 法拉第电磁感应定律
的理解及应用
4
考点一 考点二 考点三 考点四 限时规范训练
知识梳理
1.感应电动势 (1)概念:在电磁感应现象中产生的电动势。
(2)产生条件:穿过回路的__□_1_磁__通__量____发生改变,与电路是否闭合
无关。
(3)方向判断:感应电动势的方向用__□_2 _楞__次__定__律_____或右手定则判
然联系。

【步步高】高中物理大一轮复习 第十二章 电磁感应 第1课时 电磁感应现象 楞次定律讲义课件 大纲人教

【步步高】高中物理大一轮复习 第十二章 电磁感应 第1课时 电磁感应现象 楞次定律讲义课件 大纲人教
答案 AD
题型三 电势高低的判断
例 3 图 13 为地磁场磁感线的示意图,在北半球地磁场的竖
直分量向下.飞机在我国上空匀速巡航,机翼保持水平,飞
机高度不变.由于地磁场的作用,金属机翼上有电势差,设
飞行员左方机翼末端处的电势为 U1,右方机翼末端处的电势
为 U2
()
图13
A.若飞机从西往东飞,U1比U2高 B.若飞机从东往西飞,U2比U1高 C.若飞机从南往北飞,U1比U2高 D.若飞机从北往南飞,U2比U1高

【高考佐证2】 (2009·浙江理综)如图7
所示,在磁感应强度大小为B、方向竖
直向上的匀强磁场中,有一质量为m、
阻值为R的闭合矩形金属线框abcd用绝
缘轻质细杆悬挂在O点,并可绕O点摆
动.金属线框从右侧某一位置静止开始
释放,在摆动到左侧最高点的过程中,
图7
细杆和金属线框平面始终处于同一平面,且垂直纸面.则
思考:请说明楞次定律与右手定则的关系.
答案 ①从研究对象上说,楞次定律研究的是整个闭合电 路,而右手定则研究的是闭合电路的一部分,即一段导线做 切割磁感线运动. ②从适用范围上说,楞次定律可应用于由磁通量变化引起感 应电流的各种情况(当然包括一部分导体做切割磁感线运动 的情况);右手定则只适用于一段导线在磁场中做切割磁感线 运动的情况,导线不动时不能应用.因此,右手定则可以看 作楞次定律的特殊情况.
答案 D
2.在一根较长的铁钉上,用漆包线绕上两个线圈A、B,将
线圈B的两端接在一起,并把CD段直漆包线沿南北方向
放置在静止的小磁针的上方,如图16所示.下列判断正
确的是
()
图16
A.开关闭合时,小磁针不发生转动 B.开关闭合时,小磁针的N极垂直纸面向里转动 C.开关断开时,小磁针的N极垂直纸面向里转动 D.开关断开时,小磁针的N极垂直纸面向外转动 解析 开关保持接通时,A内电流的磁场向右;开关断开 时,穿过B的磁感线的条数向右减少,因此感应电流的磁 场方向向右,感应电流的方向由C到D,CD下方磁感线的 方向垂直纸面向里,小磁针N极向里转动. 答案 C

【步步高】高考物理大一轮复习讲义 (深度思考+考点突破+提能训练) 第十二章 实验十三 用单摆测

【步步高】高考物理大一轮复习讲义 (深度思考+考点突破+提能训练) 第十二章 实验十三 用单摆测

实验十三 用单摆测定重力加速度考纲解读 1.知道把单摆的运动看做简谐运动的条件.2.会探究与单摆的周期有关的因素.3.会用单摆测定重力加速度.基本实验要求1. 实验原理当偏角很小时,单摆做简谐运动,其运动周期为T =2πlg,它与偏角的大小及摆球的质量无关,由此得到g =4π2lT2.因此,只要测出摆长l 和振动周期T ,就可以求出当地重力加速度g 的值. 2. 实验器材带有铁夹的铁架台、中心有小孔的金属小球,不易伸长的细线(约1米)、秒表、毫米刻度尺和游标卡尺. 3. 实验步骤(1)让细线的一端穿过金属小球的小孔,然后打一个比小孔大一些的线结,做成单摆. (2)把细线的上端用铁夹固定在铁架台上,把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂,在单摆平衡位置处作上标记,如实验原理图.(3)用毫米刻度尺量出摆线长度l ′,用游标卡尺测出摆球的直径,即得出金属小球半径r ,计算出摆长l =l ′+r .(4)把单摆从平衡位置处拉开一个很小的角度(不超过5°),然后放开金属小球,让金属小球摆动,待摆动平稳后测出单摆完成30~50次全振动所用的时间t ,计算出金属小球完成一次全振动所用时间,这个时间就是单摆的振动周期,即T =tN(N 为全振动的次数),反复测3次,再算出周期T =T 1+T 2+T 33.(5)根据单摆振动周期公式T =2πl g 计算当地重力加速度g =4π2l T2. (6)改变摆长,重做几次实验,计算出每次实验的重力加速度值,求出它们的平均值,该平均值即为当地的重力加速度值.(7)将测得的重力加速度值与当地重力加速度值相比较,分析产生误差的可能原因.规律方法总结1. 注意事项(1)构成单摆的条件:细线的质量要小、弹性要小,选用体积小、密度大的小球,摆角不超过5°.(2)要使摆球在同一竖直面内摆动,不能形成圆锥摆,方法是将摆球拉到一定位置后由静止释放.(3)测周期的方法:①要从摆球过平衡位置时开始计时.因为此处速度大、计时误差小,而最高点速度小、计时误差大.②要测多次全振动的时间来计算周期.如在摆球过平衡位置时开始计时,且在数“零”的同时按下秒表,以后每当摆球从同一方向通过最低位置时计数1次.(4)本实验可以采用图象法来处理数据.即用纵轴表示摆长l ,用横轴表示T 2,将实验所得数据在坐标平面上标出,应该得到一条倾斜直线,直线的斜率k =g4π2.这是在众多的实验中经常采用的科学处理数据的重要办法. 2. 数据处理处理数据有两种方法:(1)公式法:测出30次或50次全振动的时间t ,利用T =t N求出周期;不改变摆长,反复测量三次,算出三次测得的周期的平均值T ,然后代入公式g =4π2lT2求重力加速度.(2)图象法:由单摆周期公式不难推出:l =g4π2T 2,因此,分别测出一系列摆长l 对应的周期T ,作l -T 2的图象,图象应是一条通过原点的直线,求出图线的斜率k =Δl ΔT 2,即可利用g =4π2k =4π2Δl ΔT2求得重力加速度值,如图1所示.图13.误差分析(1)系统误差的主要来源:悬点不固定,球、线不符合要求,振动是圆锥摆而不是在同一竖直平面内的振动等.(2)偶然误差主要来自时间的测量上,因此,要从摆球通过平衡位置时开始计时,不能多计或漏计振动次数.考点一对实验操作及误差分析的考查例1(2012·天津理综·9(2))某同学用实验的方法探究影响单摆周期的因素.图2①他组装单摆时,在摆线上端的悬点处,用一块开有狭缝的橡皮夹牢摆线,再用铁架台的铁夹将橡皮夹紧,如图2所示.这样做的目的是________(填字母代号).A.保证摆动过程中摆长不变B.可使周期测量得更加准确C.需要改变摆长时便于调节D.保证摆球在同一竖直平面内摆动②他组装好单摆后在摆球自然悬垂的情况下,用毫米刻度尺从悬点量到摆球的最低端的长度L=0.999 0 m,再用游标卡尺测量摆球直径,结果如图3所示,则该摆球的直径为图3________mm,单摆摆长为________m.③下列振动图象真实地描述了对摆长约为1 m的单摆进行周期测量的四种操作过程,图中横坐标原点表示计时开始,A、B、C均为30次全振动的图象,已知sin 5°=0.087,sin 15°=0.26,这四种操作过程合乎实验要求且误差最小的是____(填字母代号).解析 ①在“探究影响单摆周期的因素”实验中,应使单摆在摆动过程中摆长不变,而且摆长便于调节,故选项A 、C 正确,选项B 、D 错误. ②摆球的直径d =12 mm +0×0.1 mm=12.0 mm 摆长l =L -d2=0.999 0 m -0.006 0 m =0.993 0 m.③单摆振动的摆角θ≤5°,当θ=5°时单摆振动的振幅A =l sin 5°=0.087 m =8.7 cm ,且为了计时准确,应在摆球摆至平衡位置时开始计时,故选项A 正确,选项B 、C 、D 错误.答案 ①AC ②12.0 0.993 0 ③A 考点二 对实验数据处理的考查例2 下表是用单摆测定重力加速度实验中获得的有关数据:(1)图4(2)利用图象,取T 2=4.2 s 2时,l =________m .重力加速度g =________m/s 2. 解析 由T =2π l g 得g =4π2·l T2或l =g4π2·T 2,所以图象是过原点且斜率为g4π2的一条直线.(1)l -T 2图象如图所示(2)T 2=4.2 s 2时,从图中画出的直线上可读出其摆长l =1.05 m ,将T 2与l 代入公式g=4π2lT2,得g =9.86 m/s 2.答案 (1)见解析 (2)1.05 9.86例3 在“探究单摆周期与摆长的关系”实验中,若摆球在垂直纸面的平面内摆动,为了将人工记录振动次数改为自动记录振动次数,在摆球运动最低点的左、右两侧分别放置一激光光源与光敏电阻,如图5所示.光敏电阻与某一自动记录仪相连,该仪器显示的光敏电阻阻值R 随时间t 的变化图线如图6所示,则该单摆的振动图5周期为________.若保持悬点到小球顶点的绳长不变,改用直径是原小球直径2倍的另一小球进行实验,则该单摆的周期将________(填“变大”、“不变”或“变小”),图中的Δt 将________(填“变大”、“不变”或“变小”).图6解析 小球摆动到最低点时,挡光使得光敏电阻阻值增大,从t 1时刻开始,再经两次挡光完成一个周期,故T =2t 0;摆长为摆线长加小球半径,若小球直径变大,则摆长增加,由周期公式T =2π lg可知,周期变大;当小球直径变大时,挡光时间增加,即Δt 变大.答案 2t 0 变大 变大1. 在做“用单摆测定重力加速度”的实验中,有人提出以下几点建议:A .适当加长摆线B .质量相同、体积不同的摆球,应选用体积较大的C .单摆偏离平衡位置的角度不能太大D .当单摆经过平衡位置时开始计时,经过一次全振动后停止计时,用此时间间隔作为单摆振动的周期其中对提高测量结果精确度有利的是________. 答案 AC解析 单摆实验的精确度取决于实验装置的理想化程度及相关物理量的测量精度.在摆角小于5°的条件下,适当加长摆线长度,有利于把摆球看成质点,摆球的空间位置变化较大,便于观察,选项A对.摆球体积越大,所受空气阻力越大,对质量相同的摆球其影响越大,选项B错.摆角应小于5°,选项C对.本实验采用累积法测量周期,若仅测量一次全振动,由于球过平衡位置时速度较大,难以准确记录,且一次全振动的时间太短,偶然误差较大,选项D错.2.某同学做“用单摆测定重力加速度”的实验时,测得的重力加速度数值明显大于当地的重力加速度的实际值.造成这一情况的可能原因是 ( ) A.测量摆长时,把悬挂状态的摆线长当成了摆长B.测量周期时,当摆球通过平衡位置时启动秒表,记为第0次,此后摆球第30次通过平衡位置时制动秒表,读出经历的时间为t,并由计算式T=t30求得周期C.开始摆动时振幅过小D.所用摆球的质量过大答案 B解析由T=2πlg得g=4π2T2l,g值偏大说明l偏大或T偏小.把悬挂状态的摆线长当成摆长,会使l偏小,g值偏小,A错;摆球第30次通过平衡位置时,实际上共完成了15次全振动,周期T=t15,误认为30次全振动,会使T变小,引起g值明显偏大,B对;单摆周期与振幅和摆球质量无关,C、D错误.3. 几名学生进行野外考察,登上一山峰后,他们想粗略测出山顶处的重力加速度.于是他们用细线拴好石块P系在树枝上做成一个简易单摆,如图7所示.然后用随身携带的钢卷尺、电子手表进行了测量.同学们首先测出摆长L,然后将石块拉开一个小角度,由静止释放,使石块在竖直平面内摆动,用电子手表测出单摆完成n次图7全振动所用的时间t.①利用测量数据计算山顶处重力加速度的表达式g=______;②若振动周期测量正确,但由于难以确定石块重心,测量摆长时从悬点一直量到石块下端,所以用这次测量数据计算出来的山顶处重力加速度值比真实值______(选填“偏大”、“偏小”或“相等”).答案4π2n2Lt2偏大4. 某同学在正确操作和测量的情况下,测得多组摆长L和对应的周期T,画出L-T2图线,如图8所示.出现这一结果最可能的原因是:摆球重心不在球心处,而是在球心的正____方(选填“上”或“下”).为了使得到的实验结果不受摆球重心位置无法准确确定的影响,他采用恰当的数据处理方法:在图线上选图8取A、B两个点,找出两点相应的横纵坐标,如图所示.用表达式g=________计算重力加速度,此结果即与摆球重心就在球心处的情况一样.答案下4π2L A-L BT2A-T2B解析作一条过原点的与AB线平行的直线,所作的直线就是准确测量摆长时所对应的图线.过横轴上某一点作一条平行纵轴的直线,则和两条图线的交点不同,与准确测量摆长时的图线的交点对应的摆长是准确的,与AB线的交点对应的摆长要小些,同样的周期,摆长应一样,但AB线所对应的却小些,其原因是在测量摆长时少测了,所以其重心应在球心的下方.设重心与球心的距离为r,则对A、B两点数据,由单摆周期公式有:T A=2πL A+rg和T B=2πL B+rg,解得:g=4π2L A-L BT2A-T2B,按这样计算,测量结果将与摆球重心就在球心处的值相同.5.某实验小组在进行“用单摆测定重力加速度”的实验中,已知单摆在摆动过程中的摆角小于5°;在测量单摆的周期时,从单摆运动到最低点开始计时且记数为1,到第n次经过最低点所用的时间为t;在测量单摆的摆长时,先用毫米刻度尺测得摆球悬挂后图9 的摆线长(从悬点到摆球的最上端)为L,再用螺旋测微器测得摆球的直径为d(读数如图9所示).(1)该单摆在摆动过程中的周期为________.(2)用上述物理量的符号写出求重力加速度的一般表达式g=________.(3)从上图可知,摆球的直径为________ mm.(4)实验结束后,某同学发现他测得的重力加速度的值总是偏大,其原因可能是下述原因中的( ) A.单摆的悬点未固定紧,振动中出现松动,使摆线增长了B.把n次摆动的时间误记为(n+1)次摆动的时间C.以摆线长作为摆长来计算D.以摆线长与摆球的直径之和作为摆长来计算答案(1)2tn-1(2)π2n-2L+d2t2(3)5.980(4)BD解析 (1)根据记数的方式可知 全振动的次数N =n -12所以周期T =t N =2tn -1(2)摆长l =L +d2,将T 和l 代入g =4π2lT 2得g =π2n -2L +d 2t2(3)直径d =5.5 mm +0.01×48.0 mm=5.980 mm.(4)根据g =4π2lT2知,当悬点松动后,摆线增长,则代入公式中的l 将偏小,故所测g值偏小,A 错误;对B 选项,T 变小,g 变大,B 正确;对C 选项,l 变小,g 应偏小,C 错误;对D 选项,l 变大,g 应偏大,D 正确.6. 有两个同学利用假期分别去参观北京大学和南京大学的物理实验室,各自在那里利用先进的DIS 系统较准确地探究了“单摆的周期T 与摆长L 的关系”,他们通过校园网交换实验数据,并由计算机绘制了T 2-L 图象,如图10甲所示.去北大的同学所测实验结果对应的图线是________(填“A ”或“B ”).另外,在南大做探究的同学还利用计算机绘制了a 、b 两个摆球的振动图象(如图乙),由图可知,两单摆摆长之比L a L b=________.在t =1 s 时,b 球振动方向是________.图10答案 B 49 沿y 轴负方向解析 由单摆的周期公式得:T =2πL g ,解得:T 2=4π2g L ,即图象的斜率k =4π2g,重力加速度大,斜率小,我们知道北京的重力加速度比南京的大,所以去北大的同学所测实验结果对应的图线是B ;从题图乙可以得出:T b =1.5T a ,由单摆的周期公式得:T a =2πL ag ,T b =2π L b g ,联立解得:L a L b =49;从题图乙可以看出,t =1 s 时b 球正在向负最大位移运动,所以在t =1 s 时b 球的振动方向沿y 轴负方向.7. 某同学想在家里做“用单摆测定重力加速度”的实验,但没有合适的摆球,他找到了一块大小约为3 cm 、外形不规则的大理石代替小球.他设计的实验步骤是 A .将石块和细尼龙线系好,结点为M ,将尼龙线的上端固定于O 点; B .用刻度尺测量OM 间尼龙线的长度L 作为摆长;C .将石块拉开一个大约α=5°的角度,然后由静止释放;D .从摆球摆到最高点时开始计时,测出30次全振动的总时间t ,由T =t30得出周期;E .改变OM 间尼龙线的长度再做几次实验,记下每次相应的l 和T ;F .求出多次实验中测得的l 和T 的平均值,作为计算时用的数据,代入公式g =(2πT)2l ,求出重力加速度g .(1)该同学以上实验步骤中有重大错误的是________.(2)该同学用OM 的长作为摆长,这样做引起的系统误差将使重力加速度的测量值比真实值偏大还是偏小?你认为用什么方法可以解决摆长无法准确测量的困难? 答案 (1)BDF (2)见解析解析 (1)摆长应为石块重心到悬点的距离,故B 步骤错误;计时开始的位置应为摆球振动的平衡位置,故D 步骤错误;在用公式g =(2πT)2l 计算g 时,应先将各项的l 和T 单独代入求解g 值,不能先求l 、T 的平均值再代入求解.故F 步骤也错误.(2)因为用OM 作为摆长,比摆的实际摆长偏小,因此计算出的重力加速度的值比实际值偏小.可采用图象法,以T 2为纵轴,以l 为横轴,做出多次测量得到的T 2-l 图线,求出图线斜率k .再由k =4π2g 得g =4π2k.k 值不受悬点不确定因素的影响,因此可以解决摆长无法准确测量的困难.。

2014步步高大一轮复习讲义第十二单元第1讲普遍联系的思想(免费下载)

2014步步高大一轮复习讲义第十二单元第1讲普遍联系的思想(免费下载)

第1讲普遍联系的思想普遍联系的思想在生物学科中的应用,充分体现了“能理解所学知识的要点,把握知识间的内在联系,形成知识网络结构”的考纲能力要求。

联系就是事物之间及事物内部各要素之间的相互制约,相互影响的关系。

组成生物体的结构之间、生物与生物之间、生物与环境之间都是普遍联系的。

命题视角1在分子水平上,各种化合物相互作用,按一定的方式组织起来,形成细胞结构,从而能表现出生命现象。

典例剖析如图为人体细胞中几种有机物元素组成及相互关系图,除相关元素外,大写字母代表大分子物质,小写字母代表小分子物质。

据图回答:(1)请在图中横线上补充两种重要有机物A和C的元素组成。

(2)B为__________,它彻底水解的产物是__________。

(3)D具有多样性,其原因是:从c的角度分析是由于__________________________,从A的角度分析是由于______________________。

解析解题时先确定染色体的主要组成及DNA、RNA和蛋白质之间的关系,在此基础上,逆向确定化合物的组成单位和元素组成。

染色体的组成成分主要是DNA和蛋白质,还含有少量RNA。

由图中A、B、C的关系可知:A为DNA、B为mRNA、C为多肽、D 为蛋白质,a为脱氧核苷酸、b为核糖核苷酸、c为氨基酸。

除C、H、O外,组成a、b 的元素还有N、P,组成c的元素还有N。

B彻底水解后的产物为磷酸、核糖和碱基。

蛋白质(D)的种类具有多样性,从c的角度分析,主要与组成蛋白质的氨基酸的种类、数量和排列顺序不同有关;从A的角度分析,主要与脱氧核苷酸的排列顺序不同有关。

答案(1)N、PN(2)mRNA磷酸、核糖、碱基(3)组成D的c的种类、数量、排列顺序不同组成A的a的排列顺序不同备考指导1.熟记蛋白质和核酸的元素组成、单体通式、单体形成高分子化合物的方式,理解多样性的原因以及相关的数量关系。

2.强化比较记忆并用普遍联系的思想挖掘与蛋白质、RNA和DNA等物质分子相关联的生物学知识,从而构建出蛋白质和核酸方面的知识网络,在构建网络时要注意以下几点:(1)系统的整体性。

2014届步步高大一轮复习讲义12.2

2014届步步高大一轮复习讲义12.2

§12.2 古典概型2014高考会这样考 1.考查古典概型概率公式的应用;2.考查古典概型与事件关系及运算的综合题;3.与统计知识相结合,考查解决综合问题的能力.复习备考要这样做 1.掌握解决古典概型的基本方法,列举基本事件、随机事件,从中找出基本事件的总个数,随机事件所含有的基本事件的个数;2.复习时要加强与统计相关的综合题的训练,注重理解、分析、逻辑推理能力的提升.1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果. (2)每一个试验结果出现的可能性相等.3.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是 1n;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )= mn .4.古典概型的概率公式P (A )=事件A 包含的可能结果数试验的所有可能结果数.[难点正本 疑点清源]1.一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型.2.从集合的角度去看待概率,在一次试验中,等可能出现的全部结果组成一个集合I ,基本事件的个数n 就是集合I 的元素个数,事件A 是集合I 的一个包含m 个元素的子集.故P (A )=card (A )card (I )=mn.1.甲、乙、丙三名同学站成一排,甲站在中间的概率是________.答案 13解析 甲共有3种站法,故站在中间的概率为13.2.从1,2,3,4,5,6这6个数字中,任取2个数字相加,其和为偶数的概率是________.答案 25解析 从6个数中任取2个数的可能情况有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种,其中和为偶数的情况有(1,3),(1,5),(2,4),(2,6),(3,5),(4,6),共6种,所以所求的概率是25.3.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是( )A.45B.35C.25D.15答案 D解析 基本事件的个数有5×3=15,其中满足b >a 的有3种,所以b >a 的概率为315=15.4.一个口袋内装有2个白球和3个黑球,则先摸出1个白球后放回的条件下,再摸出1个白球的概率是( )A.23 B.14C.25D.15答案 C解析 先摸出1个白球后放回,再摸出1个白球的概率,实质上就是第二次摸到白球的概率,因为袋内装有2个白球和3个黑球,因此概率为25.5.(2012·广东)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )A.49B.13C.29D.19答案 D解析 个位数与十位数之和为奇数,则个位数与十位数中必有一个奇数一个偶数,所以可以分两类.(1)当个位为奇数时,有5×4=20(个)符合条件的两位数. (2)当个位为偶数时,有5×5=25(个)符合条件的两位数.因此共有20+25=45(个)符合条件的两位数,其中个位数为0的两位数有5个,所以所求概率为P =545=19.题型一 基本事件例1 有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x ,y )表示结果,其中x 表示第1颗正四面体玩具出现的点数,y 表示第2颗正四面体玩具出现的点数.试写出: (1)试验的基本事件;(2)事件“出现点数之和大于3”; (3)事件“出现点数相等”.思维启迪:由于出现的结果有限,每次每颗只能有四种结果,且每种结果出现的可能性是相等的,所以是古典概型.由于试验次数少,故可将结果一一列出. 解 (1)这个试验的基本事件为 (1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4).(2)事件“出现点数之和大于3”包含以下13个基本事件: (1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3), (3,4),(4,1),(4,2),(4,3),(4,4).(3)事件“出现点数相等”包含以下4个基本事件: (1,1),(2,2),(3,3),(4,4).探究提高 基本事件的确定可以使用列举法和树形图法.用红、黄、蓝三种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,求:(1)3个矩形颜色都相同的概率; (2)3个矩形颜色都不同的概率.解 所有可能的基本事件共有27个,如图所示.(1)记“3个矩形都涂同一颜色”为事件A ,由图,知事件A 的基本事件有1×3=3(个),故P (A )=327=19.(2)记“3个矩形颜色都不同”为事件B ,由图,可知事件B 的基本事件有2×3=6(个),故P (B )=627=29.题型二 古典概型问题其中直径在区间[1.48,1.52]内的零件为一等品.(1)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率; (2)从一等品零件中,随机抽取2个. ①用零件的编号列出所有可能的抽取结果; ②求这2个零件直径相等的概率.思维启迪:确定基本事件总数,可用列举法.确定事件所包含的基本事件数,用公式 求解.解 (1)由所给数据可知,一等品零件共有6个,记“从10个零件中,随机抽取一个,这个零件为一等品”为事件A ,则P (A )=610=35.(2)①一等品零件的编号为A 1,A 2,A 3,A 4,A 5,A 6,从这6个一等品零件中随机抽取2个,所有可能的结果有{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②“从一等品零件中,随机抽取2个,这2个零件直径相等”记为事件B ,则其所有可能结果有{A 1,A 4},{A 1,A 6},{A 4,A 6},{A 2,A 3},{A 2,A 5},{A 3,A 5},共6种,所以P (B )=25.探究提高 求古典概型的概率的关键是求试验的基本事件的总数和事件A 包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法、列表法和树形图法,具体应用时可根据需要灵活选择.(2012·上海)三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是________(结果用最简分数表示). 答案 23解析 三位同学每人选择三项中的两项有C 23C 23C 23=3×3×3=27(种)选法, 其中有且仅有两人所选项目完全相同的有C 23C 13C 12=3×3×2=18(种)选法.∴所求概率为P =1827=23.题型三 古典概型的综合应用例3 为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:(1)估计该校男生的人数;(2)估计该校学生身高在170~185 cm 之间的概率;(3)从样本中身高在180~190 cm 之间的男生中任选2人,求至少有1人身高在185~ 190 cm 之间的概率.思维启迪:先根据统计图确定样本的男生人数,身高在170~185 cm 之间的人数和概率,再确定身高在180~190 cm 之间的人数,转化成古典概型问题.解 (1)样本中男生人数为40,由分层抽样比例为10%估计全校男生人数为400. (2)由统计图知,样本中身高在170~185 cm 之间的学生有14+13+4+3+1=35(人),样本容量为70,所以样本中学生身高在170~185 cm 之间的频率f =3570=0.5.故由f 估计该校学生身高在170~185 cm 之间的概率p =0.5.(3)样本中身高在180~185 cm 之间的男生有4人,设其编号为①②③④,样本中身高在185~190 cm 之间的男生有2人,设其编号为⑤⑥. 从上述6人中任选2人的树状图为故从样本中身高在180~190 cm 之间的男生中任选2人的所有可能结果数为15,至少有1人身高在185~190 cm 之间的可能结果数为9,因此,所求概率p 2=915=35.探究提高 有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计结合题,无论是直接描述还是利用概率分布表、分布直方图、茎叶图等给出信息,只需要能够从题中提炼出需要的信息,则此类问题即可解决.一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A 类轿车10辆. (1)求z 的值;(2)用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下: 9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率. 解 (1)设该厂这个月共生产轿车n 辆, 由题意得50n =10100+300,所以n =2 000,则z =2 000-100-300-150-450-600=400.(2)设所抽样本中有a 辆舒适型轿车,由题意得4001 000=a5,则a =2.因此抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车.用A 1,A 2表示2辆舒适型轿车,用B 1,B 2,B 3表示3辆标准型轿车,用E 表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”,则基本事件空间包含的基本事件有(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3),共10个. 事件E 包含的基本事件有(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),共7个.故P (E )=710,即所求概率为710.(3)样本平均数x =18(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.设D 表示事件“从样本中任取一个数,该数与样本平均数之差的绝对值不超过0.5”,则基本事件空间中有8个基本事件,事件D 包含的基本事件有9.4,8.6,9.2,8.7,9.3,9.0,共6个,所以P (D )=68=34,即所求概率为34.六审细节更完善典例:(12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.审题路线图(1)基本事件为取两个球↓(两球一次取出,不分先后,可用集合的形式表示) 把取两个球的所有结果列举出来 ↓{1,2},{1,3},{1,4},{2,3},{2,4},{3,4} ↓两球编号之和不大于4(注意:和不大于4,应为小于4或等于4) ↓{1,2},{1,3}↓利用古典概型概率公式P =26=13(2)两球分两次取,且有放回↓(两球的编号记录是有次序的,用坐标的形式表示) 基本事件的总数可用列举法表示 ↓(1,1),(1,2),(1,3),(1,4) (2,1),(2,2),(2,3),(2,4) (3,1),(3,2),(3,3),(3,4) (4,1),(4,2),(4,3),(4,4)↓(注意细节,m 是第一个球的编号,n 是第2个球的编号) n <m +2的情况较多,计算复杂 (将复杂问题转化为简单问题) ↓计算n ≥m +2的概率↓n ≥m +2的所有情况为(1,3),(1,4),(2,4)↓P 1=316↓注意细节,P 1=\f(3,16)是n ≥m +2的概率,需转化为其对,立事件的概率n <m +2的概率为1-P 1=1316.规范解答解 (1)从袋中随机取两个球,其一切可能的结果组成的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个.从袋中取出的球的编号之和不大于4的事件共有{1,2},{1,3}两个.因此所求事件的概率P =26=13.[6分](2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果(m ,n )有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.[8分]又满足条件n≥m+2的事件为(1,3),(1,4),(2,4),共3个,所以满足条件n≥m+2的事件的概率为P1=316.[10分]故满足条件n<m+2的事件的概率为1-P1=1-316=1316.[12分]温馨提醒(1)本题在审题时,要特别注意细节,使解题过程更加完善.如第(1)问,注意两球一起取,实质上是不分先后,再如两球编号之和不大于4等;第(2)问,有次序.(2)在列举基本事件空间时,可以利用列举、画树状图等方法,以防遗漏.同时要注意细节,如用列举法,第(1)问应写成{1,2}的形式,表示无序,第(2)问应写成(1,2)的形式,表示有序.(3)本题解答时,存在格式不规范,思维不流畅的严重问题.如在解答时,缺少必要的文字说明,没有按要求列出基本事件.在第(2)问中,由于不能将事件n<m+2的概率转化成n≥m+2的概率,导致数据复杂、易错.所以按要求规范解答是做好此类题目的基本要求.方法与技巧1.古典概型计算三步曲第一,本试验是否是等可能的;第二,本试验的基本事件有多少个;第三,事件A是什么,它包含的基本事件有多少个.2.确定基本事件的方法列举法、列表法、树形图法.失误与防范1.古典概型的重要思想是事件发生的等可能性,一定要注意在计算基本事件总数和事件包括的基本事件个数时,它们是否是等可能的.2.概率的一般加法公式:P(A+B)=P(A)+P(B)-P(AB).公式使用中要注意:(1)公式的作用是求A+B的概率,当AB=∅时,A、B互斥,此时P(AB)=0,所以P(A+B)=P(A)+P(B);(2)要计算P(A+B),需要求P(A)、P(B),更重要的是把握事件AB,并求其概率;(3)该公式可以看作一个方程,知三可求一.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.(2011·课标全国)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12C.23D.34 答案 A解析 甲、乙两位同学参加3个小组的所有可能性有3×3=9(种),其中甲、乙两人参加同一个小组的情况有3种.故甲、乙两位同学参加同一个兴趣小组的概率P =39=13.2.(2011·陕西)甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( ) A.136B.19C.536D.16答案 D解析 最后一个景点甲有6种选法,乙有6种选法,共有36种,他们选择相同的景点有6种,所以P =636=16,所以选D.3.(2011·浙江)有5本不同的书,其中语文书2本,数学书2本,物理书1本,若将其随机地抽取并排摆放在书架的同一层上,则同一科目的书都不相邻的概率是( )A.15B.25C.35D.45 答案 B解析 第一步先排语文书有A 22=2(种)排法.第二步排物理书,分成两类.一类是物理书放在语文书之间,有1种排法,这时数学书可从4个空中选两个进行排列,有A 24=12(种)排法;一类是物理书不放在语文书之间有2种排法,再选一本数学书放在语文书之间有2种排法,另一本有3种排法.因此同一科目的书都不相邻共有2×(12+2×2×3)=48(种)排法,而5本书全排列共有A 55=120(种),所以同一科目的书都不相邻的概率是48120=25. 4.一个袋中有5个大小相同的球,其中有3个黑球与2个红球,如果从中任取两个球,则恰好取到两个同色球的概率是( )A.15B.310C.25D.12答案 C解析 从袋中任取两个球,其一切可能结果有(黑1,黑2),(黑1,黑3),(黑1,红1),(黑1,红2),(黑2,黑3),(黑2,红1),(黑2,红2),(黑3,红1),(黑3,红2),(红1,红2)共10个,同色球为(黑1,黑2),(黑1,黑3),(黑2,黑3),(红1,红2)共4个结果,∴P =25.二、填空题(每小题5分,共15分)5.(2011·福建)盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率为________.答案 35解析 从5个球中任取2个球有C 25=10(种)取法,2个球颜色不同的取法有C 13C 12=6(种),故所求概率为610=35.6.从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.答案 34解析 从四条线段中任取三条有4种取法:(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中能构成三角形的取法有3种:(2,3,4),(2,4,5),(3,4,5),故所求的概率为34.7.在平面直角坐标系中,从五个点:A (0,0)、B (2,0)、C (1,1)、D (0,2)、E (2,2)中任取三个,则这三点能构成三角形的概率是________(结果用分数表示).答案 45解析 从五个点中任取三个点有10种不同的取法,其中A 、C 、E 和B 、C 、D 共线.故能构成三角形10-2=8(个),所求概率为P =810=45.三、解答题(共22分)8.(10分)(2012·天津)某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查. (1)求应从小学、中学、大学中分别抽取的学校数目.(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析, ①列出所有可能的抽取结果; ②求抽取的2所学校均为小学的概率. 解 (1)由分层抽样定义知,从小学中抽取的学校数目为6×2121+14+7=3;从中学中抽取的学校数目为6×1421+14+7=2;从大学中抽取的学校数目为6×721+14+7=1.故从小学、中学、大学中分别抽取的学校数目为3,2,1.(2)①在抽取到6所学校中,3所小学分别记为A 1,A 2,A 3,2所中学分别记为A 4,A 5,大学记为A 6,则抽取2所学校的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②从6所学校中抽取的2所学校均为小学(记为事件B )的所有可能结果为{A 1,A 2},{A 1,A 3},{A 2,A 3},共3种,所以P (B )=315=15.9.(12分)已知关于x 的二次函数f (x )=ax 2-4bx +1.设集合P ={-1,1,2,3,4,5},Q ={-2,-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数y =f (x )在[1,+∞)上是增函数的概率.解 分别从集合P 和Q 中任取一个数作为a 和b ,则有(-1,-2),(-1,-1),…,(-1,4);(1,-2),(1,-1),…,(1,4);…;(5,-2),(5,-1),…,(5,4),共36种取法.由于函数f (x )=ax 2-4bx +1的图像的对称轴为x =2ba ,要使y =f (x )在[1,+∞)上是增函数,必有a >0且2ba≤1,即a >0且2b ≤a .若a =1,则b =-2,-1;若a =2,则b =-2,-1,1; 若a =3,则b =-2,-1,1;若a =4,则b =-2,-1,1,2; 若a =5,则b =-2,-1,1,2.故满足题意的事件包含的基本事件的个数为2+3+3+4+4=16.因此所求概率为1636=49.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1.投掷两颗骰子,得到其向上的点数分别为m 和n ,则复数(m +n i)(n -m i)为实数的概率为( )A.13B.14C.16D.112答案 C解析 复数(m +n i)(n -m i)=2mn +(n 2-m 2)i 为实数,则n 2-m 2=0⇒m =n ,而投掷两颗骰子得到点数相同的情况只有6种,所以所求概率为66×6=16.2.宋庆龄基金会计划给西南某干旱地区援助,6家矿泉水企业参与了竞标.其中A 企业来自浙江省,B ,C 两家企业来自福建省,D ,E ,F 三家企业来自河南省.此项援助计划从两家企业购水,假设每家企业中标的概率相同.则在中标的企业中,至少有一家来自河南省的概率是( )A.45B.35C.12D.15答案 A解析 在六家矿泉水企业中,选取两家有15种情况,其中至少有一家企业来自河南的有12种情况,故所求概率为45.3.连掷两次骰子分别得到点数m 、n ,则向量(m ,n )与向量(-1,1)的夹角θ>90°的概率是( )A.512B.712C.13D.12 答案 A解析 ∵(m ,n )·(-1,1)=-m +n <0,∴m >n .基本事件总共有6×6=36(个),符合要求的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),…,(5,4),(6,1),…,(6,5),共1+2+3+4+5=15(个).∴P =1536=512,故选A.二、填空题(每小题5分,共15分)4.(2012·重庆)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为________(用数字作答).答案 35解析 6节课随机安排,共有A 66=720(种)方法.课表上相邻两节文化课之间最多间隔1节艺术课,分三类: 第1类:文化课之间没有艺术课,有A 33·A 44=6×24=144(种).第2类:文化课之间有1节艺术课,有A 33·C 13·A 12·A 33=6×3×2×6=216(种). 第3类:文化课之间有2节艺术课,有A 33·A 23·A 22=6×6×2=72(种). 共有144+216+72=432(种).由古典概型概率公式得P =432720=35.5 . 如图在平行四边形ABCD 中,O 是AC 与BD 的交点,P 、Q 、M 、N分别是线段OA 、OB 、OC 、OD 的中点.在A 、P 、M 、C 中任取一点记为E ,在B 、Q 、N 、D 中任取一点记为F .设G 为满足向量OG →=OE →+OF →的点,则在上述的点G 组成的集合中的点,落在平行四边形ABCD 外(不含边界)的概率为________.答案 34解析 基本事件的总数是4×4=16,在OG →=OE →+OF →中,当OG →=OP →+OQ →,OG →=OP →+,OG →=ON →+OM →,OG →=OM →+OQ →时,点G 分别为该平行四边形各边的中点,此时点G 在平行四边形的边界上,而其余情况的点G 都在平行四边形外,故所求的概率是1-416=34.6.若集合A ={a |a ≤100,a =3k ,k ↔N *},集合B ={b |b ≤100,b =2k ,k ↔N *},在A ∪B 中随机地选取一个元素,则所选取的元素恰好在A ∩B 中的概率为________.答案1667解析 易知A ={3,6,9,…,99},B ={2,4,6,…,100}, 则A ∩B ={6,12,18,…,96},其中有元素16个. A ∪B 中元素共有33+50-16=67(个),∴所求概率为1667.三、解答题7.(13分)(2012·北京)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):(1)试估计厨余垃圾投放正确的概率. (2)试估计生活垃圾投放错误的概率.(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a ,b ,c ,其中a >0,a +b +c =600.当数据a ,b ,c 的方差s 2最大时,写出a ,b ,c 的值(结论不要求证明),并求此时s 2的值.(注:s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为数据x 1,x 2,…,x n 的平均数)解 (1)厨余垃圾投放正确的概率约为 “厨余垃圾”箱里厨余垃圾量厨余垃圾总量=400400+100+100=23.(2)设生活垃圾投放错误为事件A ,则事件A 表示生活垃圾投放正确.事件A 的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P (A )≈400+240+601 000=0.7,所以P (A )约为1-0.7=0.3.(3)当a =600,b =c =0时,s 2取得最大值. 因为x =13(a +b +c )=200,所以s 2=13[(600-200)2+(0-200)2+(0-200)2]=80 000.即s2的最大值为80 000.。

