地下水的化学成分及其形成作用概述地下水是天然溶液
6第六章__地下水的化学成分及其形成作用
第六章地下水的化学成分及其形成作用6.1概述地下水不是化学纯的H 2O ,而是一种复杂的溶液。
天然:人为:人类活动对地下水化学成分产生影响。
地下水的化学成分是地下水与环境、以及人类活动长期相互作用的产物。
一个地区地下水的化学面貌,反映了该地区地下水的历史演变。
水是最为常见的良好溶剂,可溶解、搬运岩土中的某些组分。
水是地球中元素迁移富集的载体。
利用地下水,各种行业对水质都有