物理步步高大一轮复习讲义答案

物理步步高大一轮复习讲义答案

物理步步高大一轮复习讲义答案(共21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--实验基础知识一、螺旋测微器的使用1.构造:如图1所示,B为固定刻度,E为可动刻度.图12.原理:测微螺杆F与固定刻度B之间的精密螺纹的螺距为 mm,即旋钮D每旋转一周,F前进或后退mm,而可动刻度E上的刻度为50等份,每转动一小格,F前进或后退mm,即螺旋测微器的精确度为mm.读数时估读到毫米的千分位上,因此,螺旋测微器又叫千分尺.3.读数:测量值(mm)=固定刻度数(mm)(注意半毫米刻度线是否露出)+可动刻度数(估读一位)×(mm).如图2所示,固定刻度示数为mm,半毫米刻度线未露出,而从可动刻度上读的示数为,最后的读数为: mm+× mm= mm.图2二、游标卡尺1.构造:主尺、游标尺(主尺和游标尺上各有一个内、外测量爪)、游标卡尺上还有一个深度尺.(如图3所示)图32.用途:测量厚度、长度、深度、内径、外径.3.原理:利用主尺的最小分度与游标尺的最小分度的差值制成.不管游标尺上有多少个小等分刻度,它的刻度部分的总长度比主尺上的同样多的小等分刻度少1 mm.常见的游标卡尺的游标尺上小等分刻度有10个的、20个的、50个的,其规格见下表:刻度格数(分度)刻度总长度每小格与1 mm的差值精确度(可精确到) 109 mm mm mm2019 mm mm mm5049 mm mm mm4.读数:若用x表示从主尺上读出的整毫米数,K表示从游标尺上读出与主尺上某一刻度线对齐的游标的格数,则记录结果表示为(x+K×精确度)mm.三、常用电表的读数对于电压表和电流表的读数问题,首先要弄清电表量程,即指针指到最大刻度时电表允许通过的最大电压或电流,然后根据表盘总的刻度数确定精确度,按照指针的实际位置进行读数即可.(1)0~3 V的电压表和0~3 A的电流表的读数方法相同,此量程下的精确度分别是V和A,看清楚指针的实际位置,读到小数点后面两位.(2)对于0~15 V量程的电压表,精确度是V,在读数时只要求读到小数点后面一位,即读到 V.(3)对于0~A量程的电流表,精确度是A,在读数时只要求读到小数点后面两位,这时要求“半格估读”,即读到最小刻度的一半 A.基本实验要求1.实验原理根据电阻定律公式知道只要测出金属丝的长度和它的直径d ,计算出横截面积S ,并用伏安法测出电阻R x ,即可计算出金属丝的电阻率. 2.实验器材被测金属丝,直流电源(4 V),电流表(0~ A),电压表(0~3 V),滑动变阻器(50 Ω),开关,导线若干,螺旋测微器,毫米刻度尺. 3.实验步骤(1)用螺旋测微器在被测金属丝上的三个不同位置各测一次直径,求出其平均值d . (2)连接好用伏安法测电阻的实验电路.(3)用毫米刻度尺测量接入电路中的被测金属丝的有效长度,反复测量三次,求出其平均值l .(4)把滑动变阻器的滑片调节到使接入电路中的电阻值最大的位置.(5)闭合开关,改变滑动变阻器滑片的位置,读出几组相应的电流表、电压表的示数I 和U 的值,填入记录表格内.(6)将测得的R x 、l 、d 值,代入公式R =ρl S 和S =πd 24中,计算出金属丝的电阻率.4.电流表、电压表测电阻两种方法的比较电流表内接法电流表外接法电路图误差原因电流表分压 U 测=U x +U A 电压表分流 I 测=I x +I V 电阻测量值R 测=U 测I 测=R x +R A >R xR 测=U 测I 测=R x R VR x +R V <R x测量值大于真实值测量值小于真实值适用条件R A≪R x R V≫R x规律方法总结1.伏安法测电阻的电路选择(1)阻值比较法:先将待测电阻的估计值与电压表、电流表内阻进行比较,若R x较小,宜采用电流表外接法;若R x较大,宜采用电流表内接法.(2)临界值计算法R x<R V R A时,用电流表外接法;R x>R V R A时,用电流表内接法.(3)实验试探法:按图4接好电路,让电压表的一根接线柱P先后与a、b处接触一下,如果电压表的示数有较大的变化,而电流表的示数变化不大,则可采用电流表外接法;如果电流表的示数有较大的变化,而电压表的示数变化不大,则可采用电流表内接法.图42.注意事项(1)先测直径,再连电路:为了方便,测量直径应在金属丝连入电路之前测量.(2)电流表外接法:本实验中被测金属丝的阻值较小,故采用电流表外接法.(3)电流控制:电流不宜过大,通电时间不宜过长,以免金属丝温度过高,导致电阻率在实验过程中变大.3.误差分析(1)若为内接法,电流表分压.(2)若为外接法,电压表分流.(3)长度和直径的测量.考点一测量仪器、仪表的读数1.游标卡尺的读数(1)10分度的游标尺的读数:主尺上读出整毫米数+游标尺上与主尺上某一刻度线对齐的游标的格数×1 10.(2)20分度的游标尺的读数:主尺上读出整毫米数+游标尺上与主尺上某一刻度线对齐的游标的格数×1 20.2.螺旋测微器的读数方法:固定刻度数mm+可动刻度数(估读一位)× mm.3.电流表和电压表的读数(1)若刻度盘上每一小格为:1,,,…时,需估读到最小刻度值的下一位.(2)若刻度盘上每一小格为:2,,,5,,,…时,只需估读到最小刻度值的位数.1.[直尺和游标卡尺的读数](2014·福建理综·19(1))某同学测定一金属杆的长度和直径,示数如图5甲、乙所示,则该金属杆的长度和直径分别为________ cm和________ mm.图5答案解析刻度尺的分度值为1 mm,要估读到 mm.游标卡尺读数=4 mm+10× mm= mm. 2.[螺旋测微器的读数]完成下列读数(如图6所示)图6a.____________mm b.____________mmc.____________mm d.____________mm答案a.~b.~c.~d.~3.[电压表、电流表和电阻箱的读数](1)①如图7所示的电流表使用A量程时,对应刻度盘上每一小格代表________A,图中表针示数是________A;当使用3 A量程时,对应刻度盘上每一小格代表________ A,图中表针示数为________A.图7②如图8所示的电表使用较小量程时,每小格表示____________V,图中指针的示数为________ V.若使用的是较大量程,则这时表盘刻度每小格表示________V,图中表针指示的是________V.图8(2)旋钮式电阻箱如图9所示,电流从接线柱A流入,从B流出,则接入电路的电阻为____ Ω.今欲将接入电路的电阻改为2 087 Ω,最简单的操作方法是________.若用两个这样的电阻箱,则可得到的电阻值范围为_________.图9答案(1)①2.20②(2)1 987将“×1 k”旋钮调到2,再将“×100”旋钮调到00~19 998 Ω解析(1)①电流表使用A量程时,刻度盘上的每一小格为A,指针的示数为A;当换用3 A量程时,每一小格为 A,指针示数为 A.②电压表使用3 V量程时,每小格表示V,指针示数为V;使用15 V量程时,每小格为V,指针示数为 V.(2)电阻为1 987 Ω.最简单的操作方法是将“×1 k”旋钮调到2,再将“×100”旋钮调到0.每个电阻箱的最大阻值是9 999 Ω,用这样两个电阻箱串联可得到的最大电阻2×9 999 Ω=19 998 Ω.故两个这样的电阻箱,则可得到的电阻值范围为0~19 998 Ω.考点二实验操作及数据处理4.[实验操作](2014·江苏单科·10)某同学通过实验测量一种合金的电阻率.(1)用螺旋测微器测量合金丝的直径.为防止读数时测微螺杆发生转动,读数前应先旋紧图10所示的部件__________(选填“A”、“B”、“C”或“D”).从图中的示数可读出合金丝的直径为________ mm.图10(2)图11所示是测量合金丝电阻的电路,相关器材的规格已在图中标出.合上开关,将滑动变阻器的滑片移到最左端的过程中,发现电压表和电流表的指针只在图示位置发生很小的变化.由此可以推断:电路中______(选填图中表示接线柱的数字)之间出现了________(选填“短路”或“断路”).图11(3)在电路故障被排除后,调节滑动变阻器,读出电压表和电流表的示数分别为V和38 mA,由此,该同学算出接入电路部分的合金丝的阻值为Ω.为了更准确地测出合金丝的阻值,在不更换实验器材的条件下,对实验应作怎样的改进请写出两条建议.答案(1)B(2)7、8、9断路(3)电流表改为内接;测量多组电流和电压值,计算出电阻的平均值.(或测量多组电流和电压值,用图象法求电阻值)解析(1)螺旋测微器读数时应先将锁紧装置锁紧,即旋紧B.螺旋测微器的示数为(0+×mm= mm.(2)电压表的示数不为0,电流表的示数几乎为0,说明连接两电表的电路是导通的.而滑动变阻器几乎不起作用,说明线路电阻很大,故可判断7、8、9间断路.(3)由题知R AR x≈<R xR V ≈,说明电流表的分压作用不显著,故可将电流表改为内接,并测出多组U 、I 值,求出R x 后,再取平均值作为实验结果.5.[实验操作及数据处理]用伏安法测定电阻约为5 Ω的均匀电阻丝的电阻率,电源是两节干电池.如图12甲所示,将电阻丝拉直后两端固定在带有刻度尺的绝缘底座的接线柱上,底座的中间有一个可沿电阻丝滑动的金属触头P ,触头上固定了接线柱,按下P 时,触头才与电阻丝接触,触头的位置可从刻度尺上读出.实验采用的电路原理图如图乙所示,测量电阻丝直径所用螺旋测微器如图丙所示.图12(1)用螺旋测微器测电阻丝的直径时,先转动________使测微螺杆F 接近被测电阻丝,再转动________夹住被测物,直到棘轮发出声音为止,拨动________使F 固定后读数.(填仪器部件的字母符号)(2)根据电路原理图乙,用笔画线代替导线,将实物图丁连接成实验电路.(3)闭合开关后,滑动变阻器触头调至一合适位置后不动,多次改变P 的位置,得到几组U 、I 、L 的数据,用R =UI计算出相应的电阻值后作出R -L 图线如图13所示.取图线上两个点间数据之差ΔL 和ΔR ,若电阻丝直径为d ,则电阻率ρ=________.图13答案 (1)D H G (2)如图所示 (3)πΔRd 24ΔL解析 (1)在用螺旋测微器测电阻丝的直径时,先转动粗调旋钮D ,使测微螺杆F 接近被测电阻丝,再转动微调旋钮H 夹住被测物,直到棘轮发出声音为止,拨动止动旋钮G 使F 固定后读数.(3)根据R =ρl S ,得ΔR =ρΔL S ,而S =πd 24,代入得ρ=πΔRd 24ΔL.6.[实验原理及数据处理]为测定一段金属丝的电阻率ρ,某同学设计了如图14甲所示的电路.ab 是一段电阻率较大的粗细均匀的电阻丝,电路中的保护电阻R 0= Ω,电源的电动势E = V ,电流表内阻忽略不计,滑片P 与电阻丝始终接触良好.(1)实验中用螺旋测微器测得电阻丝的直径如图乙所示,其示数为d =________ mm.图14(2)实验时闭合开关,调节滑片P 的位置,分别测量出每次实验中aP 长度x 及对应的电流值I ,实验数据如下表所示:x (m) I (A) 1I(A -1)①将表中数据描在1I -x 坐标纸中,如图15所示.试作出其关系图线,图象中直线的斜率的表达式k =________(用题中字母表示),由图线求得电阻丝的电阻率ρ为________ Ω·m (保留两位有效数字).图15②根据1I -x 关系图线纵轴截距的物理意义,可求得电源的内阻为________ Ω(保留两位有效数字).答案 (1) (2)①图线见解析图4ρπEd2 ×10-6 ② 解析 (1)由题图乙所示螺旋测微器可知,其示数为0 mm +× mm = mm. (2)①如图所示.根据图象由电阻定律可得R =ρx S ,由欧姆定律可得:R =E I ,则图象斜率k =1I x ,S =πd 24联立解得:k =4ρπEd 2=Δ1I Δx代入数据得: k =错误!=3联立解得电阻率为: ρ=k πEd 24代入数据得: ρ≈×10-6 Ω·m ;②根据1I -x 关系图线纵轴截距为,此时待测电阻丝的电阻为0,由闭合电路欧姆定律得:E=I (r +R 0) 即:3=错误!(r + 得:r = Ω计算电阻率的两种方法1.根据电阻定律得ρ=RSl;2.通过有关图象来求电阻率.图象法处理实验数据是最常用的方法之一,要从物理规律出发,写出图象的函数关系式,弄清斜率、截距等的物理意义,从而求出相关物理量.考点三 电阻的测量电阻测量的六种方法 1.伏安法电路图⎩⎪⎨⎪⎧外接法:内接法:特点:大内小外(内接法测量值偏大,测大电阻时应用内接法测量,测小电阻时应采用外接法测量) 2.安安法若电流表内阻已知,则可将其当做电流表、电压表以及定值电阻来使用. (1)如图16甲所示,当两电流表所能测得的最大电压接近时,如果已知的内阻R 1,则可测得的内阻R 2=I 1R 1I 2.(2)如图乙所示,当两电流表的满偏电压U A2≫U A1时,如果已知的内阻R 1,串联一定值电阻R 0后,同样可测得的电阻R 2=I 1(R 1+R 0)I 2.图163.伏伏法若电压表内阻已知,则可将其当做电流表、电压表和定值电阻来使用. (1)如图17甲所示,两电压表的满偏电流接近时,若已知的内阻R 1,则可测出的内阻R 2=U 2U 1R 1.(2)如图乙所示,两电压表的满偏电流I V1≪I V2时,若已知的内阻R 1,并联一定值电阻R 0后,同样可得的内阻R 2=U 2U 1R 1+U 1R 0.图174.等效法测电阻如图18所示,先让待测电阻与一电流表串联后接到电动势恒定的电源上,读出电流表示数I ;然后将电阻箱与电流表串联后接到同一电源上,调节电阻箱的阻值,使电流表的示数仍为I ,则电阻箱的读数即等于待测电阻的阻值.图185.比较法测电阻如图19所示,读得电阻箱R 1的阻值及、的示数I 1、I 2,可得R x =I 2R 1I 1.如果考虑电流表内阻的影响,则I 1(R x +R A1)=I 2(R 1+R A2).图196.半偏法测电流表内阻电路图如图20所示图20步骤:(1)断开S2,闭合S1,调节R0,使的示数满偏为I g;(2)保持R0不变,闭合S2,调节电阻箱R,使的示数为I g 2;(3)由上可得R A=R.特别提醒当R0≫R A时,测量误差小,此方法比较适合测小阻值的电流表的内阻,且测量值偏小;电源电动势应选大些的,这样表满偏时R0才足够大,闭合S2时总电流变化才足够小,误差才小.7.[伏安法测电阻](2014·浙江理综·22)小明对2B铅笔芯的导电性能感兴趣,于是用伏安法测量其电阻值.(1)图21是部分连接好的实物电路图,请用电流表外接法完成接线并在图中画出.图21图22(2)小明用电流表内接法和外接法分别测量了一段2B 铅笔芯的伏安特性,并将得到的电流、电压数据描到U -I 图上,如图22所示.在图中,由电流表外接法得到的数据点是用________(填“○”或“×”)表示的.(3)请你选择一组数据点,在图上用作图法作图,并求出这段铅笔芯的电阻为_______ Ω. 答案 (1)见解析图甲 (2)× (3)见解析图乙 用“×”表示的数据连线时,~均可),用“○”表示的数据连线时,~均可) 解析 (1)连线如图甲所示.甲乙(2)U -I 图象如图乙所示,U -I 图象的斜率反映了电阻的大小,而用电流表内接法时测得的电阻偏大,外接法时测得的电阻偏小,所以外接法的数据点是用“×”表示的. (3)在U -I 图象上,选用外接法所得的“×”连线,则R =ΔUΔI= Ω,选用内接法所得的“○”连线,则R =ΔUΔI= Ω.8.[电表改装和电阻测量]现要测量电流表G 1的内阻,给出下列器材:电流表G 1(量程5 mA ,内阻r 1约为150 Ω)电流表G 2(量程10 mA ,内阻r 2约为100 Ω) 定值电阻R 1=100 Ω 定值电阻R 2=10 Ω 滑动变阻器R 3(0~200 Ω) 干电池E V ,内阻未知)单刀单掷开关S 导线若干 (1)定值电阻选________________;(2)如图23所示,在虚线框中已画出部分实验电路设计图,请补充完整,并标明所用器材的代号;图23(3)若选测量数据中的一组计算r 1,所用的表达式为r 1=____________________,式中各符号的意义是__________________________________________________________________ ________________________________________________________________________. 答案 (1)R 1 (2)电路图如图所示(3)R 1(I 2-I 1)I 1 I 1、I 2分别表示电流表G 1、G 2的读数,R 1表示定值电阻R 1的阻值.解析 (1)若选R 2,则其阻值太小,电流过大,而R 1与G 1内阻相当,故选R 1. (2)电路图如图所示.G 2的示数-G 1的示数为通过R 1的电流值.(3)由并联电路特点得:I 1r 1=R 1(I 2-I 1) r 1=R 1(I 2-I 1)I 1I 1、I 2分别表示电流表G 1、G 2的读数,R 1表示定值电阻R 1的阻值. 9.[等效替代法测电阻]电学实验中经常需要测量电阻的阻值.(1)测电阻的方法有很多种,现在提供一只标有“220 V 40 W ”的灯泡,它正常工作时的电阻为________ Ω.若用多用电表欧姆挡来测量这只灯泡的电阻,则测出的电阻值________(填“大于”“等于”或“小于”)灯泡正常工作时的电阻值. (2)用下列器材设计一个实验,测量该灯泡正常工作时的电阻值.A .220 V 交流电源B .单刀双掷开关一个C .电阻箱一个(0~ Ω,额定电流 A)D .定值电阻一个 kΩ,额定电流 A)E .交流电流表一个(0~ A) 请在虚线框内画出电路原理图.答案 (1)1 210 小于 (2)见解析图解析 (1)正常工作时电压为额定电压,故有P =U 2R ,所以R =U 2P =1 210 Ω;灯泡在正常工作时发热,灯丝电阻率增大,电阻增大,因而用欧姆挡测量时阻值应小于正常工作时的电阻值.(2)应用替代法.因电阻箱的最大阻值小于灯泡正常工作的电阻值,故应串联一定值电阻,电路原理图如图所示.10.[半偏法测电阻](2015·新课标Ⅱ·23)电压表满偏时通过该表的电流是半偏时通过该表电流的两倍.某同学利用这一事实测量电压表的内阻(半偏法),实验室提供的器材如下: 待测电压表(量程3 V ,内阻约为3 000 Ω),电阻箱R 0(最大阻值为99 Ω),滑动变阻器R 1(最大阻值100 Ω,额定电流2 A),电源E (电动势6 V ,内阻不计),开关2个,导线若干.(1)虚线框内为该同学设计的测量电压表内阻的电路图的一部分,将电路图补充完整(如图24).图24(2)根据设计的电路,写出实验步骤:________________________________________________________________________________________________________________________________________________.(3)将这种方法测出的电压表内阻记为R V′,与电压表内阻的真实值R V相比,R V′________R V(填“>”、“=”或“<”),主要理由是____________________.答案(1)见解析图(2)见解析(3)>理由见解析解析(1)实验电路图如图所示.(2)移动滑动变阻器的滑片,以保证通电后电压表所在支路分压最小;闭合开关S1、S2,调节R1,使电压表的指针满偏;保持滑动变阻器滑片的位置不变,断开S2,调节电阻箱R0,使电压表的指针半偏,读取电阻箱的电阻值,此即为测得的电压表内阻.(3)断开S2,调节电阻箱R0使电压表成半偏状态,电压表所在支路总电阻增大,分得的电压也增大,此时R0两端的电压大于电压表的半偏电压,故R V′>R V.考点四实验拓展与创新11.[实验器材的创新]有一根细长且均匀的空心金属管线,长约30 cm,电阻约为5 Ω,已知这种金属的电阻率为ρ,现在要尽可能精确测定它的内径d.(1)用螺旋测微器测量金属管线外径D时刻度的位置如图25a所示,从图中读出外径为________ mm,应用________(选填“厘米刻度尺”或“毫米刻度尺”)测金属管线的长度L;图25(2)测量金属管线的电阻R,为此取来两节新的干电池、开关和若干导线及下列器材:A.电压表0~3 V,内阻约10 kΩB.电压表0~15 V,内阻约50 kΩC .电流表0~ A ,内阻约 ΩD .电流表0~3 A ,内阻约 ΩE .滑动变阻器,0~10 ΩF .滑动变阻器,0~100 Ω要求较准确地测出其阻值,电压表应选____________,电流表应选__________,滑动变阻器应选__________;(填序号)(3)实验中他的实物接线如图b 所示,请指出接线中的两处明显错误.错误1:___________________________________________________________________ 错误2:___________________________________________________________________ (4)用已知的物理常数和应直接测量的物理量(均用符号表示),推导出计算金属管线内径的表达式d =______________;(5)在实验中,下列说法正确的是________. A .为使电流表读数明显,应使电流尽可能大些B .为操作方便,中间过程可保持开关S 一直处于闭合状态C .千分尺的精确度是千分之一毫米D .用千分尺测量直径时必须估读一位答案 (1) 毫米刻度尺 (2)A C E (3)导线连接在滑动变阻器的滑片上 采用了电流表内接法 (4)D 2-4ρIL πU(5)D解析 (1)螺旋测微器的读数为: D =5 mm +× mm = mm ;测量30 cm 金属管长度时应用毫米刻度尺来测量.(2)由于两节干电池的电动势为3 V ,所以电压表应选A ;由于通过金属管的最大电流为I m =U R x =35A = A ,所以电流表应选C.为了较准确地测出其阻值,滑动变阻器应选E. (3)由于待测金属管阻值远小于电压表内阻,所以电流表应用外接法,连线图中的两处明显错误分别是:错误1:导线连接在滑动变阻器的滑片上; 错误2:采用了电流表内接法.(4)设金属管线内径为d ,根据电阻定律应有:R =ρL14πD 2-14πd 2,又R =U I ,联立可得:d =D 2-4ρIL πU(5)由金属的电阻率随温度的升高而增大可知,通过待测金属管线的电流不能太大,所以A 错误;为减小温度的影响,中间过程应断开开关,所以B 错误;千分尺的精确度是 mm ,即应精确到1100毫米,所以C 错误;千分尺读数时必须估读一位,即估读到 mm ,所以D 正确.12.[液体电阻率的测量]如图26是一同学测量某导电液体电阻率的实物连线图.图中均匀的长直玻璃管内径为d ,里面充满待测导电液体,玻璃管两端各装有一电极,电极距离为L .图26(1)根据实物连线图在虚线框内画出实验的电路原理图,其中导电液体用电阻R x 表示.(2)在接通电路前,为保证器材安全滑动变阻器的滑片P 应移到最________端(填“左”或“右”).在电路调试时,该同学发现:闭合开关S 1后,单刀双掷开关S 2接到a 接点时电压表示数为 V 、电流表示数为180 μA ;单刀双掷开关S 2接到b 接点时电压表示数为 V 、电流表示数为164 μA.正式测量时,为减小实验误差,单刀双掷开关S 2应接到________点(填“a ”或“b ”).(3)该同学正确完成实验,测得该段液体的电阻R 0,则该导电液体的电阻率的表达式为ρ=______________(用R 0、L 、d 等表示). 答案 (1)如图所示(2)右 b (3)πR 0d 24L解析 (1)电路原理图如图所示(2)接通电路前为保证电路的安全,应使滑动变阻器接入电路中的电阻最大,即滑片应移到最右端.分别使用内接法和外接法时电流表示数变化大,电压表示数变化小,说明电流表对示数影响较小,即电流表内阻远小于被测电阻,为减小误差应当采用电流表内接法,故接b 点.(3)根据欧姆定律R =U I 、电阻定律ρ=RS L 及S =π(d 2)2可得电阻率ρ=πR 0d 24L. 13.[实验拓展]某些固体材料受到外力后除了产生形变外,其电阻率也要发生变化,这种由于外力的作用而使材料电阻率发生变化的现象称为“压阻效应”.现用如图27所示的电路研究某长薄板电阻R x 的压阻效应,已知R x 的阻值变化范围为几欧到几十欧,实验室中有下列器材:图27A .电源E (3 V ,内阻约为1 Ω)B .电流表A 1 A ,内阻r 1=5 Ω)C .电流表A 2(6 A ,内阻r 2约为1 Ω)D .开关S ,定值电阻R 0(1)为了比较准确地测量电阻R x 的阻值,根据虚线框内电路图的设计,甲表选用________(选填“A 1”或“A 2”),乙表选用________(选填“A 1”或“A 2”).(2)在电阻R x上加一个竖直向下的力F(设竖直向下为正方向),闭合开关S,记下电表读数,A1的读数为I1,A2的读数为I2,得R x=________(用字母表示).(3)改变力的大小,得到不同的R x值,然后让力反向从下向上挤压电阻,并改变力的大小,得到不同的R x值,最后绘成的图象如图28所示.当F竖直向下(设竖直向下为正方向)时,可得R x与所受压力F的数值关系是R x=________________.(各物理量单位均为国际单位)图28(4)定值电阻R0的阻值应该选用________________.A.1 Ω B.5 Ω C.10 Ω D.20 Ω答案(1)A1A2(2)I1r1I2-I1(3)16-2F(4)B解析(1)由于A1内阻确定,并且与待测电阻接近,与待测电阻并联,用来测出待测电阻R x两端的电压,用A2测得的电流减去A1测得的电流就是流过待测电阻的电流,根据欧姆定律就可求出待测电阻的阻值,电路连接如图所示.(2)待测电阻两端的电压U=I1r1,流过待测电阻的电流I=I2-I1,因此待测电阻的阻值为R x=I1r1I2-I1.(3)由图象的对称性可知,加上相反的压力时,电阻值大小相等;图象与纵坐标的交点为16 Ω,当R=7 Ω时,对应的力为 N,因此函数表达式R x=16-2F.(4)整个回路总电流不能大于 A,而电动势为3 V,因此总电阻应略大于5 Ω,而电源内阻约为1 Ω,因此定值电阻R0的阻值应选5 Ω,即可保证电流不超过量程,也保证电流不太小,两块电流表读数准确.。

2014《步步高》物理大一轮复习讲义 第02章 第1课时 力、重力、弹力

2014《步步高》物理大一轮复习讲义 第02章  第1课时 力、重力、弹力

第1课时 力、重力、弹力考纲解读 1.掌握重力的大小、方向及重心概念.2.掌握弹力的有无、方向的判断及大小的计算的基本方法.3.掌握胡克定律.1.[对力的理解]关于力的概念,下列说法正确的是( )A .一个受力物体可能受到两个施力物体的作用力B .力可以从一个物体传给另一个物体C .只有相互接触的物体之间才可能存在力的作用D.一个受力物体可以不对其他物体施力答案 A解析由于一个受力物体可能同时受到两个力的作用,所以一个受力物体可能找到两个施力物体,A正确;因为力是物体之间的相互作用,所以力不能通过一个物体传给另一个物体,B错误;力可以分为接触力和非接触力两大类,不接触的物体之间也可能存在相互作用,C错误;根据力的定义可知,受力物体同时也是施力物体,D错误.2.[对重力和重心的理解]下列关于重力和重心的说法正确的是() A.物体所受的重力就是地球对物体产生的吸引力B.物体静止时,对水平支持物的压力就是物体的重力C.用细线将物体悬挂起来,静止时物体的重心一定在悬线所在的直线上D.重心就是物体所受重力的等效作用点,故重心一定在物体上答案 C解析重力是由地球吸引产生的,是所受引力的一个分力,两者一般不等,A错.压力和重力是两种性质不同的力,B错.由平衡条件知,细线拉力和重力平衡,重心在重力作用线上,C对.重心跟物体的形状、质量分布有关,是重力的等效作用点,但不一定在物体上.如折弯成直角的均匀直杆,D错.3.[画弹力的受力分析图]画出图1中物体A和B所受重力、弹力的示意图.(各接触面均光滑,各物体均静止)图1答案物体A和B所受重力、弹力的示意图,如图所示.考点梳理1.重力(1)产生:由于地球的吸引而使物体受到的力.(2)大小:G=mg.(3)g的特点①在地球上同一地点g值是一个不变的常数.②g值随着纬度的增大而增大.③g值随着高度的增大而减小.(4)方向:竖直向下.(5)重心①相关因素:物体的几何形状;物体的质量分布.②位置确定:质量分布均匀的规则物体,重心在其几何中心;对于形状不规则或者质量分布不均匀的薄板,重心可用悬挂法确定.2.弹力(1)形变:物体形状或体积的变化叫形变.(2)弹力①定义:发生弹性形变的物体,由于要恢复原状,会对与它接触的物体产生力的作用.②产生条件:物体相互接触;物体发生弹性形变.(3)胡克定律①内容:弹簧发生弹性形变时,弹力的大小F跟弹簧伸长(或缩短)的长度x成正比.②表达式:F=kx.k是弹簧的劲度系数,单位为N/m;k的大小由弹簧自身性质决定.x是弹簧长度的变化量,不是弹簧形变以后的长度.4.[利用假设法判断弹力是否存在]在下图中,a、b(a、b均处于静止状态)间一定有弹力的是()答案 B解析A选项中,a、b间如果存在弹力,则b给a的弹力水平向左,a将向左侧加速运动,显然与题设要求不符,故A选项中a、b间无弹力作用.同理,C选项中a、b间没有弹力.对于D选项,也可以假设a、b间有弹力,则a(斜面)对b的弹力将垂直于斜面向上,因此,b所受的合外力不为零,即b不可能处于静止状态,故D选项中a、b间无弹力作用.B选项,假设b对a没有弹力,则a所受的合外力不为零,不可能静止,故a、b间一定存在弹力.故选B.5.[胡克定律的应用]一根轻质弹簧,当它上端固定、下端悬挂重为G的物体时,长度为L1;当它下端固定在水平地面上,上端压一重为G的物体时,其长度为L2,则它的劲度系数是()A.GL1 B.GL2C.GL1-L2D.2G L1-L2答案 D解析设弹簧原长为L0,由胡克定律知,G=k(L1-L0),G=k(L0-L2),联立可得k=2GL1-L2,D对.方法提炼1.假设法判断弹力的有无可以先假设有弹力存在,然后判断是否与研究对象所处状态的实际情况相符合.还可以设想将与研究对象接触的物体“撤离”,看研究对象能否保持原来的状态,若能,则与接触物体间无弹力;若不能,则与接触物体间有弹力.2.利用胡克定律求弹簧弹力的大小.考点一弹力有无及方向的判断1.弹力有无的判断方法(1)条件法:根据物体是否直接接触并发生弹性形变来判断是否存在弹力.此方法多用来判断形变较明显的情况.(2)假设法:对形变不明显的情况,可假设两个物体间弹力不存在,看物体能否保持原有的状态,若运动状态不变,则此处不存在弹力,若运动状态改变,则此处一定有弹力.(3)状态法:根据物体的运动状态,利用牛顿第二定律或共点力平衡条件判断弹力是否存在.(4)替换法:可以将硬的、形变不明显的施力物体用软的、易产生明显形变的物体来替换,看能否维持原来的运动状态.2.弹力方向的判断方法(1)根据物体所受弹力方向与施力物体形变的方向相反判断.(2)根据共点力的平衡条件或牛顿第二定律确定弹力的方向.例1画出图2中物体A受力的示意图.图2答案1.有形变才有弹力,只接触不发生形变不产生弹力.2.几种典型接触弹力的方向确认:突破训练1画出下列各图中物体A所受弹力的示意图.(所有接触面均光滑)答案考点二 弹力的分析与计算首先分析物体的运动情况,然后根据物体的运动状态,利用共点力平衡的条件或牛顿第二定律求弹力.例2 如图3所示,一光滑的半圆形碗固定在水平面上,质量为 m 1的小球用轻绳跨过光滑碗连接质量分别为m 2和m 3的物体, 平衡时小球恰好与碗之间没有弹力作用,两绳与水平方向夹角 分别为60°、30°,则m 1、m 2、m 3的比值为( )图3A .1∶2∶3B .2∶3∶1C .2∶1∶1D .2∶1∶ 3答案 B解析 对m1受力分析可知: m 2g =m 1g cos 30° m 3g =m 1g cos 60°, m 2=32m 1m 3=12m 1,B 正确.突破训练2 两个完全相同的小球A 和B ,质量均为m ,用长度相同的 两根细线悬挂在水平天花板上的同一点O ,再用长度相同的细线连接 A 、 B 两小球,如图4所示.然后用一水平向右的力F 拉小球A ,使三线均处于直线状态,此时OB 线恰好位于竖直方向,且两小球都静 图4 止,小球可视为质点,则拉力F 的大小为( )A .0B.3mgC.33mgD .mg答案 B解析 OB 恰好竖直,说明AB 绳无弹力,对A 进行受力分析如图:由图知,F =mg tan 60°= 3mg .突破训练3 如图5所示,小车内放有一物体,物体刚好可放入车箱中,小车在水平面上向右运动,下列说法正确的有( )A .若小车做匀速运动,则物体只受两个力作用B .若小车做匀加速运动,则物体受到车箱前壁的作用 图5C .若小车做匀减速运动,则物体受到车箱前壁的作用D .若小车做匀速运动,则物体受三个力作用 答案 AC解析 当小车做匀速运动时,物体只受重力与竖直向上的支持力,A 正确.若小车后壁不给物体作用力,则物体不可能做匀加速运动,故小车做匀加速运动时,物体受到车箱后壁的作用.同理,当小车做匀减速运动时,小车前壁给物体作用力,C 正确. 考点三 含弹簧类弹力问题的分析与计算中学物理中的“弹簧”和“橡皮绳”也是理想化模型,具有如下几个特性: (1)弹力遵循胡克定律F =kx ,其中x 是弹簧的形变量. (2)轻:即弹簧(或橡皮绳)的重力可视为零.(3)弹簧既能受拉力,也能受压力(沿着弹簧的轴线),橡皮绳只能受拉力,不能受压力. (4)由于弹簧和橡皮绳受力时,其形变较大,发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能突变.但是,当弹簧和橡皮绳被剪断时,它们产生的弹力立即消失.例3 如图6所示,倾角为θ的光滑斜面ABC 放在水平面上, 劲度系数分别为k 1、k 2的两个轻弹簧沿斜面悬挂着,两弹 簧之间有一质量为m 1的重物,最下端挂一质量为m 2的重物,此时两重物处于平衡状态,现把斜面ABC 绕A 点缓 图6 慢地顺时针旋转90°后,重新达到平衡.试求m 1、m 2分别沿斜面移动的距离. 审题指导解析 没旋转时,两弹簧均处于伸长状态,两弹簧伸长量分别为x 1、x 2 k 2x 2=m 2g sin θ,解得x 2=m 2g sin θk 2k 2x 2+m 1g sin θ=k 1x 1,解得x 1=(m 1+m 2)g sin θk 1旋转后,两弹簧均处于压缩状态,压缩量分别为x 1′、x 2′ m 2g cos θ=k 2x 2′,解得x 2′=m 2g cos θk 2(m 1+m 2)g cos θ=k 1x 1′,解得x 1′=(m 1+m 2)g cos θk 1所以m 1移动的距离d 1=x 1+x 1′=(m 1+m 2)gk 1(sin θ+cos θ)m 2移动的距离d 2=d 1+x 2+x 2′=(m 1+m 2)g k 1(sin θ+cos θ)+m 2gk 2(sin θ+cos θ)答案(m 1+m 2)gk 1(sin θ+cos θ) (m 1+m 2)g k 1(sin θ+cos θ)+m 2gk 2(sin θ+cos θ)突破训练4 如图7所示,完全相同的、质量为m 的A 、B 两球,用两根 等长的细线悬挂在O 点,两球之间夹着一根劲度系数为k 的轻弹簧, 静止不动时,弹簧处于水平方向,两根细线之间的夹角为θ,则弹簧的 长度被压缩了( )图7A.mg tan θkB.2mg tan θkC.mg tanθ2kD.2mg tanθ2k答案 C解析 对A 受力分析可知,A 球受竖直向下的重力mg 、沿着细线方向的拉力F T 以及水平向左的弹簧弹力F ,由正交分解法可得水平方向F T sin θ2=F =k Δx ,竖直方向F T cos θ2=mg ,解得Δx =mg tanθ2k,C 正确.4.滑轮模型与死结模型问题的分析1.跨过滑轮、光滑杆、光滑钉子的细绳两端张力大小相等.2.死结模型:如几个绳端有“结点”,即几段绳子系在一起,谓之“死结”,那么这几段绳中的张力不一定相等.3.同样要注意轻质固定杆的弹力方向不一定沿杆的方向,作用力的方向需要结合平衡方程或牛顿第二定律求得,而轻质活动杆中的弹力方向一定沿杆的方向.例4如图8所示,轻绳AD跨过固定在水平横梁BC右端的定滑轮挂住一个质量为10 kg的物体,∠ACB=30°,g取10 m/s2,求:(1)轻绳AC段的张力F AC的大小;(2)横梁BC对C端的支持力大小及方向.解析物体M处于平衡状态,根据平衡条件可判断,与物体相连图8的轻绳拉力大小等于物体的重力,取C点为研究对象,进行受力分析,如图所示.(1)图中轻绳AD跨过定滑轮拉住质量为M的物体,物体处于平衡状态,绳AC段的拉力大小为:F AC=F CD=Mg=10×10 N=100 N(2)由几何关系得:F C=F AC=Mg=100 N方向和水平方向成30°角斜向右上方答案(1)100 N(2)100 N方向与水平方向成30°角斜向右上方一般情况下,插入墙中的杆属于固定杆(如钉子).弹力方向不一定沿杆,而用铰链相连的杆属于活动杆,弹力方向一定沿杆.突破训练5若【例4】中横梁BC换为水平轻杆,且B端用铰链固定在竖直墙上,如图9所示,轻绳AD拴接在C端,求:(1)轻绳AC段的张力F AC的大小;(2)轻杆BC对C端的支持力.答案(1)200 N 图9(2)173 N,方向水平向右解析物体M处于平衡状态,与物体相连的轻绳拉力大小等于物体的重力,取C点为研究对象,进行受力分析,如图所示.(1)由F AC sin 30°=F CD=Mg得:F AC=2Mg=2×10×10 N=200 N(2)由平衡方程得:F AC cos 30°-F C=0解得:F C=2Mg cos 30°=3Mg≈173 N方向水平向右高考题组1.(2012·山东基本能力·85)力是物体间的相互作用,下列有关力的图示及表述正确的是()答案BD解析由于在不同纬度处重力加速度g不同,旅客所受重力不同,故对飞机的压力不同,A错误.充足气的篮球平衡时,篮球壳对内部气体有压力作用,即内外气体对篮球壳压力的差值等于篮球壳对内部气体的压力,故B正确.书对桌子的压力作用在桌子上,箭尾应位于桌面上,故C错误.平地上匀速行驶的汽车,其主动轮受到地面的摩擦力是其前进的动力,地面对其从动轮的摩擦力是阻力,汽车受到的动力与阻力平衡时才能匀速前进,故D正确.2.(2010·课标全国·15)一根轻质弹簧一端固定,用大小为F1的力压弹簧的另一端,平衡时长度为l 1;改用大小为F 2的力拉弹簧,平衡时长度为l 2.弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为( )A.F 2-F 1l 2-l 1B.F 2+F 1l 2+l 1 C.F 2+F 1l 2-l 1D.F 2-F 1l 2+l 1答案 C解析 设弹簧原长为l ,由题意知,F 1=k (l -l 1),F 2=k (l 2-l ),两式联立,得k =F 2+F 1l 2-l 1,选项C 正确. 模拟题组3.如图10所示,两个质量均为m 的物体分别挂在支架上的B 点(如图甲所示)和跨过滑轮的轻绳BC 上(如图乙所示),图甲中轻杆AB 可绕A 点转动,图乙中水平轻杆一端A 插在墙壁内,已知θ=30°,则图甲中轻杆AB 受到绳子的作用力F 1和图乙中滑轮受到绳子的作用力F 2分别为( )图10A .F 1=mg 、F 2=3mgB .F 1=3mg 、F 2=3mgC .F 1=33mg 、F 2=mgD .F 1=3mg 、F 2=mg答案 D4.如图11所示,固定在竖直平面内的光滑圆环的最高点有一个光滑的小孔,质量为m 的小球套在圆环上,一根细线的下端系着小球,上端穿过小孔 用力F 拉住,细线与竖直方向夹角为θ,小球处于静止状态.设小球受 支持力为F N ,则下列关系正确的是( ) A .F =2mg cos θ B .F =mg cos θ图11C .F N =2mgD .F N =mg答案 AD解析 对小球受力分析,利用几何关系可知F N =mg ,选项C 错误,D 正确;此时F = 2mg cos θ,选项A 正确,B 错误.5.如图12所示,重80 N的物体A放在倾角为30°的粗糙斜面上,有一根原长为10 cm,劲度系数为1 000 N/m的弹簧,其一端固定在斜面底端,另一端放置物体A后,弹簧长度缩短为8 cm,现用一测力计沿斜面向上拉物体,若物体与斜面间最大静摩擦图12力为25 N,当弹簧的长度仍为8 cm时,测力计读数不可能为() A.10 N B.20 N C.40 N D.60 N答案 D解析当物体受到的静摩擦力方向沿斜面向下,且达到最大静摩擦力时,测力计的示数最大,此时F+kΔx=mg sin θ+F fmax解得F=45 N,故F不能超过45 N,选D.►题组1力、重力和弹力的理解1.如图1所示,两辆车在以相同的速度做匀速运动,根据图中所给信息和所学知识你可以得出的结论是()图1A.物体各部分都受重力作用,但可以认为物体各部分所受重力集中于一点B.重力的方向总是垂直向下的C.物体重心的位置与物体形状或质量分布有关D.力是使物体运动的原因答案AC解析物体各部分都受重力作用,但可以认为物体各部分所受重力集中于一点,这个点就是物体的重心,重力的方向总是和水平面垂直,是竖直向下而不是垂直向下,所以A 正确,B错误;从图中可以看出,汽车(包括货物)的形状和质量分布发生了变化,重心的位置就发生了变化,故C正确;力不是使物体运动的原因而是改变物体运动状态的原因,所以D错误.2.玩具汽车停在模型桥面上,如图2所示,下列说法正确的是()A.桥面受向下的弹力,是因为桥梁发生了弹性形变B.汽车没有发生形变,所以汽车不受弹力C.汽车受向上的弹力,是因为桥梁发生了弹性形变图2D.汽车受向上的弹力,是因为汽车发生了形变答案 C解析汽车与桥面相互挤压都发生了形变,B错;由于桥面发生弹性形变,所以对汽车有向上的弹力,C对,D错;由于汽车发生了形变,所以对桥面产生向下的压力,A错.3.如图3所示,四个完全相同的弹簧都处于水平位置,它们的右端皆受到大小为F的拉力作用,而左端的情况各不相同:①弹簧的左端固定在墙上;②弹簧的左端受大小也为F的拉力作用;③弹簧的左端拴一小物块,物块在光滑的桌面上滑动;④弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.图3若认为弹簧质量都为零,以L1、L2、L3、L4依次表示四个弹簧的伸长量,则有() A.L2>L1B.L4>L3C.L1>L3D.L2=L4答案 D解析完全相同的弹簧,其伸长量由弹簧的弹力(F弹)大小决定.由于弹簧质量不计,这四种情况下,F弹都等于弹簧右端拉力F,因而弹簧伸长量均相同,故选D项.题组2弹力方向判断和大小的计算4.如图4所示,一倾角为45°的斜面固定于竖直墙上,为使一光滑的铁球静止,需加一水平力F,且F通过球心,下列说法正确的是()A.球一定受墙的弹力且水平向左B.球可能受墙的弹力且水平向左图4 C.球一定受斜面的弹力且垂直斜面向上D.球可能受斜面的弹力且垂直斜面向上答案BC解析F大小合适时,球可以静止在无墙的斜面上,F增大到一定程度时墙才对球有水平向左的弹力,故A错误,B正确;而斜面对球必须有斜向上的弹力才能使球不下落,故C正确,D错误.5.如图5所示,一重为10 N的球固定在支杆AB的上端,今用一段绳子水平拉球,使杆发生弯曲,已知绳的拉力为7.5 N,则AB杆对球的作用力()A.大小为7.5 N 图5B.大小为10 NC.方向与水平方向成53°角斜向右下方D.方向与水平方向成53°角斜向左上方答案 D解析对小球进行受力分析可得,AB杆对球的作用力F与绳的拉力的合力与小球重力等值反向,可得F方向斜向左上方,令AB杆对小球的作用力与水平方向夹角为α,可得:tan α=GF拉=43,α=53°,F=Gsin 53°=12.5 N,故只有D项正确.6.如图6所示,重物的质量为m,轻细绳AO的A端和BO的B端固定,平衡时AO水平,BO与水平方向的夹角为60°.AO的拉力F1和BO的拉力F2与物体重力的大小关系是()A.F1>mg B.F1<mgC.F2<mg D.F2>mg 图6 答案BD7.如图7所示,两根相距为L 的竖直固定杆上各套有质量为m 的 小球,小球可以在杆上无摩擦地自由滑动,两小球用长为2L 的 轻绳相连,今在轻绳中点施加一个竖直向上的拉力F ,恰能使两 小球沿竖直杆向上匀速运动.则每个小球所受的拉力大小为(重 力加速度为g )( )图7A.mg 2B .mg C.3F /3D .F答案 C解析 根据题意可知:两根轻绳与竖直杆间距正好组成等边三角形,每个小球所受的拉力大小为F ′,对结点进行受力分析,根据平衡条件可得,F =2F ′cos 30°=2mg ,解得小球所受拉力F ′=3F 3=233mg ,只有C 正确.8.如图8所示,轻杆BC 的C 点用光滑铰链与墙壁固定,杆的B 点通过 水平细绳AB 使杆与竖直墙壁保持30°的夹角.若在B 点悬挂一个定 滑轮(不计重力),某人用它匀速地提起重物.已知重物的质量m = 30 kg ,人的质量M =50 kg ,g 取10 m/s 2.试求: (1)此时地面对人的支持力的大小;图8(2)轻杆BC 和绳AB 所受力的大小. 答案 (1)200 N (2)400 3 N 200 3 N解析 (1)因匀速提起重物,则F T =mg ,故绳对人的拉力也为mg ,所以地面对人的支持力为:F N =Mg -mg =(50-30)×10 N =200 N ,方向竖直向上.(2)定滑轮对B 点的拉力方向竖直向下,大小为2mg ,杆对B 点的弹力方向沿杆的方向,如图所示,由共点力平衡条件得:F AB =2mg tan 30°=2×30×10×33N =200 3 N F BC =2mgcos 30°=2×30×1032N =400 3 N.题组3弹簧弹力分析和计算9.如图9所示,在一辆有动力驱动的小车上有一水平放置的弹簧,其左端固定在小车上,右端与一小球相连.设在某一段时间内小球与小车相对静止且弹簧处于压缩状态,图9若忽略小球与小车间的摩擦力,则在此段时间内小车可能是() A.向右做加速运动B.向右做减速运动C.向左做加速运动D.向左做减速运动答案AD10.三个质量均为1 kg的相同木块a、b、c和两个劲度系数均为500 N/m的相同轻弹簧p、q用轻绳连接如图10所示,其中a 放在光滑水平桌面上.开始时p弹簧处于原长,木块都处于静止状态.现用水平力缓慢地向左拉p弹簧的左端,直到c木块刚图10 好离开水平地面为止,g取10 m/s2.该过程p弹簧的左端向左移动的距离是() A.4 cm B.6 cm C.8 cm D.10 cm 答案 C解析“缓慢地拉动”说明系统始终处于平衡状态,该过程中p弹簧的左端向左移动的距离等于两个弹簧长度变化量之和;最初,p弹簧处于原长,而q弹簧受到竖直向下的压力F N1=m b g=1×10 N=10 N,所以其压缩量为x1=F N1/k=2 cm;最终c木块刚好离开水平地面,q弹簧受到竖直向下的拉力F N2=m c g=1×10 N=10 N,其伸长量为x2=F N2/k =2 cm,拉力F=(m b+m c)g=2×10 N=20 N,p弹簧的伸长量为x3=F/k=4 cm,所以所求距离x=x1+x2+x3=8 cm.题组4“滑轮”模型和“死结”模型问题11.如图11所示,质量为m的物体悬挂在轻质支架上,斜梁OB与竖直方向的夹角为θ.设水平横梁OA和斜梁OB作用于O点的弹力分别为F1和F2,以下结果正确的是()A.F1=mg sin θ图11B.F1=mgsin θC.F2=mg cos θD.F2=mgcos θ答案 D解析由题可知,对悬挂的物体由力的平衡条件可知绳子的拉力等于其重力,则绳子拉O点的力也等于重力.求OA和OB的弹力,选择的研究对象为作用点O ,受力分析如图,由平衡条件可知,F 1和F 2的合力与F T 等大反向,则由平行四边形定则和几何关系可得:F 1=mg tan θ,F 2=mg cos θ,故D 正确.12.图12所示,杆BC 的B 端用铰链接在竖直墙上,另一端C 为一滑轮.重物G 上系一绳经过滑轮固定于墙上A 点处,杆恰好 平衡.若将绳的A 端沿墙缓慢向下移(BC 杆、滑轮、绳的质量 及摩擦均不计),则( ) A .绳的拉力增大,BC 杆受绳的压力增大图12B .绳的拉力不变,BC 杆受绳的压力增大 C .绳的拉力不变,BC 杆受绳的压力减小D .绳的拉力不变,BC 杆受绳的压力不变 答案 B解析 选取绳子与滑轮的接触点为研究对象,对其受力分析, 如图所示,绳中的弹力大小相等,即F T1=F T2=G ,C 点处于 三力平衡状态,将三个力的示意图平移可以组成闭合三角形, 如图中虚线所示,设AC 段绳子与竖直墙壁间的夹角为θ,则根据几何知识可知F =2G sin θ2,当绳的A 端沿墙缓慢向下移时,绳的拉力不变,θ增大,F 也增大,根据牛顿第三定律知,BC 杆受绳的压力增大,B 正确.13.在如图13所示的四幅图中,AB 、BC 均为轻质杆,各图中杆的A 、C 端都通过铰链与墙连接,两杆都在B 处由铰链相连接.下列说法正确的是( )图13A .图中的AB 杆可以用与之等长的轻绳代替的有甲、乙 B .图中的AB 杆可以用与之等长的轻绳代替的有甲、丙、丁C .图中的BC 杆可以用与之等长的轻绳代替的有乙、丙D .图中的BC 杆可以用与之等长的轻绳代替的有乙、丁 答案 B解析 如果杆端受拉力作用,则可用等长的轻绳代替,若杆端受到沿杆的压力作用,则杆不可用等长的轻绳代替,如图甲、丙、丁中的AB杆受拉力作用,而甲、乙、丁中的BC杆均受沿杆的压力作用,故A、C、D均错误,只有B正确.。

第十二章 第2课时 法拉第电磁感应定律、自感和涡流-2025物理大一轮复习讲义人教版

第十二章 第2课时 法拉第电磁感应定律、自感和涡流-2025物理大一轮复习讲义人教版

第2课时法拉第电磁感应定律、自感和涡流目标要求1.理解法拉第电磁感应定律,会应用E =nΔΦΔt进行有关计算。

2.会计算导体切割磁感线产生的感应电动势。

3.了解自感现象、涡流、电磁驱动和电磁阻尼。

考点一法拉第电磁感应定律的理解及应用1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势。

(2)产生条件:穿过电路的磁通量发生改变,与电路是否闭合无关。

2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

(2)公式:E =nΔΦΔt,其中n 为线圈匝数。

①若已知Φ-t 图像,则图线上某一点的切线斜率为ΔΦΔt。

②当ΔΦ仅由B 的变化引起时,E =nS ΔBΔt,其中S 为线圈在磁场中的有效面积。

若B =B 0+kt ,则ΔBΔt=k 。

③当ΔΦ仅由S 的变化引起时,E =nB ΔSΔt。

④当B 、S 同时变化时,则E =n B 2S 2-B 1S 1Δt ≠n ΔB ·ΔSΔt 。

求瞬时值时,分别求出动生电动势E 1和感生电动势E 2并进行叠加。

(3)感应电流与感应电动势的关系:I =ER +r。

(4)说明:E 的大小与Φ、ΔΦ无关,决定于磁通量的变化率ΔΦΔt。

1.Φ=0,ΔΦΔt不一定等于0。

(√)2.穿过线圈的磁通量变化越大,感应电动势也越大。

(×)3.穿过线圈的磁通量变化越快,感应电动势越大。

(√)4.线圈匝数n 越多,磁通量越大,产生的感应电动势也越大。

(×)例1(2023·湖北卷·5)近场通信(NFC)器件应用电磁感应原理进行通讯,其天线类似一个压平的线圈,线圈尺寸从内到外逐渐变大。

如图所示,一正方形NFC 线圈共3匝,其边长分别为1.0cm 、1.2cm 和1.4cm ,图中线圈外线接入内部芯片时与内部线圈绝缘。

若匀强磁场垂直通过此线圈,磁感应强度变化率为103T/s ,则线圈产生的感应电动势最接近()A .0.30VB .0.44VC .0.59VD .4.3V答案B解析根据法拉第电磁感应定律E =ΔΦΔt ,可得E 1=ΔB Δt S 1,E 2=ΔB Δt S 2,E 3=ΔBΔtS 3,三个线圈产生的感应电动势方向相同,故E =E 1+E 2+E 3=103×(1.02+1.22+1.42)×10-4V =0.44V ,故选B 。

2014《步步高》物理大一轮复习讲义第一章第2课时

2014《步步高》物理大一轮复习讲义第一章第2课时

第2课时 匀变速直线运动规律的应用考纲解读 1.掌握匀变速直线运动的速度公式、位移公式及速度—位移公式,并能熟练应用.2.掌握并能应用匀变速直线运动的几个推论:平均速度公式、Δx =aT 2及初速度为零的匀加速直线运动的比例关系式.1. [位移公式和平均速度公式的应用]做匀减速直线运动的质点,它的加速度大小为a ,初速度大小为v 0,经过时间t 速度减小到零,则它在这段时间内的位移大小可用下列哪些式子表示( )A .v 0t +12at 2B .v 0t C.v 0t2D.12at 2 答案 CD解析 质点做匀减速直线运动,加速度为-a ,位移为v 0t -12at 2,A 、B 错;平均速度大小为v 02,位移大小为v 02·t ,C 对;匀减速到零的直线运动可当做初速度为零的匀加速直线运动来计算,位移大小为12at 2,D 对.2. [平均速度公式的应用]做匀加速直线运动的某物体初速度为2 m/s ,经过一段时间t 后速度变为6 m/s ,则t2时刻的速度为( )A .由于t 未知,无法确定t2时刻的速度B .由于加速度a 及时间t 未知,无法确定t2时刻的速度C .5 m/sD .4 m/s 答案 D解析 中间时刻的速度等于这段时间内的平均速度2+62m/s =4 m/s ,D 对.3. [推论公式v 2-v 20=2ax 的应用]我国第一艘航空母舰“辽宁舰”已按计划完成建造和试验试航工作,于2012年9月25日上午正式交付海军.若航空母舰上有帮助飞机起飞的弹射系统,已知战斗机在跑道上加速时产生的加速度为4.5 m/s 2,战斗机滑行100 m 时起飞,起飞速度为50 m/s ,则航空母舰静止时弹射系统必须使战斗机具有的初速度为( )A .10 m/sB .20 m/sC .30 m/sD .40 m/s 答案 D 考点梳理一、匀变速直线运动的规律 1. 变速直线运动(1)定义:沿着一条直线运动,且加速度不变的运动. (2)分类①匀加速直线运动,a 与v 0方向同向. ②匀减速直线运动,a 与v 0方向反向. 2. 变速直线运动的规律(1)速度公式:v =v 0+at . (2)位移公式:x =v 0t +12at 2.(3)位移速度关系式:v 2-v 20=2ax . 二、匀变速直线运动的推论 1. 变速直线运动的两个重要推论(1)物体在一段时间内的平均速度等于这段时间中间时刻的瞬时速度,还等于初、末时刻速度矢量和的一半,即:v =v t 2=v 0+v 2.(2)任意两个连续相等的时间间隔T 内的位移之差为一恒量,即:Δx =x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2.2. 速度为零的匀变速直线运动的四个重要推论(1)1T 末、2T 末、3T 末、……瞬时速度的比为: v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n (2)1T 内、2T 内、3T 内……位移的比为: x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2(3)第一个T 内、第二个T 内、第三个T 内……位移的比为:x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x n =1∶3∶5∶…∶(2n -1)(4)从静止开始通过连续相等的位移所用时间的比为: t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1) 三、自由落体运动和竖直上抛运动1. 由落体运动(1)条件:物体只受重力,从静止开始下落.(2)运动性质:初速度v 0=0,加速度为重力加速度g 的匀加速直线运动. (3)基本规律 ①速度公式:v =gt . ②位移公式:h =12gt 2.③速度位移关系式:v 2=2gh . 2. 直上抛运动(1)运动特点:加速度为g ,上升阶段做匀减速直线运动,下降阶段做自由落体运动. (2)基本规律①速度公式:v =v 0-gt . ②位移公式:h =v 0t -12gt 2.③速度位移关系式:v 2-v 20=-2gh . ④上升的最大高度:H =v 202g .⑤上升到最高点所用时间:t =v 0g.4. 刹车问题的处理]汽车以20 m/s 的速度在平直公路上行驶,急刹车时的加速度大小为5 m/s 2,则自驾驶员急踩刹车开始,2 s 与5 s 时汽车的位移之比为 ( )A .5∶4B .4∶5C .3∶4D .4∶3答案 C5. [逆向思维法处理匀减速直线运动问题]做匀减速直线运动的物体经4 s 停止,若在第1 s内的位移是14 m ,则最后1 s 内位移是 ( )A .3.5 mB .2 mC .1 mD .0答案 B解析 利用“逆向思维法”,把物体的运动看成逆向的初速度为零的匀加速直线运动,则匀减速直线运动的物体在相等时间内的位移之比为7∶5∶3∶1,所以71=14 mx 1,x 1=2 m .故选B. 方法提炼 1. 逆向思维法匀减速到速度为零的直线运动一般看成逆向的初速度为零的匀加速直线运动. 2. 对于刹车类问题,实质是汽车在单方向上的匀减速直线运动问题.速度减为零后,加速度消失,汽车停止不动,不再返回,若初速度为v 0,加速度为a ,汽车运动时间满足t ≤v 0a,发生的位移满足x ≤v 202a.考点一 匀变速直线运动规律的应用1. 速度时间公式v =v 0+at 、位移时间公式x =v 0t +12at 2、位移速度公式v 2-v 20=2ax ,是匀变速直线运动的三个基本公式,是解决匀变速直线运动的基石.2. 三个公式中的物理量x 、a 、v 0、v 均为矢量(三个公式称为矢量式),在应用时,一般以初速度方向为正方向,凡是与v 0方向相同的x 、a 、v 均为正值,反之为负值.当v 0=0时,一般以a 的方向为正方向.这样就可将矢量运算转化为代数运算,使问题简化. 3. 如果一个物体的运动包含几个阶段,就要分段分析,各段交接处的速度往往是联系各段的纽带.例1 (2011·新课标全国·24)甲、乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变.在第一段时间间隔内,两辆汽车的加速度大小不变,汽车乙的加速度大小是甲的两倍;在接下来的相同时间间隔内,汽车甲的加速度大小增加为原来的两倍,汽车乙的加速度大小减小为原来的一半.求甲、乙两车各自在这两段时间间隔内走过的总路程之比.解析 设汽车甲在第一段时间间隔末(时刻t 0)的速度为v ,第一段时间间隔内行驶的路程为s 1,加速度为a ;在第二段时间间隔内行驶的路程为s 2.由运动学公式得 v =at 0 s 1=12at 20s 2=v t 0+12×(2a )t 20 设汽车乙在时刻t 0的速度为v ′,在第一、二段时间间隔内行驶的路程分别为s 1′、s 2′.同样有 v ′=(2a )t 0 s 1′=12×(2a )t 20 s 2′=v ′t 0+12at 20设甲、乙两车行驶的总路程分别为s 、s ′,则有 s =s 1+s 2s′=s1′+s2′联立以上各式解得,甲、乙两车各自行驶的总路程之比为s s′=5 7答案5∶7匀变速直线运动的规范求解1.一般解题的基本思路2.描述匀变速直线运动的基本物理量涉及v0、v、a、x、t五个量,每一个基本公式中都涉及四个量,选择公式时一定要注意分析已知量和待求量,根据所涉及的物理量选择合适的公式求解,会使问题简单化.突破训练1短跑名将博尔特在北京奥运会上100 m和200 m短跑项目的成绩分别为9.69 s 和19.30 s.假定他在100 m比赛时从发令到起跑的反应时间是0.15 s,起跑后做匀加速运动,达到最大速率后做匀速运动.200 m比赛时,反应时间及起跑后加速阶段的加速度和加速时间与100 m比赛时相同,但由于弯道和体力等因素的影响,以后的平均速率只有跑100 m时最大速率的96%.求:(1)加速所用时间和达到的最大速率;(2)起跑后做匀加速运动的加速度.(结果保留两位小数)答案(1)1.29 s11.24 m/s(2)8.71 m/s2解析(1)设加速所用时间为t(以s为单位),匀速运动的速率为v(以m/s为单位),则有:12v t+(9.69 s-0.15 s-t)v=100 m①12v t+(19.30 s-0.15 s-t)×0.96v=200 m②由①②式得t=1.29 s,v=11.24 m/s.(2)设加速度大小为a,则a=vt=8.71 m/s2考点二 解决匀变速直线运动的常用方法 1. 一般公式法一般公式法指速度公式、位移公式及推论三式.它们均是矢量式,使用时要注意方向性. 2. 平均速度法定义式v =Δx Δt 对任何性质的运动都适用,而v =v t 2=12(v 0+v )只适用于匀变速直线运动. 3. 比例法对于初速度为零的匀加速直线运动与末速度为零的匀减速直线运动,可利用初速度为零的匀加速直线运动的重要特征的比例关系,用比例法求解. 4. 逆向思维法如匀减速直线运动可视为反方向的匀加速直线运动. 5. 推论法利用Δx =aT 2:其推广式x m -x n =(m -n )aT 2,对于纸带类问题用这种方法尤为快捷. 6. 图象法利用v -t 图可以求出某段时间内位移的大小,可以比较v t 2与v x2,以及追及问题;用x-t 图象可求出任意时间内的平均速度等.例2 物体以一定的初速度v0冲上固定的光滑斜面,到达斜面最高点C时速度恰为零,如图1所示.已知物体第一次运动到斜面长度3/4处的B 点时,所用时间为t ,求物体从B 滑到C 所用的时间. 解析 解法一 比例法图1对于初速度为0的匀加速直线运动,在连续相等的时间里通过的位移之比为 x 1∶x 2∶x 3∶…∶x n =1∶3∶5∶…∶(2n -1) 现有x BC ∶x AB =x AC 4∶3x AC4=1∶3通过x AB 的时间为t ,故通过x BC 的时间t BC =t . 解法二 中间时刻速度法利用教材中的推论:中间时刻的瞬时速度等于这段位移的平均速度. v AC =v 0+02=v 02又v 20=2ax AC ① v 2B =2ax BC ② x BC =14x AC ③解①②③得:v B =v 02.可以看出v B正好等于AC段的平均速度,因此B点是中间时刻的位置.因此有t BC=t.解法三利用有关推论对于初速度为0的匀加速直线运动,通过连续相等的各段位移所用的时间之比为t1∶t2∶t3∶…∶t n=1∶(2-1)∶(3-2)∶(4-3)∶…∶(n-n-1).现将整个斜面分成相等的四段,如图所示.设通过BC段的时间为t x,那么通过BD、DE、EA的时间分别为:t BD=(2-1)t x,t DE=(3-2)t x,t EA=(2-3)t x,又t BD+t DE+t EA=t,得t x=t.答案t突破训练2在一个倾斜的长冰道上方,一群孩子排成队,每隔1 s就有一个小孩子往下滑,一游客对着冰道上的孩子拍下一张照片,如图2所示,照片上有甲、乙、丙、丁四个孩子.他根据照片与实物的比例推算出乙与甲、丙两孩子间图2的距离分别为12.5 m和17.5 m,请你据此求解下列问题:(g取10 m/s2)(1)若不考虑一切阻力,小孩下滑加速度是多少?(2)拍照时,最下面的小孩丁的速度是多大?(3)拍照时,在小孩甲上面的冰道上下滑的小孩子不会超过几个?答案(1)5 m/s2(2)25 m/s(3)不会超过2个考点三自由落体运动和竖直上抛运动1.自由落体运动实质:初速度为零、加速度为g的匀加速直线运动.2.竖直上抛运动的研究方法竖直上抛运动的实质是加速度恒为g的匀变速运动,处理时可采用两种方法:(1)分段法:将全程分为两个阶段,即上升过程的匀减速阶段和下降过程的自由落体阶段.(2)全程法:将全过程视为初速度为v0、加速度为a=-g的匀变速直线运动,必须注意物理量的矢量性.习惯上取v0的方向为正方向,则v>0时,物体正在上升;v<0时,物体正在下降;h>0时,物体在抛出点上方;h<0时,物体在抛出点下方.3. 竖直上抛运动的对称性如图3所示,物体以初速度v0竖直上抛,A、B为途中的任意两点,C为最高点,则(1)时间对称性:物体上升过程中从A→C所用时间t AC和下降过程中从C→A所用时间t CA相等,同理t AB=t BA.(2)速度对称性:物体上升过程经过A点与下降过程经过A点的速度大小相等.图3(3)能量的对称性:物体从A→B和从B→A重力势能变化量的大小相等,均等于mgh AB. 例3在塔顶上将一物体竖直向上抛出,抛出点为A,物体上升的最大高度为20 m,不计空气阻力,设塔足够高,则物体位移大小为10 m时,物体通过的路程可能为() A.10 m B.20 m C.30 m D.50 m解析物体在塔顶上的A点抛出,位移大小为10 m的位置有两处,如图所示,一处在A点之上,另一处在A点之下,在A点之上时,通过位移为10 m处又有上升和下降两种过程,上升通过时,物体的路程s1等于位移x1的大小,即s1=x1=10 m;下降通过时,路程s2=2h-x1=2×20 m-10 m=30 m.在A点之下时,通过的路程s3=2h+x2=2×20 m+10 m=50 m.故A、C、D正确,B错误.答案ACD竖直上抛运动解题时应注意的问题竖直上抛运动可分为竖直向上的匀减速直线运动和竖直向下的自由落体运动两个阶段,解题时应注意以下两点:(1)可用整体法,也可用分段法.自由落体运动满足初速度为零的匀加速直线运动的一切规律及特点.(2)在竖直上抛运动中,当物体经过抛出点上方某一位置时,可能处于上升阶段,也可能处于下降阶段,因此这类问题可能造成时间多解或者速度多解.突破训练3在【例3】中求:(1)物体抛出的初速度大小;(2)若塔高H=60 m,求物体从抛出到落到地面所用的时间和落到地面时的速度大小(g取10 m/s2).答案(1)20 m/s(2)6 s40 m/s解析(1)由位移公式得:0-v20=-2gh解得:v0=2gh=2×10×20 m/s=20 m/s(2)由位移公式得:-H=v0t-12gt2,解得:t=6 s物体由最高点做自由落体运动,落地时的速度大小为v,则:v2=2g(H+h),解得:v=40 m/s.2.思维转化法:将“多个物体的运动”转化为“一个物体的运动”例4 从斜面上某一位置,每隔0.1 s 释放一个小球,在连续释放几颗小球后,对在斜面上滚动的小球拍下照片,如图4所示,测得x AB =15 cm ,x BC =20 cm ,求: (1)小球的加速度; (2)拍摄时B 球的速度;图4(3)拍摄时x CD 的大小;(4)A 球上方滚动的小球还有几颗. 解析 (1)由a =Δxt 2得小球的加速度a =x BC -x AB t2=5 m/s 2 (2)B 点的速度等于AC 段上的平均速度,即 v B =x AC2t=1.75 m/s (3)由相邻相等时间内的位移差恒定,即x CD -x BC =x BC -x AB ,所以 x CD =2x BC -x AB =0.25 m(4)设A 点小球的速度为v A ,由于 v A =v B -at =1.25 m/s所以A 球的运动时间为t A =v Aa =0.25 s ,所以在A 球上方滚动的小球还有2颗.答案 (1)5 m/s 2 (2)1.75 m/s (3)0.25 m (4)2在运动学问题的解题过程中,若按正常解法求 解有困难时,往往可以通过变换思维方式,使解答过程简单明了.在直线运动问题中常见的思维转化方法除上例所用外,还有:将末速度为零的匀减速直线运动通过逆向思维转化为初速度为零的匀加速直线运动;将平均速度转化为中间时刻的速度;将位置变化转化为相对运动等.突破训练4 某同学站在一平房边观察从屋檐边滴下的水滴,发现屋檐边滴水是等时的,且第5滴正欲滴下时,第1滴刚好到达地面;第2滴和第3滴水刚好位于窗户的下沿和上沿,他测得窗户上、下沿的高度差为1 m ,由此求屋檐离地面的高度. 答案 3.2 m解析 作出如图所示的示意图.5滴水滴的位置等效为一滴水做自由落体运动连续相等时间内的位置.图中自上而下相邻点之间的距离比为1∶3∶5∶7,因点“3”、“2”间距为1 m ,可知屋檐离地面高度为 15×(1+3+5+7) m =3.2 m高考题组1. (2011·重庆·14)某人估测一竖直枯井深度,从井口静止释放一石头并开始计时,经2 s 听到石头落底声.由此可知井深约为(不计声音传播时间,重力加速度g 取10 m/s 2)( ) A .10 m B .20 m C .30 m D .40 m答案 B解析 从井口由静止释放,石头做自由落体运动,由运动学公式h =12gt 2可得h =12×10×22 m =20 m.2. (2011·安徽·16)一物体做匀加速直线运动,通过一段位移Δx 所用的时间为t 1,紧接着通过下一段位移Δx 所用的时间为t 2,则物体运动的加速度为 ( )A.2Δx (t 1-t 2)t 1t 2(t 1+t 2) B.Δx (t 1-t 2)t 1t 2(t 1+t 2) C.2Δx (t 1+t 2)t 1t 2(t 1-t 2)D.Δx (t 1+t 2)t 1t 2(t 1-t 2)答案 A解析 物体做匀变速直线运动,由匀变速直线运动规律: v =v t 2=x t 知:v t 12=Δx t 1①v t 22=Δx t 2② 由匀变速直线运动速度公式v t =v 0+at 知 v t 22=v t 12+a ·(t 1+t 22)③①②③式联立解得a =2Δx (t 1-t 2)t 1t 2(t 1+t 2).3. (2011·山东·18)如图5所示,将小球a 从地面以初速度v 0竖直上抛的同时,将另一相同质量的小球b 从距地面h 处由静止释放,两球恰在h2处相遇(不计空气阻力).则( )图5A .两球同时落地B .相遇时两球速度大小相等C .从开始运动到相遇,球a 动能的减少量等于球b 动能的增加量D .相遇后的任意时刻,重力对球a 做功功率和对球b 做功功率相等 答案 C解析 对b 球,由h 2=12gt 2得t =hg ,v b=gt =gh .以后以初速度gh 匀加速下落.对a 球,h 2=v 0t -12gt 2得v 0=gh ,在h 2处,v a =v 0-gt =0,以后从h2处自由下落.故落地时间t b <t a ,a 、b 不同时落地,选项A 错误.相遇时v b =gh ,v a =0,选项B错误.从开始运动到相遇,a 球动能减少量ΔE k a =12m v 20=12mgh ,b 球动能增加量ΔE k b=12m v 2b =12mgh ,选项C 正确.相遇之后,重力对b 球做功的功率P b =mg (v b +gt ′)=mg (gh +gt ′),重力对a 球做功的功率P a =mg (v a +gt ′)=mg ·gt ′,P b >P a ,选项D 错误. 模拟题组4. 如图6所示,小球沿足够长的斜面向上做匀变速运动,依次经a 、b 、c 、d 到达最高点e .已知ab =bd =6 m ,bc =1 m ,小球从a 到c 和从c 到d 所用的时间都是2 s ,设小球经b 、c 时的速度分别为v b 、v c ,则( )图6A .v b =2 2 m/sB .v c =3 m/sC .x de =3 mD .从d 到e 所用时间为4 s 答案 BD解析 小球沿斜面向上做匀减速直线运动,因T ac =T cd =T ,故c 点为a 到d 的中间时刻,故v c =x ad 2T =6+62×2 m/s =3 m/s ,故B 正确;因x ac =x ab +x bc =7 m ,x cd =x bd -x bc =5 m ,故加速度大小为a =x ac -x cd T 2=0.5 m/s 2,由v c =aT ec 得T ec =v ca=6 s ,则T de =T ec -T cd =4 s ;x de =x ec -x cd =4 m ,故C 错误,D 正确;由v 2b -v 2c =2a ·x bc 可得,v b =10 m/s ,A 错误.5. 气球以10 m/s 的速度沿竖直方向匀速上升,当它上升到离地175 m 的高处时,一重物从气球上掉落,则重物需要经过多长时间才能落到地面?到达地面时的速度是多大?(g 取10 m/s 2) 答案 7 s 60 m/s解析 解法一 全程法取全过程为一整体进行研究,从重物自气球上掉 落计时,经时间t 落地,规定初速度方向为正方向,画出运动草图,如图所示.重物在时间t 内的位移h =-175 m 将h =-175 m ,v 0=10 m/s 代入位移公式 h =v 0t -12gt 2解得t =7 s 或t =-5 s(舍去),所以重物落地速度为 v =v 0-gt =10 m/s -10×7 m/s =-60 m/s其中负号表示方向竖直向下,与初速度方向相反. 解法二 分段法设重物离开气球后,经过t 1时间上升到最高点,则 t 1=v 0g =1010s =1 s上升的最大高度h 1=v 202g =1022×10 m =5 m故重物离地面的最大高度为 H =h 1+h =5 m +175 m =180 m重物从最高处自由下落,落地时间和落地速度分别为 t 2=2H g= 2×18010s =6 s , v =gt 2=10×6 m/s =60 m/s ,方向竖直向下 所以重物从气球上掉落至落地共历时 t =t 1+t 2=7 s.(限时:30分钟)►题组1 匀变速直线运动基本规律的应用1. 一个做匀变速直线运动的质点,初速度为0.5 m/s ,在第9 s 内的位移比第5 s 内的位移多4 m ,则该质点的加速度、9 s 末的速度和质点在9 s 内通过的位移分别是( )A .a =1 m/s 2,v 9=9 m/s ,x 9=40.5 mB .a =1 m/s 2,v 9=9 m/s ,x 9=45 mC .a =1 m/s 2,v 9=9.5 m/s ,x 9=45 mD .a =0.8 m/s 2,v 9=7.7 m/s ,x 9=36.9 m 答案 C解析 a =x 9′-x 5′4T 2=44×12 m/s 2=1 m/s 2,v 9=v 0+at =(0.5+1×9) m/s =9.5 m/s ,x 9=v 0t +12at 2=(0.5×9+12×1×92) m =45 m ,故正确选项为C.2. 给滑块一初速度v 0使它沿光滑斜面向上做匀减速运动,加速度大小为g2,当滑块速度大小减为v 02时,所用时间可能是( )A.v 02g B.v 0g C.3v 0gD.3v 02g答案 BC解析 当滑块速度大小减为v 02时,其方向可能与初速度方向相同,也可能与初速度方向相反,因此要考虑两种情况,即v =v 02或v =-v 02,代入公式t =v -v 0a 得,t =v 0g 或t =3v 0g ,故B 、C 正确.3. 一个做匀加速直线运动的物体,在前4 s 内经过的位移为24 m ,在第二个4 s 内经过的位移是60 m .求这个物体运动的加速度和初速度各是多少? 答案 2.25 m/s 2 1.5 m/s 解析 解法一 基本公式法: 前4 s 内经过的位移:x 1=v 0t +12at 2第2个4 s 内经过的位移: x 2=v 0(2t )+12a (2t )2-(v 0t +12at 2)将x 1=24 m 、x 2=60 m 代入上式, 解得a =2.25 m/s 2 v 0=1.5 m/s.解法二 由公式Δx =aT 2,得 a =Δx T 2=60-2442m/s 2=2.25 m/s 2. 根据v =v t 2得v =v t 2=24+608m/s =v 0+4a ,所以v 0=1.5 m/s.►题组2 自由落体和竖直上抛运动的规律4. 从某高处释放一粒小石子,经过1 s 从同一地点再释放另一粒小石子,则在它们落地之前,两粒石子间的距离将( )A .保持不变B .不断增大C .不断减小D .有时增大,有时减小答案 B解析 设第1粒石子运动的时间为t s ,则第2粒石子运动的时间为(t -1) s ,两粒石子间的距离为Δh =12gt 2-12g (t -1)2=gt -12g ,可见,两粒石子间的距离随t 的增大而增大,故B 正确.5. 从水平地面竖直向上抛出一物体,物体在空中运动,到最后又落回地面.在不计空气阻力的条件下,以下判断正确的是( )A .物体上升阶段的加速度与物体下落阶段的加速度相同B .物体上升阶段的加速度与物体下落阶段的加速度方向相反C .物体上升过程经历的时间等于物体下落过程经历的时间D .物体上升过程经历的时间小于物体下落过程经历的时间 答案 AC解析 物体竖直上抛,不计空气阻力,只受重力,则物体上升和下降阶段加速度相同,大小为g ,方向向下,A 正确,B 错误;上升和下落阶段位移大小相等,加速度大小相等,所以上升和下落过程所经历的时间相等,C 正确,D 错误.6. 一个从地面竖直上抛的物体,它两次经过一个较低的点a 的时间间隔是T a ,两次经过一个较高点b 的时间间隔是T b ,则a 、b 之间的距离为 ( )A.18g (T 2a -T 2b ) B.14g (T 2a -T 2b ) C.12g (T 2a -T 2b )D.12g (T a -T b ) 答案 A解析 根据时间的对称性,物体从a 点到最高点的时间为T a2,从b 点到最高点的时间为T b 2,所以a 点到最高点的距离h a =12g (T a 2)2=gT 2a 8,b 点到最高点的距离h b =12g (T b 2)2=gT 2b 8,故a 、b 之间的距离为h a -h b =18g (T 2a -T 2b ),故选A. 7. 不计空气阻力,以一定的初速度竖直上抛的物体,从抛出至回到原点的时间为t ,现在在物体上升的最大高度的一半处设置一块挡板,物体撞击挡板后以原速率弹回(撞击所需时间不计),则此时物体上升和下降的总时间约为( )A .0.5tB .0.4tC .0.3tD .0.2t 答案 C解析 物体上升到最大高度所需的时间为t2,把上升的位移分成相等的两段,自上向下的时间的比为1:(2-1),物体上升到最大高度的一半所需时间为t 1=2-12×t2,由对称性,物体从最大位移的一半处下落到抛出点的时间也为t 1,故题中所求时间为2t 1=2×2-12×t2≈0.3t . ►题组3 应用运动学基本规律分析实际运动问题8. 汽车进行刹车试验,若速率从8 m/s 匀减速至零,需用时间1 s ,按规定速率为8 m/s 的汽车刹车后拖行路程不得超过 5.9 m ,那么上述刹车试验的拖行路程是否符合规定( )A .拖行路程为8 m ,符合规定B .拖行路程为8 m ,不符合规定C .拖行路程为4 m ,符合规定D .拖行路程为4 m ,不符合规定 答案 C解析 由x =v 02t 可得:汽车刹车后的拖行路程为x =82×1 m =4 m<5.9 m ,所以刹车试验的拖行路程符合规定,C 正确.9. 一辆公共汽车进站后开始刹车,做匀减速直线运动.开始刹车后的第1 s 内和第2 s 内位移大小依次为9 m 和7 m .则刹车后6 s 内的位移是( )A .20 mB .24 mC .25 mD .75 m 答案 C解析 由Δx =aT 2得:a =-2 m/s 2,由v 0T +12aT 2=x 1得:v 0=10 m/s ,汽车刹车时间t=0-v 0a =5 s<6 s ,故刹车后6 s 内的位移为x =0-v 202a=25 m ,C 正确.10.一辆汽车沿着一条平直的公路行驶,公路旁边有与公路平行的一行电线杆,相邻电线杆间的间隔均为50 m ,取汽车驶过某一根电线杆的时刻为零时刻,此电线杆作为第1根电线杆,此时刻汽车行驶的速度大小为v 1=5 m/s ,假设汽车的运动为匀加速直线运动,10 s 末汽车恰好经过第3根电线杆,则下列说法中正确的是( )A .汽车运动的加速度大小为1 m/s 2B .汽车继续行驶,经过第7根电线杆时的瞬时速度大小为25 m/sC .汽车在第3根至第7根电线杆间运动所需的时间为20 sD .汽车在第3根至第7根电线杆间的平均速度为25 m/s 答案 AB解析 由匀加速直线运动的位移规律x =v 0t +12at 2知汽车运动的加速度大小为1 m/s 2,A 正确;由v 2t -v 20=2ax 知汽车经过第7根电线杆时的瞬时速度大小为25 m/s ,B 正确;由v t =v 0+at 知汽车从第1根至第7根电线杆用时为20 s ,所以从第3根至第7根电线杆用时为10 s ,C 错误;由v =x t 知汽车在第3根至第7根电线杆间的平均速度为20 m/s ,D 错误.11.“蹦床”是奥运体操的一种竞技项目,比赛时,可在弹性网上安装压力传感器,利用压力传感器记录运动员运动过程中对弹性网的压力,并由计算机作出压力(F )-时间(t )图象,如图1为某一运动员比赛时计算机作出的F -t 图象,不计空气阻力,则关于该运动员,下列说法正确的是( )图1A .裁判打分时可以把该运动员的运动看成质点的运动B .1 s 末该运动员的运动速度最大C .1 s 末到2 s 末,该运动员在做减速运动D .3 s 末该运动员运动到最高点 答案 D解析 运动员的外形和动作影响裁判打分,不能把该运动员的运动看成质点的运动,则A 错误;1 s 末对弹性网的压力最大,运动员在最低点,速度为0,1 s 末到2 s 末,运动员在做加速运动,2 s 末到3 s 末,运动员做竖直上抛运动,3 s 末运动员运动到最高点,则B 、C 错误,D 正确.12.如图2所示,A 、B 两同学在直跑道上练习4×100 m 接力,他们在奔跑时有相同的最大速度.B 从静止开始全力奔跑需25 m 才能达到最大速度,这一过程可看做匀变速运动,现在A 持棒以最大速度向B 奔来,B 在接力区伺机全力奔出.若要求B 接棒时速度达到最大速度的80%,则:图2(1)B 在接力区需跑出的距离s 1为多少? (2)B 应在离A 的距离s 2为多少时起跑? 答案 (1)16 m (2)24 m解析 (1)对B :设其加速度为a ,跑出的距离为s 时速度达到最大值v .则2as =v 2,2as 1=(0.8v )2,解得s 1=0.64s =16 m.(2)设B 接棒时跑出时间为t ,则s 1=v t =0.8v2t ,在t 时间内,对A 有s A =v t ,解得s A=40 m .所以B 起跑时,应距离A 为Δs =s A -s 1,解得Δs =s 2=24 m.13.一列火车做匀变速直线运动,一人在轨道旁边观察火车运动,发现在相邻的两个10 s内,火车从他跟前分别驶过8节车厢和6节车厢,每节车厢长8 m(连接处长度不计),求:(1)火车的加速度的大小; (2)人开始观察时火车速度的大小. 答案 (1)0.16 m/s 2 (2)7.2 m/s解析 (1)由题知,火车做匀减速运动,设火车加速度大小为a ,L =8 m .由Δx =aT 2得8L -6L =a ×102,a =2L 100=2×8100m/s 2=0.16 m/s 2.(2)设人开始观察时火车速度大小为v 0,v T 2=v =8L +6L 2T =14×820 m/s =5.6 m/s.v T2=v 0-aT ,解得v 0=7.2 m/s.。

步步高高考物理一轮复习配套课件第十二章 第2课时 机械波

步步高高考物理一轮复习配套课件第十二章 第2课时 机械波

课堂探究
解析 A 选项,由题图乙看出,当 t=0.15 s 时,质点 Q 位于负方 向的最大位移处,而简谐运动的加速度大小与位移成正比,方向 与位移方向相反,所以加速度为正向最大值;
B 选项中,由题图乙看出,简谐运动的周期为 T =0.20 s,t=0.10 s 时,质点 Q 的速度方向沿 y 轴 负方向,由题图甲可以看出,波的传播方向应该 沿 x 轴负方向,因题图甲是 t=0.10 s 的波形,所 T 以 t=0.15 s 时,经历了 0.05 s=4的时间,题图甲 λ 的波形沿 x 轴负方向平移了4=2 m 的距离,如图所示,因波沿 x
(1)分清振动图象与波动图象.只要看清横坐标即可,横坐标为 x 则为波动图象,横要注意单位前的数量级. (3)找准波动图象对应的时刻. (4)找准振动图象对应的质点.
课堂探究 【突破训练 2】 如图 7 甲为一列简谐横波在 t=0.10 s 时刻的波
(3)整数倍
课堂探究 考点一 波动图象与波速公式的应用
1. 波的图象反映了在某时刻介质中的各质点离开平衡位置的 位移情况,图象的横轴表示各质点的平衡位置,纵轴表示该 时刻各质点的位移,如图 3 所示. 图象的应用: (1)直接读取振幅 A 和波长 λ,以及该时 刻各质点的位移.
图3
(2)确定某时刻各质点加速度的方向,并能比较其大小. (3)结合波的传播方向可确定各质点的振动方向或由各质点 的振动方向确定波的传播方向.
图5
的路程是 12A=60 cm=0.6 m,所以 选项 C 正确.
课堂探究
考点二
振动图象与波动图象
振动图象 波动图象 沿波传播方向的所有质点
研究对象 研究内容
一振动质点
一质点的位移随时间的 某时刻所有质点的空间分 变化规律 布规律

2014《步步高》物理大一轮复习讲义第一章第1课时

2014《步步高》物理大一轮复习讲义第一章第1课时

Ⅰ.对所列知识要知道其内容及含义,并能在有关问题中识别和直接使用它们. Ⅱ.对所列知识要理解其确切含义及与其他知识的联系,能够进行叙述和解释,并能在实际问题的分析、综合、推理和判断等过程中运用.第1课时 运动的描述考纲解读 1.知道参考系、质点、位移的概念,理解物体看成质点的条件和位移的矢量性.2.知道速度与加速度、平均速度和瞬时速度的区别,并理解二者间的关系.1.[对质点的理解]在研究下述运动时,能把物体看做质点的是() A.研究跳水运动员在空中的跳水动作时B.研究飞往火星的宇宙飞船最佳运行轨道时C.一枚硬币用力上抛并猜测它落地时正面是朝上还是朝下时D.研究汽车在上坡时有无翻倒的危险时答案 B2.[对参考系的理解]如图1所示,飞行员跳伞后飞机上的其他飞行员(甲) 和地面上的人(乙)观察跳伞飞行员的运动后,引发了对跳伞飞行员运动状况的争论,下列说法正确的是()A.甲、乙两人的说法中必有一个是错误的B.他们的争论是由于选择的参考系不同而引起的C.研究物体运动时不一定要选择参考系图1D.参考系的选择只能是相对于地面静止的物体答案 B解析甲、乙两人的争论是由于选择的参考系不同而引起的,A错,B对;研究物体的运动一定要选择参考系,C错;参考系的选择具有任意性,D错.3.[平均速度和瞬时速度的区别]关于瞬时速度和平均速度,以下说法正确的是() A.一般讲平均速度时,必须讲清楚是哪段时间(或哪段位移)内的平均速度B.对于匀速直线运动,其平均速度跟哪段时间(或哪段位移)无关C.瞬时速度和平均速度都可以精确描述变速运动D.瞬时速度是某时刻的速度,只有瞬时速度才能精确描述变速运动物体运动的快慢答案ABD解析一般情况下,物体在不同时间(或不同位移)内的平均速度不同,但对于匀速直线运动,物体的速度不变,所以平均速度与哪段时间(或哪段位移)无关,故A、B均正确;平均速度只能粗略地描述变速运动,只有瞬时速度才能精确描述变速运动的物体运动的快慢,故C错,D正确.考点梳理1.质点用来代替物体的有质量的点叫做质点,研究一个物体的运动时,如果物体的形状和大小对问题的影响可以忽略,就可以看做质点.2.参考系(1)为了研究物体的运动而假定不动的物体,叫做参考系.(2)对同一物体的运动,所选择的参考系不同,对它的运动的描述可能会不同.通常以地球为参考系.3. 位移是位置的变化量,是从初位置指向末位置的有向线段.是矢量.(填“矢”或“标”) 4. 速度物理学中用位移与发生这个位移所用时间的比值表示物体运动的快慢,即v =ΔxΔt ,其是描述物体运动快慢的物理量.(1)平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间内的平均速度,即v =xt,其方向与位移的方向相同.(2)瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上物体所在点的切线方向指向前进的一侧,是矢量.瞬时速度的大小叫速率,是标量.4. [速度变化量和加速度的关系]由a =Δv /Δt 可得( )A .a 与Δv 成正比B .物体的加速度大小由Δv 决定C .a 与Δt 成反比D .Δv /Δt 叫速度的变化率,就是加速度 答案 D解析 公式a =ΔvΔt 是加速度的定义式,a 与Δv 、Δt 无关,故选项A 、B 、C 都错;Δv /Δt叫速度的变化率,就是加速度,选项D 对.5. [加速度和速度的关系]有下列几种情景,请根据所学知识选择对情景的分析和判断正确的说法( )A .点火后即将升空的火箭,因火箭还没运动,所以加速度一定为零B .高速公路上沿直线高速行驶的轿车为避免事故紧急刹车.因轿车紧急刹车,速度变化很快,所以加速度很大C .高速行驶的磁悬浮列车,因速度很大,所以加速度也一定很大D .太空中的空间站绕地球匀速转动,其加速度为零 答案 B 规律总结1.比值定义法:加速度是速度变化量与发生这一变化所用时间的比值.2.加速度的大小与v 、Δv 的大小无关,a =ΔvΔt ,因此,加速度又叫速度的变化率.3.加速度是矢量,方向与Δv 的方向相同.考点一对质点和参考系的理解1.质点(1)质点是一种理想化模型,实际并不存在.(2)物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的影响可以忽略.2.参考系(1)参考系可以是运动的物体,也可以是静止的物体,但被选为参考系的物体,我们都假定它是静止的.(2)比较两物体的运动情况时,必须选同一参考系.(3)选取不同的物体作为参考系,对同一物体运动的描述可能不同.例1下列情况下的物体可以看做质点的是() A.研究绕地球飞行时的“神州九号”飞船B.研究飞行中直升飞机上的螺旋桨的转动情况C.放在地面上的木箱,在上面的箱角处用水平推力推它,木箱可绕下面的箱角转动D.研究“蛟龙号”下潜到7 000 m深度过程中的速度时答案AD突破训练1做下列运动的物体,能当成质点处理的是() A.研究跆拳道比赛中运动员的动作时B.旋转中的风力发电机叶片C.研究被运动员踢出的旋转足球时D.匀速直线运动的火车答案 D解析在研究跆拳道比赛中运动员的动作时,不能把运动员当做质点处理,选项A错;研究风力发电机叶片的旋转时,叶片的形状不能忽略,选项B错;研究足球的旋转时,足球的大小和形状不能忽略,C错;匀速直线运动的火车可作为质点处理,D对.例2甲、乙、丙三个观察者同时观察一个物体的运动.甲说:“它在做匀速运动.”乙说:“它是静止的.”丙说:“它在做加速运动.”这三个人的说法() A.在任何情况下都不对B.三人中总有一人或两人的说法是错误的C.如果选择同一参考系,那么三个人的说法都对D.如果各自选择自己的参考系,那么三个人的说法就可能都对解析如果被观察物体相对于地面是静止的,甲、乙、丙相对于地面分别是匀速运动、静止、加速运动,再以他们自己为参考系,则三个人的说法都正确,A、B错误,D正确;在上面的情形中,如果他们都选择地面为参考系,三个人的观察结果应是相同的,因此C错误.答案 D突破训练2如图2所示,由于风的缘故,河岸上的旗帜向右飘,在河面上的两条船上的旗帜分别向右和向左飘,两条船的运动状态是()A.A船肯定是向左运动的图2B.A船肯定是静止的C.B船肯定是向右运动的D.B船可能是静止的答案 C解析题图中河岸是静止的,由旗帜向右飘,可知此时风向向右(相对河岸而言).A船上的旗帜向右飘表明,A船有以下三种可能:一是A船不动,风把旗帜吹向右方;二是A船向左运动,风相对A船向右吹,风把旗帜吹向右方;三是A船向右运动,但船速小于风速,风仍能把旗帜吹向右方.对B船,则只有B船向右运动且船速大于风速,风才能把旗帜吹向左方.考点二平均速度和瞬时速度的关系1.平均速度反映一段时间内物体运动的平均快慢程度,它与一段时间或一段位移相对应.瞬时速度能精确描述物体运动的快慢,它是在运动时间Δt→0时的平均速度,与某一时刻或某一位置相对应.2.瞬时速度的大小叫速率,但平均速度的大小不能称为平均速率,因为平均速率是路程与时间的比值,它与平均速度的大小没有对应关系.例32012年8月6日在伦敦举行的奥运会100米决赛中,牙买加选手博尔特以9秒63获得金牌.在8月6日举行的110米栏决赛中,美国选手梅里特以12秒92的成绩夺得冠军,刘翔因伤退赛;8月10日,博尔特又以19秒32的成绩,夺得男子200米金牌.关于这三次比赛中的运动员的运动情况,下列说法正确的是() A.200 m比赛的位移是100 m比赛位移的两倍B.200 m比赛的平均速率约为10.35 m/sC.110 m栏比赛的平均速度约为8.51 m/sD.100 m比赛的最大速度约为20.70 m/s解析200 m赛道是弯道,100 m赛道是直道,所以运动员跑200 m路程时的位移小于200 m ,A 项错.200 m 比赛的平均速率为v =20019.32 m/s =10.35 m/s ,B 项对;同理C 项对.在100 m 比赛中,由于运动员在全程中并非做匀加速直线运动,故最大速度不等于平均速度的2倍,D 项错误. 答案 BC物理问题常常与实际生活相联系,本题中200 m 跑道不是直的, 而是弯曲的,这是一个实际生活问题,所以学习物理不能脱离生活.突破训练3 如图3所示,一个人沿着一个圆形轨道运动,由A 点开始运动,经过半个圆周到达B 点.下列说法正确的是( )A .人从A 到B 的平均速度方向由A 指向B B .人从A 到B 的平均速度方向沿B 点的切线方向图3C .人在B 点的瞬时速度方向由A 指向BD .人在B 点的瞬时速度方向沿B 点的切线方向 答案 AD解析 物体在某段时间内平均速度的方向与位移的方向相同,所以人从A 到B 的平均速度方向由A 指向B ,A 正确,B 错误.物体在某一点的瞬时速度的方向就是物体在该点的运动方向,人在B 点时的运动方向为沿B 点的切线方向,所以人在B 点的瞬时速度方向沿B 点的切线方向,C 错误,D 正确. 考点三 速度、速度变化量和加速度的关系A .加速度大小逐渐减小,速度也逐渐减小B .加速度方向不变,而速度方向改变C .加速度和速度都在变化,加速度最大时,速度最小D .加速度为零时,速度的变化率最大解析 加速度是描述物体速度变化快慢的物理量,当加速度为零时,物体的速度不再变化,速度的变化率为零,故D 错误;速度增大还是减小,是由速度与加速度同向还是反向决定的,与加速度的大小及变化无关,故A 、B 、C 均有可能发生. 答案 D1.a =Δv Δt 是加速度的定义式,加速度的决定式是a =Fm ,即加速度的大小由物体受到的合力F 和物体的质量m 共同决定,加速度的方向由合力的方向决定. 2.根据a 与v 方向间的关系判断物体是在加速还是在减速 (1)当a 与v 同向或夹角为锐角时,物体速度大小变大. (2)当a 与v 垂直时,物体速度大小不变.(3)当a 与v 反向或夹角为钝角时,物体速度大小变小.突破训练4 一个质点做方向不变的直线运动,加速度的方向始终与速度方向相同,但加速度大小逐渐减小直至为零,则在此过程中( )A .速度逐渐减小,当加速度减小到零时,速度达到最小值B .速度逐渐增大,当加速度减小到零时,速度达到最大值C .位移逐渐增大,当加速度减小到零时,位移将不再增大D .位移逐渐减小,当加速度减小到零时,位移达到最小值 答案 B解析 加速度的方向始终与速度方向相同,故加速度减小并不代表速度减小了,只是说明单位时间内速度的增加量减小了,但仍是加速.1. 用极限法求瞬时速度由平均速度公式v =ΔxΔt 可知,当Δx 、Δt 都非常小,趋向于极限时,这时的平均速度就可认为是某一时刻或某一位置的瞬时速度.测出物体在微小时间Δt 内发生的微小位移Δx ,然后可由v =ΔxΔt 求出物体在该位置的瞬时速度,这样瞬时速度的测量便可转化成为微小时间Δt 和微小位移Δx 的测量. 例5 为了测定气垫导轨上滑块的加速度,滑块上安装了宽度为3.0 cm的遮光板,如图4所示,滑块在牵引力作用下先后匀加速通过两个光电门,配套的数字毫秒计记录了遮光板通过第一个光电门的时间 为Δt 1=0.30 s ,通过第二个光电门的时间为Δt 2=0.10 s ,遮光板图4从开始遮住第一个光电门到开始遮住第二 个光电门的时间为Δt =3.0 s .试估算: (1)滑块的加速度多大?(2)两个光电门之间的距离是多少? 解析 (1)遮光板通过第一个光电门的速度 v 1=L Δt 1=0.030.30 m/s =0.10 m/s遮光板通过第二个光电门的速度 v 2=L Δt 2=0.030.10m/s =0.30 m/s故滑块的加速度a =v 2-v 1Δt ≈0.067 m/s 2.(2)两个光电门之间的距离x =v 1+v 22Δt =0.6 m.答案 (1)0.067 m/s 2 (2)0.6 m突破训练5 根据速度定义式v =Δx Δt ,当Δt 极短时,ΔxΔt就可以表示物体在t 时刻的瞬时速度,该定义应用了下列物理方法中的( )A .控制变量法B .假设法C .微元法D .极限法答案 D解析 在时间间隔Δt 较小的情况下,平均速度能比较精确地描述物体运动的快慢程度,Δt越小,描述越精确,这里利用的是极限法.高考题组1. (2011·上海·4)图5是一张天文爱好者经长时间曝光拍摄的“星星的轨迹”照片.这些有规律的弧线的形成,说明了()A.太阳在运动B.月球在公转C.地球在公转图5D.地球在自转答案 D解析从题图中可以看出星星的轨迹呈现圆弧形状,这种现象的发生实际上不是恒星在运动,而是因地球自转拍摄到的恒星相对位置变化的现象.即选择地球表面为参考系,所观察到的恒星运动轨迹.2.(2009·广东·2)做下列运动的物体,能当成质点处理的是() A.自转中的地球B.旋转中的风力发电机叶片C.在冰面上旋转的花样滑冰运动员D.做匀速直线运动的火车答案 D模拟题组3.关于物体运动状态的改变,下列说法中正确的是() A.物体运动的速率不变,其运动状态就不变B.物体运动的加速度不变,其运动状态就不变C.物体运动状态的改变包括两种情况:一是由静止到运动,二是由运动到静止D.物体的运动速度不变,我们就说它的运动状态不变答案 D4.在日常生活中,人们常把物体运动的路程与运动时间的比值定义为物体运动的平均速率.某同学假日乘汽车到南京观光,在公路上两次看到路牌和手表如图6所示.则该同学乘坐的汽车在该段时间内行驶的平均速率为()图6A.60 km/h B.29 km/h C.19 km/h D.9 km/h 答案 A解析20 min=13h,故平均速率v=ΔsΔt=2013km/h=60 km/h.(限时:30分钟)►题组1质点和参考系概念的理解1.以下情景中,加着重号的人或物体可看成质点的是()A.研究一列火车..通过长江大桥所需的时间B.乒乓球比赛中,运动员发出的旋转球...C.研究航天员翟志刚...在太空出舱挥动国旗的动作D.用GPS确定打击海盗的“武汉..”舰.在大海中的位置答案 D解析把物体看做质点的条件是:物体的大小或形状对研究的问题没有影响,或者对研究问题的影响可以忽略.研究火车通过长江大桥的时间不能把火车看成质点;“旋转球”上的不同点转动情况不同,故不能把它看成质点;研究航天员翟志刚在太空出舱挥动国旗的动作时,不能把翟志刚看成质点;用GPS确定“武汉”舰在大海中的位置时,可以把“武汉”舰看成质点.故应选D.2.下列情形中的物体可以看做质点的是() A.研究郭晶晶在跳水比赛中的动作时B.一枚硬币用力上抛,猜测它落地时是正面朝上还是反面朝上时C.研究邢慧娜在万米长跑中运动的快慢时D.研究足球运动员踢出的“香蕉球”的运动特点时答案 C解析在跳水比赛中,人们要观察跳水运动员的优美动作,包括空中的和入水时的动作,所以不能看做质点,A错误;硬币是正面朝上还是反面朝上,与硬币的形状有密切关系,所以不能看做质点,B错误;邢慧娜在万米长跑中可以看成质点,因为在长跑中主要看她所用的时间,不考虑其本身的形状和大小,C正确;足球运动员踢出的“香蕉球”的运动十分复杂,所以不能把足球看做质点,D错误.3.汽车沿平直的公路向左匀速行驶,如图1所示,经过一棵树附近时,恰有一颗果子从上面自由落下,则车中的人以车为参考系,看到果子的运动轨迹是下图中的()图1答案 B解析以车为参考系,则果子在竖直方向做自由落体运动,水平方向向右做匀速直线运动,选B.4.两位杂技演员,甲从高处自由落下的同时乙从蹦床上竖直跳起,结果两人同时落到蹦床上,若以演员自己为参考系,此过程中他们各自看到对方的运动情况是() A.甲看到乙先朝上、再朝下运动B.甲看到乙一直朝上运动C.乙看到甲先朝下、再朝上运动D.甲看到乙一直朝下运动答案 B解析乙上升过程,甲、乙间距越来越小,故甲看到乙向上运动;乙下降过程,因甲的速度大于乙的速度,甲、乙间距仍然变小,故甲看到乙还是向上运动,只有B项正确.5.汉语成语中有一个“形影不离”的成语,意思是人的身体和影子分不开,形容关系密切、经常在一起.在晴天的早上,某同学在操场上跑步,下列说法正确的是()A.以地面为参考系,影子是静止的B.以地面为参考系,影子是运动的C.以人为参考系,影子是静止的D.以人为参考系,影子是运动的答案BC解析人的速度与其影子的速度相等,选人为参考系,影子是静止的,选地面为参考系,影子是运动的.B、C正确.6.甲、乙、丙三人各乘一个热气球,甲看到楼房匀速上升,乙看到甲匀速上升,丙看到乙匀速下降.那么,从地面上看,甲、乙、丙的运动情况可能是() A.甲、乙匀速下降,v乙>v甲,丙停在空中B.甲、乙匀速下降,v乙>v甲,丙匀速上升C.甲、乙匀速下降,v乙>v甲,丙匀速下降,且v丙>v乙D.甲、乙匀速下降,v乙>v甲,丙匀速下降,且v丙<v乙答案ABD解析甲看到楼房匀速上升,说明甲在匀速下降;又因为乙看到甲匀速上升,说明乙比甲下降得更快,即乙也匀速下降,且v乙>v甲.丙看到乙匀速下降,说明丙可能在匀速上升,或停在空中,也可能在匀速下降且v丙<v乙.选项A、B、D正确.►题组2位移、平均速度和瞬时速度的理解7.某人向正东方向运动了x米,然后再沿东偏北60°方向又运动了x米,则该人运动的位移大小为() A.x米 B.2x米 C.3x米D.2x米答案 C解析其运动情景如图所示:该人的位移大小为:2x cos 30°=3x米,C正确.8.下面关于瞬时速度和平均速度的说法正确的是() A.若物体在某段时间内任一时刻的瞬时速度都等于零,则它在这段时间内的平均速度一定等于零B.若物体在某段时间内的平均速度等于零,则它在这段时间内任一时刻的瞬时速度一定都等于零C.匀速直线运动中,物体在任意一段时间内的平均速度都等于它任一时刻的瞬时速度D.变速直线运动中,物体在任意一段时间内的平均速度一定不等于它某一时刻的瞬时速度答案AC解析若物体在某段时间内任一时刻的瞬时速度都等于零,则物体静止,平均速度等于零,A选项对;匀速直线运动的速度恒定不变,任一时刻的瞬时速度都相等,都等于任意一段时间内的平均速度,C选项对;物体在某段时间内的平均速度等于零,但任一时刻瞬时速度不一定都为零.若物体做圆周运动一周,平均速度为零,任一时刻的瞬时速度不为零,B选项错;变速直线运动的速度在不断变化,某一时刻的瞬时速度完全有可能等于某段时间内的平均速度,D选项错.9.2011年10月24日,南京选手王冬强在第七届城市运动会上以13秒38的成绩获得男子110米栏冠军,刘翔师弟陆嘉腾以13秒41的成绩获得第二.下列说法正确的是() A.在110 m栏比赛中,选手通过的路程就是位移B.王冬强在起跑过程中的加速度一定比陆嘉腾的大C .王冬强在全程中的平均速度约为8.22 m/sD .冲到终点时,王冬强的速度一定大于陆嘉腾的速度 答案 C解析 路程是标量,位移是矢量,A 项错误;由v =ΔxΔt 可知,王冬强在全程中的平均速度约为8.22 m/s ,C 项正确;选手在运动过程中的加速度及瞬时速度的大小与平均速度的大小并没有直接关系,故B 、D 两项错误,正确答案为C 项.10.光电计时器是一种研究物体运动情况的常用计时仪器,其结构如图2甲所示,a 、b 分别是光电门的激光发射和接收装置,当有物体从a 、b 间通过时,光电计时器就可以显示物体的挡光时间,图乙中MN 是水平桌面,Q 是木板与桌面的接触点,1和2是固定在木板上适当位置的两个光电门,与之连接的两个光电计时器没有画出,让滑块d 从木板的顶端滑下,光电门1、2各自连接的计时器显示的挡光时间分别为2.5×10-2 s 和1.0×10-2 s ,小滑块d 的宽度为0.5 cm.可测出滑块通过光电门1的速度v 1=________ m/s ,滑块通过光电门2的速度v 2=________ m/s.图2答案 0.2 0.5 ►题组3 加速度理解和计算11.甲、乙两个物体在同一直线上沿正方向运动,a 甲=4 m/s 2,a 乙=-4 m/s 2,那么对甲、乙两物体判断正确的是( )A .甲的加速度大于乙的加速度B .甲做加速直线运动,乙做减速直线运动C .甲的速度比乙的速度变化快D .甲、乙在相等时间内速度变化可能相同 答案 B解析 加速度的正、负表示方向,绝对值表示大小,甲、乙加速度大小相等,A 错.甲的加速度与速度同向,所以做加速运动,乙的加速度与速度方向相反,所以做减速运动,B 对.加速度大小表示速度变化的快慢,甲、乙速度变化一样快,C 错.由Δv =a Δt 可知在相等时间内,甲、乙速度变化大小相等,方向相反,D 错. 12.下列所描述的运动中,可能的有( )A .速度变化很大,加速度很小B .速度变化方向为正,加速度方向为负C .速度变化越来越快,加速度越来越小D .速度越来越大,加速度越来越小 答案 AD解析 速度变化很大,根据Δv =a Δt ,如果Δt 很大,a 可以很小,故A 选项正确;a =Δv Δt ,其中Δv 与a 的方向一致,故B 选项错误;速度变化越来越快,即ΔvΔt 越来越大,也就是加速度越来越大,故C 选项错误;因速度的大小与加速度大小无直接关系,故D 选项正确.13.有下列几种情景请根据所学知识选择对情景的分析和判断正确的说法为( )①点火后即将升空的火箭②高速公路上沿直线高速行驶的轿车为避免事故紧急刹车 ③运行的磁悬浮列车在轨道上高速行驶 ④太空的空间站在绕地球匀速转动 A .因火箭还没运动,所以加速度一定为零 B .轿车紧急刹车,速度变化很快,所以加速度很大C .高速行驶的磁悬浮列车,因速度很大,所以加速度也一定很大D .尽管空间站匀速转动,加速度也不为零 答案 BD解析 即将升空的火箭,速度为零,但所受合外力不为零,加速度不为零,A 错.由于紧急刹车,速度变化很快,故加速度很大,B 对.磁悬浮列车以很大的速度匀速行驶时,加速度为零,C 错.空间站匀速转动,速度的大小不变,但方向时刻改变,存在向心加速度,D 对.14.一辆汽车从静止开始匀加速开出,然后保持匀速运动,最后匀减速运动,直到停止,下表给出了不同时刻汽车的速度:(1)(2)汽车通过的总路程是多少? 答案 (1)11 s (2)96 m解析 (1)汽车匀减速运动的加速度 a 2=3-91m/s 2=-6 m/s 2设汽车从3 m/s 经t ′停止,t ′=0-3-6 s =0.5 s故汽车从开出到停止总共经历的时间为 10.5 s +0.5 s =11 s(2)汽车匀加速运动的加速度a 1=6-31 m/s 2=3 m/s 2汽车匀加速运动的时间t 1=12-03 s =4 s汽车匀减速运动的时间t 3=0-12-6 s =2 s汽车匀速运动的时间t 2=11-t 1-t 3=5 s 汽车匀速运动的速度为v =12 m/s 则汽车总共运动的路程s =v 2t 1+v t 2+v 2t 3=⎝⎛⎭⎫122×4+12×5+122×2 m =96 m。

2014《步步高》物理大一轮复习讲义 第12章 第2课时 机械波

2014《步步高》物理大一轮复习讲义 第12章  第2课时 机械波

第2课时机械波考纲解读 1.知道机械波的特点和分类.2.掌握波速、波长和频率的关系,会分析波的图象.3.理解波的干涉、衍射现象和多普勒效应,掌握波的干涉和衍射的条件.1.[波的形成与波的分类]关于波的形成和传播,下列说法正确的是()A.质点的振动方向与波的传播方向平行时,形成的波是纵波B.质点的振动方向与波的传播方向垂直时,形成的波是横波C.波在传播过程中,介质中的质点随波一起迁移D.波可以传递振动形式和能量答案ABD2.[波长、波速、频率的关系]如图1所示,实线是沿x轴传播的一列简谐横波在t=0时刻的波形图,虚线是这列波在t=0.05 s时刻的波形图.已知该波的波速是80 cm/s,则下列说法中正确的是() 图1A.这列波有可能沿x轴正方向传播B.这列波的波长是10 cmC.t=0.05 s时刻x=6 cm处的质点正在向下运动D.这列波的周期一定是0.15 s答案 D解析由波的图象可看出,这列波的波长λ=12 cm,B错误;根据v=λT,可求出这列波的周期为T=λv=1280s=0.15 s,D正确;根据x=v t=80×0.05 cm=4 cm可判断,波应沿x轴负方向传播,根据波的“微平移”法可判断t=0.05 s时刻x=6 cm处的质点正在向上运动,A、C错误.3.[波的图象的理解]如图2所示是一列简谐波在t=0时的波形图,介质中的质点P沿y轴方向做简谐运动的表达式为y=10sin 5πt cm.关于这列简谐波,下列说法中正确的是() 图2A.这列简谐波的振幅为20 cmB .这列简谐波的周期为5.0 sC .这列简谐波在该介质中的传播速度为25 cm/sD .这列简谐波沿x 轴正向传播 答案 D解析 由题图可知,质点偏离平衡位臵的最大距离即振幅为10 cm ,A 错;由该质点P 振动的表达式可知这列简谐横波的周期为T =2πω=2π5π s =0.4 s ,B 错;由题图可知,该波的波长为λ=4 m ,波速v =λT =40.4 m/s =10 m/s ,C 错;由质点P 做简谐运动的表达式可知,t =0时刻质点P 正在向上运动,由此可判断波沿x 轴正向传播,D 正确. 4. [波的干涉和衍射]如图3所示为观察水面波衍射的实验装置,AC 和BD是两块挡板,AB 是一个小孔,O 是波源,图中已画出波源所在区域波的传播情况,每两条相邻波纹(图中曲线)之间的距离表示一个波长,则对波经过孔后的传播情况,下列描述不正确的是 ( ) A .此时能明显观察到波的衍射现象图3B .挡板前后波纹间距相等C .如果将孔AB 扩大,有可能观察不到明显的衍射现象D .如果孔的大小不变,使波源频率增大,能更明显地观察到衍射现象 答案 D解析 由题图可以看出,孔AB 尺寸与波长相差不大,因只有缝、孔的宽度或障碍物的尺寸跟波长相差不多,或者比波长更小时,才能观察到明显的衍射现象,故选项A 、C 正确;由λ=vf 知,v 不变,f 增大,只能使λ减小,故选项D 错;既然衍射是指“波绕过障碍物而传播的现象”,那么经过孔后的波长自然不变,故选项B 正确. 考点梳理1. 机械波的形成条件:(1)波源;(2)介质. 2. 机械波的特点(1)机械波传播的只是振动的形式和能量,质点只在各自的平衡位置附近做简谐运动,并不随波迁移.(2)介质中各质点的振幅相同,振动周期和频率都与波源的振动周期和频率相同. (3)各质点开始振动(即起振)的方向均相同.(4)一个周期内,质点完成一次全振动,通过的路程为4A ,位移为零. 3. 波长、波速、频率及其关系(1)波长在波动中,振动相位总是相同的两个相邻质点间的距离,用λ表示.(2)波速波在介质中的传播速度.由介质本身的性质决定. (3)频率由波源决定,等于波源的振动频率. (4)波长、波速和频率的关系:v =fλ.特别提醒 1.机械波从一种介质进入另一种介质,频率不变,波速、波长都改变. 2. 机械波的波速仅由介质来决定,波速在固体、液体中比在空气中大.波速的计算方法:v =λT 或v =Δx Δt . 4. 波的图象的物理意义反映了某一时刻介质中各质点相对平衡位置的位移. 5. 波的干涉(1)产生稳定干涉的条件:频率相同的两列同性质的波相遇.(2)现象:两列波相遇时,某些区域振动总是加强,某些区域振动总是减弱,且加强区和减弱区互相间隔.(3)对两个完全相同的波源产生的干涉来说,凡到两波源的路程差为一个波长整数倍时,振动加强;凡到两波源的路程差为半个波长的奇数倍时,振动减弱.6. 产生明显衍射现象的条件:障碍物或孔(缝)的尺寸跟波长差不多,或者比波长更小. 7. 多普勒效应(1)波源不动⎩⎪⎨⎪⎧观察者向波源运动,接收频率增大观察者背离波源运动,接收频率减小(2)观察者不动⎩⎪⎨⎪⎧波源向观察者运动,接收频率增大波源背离观察者运动,接收频率减小5. [质点振动方向与波传播方向的关系应用]一列简谐横波沿x 轴传播,t =0时刻的波形如图4所示.则从图中可以看出( )A .这列波的波长为5 mB .波中的每个质点的振动周期都为4 s图4C .若已知波沿x 轴正向传播,则此时质点a 正向下振动D .若已知质点b 此时正向上振动,则波是沿x 轴负向传播的 答案 C解析 由题图可知,波长为λ=4 m ,选项A 错误;波速未知,不能得出机械波的周期,选项B 错误;若已知波沿x 轴正向传播,则此时质点a 正向下振动,选项C 正确;若已知质点b 此时正向上振动,则波是沿x 轴正向传播的,选项D 错误.6. [质点振动方向与波传播方向的关系应用]一列简谐横波沿x 轴传播,t =0时的波形如图5所示,质点A 与质点B 相距1 m ,A 点速度沿y 轴正方向;t =0.02 s 时,质点A 第一次到达正向最大位移处,由此可知( )图5A .此波沿x 轴负方向传播B .此波的传播速度为25 m/sC .从t =0时起,经过0.04 s ,质点A 沿波传播方向迁移了1 mD .在t =0.04 s 时,质点B 处在平衡位置,速度沿y 轴正方向 答案 ABD解析 根据图象,由t =0时A 点速度沿y 轴正方向可判断,此波沿x 轴负方向传播,选项A 正确;根据题意,波长λ=2 m ,周期T =0.08 s ,波速v =λT =25 m/s ,选项B 正确;沿波传播方向上各质点并不随波迁移,而是在平衡位臵附近做简谐运动,选项C 错误;t =0时刻质点B 从平衡位臵向下振动,经过0.04 s 即0.5T ,质点B 处在平衡位臵,速度沿y 轴正方向,选项D 正确. 方法提炼质点的振动方向与波的传播方向的互判方法 (1)上下坡法沿波的传播方向看,“上坡”的点向下运动,“下坡”的点向上运动,简称“上坡下,下坡上”,如图6所示.图6(2)带动法如图7所示,在质点P 靠近波源一方附近的图象上另找一点P ′,若P ′在P 上方,则P 向上运动,若P ′在P 下方,则P 向下运动.图7(3)微平移法图8原理:波向前传播,波形也向前平移.方法:作出经微小时间Δt 后的波形,如图8虚线所示,就知道了各质点经过Δt 时间到达的位置,也就知道了此刻质点的振动方向,可知图中P 点振动方向向下.考点一 波动图象与波速公式的应用1. 波的图象反映了在某时刻介质中的质点离开平衡位臵的位移情况,图象的横轴表示各质点的平衡位臵,纵轴表示该时刻各质点的位移,如图9:图象的应用:(1)直接读取振幅A 和波长λ,以及该时刻各质点的位移.(2)确定某时刻各质点加速度的方向,并能比较其大小.(3)结合波的传播方向可确定各质点的振动方向或由各质点的振动方向确定波的传播方向.2. 波速与波长、周期、频率的关系为:v =λT=λf .例1 (2011·海南·18(1))一列简谐横波在t =0时的波形图如图10所示.介质中x =2 m 处的质点P 沿y 轴方向做简谐运动的表达式为y =10sin (5πt ) cm.关于这列简谐波,下列说法正确的是( )图10A .周期为4.0 sB .振幅为20 cmC .传播方向沿x 轴正向D .传播速度为10 m/s解析 由题意知ω=5π rad/s ,周期为:T =2πω=0.4 s ,由波的图象得:振幅A =10 cm 、波长λ=4 m ,故波速为v =λT=10 m/s ,P 点在t =0时振动方向为正y 方向,波向正x方向传播.答案CD突破训练1如图11所示为一列在均匀介质中沿x轴正方向传播的简谐横波在某时刻的波形图,波速为4 m/s,则()A.质点P此时刻的振动方向沿y轴正方向B.P点振幅比Q点振幅小C.经过Δt=3 s,质点Q通过的路程是0.6 m 图11D.经过Δt=3 s,质点P将向右移动12 m答案 C解析由机械波沿x轴正方向传播,利用“带动”原理可知,质点P此时刻的振动方向沿y轴负方向,选项A错误;沿波传播方向上各质点并不随波迁移,而是在平衡位臵附近做简谐运动,并且各质点振动的幅度相同,即振幅相同,选项B、D均错误;根据波形图可知,波长λ=4 m,振幅A=5 cm,已知v=4 m/s,所以T=λv=1 s,Δt=3 s =3T,质点Q通过的路程是12A=60 cm=0.6 m,所以选项C正确.考点二振动图象与波动图象2质点,Q 是平衡位置为x =4 m 处的质点,图乙为质点Q 的振动图象,则( )图12A .t =0.15 s 时,质点Q 的加速度达到正向最大B .t =0.15 s 时,质点P 的运动方向沿y 轴负方向C .从t =0.10 s 到t =0.25 s ,该波沿x 轴正方向传播了6 mD .从t =0.10 s 到t =0.25 s ,质点P 通过的路程为30 cm解析 A 选项,由乙图象看出,当t =0.15 s 时,质点Q 位于负方向的最大位移处,而简谐运动的加速度大小与位移成正比,方向与位移方向相反,所以加速度为正向最大值;B 选项中,由乙图象看出,简谐运动的周期为T =0.20 s ,t =0.10 s 时,质点Q 的速度方向沿y 轴负方向,由甲图可以看出,波的传播方向应该沿x 轴负方向,因甲图是t =0.10 s 的波形,所以t =0.15 s 时,经历了0.05 s =T4的时间,图甲的波形沿x 轴负方向平移了λ4=2 m 的距离,如图所示,因波沿x 轴负方向传播,则此时P 点的运动方向沿y 轴负方向;C选项中,由题意知λ=8 m ,T =0.2 s ,则v =λT =40 m/s.从t =0.10 s 到t =0.25 s ,该波沿x 轴负方向传播的距离为0.15 s×40 m/s =6 m ;D 选项中,由图甲可以看出,由于t =0.10 s 时刻质点P 不处于平衡位臵,故从t =0.10 s 到t =0.25 s 质点P 通过的路程不为30 cm ,本题正确选项为A 、B. 答案 AB突破训练2 如图13所示,甲图为沿x 轴传播的一列简谐横波在t =0时刻的波动图象,乙图是x =2 m 处质点P 的振动图象,下列判断正确的是( )图13A .该波的传播速率为4 m/sB .该波沿x 轴正方向传播C .经过0.5 s ,质点P 沿波的传播方向移动2 mD .若遇到3 m 的障碍物,该波能发生明显的衍射现象 答案 AD解析 由题图可知,机械波的波长为λ=4 m ,周期为T =1 s ,则v =λT =4 m/s ,该波的传播速率为4 m/s ,选项A 正确;由乙图可知,t =0时刻质点P 经平衡位臵往下振动,由甲图可知,该波沿x 轴负方向传播,选项B 错误;质点P 只在平衡位臵附近振动,不沿波的传播方向移动,选项C 错误;由于波长大于障碍物尺寸,该波能发生明显的衍射现象,选项D 正确. 考点三 波的干涉、衍射、多普勒效应 1. 波的干涉中振动加强点和减弱点的判断某质点的振动是加强还是减弱,取决于该点到两相干波源的距离之差Δr . (1)当两波源振动步调一致时若Δr =nλ(n =0,1,2,…),则振动加强; 若Δr =(2n +1)λ2(n =0,1,2,…),则振动减弱.(2)当两波源振动步调相反时若Δr =(2n +1)λ2(n =0,1,2,…),则振动加强;若Δr =nλ(n =0,1,2,…),则振动减弱.2. 波的衍射现象是指波能绕过障碍物继续传播的现象,产生明显衍射现象的条件是缝、孔的宽度或障碍物的尺寸跟波长相差不大或者小于波长. 3. 多普勒效应的成因分析(1)接收频率:观察者接收到的频率等于观察者在单位时间内接收到的完全波的个数.当波以速度v 通过观察者时,时间t 内通过的完全波的个数为N =v tλ,因而单位时间内通过观察者的完全波的个数,即接收频率.(2)当波源与观察者相互靠近时,观察者接收到的频率变大,当波源与观察者相互远离时,观察者接收到的频率变小.例3 如图14表示两个相干波源S 1、S 2产生的波在同一种均匀介质中相遇.图中实线表示波峰,虚线表示波谷,c 和f 分别为ae 和bd 的中点,则:图14(1)在a、b、c、d、e、f六点中,振动加强的点是__________.振动减弱的点是____________.(2)若两振源S1和S2振幅相同,此时刻位移为零的点是________.(3)画出此时刻ace连线上,以a为起点的一列完整波形,标出e点.解析(1)a、e两点分别是波谷与波谷、波峰与波峰相交的点,故此两点为振动加强点;c点处在a、e连线上,且从运动的角度分析a点的振动形式恰沿该线传播,故c点是振动加强点,同理b、d是振动减弱点,f也是振动减弱点.(2)因为S1、S2振幅相同,振动最强区的振幅为2A,最弱区的振幅为零,位移为零的点是b、d.(3)题图中对应时刻a处在两波谷的交点上,即此刻a在波谷,同理e在波峰,所以所对应的波形如图所示.答案(1)a、c、e b、d、f(2)b、d(3)见解析图突破训练3如图15甲所示,男同学站立不动吹口哨,一位女同学坐在秋千上来回摆动,下列关于女同学的感受的说法正确的是()甲乙图15A.女同学从A向B运动过程中,她感觉哨声音调变高B.女同学从E向D运动过程中,她感觉哨声音调变高C.女同学在C点向右运动时,她感觉哨声音调不变D.女同学在C点向左运动时,她感觉哨声音调变低答案AD突破训练4(2011·上海·10)两波源S1、S2在水槽中形成的波形如` 图16所示,其中实线表示波峰,虚线表示波谷,则()A.在两波相遇的区域中会产生干涉B.在两波相遇的区域中不会产生干涉图16C.a点的振动始终加强D.a点的振动始终减弱答案 B解析由题图可知两列波的波长不同,在同一水槽中两波的波速相同,由v=λf知两波的频率不同,故不能产生干涉现象.高考题组1.(2012·天津理综·7)沿x 轴正方向传播的一列简谐横波在t =0时刻的波形如图19所示,M 为介质中的一个质点,该波的传播速度为40 m/s ,则t =140s 时( ) A .质点M 对平衡位置的位移一定为负值图19B .质点M 的速度方向与对平衡位置的位移方向相同C .质点M 的加速度方向与速度方向一定相同D .质点M 的加速度方向与对平衡位置的位移方向相反 答案 CD解析 当t =140 s 时,波传播的距离Δx =v t =40×140 m =1 m ,所以当t =140s 时波的图象如图所示,由图可知,M 对平衡位臵的位移为正值,且沿y 轴负方向运动,故选项A 、B 错误;根据F =-kx 及a =-km x知,加速度方向与位移方向相反,沿y 轴负方向,与速度方向相同,选项C 、D 正确. 2. (2012·安徽理综·15)一列简谐波沿x 轴正方向传播,在t =0时波形如图20所示,已知波速为10 m/s.则t =0.1 s 时正确的波形应是下图中的( )图20答案 C解析由题图知:波长λ=4.0 m,波在t=0.1 s内传播的距离x=v t=10×0.1 m=1 m=1 4λ,故将原波形图沿波的传播方向(即x轴正方向)平移14λ即可,故选项C正确,选项A、B、D错误.3.(2012·福建理综·13)一列简谐横波沿x轴传播,t=0时刻的波形如图21甲所示,此时质点P正沿y轴负方向运动,其振动图象如图乙所示,则该波的传播方向和波速分别是()图21A.沿x轴负方向,60 m/s B.沿x轴正方向,60 m/sC.沿x轴负方向,30 m/s D.沿x轴正方向,30 m/s答案 A解析由题图甲知,波长λ=24 m,由题图乙知T=0.4 s.根据v=λT可求得v=60 m/s,故C、D项错误;根据“同侧法”可判断出波的传播方向沿x轴负方向,故A项正确,B项错误.模拟题组4.位于坐标原点的波源S不断地产生一列沿x轴正方向传播的简谐横波,波速v=40 m/s,已知t=0时刻波刚好传播到x=13 m处,部分波形图如图22所示,下列说法正确的是()图22A.波源S开始振动的方向沿y轴正方向B.t=0.45 s时,x=9 m处的质点的位移为零C.t=0.45 s时,波刚好传播到x=18 m处D.t=0.45 s时,波刚好传播到x=31 m处答案AD解析已知波沿x轴正方向传播,结合波形图可知,x=13 m处质点的起振方向沿y轴正方向,所以波源S开始振动的方向沿y轴正方向,选项A正确;由图可知,波长λ=8 m ,周期T =λv =0.2 s ,根据波的传播方向可知,t =0时刻,x =9 m 处的质点正从平衡位臵向下运动,经过0.45 s =2.25T 即t =0.45 s 时刻,该质点位于波谷,选项B 错误;t =0.45 s 时,波刚好传播到x =13 m +v t =31 m 处,选项C 错误,D 正确.5. 如图23所示为一列在均匀介质中传播的简谐横波在某时刻的波形图,波速为2 m/s ,此时P 点振动方向沿y 轴负方向,则( )图23A .该波传播的方向沿x 轴正方向B .P 点的振幅比Q 点的小C .经过Δt =4 s ,质点P 将向右移动8 mD .经过Δt =4 s ,质点Q 通过的路程是0.4 m 答案 AD解析 由P 点振动方向沿y 轴负方向可知波向右传播,选项A 正确.波传播过程中,各点振幅相同,选项B 错误.周期T =λv =42 s =2 s ,Δt =4 s 为两个周期,P 、Q 两质点完成两个全振动,通过的路程为8A =40 cm =0.4 m ,位移为零,选项C 错,D 正确.(限时:30分钟)►题组1 波的干涉与衍射现象的理解 1. 关于波的衍射现象,下列说法正确的是( )A .当孔的尺寸比波长大时,一定不会发生衍射现象B .只有孔的尺寸与波长相差不多时,或者比波长还小时才会观察到明显的衍射现象C .只有波才有衍射现象D .以上说法均不正确 答案 BC解析 当孔的尺寸比波长大时,会发生衍射现象,只不过不明显.只有当孔、缝或障碍物的尺寸跟波长相差不多,或者比波长更小时,才会发生明显的衍射现象,切不可把此条件用来判断波是否发生了衍射现象.2. 如图1所示,S 1、S 2为两个振动情况完全一样的波源,两列波的波长都为λ,它们在介质中产生干涉现象,S 1、S 2在空间共形成6个振动减弱的区域(图中虚线处),P 是振动减弱区域中的一点,从图中可看出( )A .P 点到两波源的距离差等于1.5λ图1B .两波源之间的距离一定在2.5个波长到3.5个波长之间C .P 点此时刻振动最弱,过半个周期后,振动变为最强D .当一列波的波峰传到P 点时,另一列波的波谷也一定传到P 点 答案 ABD解析 从S 1、S 2的中点起到向右三条虚线上,S 1、S 2的距离差依次为0.5λ、1.5λ、2.5λ. ►题组2 波的图象的理解和波速公式的应用3. 有一列简谐横波在弹性介质中沿x 轴正方向以速率v =5.0 m/s 传播,t =0时刻的波形如图2所示,下列说法中正确的是( ) A .该列波的波长为0.5 m ,频率为5 Hz图2B .t =0.1 s 时,波形沿x 轴正方向移动0.5 mC .t =0.1 s 时,质点A 的位置坐标为(1.25 m,0)D .t =0.1 s 时,质点A 的速度为零 答案 B解析 由波形图知λ=1.0 m .T =λv =0.2 s ,f =5 Hz ,A 项错.t =0.1 s 时,波传播的距离 x =v t =5×0.1 m =0.5 m ,B 项正确.在t =0.1 s =T2时,A 在平衡位臵,位臵坐标仍为(0.75 m,0),且A 此时的速度最大,C 、D 项错.4. 如图3所示,实线是沿x 轴传播的一列简谐横波在t =0时刻的波形图,虚线是这列波在t =0.2 s 时刻的波形图.该波的波速为0.8 m/s ,则下列说法正确的是 ( ) A .这列波的波长是14 cm图3B .这列波的周期是0.5 sC .这列波可能是沿x 轴正方向传播的D .t =0时,x =4 cm 处的质点速度沿y 轴负方向 答案 D解析 由题图知该波的波长λ=12 cm ,故A 项错误.由v =λT ,得T =0.120.8 s =1.5×10-1 s ,故B 项错误.因t T =0.20.15=43,故该波沿x 轴负方向传播,所以C 项错误.由波沿x 轴负方向传播可判定t =0时刻,x =4 cm 处质点的振动方向沿y 轴负方向,故D项正确.5.如图4为一列在均匀介质中沿x轴正方向传播的简谐横波在某时刻的波形图,波速为4 m/s.图中“A、B、C、D、E、F、G、H”各质点中()A.沿y轴正方向速率最大的质点是D 图4B.沿y轴正方向加速度最大的质点是BC.经过Δt=0.5 s,质点D将向右移动2 mD.经过Δt=2.5 s,质点D的位移是0.2 m答案 A解析在平衡位臵的质点速率最大,又从传播方向可以判断,质点D向上振动,质点H向下振动,所以A项正确;在最大位移处的质点加速度最大,加速度的方向与位移方向相反,B质点的加速度方向向下,B项错误;质点只能在平衡位臵两侧上下振动,并不随波迁移,C项错误;波传播的周期T=λv=1 s,经过Δt=2.5 s=2.5T,质点D仍位于平衡位臵,所以位移为0,D项错误.6.如图5所示,在坐标原点的波源产生一列沿x轴正方向传播的简谐横波,波速v=200 m/s,已知t=0时,波刚好传播到x=40 m处.在x′=400 m处有一处于静止状态的接收器(图中未画出),则下列说法正确的是()图5A.波源振动周期为0.1 sB.波源开始振动时方向沿y轴正方向C.t=0.15 s时,x=40 m的质点已运动的路程为30 mD.接收器在t=1.8 s时开始接收此波E.若波源向x轴正方向运动,接收器接收到的波的频率可能为15 Hz答案ADE7.(2012·山东理综·37(1))一列简谐横波沿x轴正方向传播,t=0时刻的波形如图6所示,介质中质点P、Q分别位于x=2 m,x=4 m处.从t=0时刻开始计时,当t=15 s时质点Q刚好第4次到达波峰.①求波速.②写出质点P做简谐运动的表达式(不要求推导过程).图6答案 ①1 m/s ②y =0.2sin (0.5πt ) m解析 ①设简谐横波的波速为v ,波长为λ,周期为T ,由题图知,λ=4 m .由题意知t =3T +34T ①v =λT② 联立①②式,代入数据得 v =1 m/s ②ω=2πT=0.5π质点P 做简谐运动的表达式为y =0.2sin (0.5πt ) m 题组3 波动图象与振动图象的结合8. 一列沿着x 轴正方向传播的横波,在t =2 s 时刻的波形如图7甲所示,则图乙表示图甲中E 、F 、G 、H 四个质点中哪一个质点的振动图象( )图7A .E 点B .F 点C .G 点D .H 点 答案 D解析 由题图乙可知,t =2 s 质点经平衡位臵往下振动,波沿着x 轴正方向传播,图甲中符合要求的是H 点,选项D 正确.9. 一简谐波沿x 轴正方向传播,波长为λ,周期为T .在t =T2时刻该波的波形图如图8甲所示,a 、b 是波上的两个质点.图乙表示某一质点的振动图象.下列说法中正确的是( )图8A .质点a 的振动图象如图乙所示B .质点b 的振动图象如图乙所示C .t =0时刻质点a 的速度比质点b 的大D .t =0时刻质点a 的加速度比质点b 的大 答案 D解析 在t =0时刻,质点a 在波谷,质点b 在平衡位臵,振动质点位移增大时,回复力、加速度、势能均增大,速度、动能均减小,所以在t =0时刻,质点a 的加速度比质点b 的加速度大,质点a 的速度比质点b 的速度小,选项D 正确,C 错误.由图乙知,T2时刻图乙表示的质点在平衡位臵向下振动,故图乙既不是a 的振动图象也不是b的振动图象,选项A 、B 均错误.10.一列简谐横波,沿x 轴正方向传播,波长2 m .位于原点O 的质点的振动图象如图9所示,则下列说法正确的是( )图9图10A .在t =0.05 s 时,位于原点的质点离开平衡位置的位移是8 cmB .图10可能为该波在t =0.15 s 时刻的波形图C .该波的传播速度为10 m/sD .从图10时刻开始计时,再经过0.10 s 后,A 点离开平衡位置的位移是-8 cm 答案 C解析 在t 等于14周期时,位于原点的质点离开平衡位臵的位移是0,故A 选项错误.由公式v =λT 可知该波的传播速度是10 m/s ,C 选项正确.根据振动与波动之间的联系,可知B 选项错误.从题图10时刻开始计时,再经过0.10 s 后,A 点离开平衡位臵的位移是8 cm ,D 选项错误. ►题组4 振动和波动关系的应用11.如图11为一列简谐横波在t =0时刻的波的图象,A 、B 、C 是介质中的三个质点.已知波是沿x 轴正方向传播的,波速为v =20 m/s.请回答下列问题:图11(1)判断质点B 此时的振动方向;(2)求出质点A 在0~1.65 s 内通过的路程及t =1.65 s 时刻相对于平衡位置的位移. 答案 (1)沿y 轴正方向 (2)4.4 cm -0.4 cm解析 (1)因波沿x 轴正方向传播,根据波的传播方向与质点振动方向的关系可知质点B 此时的振动方向为沿y 轴正方向. (2)由波形图可知该波波长为λ=12 m 根据波速公式v =λT,可得T =λv =0.6 s质点在一个周期内通过的路程为4个振幅,即4A ,则质点A 在0~1.65 s 内通过的路程为s =4nA ,n =t T =1.650.6=2.75,所以s =11A =11×0.4 cm =4.4 cm ,由于t =0时质点A的振动方向沿y 轴正方向,故在t =1.65 s 时刻质点相对于平衡位臵的位移为-0.4 cm. 12. 在某介质中形成一列简谐波,t =0时刻的波形如图12所示.若波向右传播,零时刻刚好传到B 点,且再经过0.6 s ,P 点也开始起振,求: (1)该列波的周期T ;(2)从t =0时刻起到P 点第一次达到波峰时止,O 点相对平衡位置的位移y 0及其所经过的路程s 0各为多少?图12答案 (1)0.2 s (2)-2 cm 0.3 m 解析 由题图可知,λ=2 m ,A =2 cm.当波向右传播时,点B 的起振方向竖直向下,包括P 点在内的各质点的起振方向均为竖直向下.(1)波速v =x Δt 1=60.6 m/s =10 m/s ,由v =λT ,得T =λv =0.2 s.(2)由t =0至P 点第一次到达波峰,经历的时间Δt 2=Δt 1+34T =0.75 s =(3+34)T ,而t =0时O 点的振动方向竖直向上(沿y 轴正方向),故经Δt 2时间,O 点振动到波谷,即: y 0=-2 cm ,s 0=(3+34)×4A =0.3 m.。

2014《步步高》物理大一轮复习讲义 第11章 第2课时 固体、液体和气体

2014《步步高》物理大一轮复习讲义 第11章  第2课时 固体、液体和气体

第2课时固体、液体和气体考纲解读 1.知道晶体、非晶体的区别.2.理解表面张力,会解释有关现象.3.掌握气体实验三定律,会用三定律分析气体状态变化问题.1.[晶体与非晶体的区别]关于晶体、非晶体、液晶,下列说法正确的是() A.所有的晶体都表现为各向异性B.晶体一定有规则的几何形状,形状不规则的金属一定是非晶体C.所有的晶体都有确定的熔点,而非晶体没有确定的熔点D.液晶的微观结构介于晶体和液体之间,其光学性质会随电压的变化而变化答案CD解析只有单晶体才表现为各向异性,故A错;单晶体有规则的几何形状,而多晶体的几何形状不规则,金属属于多晶体,故B错;晶体和非晶体的一个重要区别就是晶体有确定的熔点,而非晶体没有确定的熔点,故C对;液晶的光学性质随温度、压力、外加电压的变化而变化,D对.2.[液体表面张力的理解]关于液体的表面现象,下列说法正确的是() A.液体表面层的分子分布比内部密B.液体有使其体积收缩到最小的趋势C.液体表面层分子之间只有引力而无斥力D.液体有使其表面积收缩到最小的趋势答案 D解析液体表面层的分子分布比内部稀疏,故A错;液体由于表面张力作用,有使其表面积收缩到最小的趋势,故B错,D对;液体表面层分子之间既有引力也有斥力,只是由于分子间距离较大,分子力表现为引力,故C错.3.[气体实验定律的理解和应用]一定质量理想气体的状态经历了如图1所示的ab、bc、cd、da四个过程,其中bc的延长线通过原点,cd垂直于ab且与水平轴平行,da与bc平行,则气体体积在()A.ab过程中不断减小B.bc过程中保持不变图1C.cd过程中不断增加D.da过程中保持不变答案 B解析首先,因为bc的延长线通过原点,所以bc是等容线,即气体体积在bc过程中保持不变,B正确;ab是等温线,压强减小则体积增大,A错误;cd是等压线,温度降低则体积减小,C错误;连接aO交cd于e,则ae是等容线,即V a=V e,因为V d<V e,所以V d<V a,所以da过程中体积变化,D错误.考点梳理1.晶体与非晶体2.(1)作用:液体的表面张力使液面具有收缩的趋势.(2)方向:表面张力跟液面相切,跟这部分液面的分界线垂直.3.液晶的物理性质(1)具有液体的流动性.(2)具有晶体的光学各向异性.(3)从某个方向上看其分子排列比较整齐,但从另一方向看,分子的排列是杂乱无章的.4.气体实验定律(1)理想气体①宏观上讲,理想气体是指在任何条件下始终遵守气体实验定律的气体,实际气体在压强不太大、温度不太低的条件下,可视为理想气体.②微观上讲,理想气体的分子间除碰撞外无其他作用力,分子本身没有体积,即它所占据的空间认为都是可以被压缩的空间. (2)理想气体的状态方程一定质量的理想气体状态方程:p 1V 1T 1=p 2V 2T 2或pV T =C .气体实验定律可看做一定质量理想气体状态方程的特例.4. [对活塞进行受力分析求压强]如图2所示,上端开口的圆柱形汽缸竖直放置,截面积为5×10-3 m 2,一定质量的气体被质量为2.0 kg 的光滑活塞封闭在汽缸内,其压强为________ Pa(大气压强取1.01×105 Pa ,g 取 10 m/s 2). 答案 1.05×105图2解析 对活塞进行受力分析如图设缸内气体压强为p 1, 由平衡条件可知 p 1S =p 0S +mg所以p 1=p 0+mgS=1.05×105 Pa5. [选取液片法求压强]如图3,一端封闭的玻璃管内用长为L 厘米的水银柱封闭了一部分气体,已知大气压强为p 0厘米汞柱,则封闭气体的压强为________厘米汞柱. 答案 (p 0+L )解析 选取水银柱最下端的液片为研究对象,液片上面的压强为p 1=(p 0+L ) 厘米汞柱,下面的压强为气体的压强p .液片两面的压强应相等,则有p =p 1 图3=(p 0+L )厘米汞柱. 方法提炼1. 求用固体(如活塞)或液体(如液柱)封闭在静止的容器内的气体压强,应对固体或液体进行受力分析,然后根据平衡条件求解.2.当封闭气体所在的系统处于力学非平衡的状态时,欲求封闭气体的压强,首先选择恰当的对象(如与气体关联的液柱、活塞等),并对其进行正确的受力分析(特别注意内、外气体的压力),然后根据牛顿第二定律列方程求解.3.对于平衡状态下的水银柱,选取任意一个液片,其两侧面的压强应相等.考点一固体与液体的性质例1在甲、乙、丙三种固体薄片上涂上石蜡,用烧热的针接触其上一点,石蜡熔化的范围如图4(1)、(2)、(3)所示,而甲、乙、丙三种固体在熔化过程中温度随加热时间变化的关系如图(4)所示.则由此可判断出甲为______,乙为______,丙为________(填“单晶体”、“多晶体”、“非晶体”).图4解析晶体具有确定的熔点,非晶体没有确定的熔点.单晶体的物理性质具有各向异性,多晶体的物理性质具有各向同性.答案多晶体非晶体单晶体例2关于液体表面现象的说法中正确的是() A.把缝衣针小心地放在水面上,针可以把水面压弯而不沉没,是因为针受到重力小,又受到液体浮力的缘故B.在处于失重状态的宇宙飞船中,一大滴水银会成球状,是因为液体内分子间有相互吸引力C.玻璃管道裂口放在火上烧熔,它的尖端就变圆,是因为熔化的玻璃在表面张力的作用下,表面要收缩到最小的缘故D.飘浮在热菜汤表面上的油滴,从上面观察是圆形的,是因为油滴液体呈各向同性的缘故解析A项的缝衣针不受浮力,受表面张力;B项水银会成球状是因为表面张力;D也是表面张力的作用,只有C正确.答案 C考点二气体压强的产生与计算1.产生的原因:由于大量分子无规则地运动而碰撞器壁,形成对器壁各处均匀、持续的压力,作用在器壁单位面积上的压力叫做气体的压强. 2. 决定因素(1)宏观上:决定于气体的温度和体积.(2)微观上:决定于分子的平均动能和分子的密集程度. 3. 平衡状态下气体压强的求法(1)液片法:选取假想的液体薄片(自身重力不计)为研究对象,分析液片两侧受力情况,建立平衡方程,消去面积,得到液片两侧压强相等方程,求得气体的压强.(2)力平衡法:选取与气体接触的液柱(或活塞)为研究对象进行受力分析,得到液柱(或活塞)的受力平衡方程,求得气体的压强.(3)等压面法:在连通器中,同一种液体(中间不间断)同一深度处压强相等. 4. 加速运动系统中封闭气体压强的求法选取与气体接触的液柱(或活塞)为研究对象,进行受力分析,利用牛顿第二定律列方程求解.例3 如图5所示,一汽缸竖直倒放,汽缸内有一质量不可忽略的活塞,将一定质量的理想气体封在汽缸内,活塞与汽缸壁无摩擦,气体处于平衡状态,现保持温度不变把汽缸稍微倾斜一点,在达到平衡后,与原来相比,则( ) A .气体的压强变大图5B .气体的压强变小C .气体的体积变小D .气体的体积变大解析 汽缸竖直时,取活塞为研究对象,设大气压强为p 0,有p 1S +mg =p 0S p 1=p 0-mgS汽缸与竖直方向夹角为θ时,沿汽缸壁方向分析活塞受力,则p 2S +mg cos θ=p 0S 则p 2=p 0-mg cos θS.可见p 2>p 1,A 正确,B 错误;又因气体温度不变,故气体体积一定变小,C 正确,D 错误. 答案 AC突破训练1 如图6所示,光滑水平面上放有一质量为M 的汽缸,汽缸内放有一质量为m 的可在汽缸内无摩擦滑动的活塞,活塞面积为S .现用水平恒力F 向右推汽缸,最后汽缸和活塞达到相对静止状态,求此时缸内封闭气体的压强p .(已知外界大气压为p 0)图6答案p0+mFS(M+m)解析选取汽缸和活塞整体为研究对象,相对静止时有:F=(M+m)a再选活塞为研究对象,根据牛顿第二定律有:pS-p0S=ma解得:p=p0+mFS(M+m).考点三用图象法分析气体的状态变化图7例4封闭在汽缸内一定质量的理想气体由状态A变到状态D,其体积V与热力学温度T 的关系如图7所示,该气体的摩尔质量为M,状态A的体积为V0,温度为T0,O、A、D三点在同一直线上,阿伏加德罗常数为N A.(1)由状态A变到状态D过程中________.A.气体从外界吸收热量,内能增加B.气体体积增大,单位时间内与器壁单位面积碰撞的分子数减少C.气体温度升高,每个气体分子的动能都会增大D.气体的密度不变(2)在上述过程中,气体对外做功为5 J,内能增加9 J,则气体________ (填“吸收”或“放出”)热量________ J.(3)在状态D,该气体的密度为ρ,体积为2V0,则状态D的温度为多少?该气体的分子数为多少?解析 (3)A →D ,由理想气体状态方程pVT =C ,得T D =2T 0 分子数n =2ρV 0N AM答案 (1)AB (2)吸收 14 (3)2T 02ρV 0N AM突破训练2 一定质量的理想气体经过一系列过程,如图8所示.下列说法中正确的是( )图8A .a →b 过程中,气体体积增大,压强减小B .b →c 过程中,气体压强不变,体积增大C .c →a 过程中,气体压强增大,体积变小D .c →a 过程中,气体内能增大,体积变小 答案 A考点四 理想气体实验定律的微观解释 1. 等温变化一定质量的气体,温度保持不变时,分子的平均动能一定.在这种情况下,体积减小时,分子的密集程度增大,气体的压强增大. 2. 等容变化一定质量的气体,体积保持不变时,分子的密集程度保持不变.在这种情况下,温度升高时,分子的平均动能增大,气体的压强增大. 3. 等压变化一定质量的气体,温度升高时,分子的平均动能增大.只有气体的体积同时增大,使分子的密集程度减小,才能保持压强不变.例5 下列关于分子运动和热现象的说法正确的是________.A .气体如果失去了容器的约束就会散开,这是因为气体分子之间存在势能的缘故B .一定量100°C 的水变成100°C 的水蒸气,其分子之间的势能增加 C .对于一定量的气体,如果压强不变,体积增大,那么它一定从外界吸热D .如果气体分子总数不变,而气体温度升高,气体分子的平均动能增大,因此压强必然增大E .一定量气体的内能等于其所有分子热运动动能和分子之间势能的总和F .如果气体温度升高,那么所有分子的速率都增大解析气体分子间的作用力近似为零,所以没有容器的约束,气体分子由于自身的热运动会扩散到很大空间,A错;一定量100°C的水变成100°C的水蒸气,需吸收一定热量,其内能增加;而分子个数、温度均未变,表明其分子势能增加,B对;气体的压强与气体分子密度和分子的平均速率有关,整体的体积增大,气体分子密度减小,要保证其压强不变,气体分子的平均速率要增大,即要吸收热量,升高温度,C对;对于一定量的气体,温度升高,分子的平均速率变大,但若气体体积增加得更多,气体的压强可能会降低,D错;根据内能的定义可知,E对;气体温度升高,分子的平均速率肯定会增大,但并不是所有分子的速率都增大,F错.答案BCE突破训练3有关气体的压强,下列说法正确的是() A.气体分子的平均速率增大,则气体的压强一定增大B.气体分子的密集程度增大,则气体的压强一定增大C.气体分子的平均动能增大,则气体的压强一定增大D.气体分子的平均动能增大,气体的压强有可能减小答案 D解析气体的压强与两个因素有关:一是气体分子的平均动能,二是气体分子的密集程度,或者说,一是温度,二是体积.密集程度或平均动能增大,都只强调问题的一方面,也就是说,平均动能增大的同时,气体的体积可能也增大,使得分子密集程度减小,所以压强可能增大,也可能减小.同理,当分子的密集程度增大时,分子平均动能也可能减小,压强的变化不能确定.综上所述正确答案为D.高考题组2.(2012·重庆理综·16)图11为伽利略设计的一种测温装置示意图,玻璃管的上端与导热良好的玻璃泡连通,下端插入水中,玻璃泡中封闭有一定量的空气.若玻璃管内水柱上升,则外界大气的变化可能是()A.温度降低,压强增大B.温度升高,压强不变C.温度升高,压强减小图11D.温度不变,压强减小答案 A解析对被封闭的一定量的气体进行研究,当水柱上升时,封闭气体的体积V减小,结合理想气体状态方程pVT =C 得,当外界大气压强p 0不变时,封闭气体的压强p 减小,则温度T 一定降低,B 选项错误.当外界大气压强p 0减小时,封闭气体的压强p 减小,则温度T 一定降低,C 、D 选项均错误.当外界大气压强p 0增大时,封闭气体的压强p 存在可能增大、可能不变、可能减小三种情况.当封闭气体的压强p 增大时,温度T 可能升高、不变或降低,封闭气体的压强p 不变时,温度T 一定降低,封闭气体的压强p 减小时,温度T 一定降低.故只有选项A 可能.2. (2012·江苏·12A)(1)下列现象中,能说明液体存在表面张力的有________.A .水黾可以停在水面上B .叶面上的露珠呈球形C .滴入水中的红墨水很快散开D .悬浮在水中的花粉做无规则运动(2)封闭在钢瓶中的理想气体,温度升高时压强增大.从分子动理论的角度分析,这是由于分子热运动的________增大了.该气体在温度T 1、T 2时的分子速率分布图象如图12所示,则T 1________(选填“大于”或“小于”)T 2.图12答案 (1)AB (2)平均动能 小于解析 (1)红墨水散开和花粉的无规则运动直接或间接说明分子的无规则运动,选项C 、D 错误;水黾停在水面上、露珠呈球形均是因为液体存在表面张力,选项A 、B 正确. (2)温度升高时,气体分子平均速率变大,平均动能增大,即分子速率较大的分子占总分子数的比例较大,所以T 1<T 2. 模拟题组3. 下列说法中正确的是________.A .由于表面层中分子间的距离比液体内部分子间的距离大,所以液体存在表面张力B .用油膜法估测出了油酸分子直径,如果已知其密度可估测出阿伏加德罗常数C .在棉花、粉笔等物体内都有很多细小的孔道,它们起到了毛细管的作用D .一定质量的理想气体从外界吸收热量,温度一定升高 答案 ACE4. 下列说法正确的是________(填入正确选项前的字母).A .布朗运动是液体或气体中悬浮微粒的无规则运动,温度越高、微粒越大,运动越显著B .任何物体的内能都不可能为零C .毛细现象是液体的表面张力作用的结果,温度越高,表面张力越小D .液晶像液体一样具有流动性,而其光学性质和某些晶体相似具有各向异性 答案 BCD5. (1)某气体的摩尔质量为M ,摩尔体积为V ,密度为ρ,每个分子的质量和体积分别为m和V 0,则阿伏加德罗常数N A 可表示为________.(填选项前的字母) A .N A =VV 0B .N A =ρV m C .N A =ρV 0mD .N A =M ρV 0图11(2)一定质量的理想气体的p -V 图象如图11所示,气体由状态A →B →C →D →A 变化.气体对外做正功的变化过程是下列选项中的__________.(填选项前的字母) A .A →B B .B →C C .C →DD .D →A(3)封闭在汽缸内一定质量的理想气体,如果保持气体体积不变,当温度降低时,下列说法正确的是________.(填选项前的字母) A .气体的密度减小 B .气体分子的平均动能增大 C .气体的压强增大D .每秒撞击单位面积器壁的气体分子数减少 答案 (1)B (2)B (3)D(限时:45分钟)►题组1 对固体与液体的考查1. (2010·课标全国理综·33)关于晶体和非晶体,下列说法正确的是( )A .金刚石、食盐、玻璃和水晶都是晶体B .晶体的分子(或原子、离子)排列是规则的C .单晶体和多晶体有固定的熔点,非晶体没有固定的熔点D.单晶体和多晶体的物理性质是各向异性的,非晶体是各向同性的答案BC2.关于液体的表面张力,下列说法中正确的是() A.表面张力是液体各部分间的相互作用B.液体表面层分子分布比液体内部稀疏,分子间相互作用表现为引力C.表面张力的方向总是垂直于液面,指向液体内部的D.表面张力的方向总是与液面相切的答案BD3.关于液晶,下列说法中正确的有() A.液晶是一种晶体B.液晶分子的空间排列是稳定的,具有各向异性C.液晶的光学性质随温度的变化而变化D.液晶的光学性质随光照的变化而变化答案CD解析液晶的微观结构介于晶体和液体之间,虽然液晶分子在特定方向排列比较整齐,具有各向异性,但分子的排列是不稳定的,选项A、B错误;外界条件的微小变化都会引起液晶分子排列的变化,从而改变液晶的某些性质;温度、压力、外加电压等因素变化时,都会改变液晶的光学性质,选项C、D正确.4.液体的饱和汽压随温度的升高而增大() A.其规律遵循查理定律B.是因为饱和汽的质量随温度的升高而增大C.是因为饱和汽的体积随温度的升高而增大D.是因为饱和汽密度和蒸汽分子的平均速率都随温度的升高而增大答案 D解析当温度升高时,蒸汽分子的平均动能增大,导致饱和汽压增大;同时,液体中平均动能大的分子数增多,从液面飞出的分子数将增多,在体积不变时,将使饱和汽的密度增大,也会导致饱和汽压增大,故选D.►题组2对气体实验定律微观解释的考查5.封闭在汽缸内一定质量的理想气体,如果保持气体体积不变,当温度降低时,以下说法正确的是() A.气体的密度减小B.气体分子的平均动能增大C.气体的压强增大D.每秒撞击单位面积器壁的气体分子数减少答案 D6.下列说法正确的是() A.一定质量的气体,当温度升高时,压强一定增大B.一定质量的气体,当体积增大时,压强一定减小C.一定质量的气体,当体积增大,温度升高时,压强一定增大D.一定质量的气体,当体积减小,温度升高时,压强一定增大答案 D解析一定质量的气体,其分子总数一定,当温度升高时,气体分子的平均动能增大,有引起压强增大的可能,但不知道分子的密度如何变化,故不能断定压强一定增大,A 项错误;当体积增大时,气体分子的密度减小,有使压强减小的可能,但不知气体分子的平均动能如何变化,同样不能断定气体压强一定减小,B项错误;体积增大有使压强减小的趋势,温度升高有使压强增大的趋势,这两种使压强向相反方向变化的趋势不知谁占主导地位,不能断定压强如何变化,故C项错误;体积减小有使压强增大的趋势,温度升高也有使压强增大的趋势,这两种趋势都使压强增大,故压强一定增大,D项正确.►题组3对气体实验定律与气态方程的考查7.如图1所示,某种自动洗衣机进水时,与洗衣缸相连的细管中会封闭一定质量的空气,通过压力传感器感知管中的空气压力,从而控制进水量.设温度不变,洗衣缸内水位升高,则细管中被封闭的空气()图1A.体积不变,压强变小B.体积变小,压强变大C.体积不变,压强变大D.体积变小,压强变小答案 B解析细管中封闭的气体,可以看成是一定质量的理想气体,洗衣缸内水位升高,气体压强增大,因温度不变,故做等温变化,由玻意耳定律pV=C得,气体体积减小,B 选项正确.8.用如图2所示的实验装置来研究气体等体积变化的规律.A、B管下端由软管相连,注入一定量的水银,烧瓶中封有一定量的理想气体,开始时A、B两管中水银面一样高,那么为了保持瓶中气体体积不变( )图2A .将烧瓶浸入热水中时,应将A 管向上移动B .将烧瓶浸入热水中时,应将A 管向下移动C .将烧瓶浸入冰水中时,应将A 管向上移动D .将烧瓶浸入冰水中时,应将A 管向下移动 答案 AD解析 由pVT =C (常量)可知,在体积不变的情况下,温度升高,气体压强增大,右管A水银面要比左管B 水银面高,故选项A 正确;同理可知选项D 正确.9. 一定质量的理想气体,在某一状态下的压强、体积和温度分别为p 0、V 0、T 0,在另一状态下的压强、体积和温度分别为p 1、V 1、T 1,则下列关系错误的是( )A .若p 0=p 1,V 0=2V 1,则T 0=12T 1B .若p 0=p 1,V 0=12V 1,则T 0=2T 1C .若p 0=2p 1,V 0=2V 1,则T 0=2T 1D .若p 0=2p 1,V 0=V 1,则T 0=2T 1 答案 ABC解析 根据p 0V 0T 0=p 1V 1T 1可以判断出选项A 、B 、C 错误,D 正确.10.研究大气现象时可把温度、压强相同的一部分气体叫做气团.气团直径达几千米,边缘部分与外界的热交换对整个气团没有明显影响,气团在上升过程中可看成是一定质量理想气体的绝热膨胀,设气团在上升过程中,由状态Ⅰ(p 1,V 1,T 1)绝热膨胀到状态Ⅱ(p 2,V 2,T 2).倘若该气团由状态Ⅰ(p 1,V 1,T 1)作等温膨胀至状态Ⅲ(p 3,V 2,T 1),试回答: (1)下列判断正确的是________. A .p 3>p 2 B .p 3<p 2 C .T 1>T 2D .T 1<T 2(2)若气团在绝热膨胀过程中对外做的功为W 1,则其内能变化ΔU 1=________;若气团在等温膨胀过程中对外做的功为W 2,则其内能变化ΔU 2=________.(3)气团体积由V 1变化到V 2时,求气团在变化前后的密度比和分子间平均距离比.答案 (1)AC (2)-W 1 0 (3)V 2V 1 3V 1V 2解析 (3)气体的密度ρ=mV则变化前后密度比ρ1ρ2=V 2V 1设分子间平均距离为d ,气体分子数为N ,则所有气体体积V =Nd 3 变化前后分子间平均距离比d 1d 2= 3V 1V 211.(1)对下列相关物理现象的解释,正确的是( )A .水和酒精混合后总体积减小,说明分子间有空隙B .悬浮在液体中的大颗粒不做布朗运动,说明分子不运动C .清水中滴入墨水会很快变黑,说明分子在做无规则运动D .高压下的油会透过钢壁渗出,说明分子是不停地运动着的图3(2)如图3所示,一直立的汽缸用一质量为m 的活塞封闭一定质量的理想气体,活塞横截面积为S ,气体最初的体积为V 0,气体最初的压强为p 02;汽缸内壁光滑且缸壁是导热的.开始活塞被固定,打开固定螺栓K ,活塞下落,经过足够长时间后,活塞停在B 点.设周围环境温度保持不变,已知大气压强为p 0,重力加速度为g .求活塞停在B 点时缸内封闭气体的体积V . 答案 (1)AC (2)p 0V 0S2(p 0S +mg )解析 (1)水和酒精混合后,水分子和酒精分子相互“进入”,总体积减小,说明分子间有空隙,选项A 正确;悬浮颗粒越小,温度越高,布朗运动越明显,布朗运动反映液体分子运动的无规则性,选项B 错误;选项C 属于扩散现象,它说明分子都在做无规则的热运动,选项C 正确;高压下的油会透过钢壁渗出,这属于物体在外力作用下的机械运动,并不能说明分子是不停运动着的,但能说明分子间有空隙,选项D 错误.本题答案为A 、C.(2)设活塞在B 点时被封闭气体的压强为p ,活塞受力平衡,p 0S +mg =pS 解得p =p 0+mg S由玻意耳定律:12p 0V 0=pV得气体体积:V =p 0V 0S2(p 0S +mg )12.(1)如图4是“探究气体等温变化规律”的简易装置图,下表是某小组测得的数据.图4①若要研究p 、V 之间的关系,绘制图象时应选用________(填“p —V ”或“p —1V ”)作为坐标系.②仔细观察发现pV 值越来越小,可能的原因是_____________.图5(2)如图5所示,光滑活塞把一定质量的理想气体封闭在汽缸里,活塞截面积为10 cm 2,汽缸内温度为27℃时,弹簧测力计的读数为10 N .已知气体压强比外界大气压强大2×104 Pa ,则活塞的重力多大? 答案 (1)①p -1V②漏气 (2)30 N解析 (2)对活塞进行受力分析,由平衡条件得:G =F +ΔpS =30 N.。

《步步高》2014高考物理(人教版通用)大一轮复习讲义 第十二章 学案56 机械波

《步步高》2014高考物理(人教版通用)大一轮复习讲义 第十二章 学案56 机械波

学案56 机械波一、概念规律题组1.关于机械波的形成,下列说法中正确的是()A.物体做机械振动,一定产生机械波B.后振动的质点总是跟着先振动的质点重复振动,只是时间落后一步C.参与振动的质点群有相同的频率D.机械波是介质随波迁移,也是振动能量的传递图12.一列简谐横波在x轴上传播,某时刻的波形图如图1所示,a、b、c为三个质元,a 正向上运动.由此可知()A.该波沿x轴正方向传播B.c正向上运动C.该时刻以后,b比c先到达平衡位置D.该时刻以后,b比c先到达离平衡位置最远处图23.一列简谐横波沿x轴传播,t=0时的波形如图2所示,质点A与质点B相距1 m,A点速度沿y轴正方向;t=0.02 s时,质点A第一次到达正向最大位移处.由此可知() A.此波的传播速度为25 m/sB.此波沿x轴负方向传播C.从t=0时起,经0.04 s,质点A沿波传播方向迁移1 mD.在t=0.04 s时,质点B处在平衡位置,速度沿y轴负方向4.下面哪些应用是利用了多普勒效应()A.利用地球上接收到遥远天体发出的光波的频率来判断遥远天体相对于地球的运动速度B.交通警察向行进中的汽车发射一个已知频率的电磁波,波被运动的汽车反射回来,根据接收到的频率发生的变化,就知道汽车的速度,以便于进行交通管理C.铁路工人用耳贴在铁轨上可判断火车的运动情况D.有经验的战士利用炮弹飞行的尖叫声判断飞行炮弹是接近还是远去二、思想方法题组图35.一列横波某时刻的波形如图3所示,经过0.25 s图中P点第一次到达波峰的位置,此后再经0.75 s,P点的位移和速度可能是()A.位移是2 cm,速度为零B.位移是零,速度方向沿+y的方向C.位移是-2 cm,速度为零D.位移是零,速度方向沿-y的方向6.如图4所示,位于介质Ⅰ和Ⅱ分界面上的波源S,产生两列分别沿x轴负方向与正方向传播的机械波.若在两种介质中波的频率及传播速度分别为f1、f2和v1、v2,则()图4A.f1=2f2v1=v2B.f1=f2v1=0.5v2C.f1=f2v1=2v2D.f1=0.5f2v1=v2一、波的形成及传播规律的应用1.波的形成及特点波源把自己的振动方式通过介质的质点由近及远的传播,就形成了波.(1)质点只在自己的平衡位置振动,并不随波的传播向前迁移;(2)介质中每个质点的起振方向都和波源的起振方向相同;(3)每个质点的振动周期都等于波的传播周期,质点振动一个周期波传播一个波长;(4)波传播的是波源的振动形式和能量,也能传递信息.2.波的传播方向与质点的振动方向的判断方法内容图象上下坡法沿波的传播方向,上坡时质点向下振动,下坡时质点向上振动同侧法波形图上某点表示传播方向和振动方向的箭头在图线同侧微平移将波形图沿传播方向进行微小平移,再由x轴上某一位置的两波形曲线上的点来判定法(1)关系式:v=λf(2)机械波的波速取决于介质,与波的频率无关.在同一均匀介质中,机械波的传播是匀速的.(3)机械波的频率取决于波源振动的频率,当波从一种介质进入另一种介质时,波的频率不变.(4)在波的传播方向上,介质中各质点都做受迫振动,其频率都等于振源的振动频率.【例1】(2011·北京·16)介质中有一列简谐机械波传播,对于其中某个振动质点() A.它的振动速度等于波的传播速度B.它的振动方向一定垂直于波的传播方向C.它在一个周期内走过的路程等于一个波长D.它的振动频率等于波源的振动频率[规范思维]二、波动图象的应用振动图象和波的图象的比较两种图象比较内容振动图象波的图象图象意义某质点位移随时间变化的规律某时刻所有质点相对平衡位置的位移图象特点图象信息(1)振动周期、振幅(2)各时刻质点的位移和加速度方向(1)波长、振幅(2)任意一质点此时刻的位移和加速度方向图象变化随时间推移图象延续,但原有图象形状不变随时间推移,图象沿传播方向平移一完整曲线对应横坐标一个周期一个波长图5(2011·重庆·17)介质中坐标原点O处的波源在t=0时刻开始振动,产生的简谐波沿x 轴正向传播,t0时刻传到L处,波形如图5所示.下列能描述x0处质点振动的图象是()[规范思维]三、波的多解性问题分析波的多解性原因分析:1.波的周期性:机械波在时间和空间上具有周期性.一方面,每经过一个周期T或nT,介质中的质点完成一次(或n次)全振动回到原来的状态,波形图线与原来的图线完全相同,这在传播时间与周期关系上形成多解,t=nT+Δt;另一方面,波形沿波的传播方向向前推进λ或nλ,在波形图上,相距λ、2λ、3λ、…、nλ的质点振动步调完全一致,后面的质点好象是前面质点振动情况的“复制”,这在传播距离与波长关系上形成多解x=nλ+Δx.2.波的传播方向的不确定性当只知波沿x轴传播时,往往有沿x轴正方向和负方向传播两种情况.3.介质中质点间距离与波长的关系的不确定性已知两质点平衡位置间的距离及某一时刻它们所在的位置,由于波的空间周期性,则两质点存在着多种可能波形.做这类题时,可先根据题意,在两质点间先画出最简波形,然后再作一般分析,从而写出两质点间的距离与波长关系的通式.图6【例3】 (2010·镇江模拟)如图6所示的实线是某时刻的波形图象,虚线是经过0.2 s 时的波形图象.求:(1)波传播的可能距离; (2)可能的周期(频率); (3)可能的波速;(4)若波速是35 m/s ,求波的传播方向;(5)若0.2 s 小于一个周期时,求波传播的距离、周期(频率)、波速.[规范思维]四、波的叠加和干涉1.产生稳定干涉现象的条件:频率相同;有固定的相位差. 2.干涉区域内某点是振动加强点还是振动减弱点的充要条件: (1)最强:该点到两个波源的路程差是波长的整数倍,即Δs =nλ.(2)最弱:该点到两个波源的路程差是半波长的奇数倍,即Δs =λ2(2n +1).3.加强点的位移变化范围:-|A 1+A 2|~|A 1+A 2|. 减弱点的位移变化范围:-|A 1-A 2|~|A 1-A 2|. 【例4】 (2010·新课标卷·33(2))图7波源S 1和S 2振动方向相同,频率均为4 Hz ,分别置于均匀介质中x 轴上的O 、A 两点处,OA =2 m ,如图7所示.两波源产生的简谐横波沿x 轴相向传播,波速为4 m/s.已知两波源振动的初始相位相同.求:(1)简谐横波的波长;(2)OA 间合振动振幅最小的点的位置.【基础演练】图81.如图8所示是观察水面波衍射的实验装置,AC和BD是两块挡板,AB是一个小孔,O是波源,图中已画出波源所在区域波的传播情况,每两条相邻波纹(图中曲线)之间的距离表示一个波长,则对于波经过孔之后的传播情况,下列描述中正确的是() A.此时能明显观察到波的衍射现象B.挡板前后波纹间距相等C.如果将孔AB扩大,有可能观察不到明显的衍射现象D.如果孔的大小不变,使波源频率增大,能更明显观察到衍射现象图92.如图9所示,一个波源在绳的左端发生波甲,另一个波源在同一根绳的右端发生波乙,波速都等于1 m/s.在t=0时刻,绳上的波形如图中的(a)所示,则根据波的叠加原理,下述正确的是()A.当t=2 s时,波形如图(b),t=4 s时,波形如图(c)B.当t=2 s时,波形如图(b),t=4 s时,波形如图(d)C.当t=2 s时,波形如图(d),t=4 s时,波形如图(c)D.当t=2 s时,波形如图(c),t=4 s时,波形如图(d)3.(2010·天津理综·4)一列简谐横波沿x轴正向传播,传到M点时波形如图10所示,再经0.6 s,N点开始振动,则该波的振幅A和频率f为()图10A .A =1 m ,f =5 HzB .A =0.5 m ,f =5 HzC .A =1 m ,f =2.5 HzD .A =0.5 m ,f =2.5 Hz图114.(2011·天津·7)位于坐标原点处的波源A 沿y 轴做简谐运动.A 刚好完成一次全振动时,在介质中形成简谐横波的波形如图11所示,B 是沿波传播方向上介质的一个质点,则( )A .波源A 开始振动时的运动方向沿y 轴负方向B .此后的14周期内回复力对波源A 一直做负功C .经半个周期时间质点B 将向右迁移半个波长D .在一个周期时间内A 所受回复力的冲量为零图125.(2009·四川高考)如图12所示为一列沿x 轴负方向传播的简谐横波,实线为t =0时刻的波形图,虚线为t =0.6 s 时的波形图,波的周期T>0.6 s ,则( )A .波的周期为2.4 sB .在t =0.9 s 时,P 点沿y 轴正方向运动C .经过0.4 s ,P 点经过的路程为4 mD .在t =0.5 s 时,Q 点到达波峰位置 6.(2011·大纲全国·21)一列简谐横波沿x 轴传播,波长为1.2 m ,振幅为A.当坐标为x =0处质元的位移为-32A 且向y 轴负方向运动时,坐标为x =0.4 m 处质元的位移为32A.当坐标为x =0.2 m 处的质元位于平衡位置且向y 轴正方向运动时,x =0.4 m 处质元的位移和运动方向分别为( )A .-12A 、沿y 轴正方向B .-12A 、沿y 轴负方向C .-32A 、沿y 轴正方向D .-32A 、沿y 轴负方向 7.(2009·全国Ⅰ·20)一列简谐横波在某一时刻的波形图如图13甲所示,图中P 、Q 两质点的横坐标分别为x =1.5 m 和x =4.5 m .P 点的振动图象如图乙所示.图13在下列四幅图中,Q 点的振动图象可能是( )题号 1 2 3 4 5 6 7 答案图14为声波干涉演示仪的原理图.两个U形管A和B套在一起,A管两侧各有一小孔.声波从左侧小孔传入管内,被分成两列频率________的波.当声波分别通过A、B传播到右侧小孔时,若两列波传播的路程相差半个波长,则此处声波的振幅________;若传播的路程相差一个波长,则此处声波的振幅________.【能力提升】图159.(2010·山东理综·37(1))渔船常利用超声波来探测远处鱼群的方位,已知某超声波的频率为1.0×105 Hz,某时刻该超声波在水中传播的波动图象如图15所示.(1)从该时刻开始计时,画出x=7.5×10-3 m处质点做简谐运动的振动图象(至少一个周期).(2)现测得超声波信号从渔船到鱼群往返一次所用的时间为4 s,求鱼群与渔船间的距离(忽略船和鱼群的运动).10.一列简谐横波沿直线传播,在波的传播方向上有P、Q两个质点,它们相距0.8 m.当t=0时,P、Q两点的位移恰好是正最大值,且P、Q间只有一个波谷.当t=0.6 s时,P、Q两点正好处于平衡位置,且P、Q两点只有一个波峰和一个波谷,且波峰距Q点的距离第一次为0.2 m.求:(1)波由P传至Q,波的周期;(2)波由Q传至P,波的速度;(3)波由Q传至P,从t=0时开始观察,哪些时刻P、Q间(P、Q除外)只有一个质点的位移大小等于振幅.学案56 机械波【课前双基回扣】1.BC 2.AC 3.AB 4.ABD5.BD [若波向左传播,P 点此时向上运动,且经Δt 1=0.25 s =T4,P 第一次到波峰,可推知再经Δt 2=0.75 s =34T ,P 在平衡位置向上运动.若波向右传播,P 点此时向下运动.经Δt 1′=0.25 s =34T.P 第一次到波峰,可知再经Δt 2′=0.75 s =3×34T ,P 在平衡位置向下运动.由此可知选项B 、D 正确.]6.C [介质Ⅰ、Ⅱ中波的振源相同,所以两列波的频率相同,f 1=f 2,由图象知λ1=2λ2,又因为v =λf ,所以v 1=2v 2,选项C 正确.]思维提升1.机械波产生的条件:振源和介质,有波动一定有振动.波的频率决定于振源. 2.v =λf =λ/T.波速决定于介质,波长由介质和波源共同决定.3.简谐波图象是正弦或余弦曲线,表示在波的传播方向上,介质中质点在某一时刻相对各自平衡位置的位移.4.波的干涉和衍射现象都是波特有的现象.5.多普勒效应:波源的频率不变,只是观察者接收到的波的频率发生变化.如果二者相互接近,观察者接收到的频率变大;如果二者相互远离,观察者接收到的频率变小.【核心考点突破】例1 D[机械波在传播过程中,振动质点并不随波迁移,只是在各自的平衡位置附近做简谐运动,选项A、C错误.机械波可能是横波,也可能是纵波,故振动质点的振动方向不一定垂直于波的传播方向,选项B错误.振动质点的振动是由波源的振动引起的,故质点的振动频率等于波源的振动频率,选项D正确.][规范思维]掌握振动与波动的区别和联系是正确解答本题的关键.注意“一同三不同”,即振动的周期或频率与波动的周期或频率相同;振动的方向与波动的方向不同;振动的速度与波动的速度不同;振动的路程与波动路程不同.例2 C[由波动图象可知t0时刻x0处质点正向下振动,下一时刻质点纵坐标将减小,排除B、D选项.x0处质点开始振动时的振动方向向下,故选项A错误,选项C正确.] [规范思维]本题考查振动图象与波动图象的相互转换问题,应从波的图象和题意中提炼出以下三点信息:①波传到x0之前,x0处的质点不振动.②所有质点的起振方向都向下.③t0时刻x0处的质点正向下振动.例3 见解析解析(1)波的传播方向有两种可能:向左传播或向右传播.向左传播时,传播的距离为x=nλ+3λ/4=(4n+3) m (n=0,1,2,…)向右传播时,传播的距离为x=nλ+λ/4=(4n+1) m (n=0,1,2,…)(2)向左传播时,传播的时间为t=nT+3T/4得:T=4t/(4n+3)=0.8/(4n+3) (n=0,1,2,…)向右传播时,传播的时间为t=nT+T/4得:T=4t/(4n+1)=0.8/(4n+1)(n=0,1,2,…)(3)计算波速,有两种方法:v=x/t或v=λ/T向左传播时,v =x/t =(4n +3)/0.2=(20n +15) m/s.或v =λ/T =4(4n +3)/0.8=(20n +15) m/s.(n =0,1,2,…)向右传播时,v =x/t =(4n +1)/0.2=(20n +5) m/s.或v =λ/T =4(4n +1)/0.8=(20n +5) m/s.(n =0,1,2,…)(4)若波速是35 m/s ,则波在0.2 s 内传播的距离为x =vt =35×0.2 m =7 m =134λ,所以波向左传播. (5)若0.2 s 小于一个周期,说明波在0.2 s 内传播的距离小于一个波长.则:向左传播时,传播的距离x =3λ/4=3 m ;传播的时间t =3T/4得:周期T =0.267 s ;波速v =15 m/s.向右传播时,传播的距离为λ/4=1 m ;传播的时间t =T/4得:周期T =0.8 s ;波速v =5 m/s.[规范思维] 解答此类问题,首先要考虑波传播的“双向性”,例如:nT +14T 时刻向右传播的波形和nT +34T 时刻向左传播的波形相同.其次要考虑波传播的“周期性”,时间、传播距离都要写成周期、波长的整数倍加“零头”的形式.例4 见解析解析 (1)设波长为λ,频率为f ,则v =λf ,代入已知数据,得λ=1 m.(2)以O 为坐标原点,设P 为OA 间的任意一点,其坐标为x ,则两波源到P 点的波程差为Δl =x -(2-x),0≤x ≤2.其中x 、Δl 以m 为单位.合振动振幅最小的点的位置满足Δl =(k +12)λ,k 为整数 解得:x =0.25 m ,0.75 m ,1.25 m ,1.75 m.思想方法总结1.(1)由波的图象判断该时刻某质点的振动方向:波的图象表示介质中的“各个质点”在“某一时刻”的位移.沿简谐横波的传播方向,将波分为上坡段和下坡段,则位于上坡段的质点向下振,位于下坡段的质点向上振,即“上坡下振”,“下坡上振”.(2)波长、频率和波速的关系:v =λf.另外,v =λ/T =Δx/Δt.2.对于已知波动图象和波的传播方向上某质点的振动图象的问题,往往是从波动图象上能读出波长,从振动图象上能读出周期,从而可以计算出波的传播速度;再根据某质点的振动图象上所描述的波动的图象对应的时刻的质点的振动方向,就能确定该波的传播方向.3.解决波动图象中的多解问题的一般思路:(1)分析出造成多解的原因.①波动图象的周期性,如由Δx =nλ+x ,Δt =nT +t ,求v 出现多解.②波传播的双向性.(2)由λ=vT 进行计算,若有限定条件,再进行讨论.【课时效果检测】1.ABC 2.D 3.D 4.ABD 5.D 6.C 7.BC8.相同 等于零 等于原来声波振幅的两倍9.(1)见解析图 (2)3 000 m解析 (1)因为超声波的频率为f =1.0×105 Hz ,所以质点振动周期T =1f=10-5 s ,x = 7.5×10-3 m 处质点图示时刻处于波谷,所以可画出该质点做简谐运动的图象如右图所示.(2)因为超声波的频率为f =1.0×105 Hz ,由波的图象可知超声波的波长λ=15×10-3 m ,由v =λf 可得超声波的速度v =λf =15×10-3×1.0×105 m/s =1 500 m/s所以鱼群与渔船间的距离x =vt 2=1 500×42m =3 000 m. 10.见解析解析 由题意λ=0.8 m(1)若波由P 传至Q ,由t =0.6 s =34T ,解得T =0.8 s. (2)若波由Q 传至P ,则t =0.6 s =14T ,解得T =2.4 s ,波速v =0.82.4m/s =0.33 m/s. (3)若波由Q 传至P ,则T =2.4 s ,从t =0时刻开始,每经过半个周期,P 、Q 间只有一个质点的位移大小等于振幅,即t =nT/2=1.2n s ,式中n =0,1,2,3,….易错点评1.波的干涉和衍射现象都是波特有的现象,但它们的产生的条件不同,现象也不同.要产生稳定的干涉,需要频率相同的两列波相遇.而要发生明显的衍射现象,需要障碍物或孔(缝)的尺寸跟波长相差不多,或者比波长更小.2.波动问题往往具有多解性,或因时间的周期性,或因空间的周期性,或因波的传播方向不固定.某些同学往往考虑不全,造成失误,比如第10题.3.对于波动和振动的综合性问题,把图象看错,符号不明意义,从波动图象想象不出振动过程是常见误区.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时机械波考纲解读 1.知道机械波的特点和分类.2.掌握波速、波长和频率的关系,会分析波的图象.3.理解波的干涉、衍射现象和多普勒效应,掌握波的干涉和衍射的条件.1.[波的形成与波的分类]关于波的形成和传播,下列说法正确的是()A.质点的振动方向与波的传播方向平行时,形成的波是纵波B.质点的振动方向与波的传播方向垂直时,形成的波是横波C.波在传播过程中,介质中的质点随波一起迁移D.波可以传递振动形式和能量答案ABD2.[波长、波速、频率的关系]如图1所示,实线是沿x轴传播的一列简谐横波在t=0时刻的波形图,虚线是这列波在t=0.05 s时刻的波形图.已知该波的波速是80 cm/s,则下列说法中正确的是() 图1A.这列波有可能沿x轴正方向传播B.这列波的波长是10 cmC.t=0.05 s时刻x=6 cm处的质点正在向下运动D.这列波的周期一定是0.15 s答案 D解析由波的图象可看出,这列波的波长λ=12 cm,B错误;根据v=λT,可求出这列波的周期为T=λv=1280s=0.15 s,D正确;根据x=v t=80×0.05 cm=4 cm可判断,波应沿x轴负方向传播,根据波的“微平移”法可判断t=0.05 s时刻x=6 cm处的质点正在向上运动,A、C错误.3.[波的图象的理解]如图2所示是一列简谐波在t=0时的波形图,介质中的质点P沿y轴方向做简谐运动的表达式为y=10sin 5πt cm.关于这列简谐波,下列说法中正确的是() 图2A.这列简谐波的振幅为20 cmB .这列简谐波的周期为5.0 sC .这列简谐波在该介质中的传播速度为25 cm/sD .这列简谐波沿x 轴正向传播 答案 D解析 由题图可知,质点偏离平衡位臵的最大距离即振幅为10 cm ,A 错;由该质点P 振动的表达式可知这列简谐横波的周期为T =2πω=2π5π s =0.4 s ,B 错;由题图可知,该波的波长为λ=4 m ,波速v =λT =40.4 m/s =10 m/s ,C 错;由质点P 做简谐运动的表达式可知,t =0时刻质点P 正在向上运动,由此可判断波沿x 轴正向传播,D 正确. 4. [波的干涉和衍射]如图3所示为观察水面波衍射的实验装置,AC 和BD是两块挡板,AB 是一个小孔,O 是波源,图中已画出波源所在区域波的传播情况,每两条相邻波纹(图中曲线)之间的距离表示一个波长,则对波经过孔后的传播情况,下列描述不正确的是 ( ) A .此时能明显观察到波的衍射现象图3B .挡板前后波纹间距相等C .如果将孔AB 扩大,有可能观察不到明显的衍射现象D .如果孔的大小不变,使波源频率增大,能更明显地观察到衍射现象 答案 D解析 由题图可以看出,孔AB 尺寸与波长相差不大,因只有缝、孔的宽度或障碍物的尺寸跟波长相差不多,或者比波长更小时,才能观察到明显的衍射现象,故选项A 、C 正确;由λ=vf 知,v 不变,f 增大,只能使λ减小,故选项D 错;既然衍射是指“波绕过障碍物而传播的现象”,那么经过孔后的波长自然不变,故选项B 正确. 考点梳理1. 机械波的形成条件:(1)波源;(2)介质. 2. 机械波的特点(1)机械波传播的只是振动的形式和能量,质点只在各自的平衡位置附近做简谐运动,并不随波迁移.(2)介质中各质点的振幅相同,振动周期和频率都与波源的振动周期和频率相同. (3)各质点开始振动(即起振)的方向均相同.(4)一个周期内,质点完成一次全振动,通过的路程为4A ,位移为零. 3. 波长、波速、频率及其关系(1)波长在波动中,振动相位总是相同的两个相邻质点间的距离,用λ表示.(2)波速波在介质中的传播速度.由介质本身的性质决定. (3)频率由波源决定,等于波源的振动频率. (4)波长、波速和频率的关系:v =fλ.特别提醒 1.机械波从一种介质进入另一种介质,频率不变,波速、波长都改变. 2. 机械波的波速仅由介质来决定,波速在固体、液体中比在空气中大.波速的计算方法:v =λT 或v =Δx Δt . 4. 波的图象的物理意义反映了某一时刻介质中各质点相对平衡位置的位移. 5. 波的干涉(1)产生稳定干涉的条件:频率相同的两列同性质的波相遇.(2)现象:两列波相遇时,某些区域振动总是加强,某些区域振动总是减弱,且加强区和减弱区互相间隔.(3)对两个完全相同的波源产生的干涉来说,凡到两波源的路程差为一个波长整数倍时,振动加强;凡到两波源的路程差为半个波长的奇数倍时,振动减弱.6. 产生明显衍射现象的条件:障碍物或孔(缝)的尺寸跟波长差不多,或者比波长更小. 7. 多普勒效应(1)波源不动⎩⎪⎨⎪⎧观察者向波源运动,接收频率增大观察者背离波源运动,接收频率减小(2)观察者不动⎩⎪⎨⎪⎧波源向观察者运动,接收频率增大波源背离观察者运动,接收频率减小5. [质点振动方向与波传播方向的关系应用]一列简谐横波沿x 轴传播,t =0时刻的波形如图4所示.则从图中可以看出( )A .这列波的波长为5 mB .波中的每个质点的振动周期都为4 s图4C .若已知波沿x 轴正向传播,则此时质点a 正向下振动D .若已知质点b 此时正向上振动,则波是沿x 轴负向传播的 答案 C解析 由题图可知,波长为λ=4 m ,选项A 错误;波速未知,不能得出机械波的周期,选项B 错误;若已知波沿x 轴正向传播,则此时质点a 正向下振动,选项C 正确;若已知质点b 此时正向上振动,则波是沿x 轴正向传播的,选项D 错误.6. [质点振动方向与波传播方向的关系应用]一列简谐横波沿x 轴传播,t =0时的波形如图5所示,质点A 与质点B 相距1 m ,A 点速度沿y 轴正方向;t =0.02 s 时,质点A 第一次到达正向最大位移处,由此可知( )图5A .此波沿x 轴负方向传播B .此波的传播速度为25 m/sC .从t =0时起,经过0.04 s ,质点A 沿波传播方向迁移了1 mD .在t =0.04 s 时,质点B 处在平衡位置,速度沿y 轴正方向 答案 ABD解析 根据图象,由t =0时A 点速度沿y 轴正方向可判断,此波沿x 轴负方向传播,选项A 正确;根据题意,波长λ=2 m ,周期T =0.08 s ,波速v =λT =25 m/s ,选项B 正确;沿波传播方向上各质点并不随波迁移,而是在平衡位臵附近做简谐运动,选项C 错误;t =0时刻质点B 从平衡位臵向下振动,经过0.04 s 即0.5T ,质点B 处在平衡位臵,速度沿y 轴正方向,选项D 正确. 方法提炼质点的振动方向与波的传播方向的互判方法 (1)上下坡法沿波的传播方向看,“上坡”的点向下运动,“下坡”的点向上运动,简称“上坡下,下坡上”,如图6所示.图6(2)带动法如图7所示,在质点P 靠近波源一方附近的图象上另找一点P ′,若P ′在P 上方,则P 向上运动,若P ′在P 下方,则P 向下运动.图7(3)微平移法图8原理:波向前传播,波形也向前平移.方法:作出经微小时间Δt 后的波形,如图8虚线所示,就知道了各质点经过Δt 时间到达的位置,也就知道了此刻质点的振动方向,可知图中P 点振动方向向下.考点一 波动图象与波速公式的应用1. 波的图象反映了在某时刻介质中的质点离开平衡位臵的位移情况,图象的横轴表示各质点的平衡位臵,纵轴表示该时刻各质点的位移,如图9:图象的应用:(1)直接读取振幅A 和波长λ,以及该时刻各质点的位移.(2)确定某时刻各质点加速度的方向,并能比较其大小.(3)结合波的传播方向可确定各质点的振动方向或由各质点的振动方向确定波的传播方向.2. 波速与波长、周期、频率的关系为:v =λT=λf .例1 (2011·海南·18(1))一列简谐横波在t =0时的波形图如图10所示.介质中x =2 m 处的质点P 沿y 轴方向做简谐运动的表达式为y =10sin (5πt ) cm.关于这列简谐波,下列说法正确的是( )图10A .周期为4.0 sB .振幅为20 cmC .传播方向沿x 轴正向D .传播速度为10 m/s解析 由题意知ω=5π rad/s ,周期为:T =2πω=0.4 s ,由波的图象得:振幅A =10 cm 、波长λ=4 m ,故波速为v =λT=10 m/s ,P 点在t =0时振动方向为正y 方向,波向正x方向传播.答案CD突破训练1如图11所示为一列在均匀介质中沿x轴正方向传播的简谐横波在某时刻的波形图,波速为4 m/s,则()A.质点P此时刻的振动方向沿y轴正方向B.P点振幅比Q点振幅小C.经过Δt=3 s,质点Q通过的路程是0.6 m 图11D.经过Δt=3 s,质点P将向右移动12 m答案 C解析由机械波沿x轴正方向传播,利用“带动”原理可知,质点P此时刻的振动方向沿y轴负方向,选项A错误;沿波传播方向上各质点并不随波迁移,而是在平衡位臵附近做简谐运动,并且各质点振动的幅度相同,即振幅相同,选项B、D均错误;根据波形图可知,波长λ=4 m,振幅A=5 cm,已知v=4 m/s,所以T=λv=1 s,Δt=3 s=3T,质点Q通过的路程是12A=60 cm=0.6 m,所以选项C正确.考点二振动图象与波动图象质点,Q 是平衡位置为x =4 m 处的质点,图乙为质点Q 的振动图象,则( )图12A .t =0.15 s 时,质点Q 的加速度达到正向最大B .t =0.15 s 时,质点P 的运动方向沿y 轴负方向C .从t =0.10 s 到t =0.25 s ,该波沿x 轴正方向传播了6 mD .从t =0.10 s 到t =0.25 s ,质点P 通过的路程为30 cm解析 A 选项,由乙图象看出,当t =0.15 s 时,质点Q 位于负方向的最大位移处,而简谐运动的加速度大小与位移成正比,方向与位移方向相反,所以加速度为正向最大值;B 选项中,由乙图象看出,简谐运动的周期为T =0.20 s ,t =0.10 s 时,质点Q 的速度方向沿y 轴负方向,由甲图可以看出,波的传播方向应该沿x 轴负方向,因甲图是t =0.10 s 的波形,所以t =0.15 s 时,经历了0.05 s =T4的时间,图甲的波形沿x 轴负方向平移了λ4=2 m 的距离,如图所示,因波沿x 轴负方向传播,则此时P 点的运动方向沿y 轴负方向;C选项中,由题意知λ=8 m ,T =0.2 s ,则v =λT =40 m/s.从t =0.10 s 到t =0.25 s ,该波沿x 轴负方向传播的距离为0.15 s×40 m/s =6 m ;D 选项中,由图甲可以看出,由于t =0.10 s 时刻质点P 不处于平衡位臵,故从t =0.10 s 到t =0.25 s 质点P 通过的路程不为30 cm ,本题正确选项为A 、B. 答案 AB突破训练2 如图13所示,甲图为沿x 轴传播的一列简谐横波在t =0时刻的波动图象,乙图是x =2 m 处质点P 的振动图象,下列判断正确的是( )图13A .该波的传播速率为4 m/sB .该波沿x 轴正方向传播C .经过0.5 s ,质点P 沿波的传播方向移动2 mD .若遇到3 m 的障碍物,该波能发生明显的衍射现象 答案 AD解析 由题图可知,机械波的波长为λ=4 m ,周期为T =1 s ,则v =λT =4 m/s ,该波的传播速率为4 m/s ,选项A 正确;由乙图可知,t =0时刻质点P 经平衡位臵往下振动,由甲图可知,该波沿x 轴负方向传播,选项B 错误;质点P 只在平衡位臵附近振动,不沿波的传播方向移动,选项C 错误;由于波长大于障碍物尺寸,该波能发生明显的衍射现象,选项D 正确. 考点三 波的干涉、衍射、多普勒效应 1. 波的干涉中振动加强点和减弱点的判断某质点的振动是加强还是减弱,取决于该点到两相干波源的距离之差Δr . (1)当两波源振动步调一致时若Δr =nλ(n =0,1,2,…),则振动加强; 若Δr =(2n +1)λ2(n =0,1,2,…),则振动减弱.(2)当两波源振动步调相反时若Δr =(2n +1)λ2(n =0,1,2,…),则振动加强;若Δr =nλ(n =0,1,2,…),则振动减弱.2. 波的衍射现象是指波能绕过障碍物继续传播的现象,产生明显衍射现象的条件是缝、孔的宽度或障碍物的尺寸跟波长相差不大或者小于波长. 3. 多普勒效应的成因分析(1)接收频率:观察者接收到的频率等于观察者在单位时间内接收到的完全波的个数.当波以速度v 通过观察者时,时间t 内通过的完全波的个数为N =v tλ,因而单位时间内通过观察者的完全波的个数,即接收频率.(2)当波源与观察者相互靠近时,观察者接收到的频率变大,当波源与观察者相互远离时,观察者接收到的频率变小.例3 如图14表示两个相干波源S 1、S 2产生的波在同一种均匀介质中相遇.图中实线表示波峰,虚线表示波谷,c 和f 分别为ae 和bd 的中点,则:图14(1)在a、b、c、d、e、f六点中,振动加强的点是__________.振动减弱的点是____________.(2)若两振源S1和S2振幅相同,此时刻位移为零的点是________.(3)画出此时刻ace连线上,以a为起点的一列完整波形,标出e点.解析(1)a、e两点分别是波谷与波谷、波峰与波峰相交的点,故此两点为振动加强点;c点处在a、e连线上,且从运动的角度分析a点的振动形式恰沿该线传播,故c点是振动加强点,同理b、d是振动减弱点,f也是振动减弱点.(2)因为S1、S2振幅相同,振动最强区的振幅为2A,最弱区的振幅为零,位移为零的点是b、d.(3)题图中对应时刻a处在两波谷的交点上,即此刻a在波谷,同理e在波峰,所以所对应的波形如图所示.答案(1)a、c、e b、d、f(2)b、d(3)见解析图突破训练3如图15甲所示,男同学站立不动吹口哨,一位女同学坐在秋千上来回摆动,下列关于女同学的感受的说法正确的是()甲乙图15A.女同学从A向B运动过程中,她感觉哨声音调变高B.女同学从E向D运动过程中,她感觉哨声音调变高C.女同学在C点向右运动时,她感觉哨声音调不变D.女同学在C点向左运动时,她感觉哨声音调变低答案AD突破训练4(2011·上海·10)两波源S1、S2在水槽中形成的波形如` 图16所示,其中实线表示波峰,虚线表示波谷,则()A.在两波相遇的区域中会产生干涉B.在两波相遇的区域中不会产生干涉图16C.a点的振动始终加强D.a点的振动始终减弱答案 B解析由题图可知两列波的波长不同,在同一水槽中两波的波速相同,由v=λf知两波的频率不同,故不能产生干涉现象.高考题组1.(2012·天津理综·7)沿x 轴正方向传播的一列简谐横波在t =0时刻的波形如图19所示,M 为介质中的一个质点,该波的传播速度为40 m/s ,则t =140s 时( ) A .质点M 对平衡位置的位移一定为负值图19B .质点M 的速度方向与对平衡位置的位移方向相同C .质点M 的加速度方向与速度方向一定相同D .质点M 的加速度方向与对平衡位置的位移方向相反 答案 CD解析 当t =140 s 时,波传播的距离Δx =v t =40×140 m =1 m ,所以当t =140s 时波的图象如图所示,由图可知,M 对平衡位臵的位移为正值,且沿y 轴负方向运动,故选项A 、B 错误;根据F =-kx 及a =-km x知,加速度方向与位移方向相反,沿y 轴负方向,与速度方向相同,选项C 、D 正确. 2. (2012·安徽理综·15)一列简谐波沿x 轴正方向传播,在t =0时波形如图20所示,已知波速为10 m/s.则t =0.1 s 时正确的波形应是下图中的( )图20答案 C解析由题图知:波长λ=4.0 m,波在t=0.1 s内传播的距离x=v t=10×0.1 m=1 m=1 4λ,故将原波形图沿波的传播方向(即x轴正方向)平移14λ即可,故选项C正确,选项A、B、D错误.3.(2012·福建理综·13)一列简谐横波沿x轴传播,t=0时刻的波形如图21甲所示,此时质点P正沿y轴负方向运动,其振动图象如图乙所示,则该波的传播方向和波速分别是()图21A.沿x轴负方向,60 m/s B.沿x轴正方向,60 m/sC.沿x轴负方向,30 m/s D.沿x轴正方向,30 m/s答案 A解析由题图甲知,波长λ=24 m,由题图乙知T=0.4 s.根据v=λT可求得v=60 m/s,故C、D项错误;根据“同侧法”可判断出波的传播方向沿x轴负方向,故A项正确,B项错误.模拟题组4.位于坐标原点的波源S不断地产生一列沿x轴正方向传播的简谐横波,波速v=40 m/s,已知t=0时刻波刚好传播到x=13 m处,部分波形图如图22所示,下列说法正确的是()图22A.波源S开始振动的方向沿y轴正方向B.t=0.45 s时,x=9 m处的质点的位移为零C.t=0.45 s时,波刚好传播到x=18 m处D.t=0.45 s时,波刚好传播到x=31 m处答案AD解析已知波沿x轴正方向传播,结合波形图可知,x=13 m处质点的起振方向沿y轴正方向,所以波源S开始振动的方向沿y轴正方向,选项A正确;由图可知,波长λ=8 m ,周期T =λv =0.2 s ,根据波的传播方向可知,t =0时刻,x =9 m 处的质点正从平衡位臵向下运动,经过0.45 s =2.25T 即t =0.45 s 时刻,该质点位于波谷,选项B 错误;t =0.45 s 时,波刚好传播到x =13 m +v t =31 m 处,选项C 错误,D 正确.5. 如图23所示为一列在均匀介质中传播的简谐横波在某时刻的波形图,波速为2 m/s ,此时P 点振动方向沿y 轴负方向,则( )图23A .该波传播的方向沿x 轴正方向B .P 点的振幅比Q 点的小C .经过Δt =4 s ,质点P 将向右移动8 mD .经过Δt =4 s ,质点Q 通过的路程是0.4 m 答案 AD解析 由P 点振动方向沿y 轴负方向可知波向右传播,选项A 正确.波传播过程中,各点振幅相同,选项B 错误.周期T =λv =42 s =2 s ,Δt =4 s 为两个周期,P 、Q 两质点完成两个全振动,通过的路程为8A =40 cm =0.4 m ,位移为零,选项C 错,D 正确.(限时:30分钟)►题组1 波的干涉与衍射现象的理解 1. 关于波的衍射现象,下列说法正确的是( )A .当孔的尺寸比波长大时,一定不会发生衍射现象B .只有孔的尺寸与波长相差不多时,或者比波长还小时才会观察到明显的衍射现象C .只有波才有衍射现象D .以上说法均不正确 答案 BC解析 当孔的尺寸比波长大时,会发生衍射现象,只不过不明显.只有当孔、缝或障碍物的尺寸跟波长相差不多,或者比波长更小时,才会发生明显的衍射现象,切不可把此条件用来判断波是否发生了衍射现象.2. 如图1所示,S 1、S 2为两个振动情况完全一样的波源,两列波的波长都为λ,它们在介质中产生干涉现象,S 1、S 2在空间共形成6个振动减弱的区域(图中虚线处),P 是振动减弱区域中的一点,从图中可看出( )A .P 点到两波源的距离差等于1.5λ图1B .两波源之间的距离一定在2.5个波长到3.5个波长之间C .P 点此时刻振动最弱,过半个周期后,振动变为最强D .当一列波的波峰传到P 点时,另一列波的波谷也一定传到P 点 答案 ABD解析 从S 1、S 2的中点起到向右三条虚线上,S 1、S 2的距离差依次为0.5λ、1.5λ、2.5λ. ►题组2 波的图象的理解和波速公式的应用3. 有一列简谐横波在弹性介质中沿x 轴正方向以速率v =5.0 m/s 传播,t =0时刻的波形如图2所示,下列说法中正确的是( ) A .该列波的波长为0.5 m ,频率为5 Hz图2B .t =0.1 s 时,波形沿x 轴正方向移动0.5 mC .t =0.1 s 时,质点A 的位置坐标为(1.25 m,0)D .t =0.1 s 时,质点A 的速度为零 答案 B解析 由波形图知λ=1.0 m .T =λv =0.2 s ,f =5 Hz ,A 项错.t =0.1 s 时,波传播的距离 x =v t =5×0.1 m =0.5 m ,B 项正确.在t =0.1 s =T2时,A 在平衡位臵,位臵坐标仍为(0.75 m,0),且A 此时的速度最大,C 、D 项错.4. 如图3所示,实线是沿x 轴传播的一列简谐横波在t =0时刻的波形图,虚线是这列波在t =0.2 s 时刻的波形图.该波的波速为0.8 m/s ,则下列说法正确的是 ( ) A .这列波的波长是14 cm图3B .这列波的周期是0.5 sC .这列波可能是沿x 轴正方向传播的D .t =0时,x =4 cm 处的质点速度沿y 轴负方向 答案 D解析 由题图知该波的波长λ=12 cm ,故A 项错误.由v =λT ,得T =0.120.8 s =1.5×10-1 s ,故B 项错误.因t T =0.20.15=43,故该波沿x 轴负方向传播,所以C 项错误.由波沿x 轴负方向传播可判定t =0时刻,x =4 cm 处质点的振动方向沿y 轴负方向,故D 项正确.5.如图4为一列在均匀介质中沿x轴正方向传播的简谐横波在某时刻的波形图,波速为4 m/s.图中“A、B、C、D、E、F、G、H”各质点中()A.沿y轴正方向速率最大的质点是D 图4B.沿y轴正方向加速度最大的质点是BC.经过Δt=0.5 s,质点D将向右移动2 mD.经过Δt=2.5 s,质点D的位移是0.2 m答案 A解析在平衡位臵的质点速率最大,又从传播方向可以判断,质点D向上振动,质点H向下振动,所以A项正确;在最大位移处的质点加速度最大,加速度的方向与位移方向相反,B质点的加速度方向向下,B项错误;质点只能在平衡位臵两侧上下振动,并不随波迁移,C项错误;波传播的周期T=λv=1 s,经过Δt=2.5 s=2.5T,质点D仍位于平衡位臵,所以位移为0,D项错误.6.如图5所示,在坐标原点的波源产生一列沿x轴正方向传播的简谐横波,波速v=200 m/s,已知t=0时,波刚好传播到x=40 m处.在x′=400 m处有一处于静止状态的接收器(图中未画出),则下列说法正确的是()图5A.波源振动周期为0.1 sB.波源开始振动时方向沿y轴正方向C.t=0.15 s时,x=40 m的质点已运动的路程为30 mD.接收器在t=1.8 s时开始接收此波E.若波源向x轴正方向运动,接收器接收到的波的频率可能为15 Hz答案ADE7.(2012·山东理综·37(1))一列简谐横波沿x轴正方向传播,t=0时刻的波形如图6所示,介质中质点P、Q分别位于x=2 m,x=4 m处.从t=0时刻开始计时,当t=15 s时质点Q刚好第4次到达波峰.①求波速.②写出质点P做简谐运动的表达式(不要求推导过程).图6答案①1 m/s②y=0.2sin (0.5πt) m解析 ①设简谐横波的波速为v ,波长为λ,周期为T ,由题图知,λ=4 m .由题意知t =3T +34T ①v =λT② 联立①②式,代入数据得 v =1 m/s ②ω=2πT=0.5π质点P 做简谐运动的表达式为y =0.2sin (0.5πt ) m 题组3 波动图象与振动图象的结合8. 一列沿着x 轴正方向传播的横波,在t =2 s 时刻的波形如图7甲所示,则图乙表示图甲中E 、F 、G 、H 四个质点中哪一个质点的振动图象( )图7A .E 点B .F 点C .G 点D .H 点 答案 D解析 由题图乙可知,t =2 s 质点经平衡位臵往下振动,波沿着x 轴正方向传播,图甲中符合要求的是H 点,选项D 正确.9. 一简谐波沿x 轴正方向传播,波长为λ,周期为T .在t =T2时刻该波的波形图如图8甲所示,a 、b 是波上的两个质点.图乙表示某一质点的振动图象.下列说法中正确的是( )图8A .质点a 的振动图象如图乙所示B .质点b 的振动图象如图乙所示C .t =0时刻质点a 的速度比质点b 的大D .t =0时刻质点a 的加速度比质点b 的大答案 D解析 在t =0时刻,质点a 在波谷,质点b 在平衡位臵,振动质点位移增大时,回复力、加速度、势能均增大,速度、动能均减小,所以在t =0时刻,质点a 的加速度比质点b 的加速度大,质点a 的速度比质点b 的速度小,选项D 正确,C 错误.由图乙知,T2时刻图乙表示的质点在平衡位臵向下振动,故图乙既不是a 的振动图象也不是b的振动图象,选项A 、B 均错误.10.一列简谐横波,沿x 轴正方向传播,波长2 m .位于原点O 的质点的振动图象如图9所示,则下列说法正确的是( )图9图10A .在t =0.05 s 时,位于原点的质点离开平衡位置的位移是8 cmB .图10可能为该波在t =0.15 s 时刻的波形图C .该波的传播速度为10 m/sD .从图10时刻开始计时,再经过0.10 s 后,A 点离开平衡位置的位移是-8 cm 答案 C解析 在t 等于14周期时,位于原点的质点离开平衡位臵的位移是0,故A 选项错误.由公式v =λT 可知该波的传播速度是10 m/s ,C 选项正确.根据振动与波动之间的联系,可知B 选项错误.从题图10时刻开始计时,再经过0.10 s 后,A 点离开平衡位臵的位移是8 cm ,D 选项错误. ►题组4 振动和波动关系的应用11.如图11为一列简谐横波在t =0时刻的波的图象,A 、B 、C 是介质中的三个质点.已知波是沿x 轴正方向传播的,波速为v =20 m/s.请回答下列问题:图11(1)判断质点B 此时的振动方向;(2)求出质点A 在0~1.65 s 内通过的路程及t =1.65 s 时刻相对于平衡位置的位移. 答案 (1)沿y 轴正方向 (2)4.4 cm -0.4 cm解析 (1)因波沿x 轴正方向传播,根据波的传播方向与质点振动方向的关系可知质点B 此时的振动方向为沿y 轴正方向. (2)由波形图可知该波波长为λ=12 m 根据波速公式v =λT,可得T =λv =0.6 s质点在一个周期内通过的路程为4个振幅,即4A ,则质点A 在0~1.65 s 内通过的路程为s =4nA ,n =t T =1.650.6=2.75,所以s =11A =11×0.4 cm =4.4 cm ,由于t =0时质点A的振动方向沿y 轴正方向,故在t =1.65 s 时刻质点相对于平衡位臵的位移为-0.4 cm. 12. 在某介质中形成一列简谐波,t =0时刻的波形如图12所示.若波向右传播,零时刻刚好传到B 点,且再经过0.6 s ,P 点也开始起振,求: (1)该列波的周期T ;(2)从t =0时刻起到P 点第一次达到波峰时止,O 点相对平衡位置的位移y 0及其所经过的路程s 0各为多少?图12答案 (1)0.2 s (2)-2 cm 0.3 m 解析 由题图可知,λ=2 m ,A =2 cm.当波向右传播时,点B 的起振方向竖直向下,包括P 点在内的各质点的起振方向均为竖直向下.(1)波速v =x Δt 1=60.6 m/s =10 m/s ,由v =λT ,得T =λv =0.2 s.(2)由t =0至P 点第一次到达波峰,经历的时间Δt 2=Δt 1+34T =0.75 s =(3+34)T ,而t =0时O 点的振动方向竖直向上(沿y 轴正方向),故经Δt 2时间,O 点振动到波谷,即: y 0=-2 cm ,s 0=(3+34)×4A =0.3 m.。

相关文档
最新文档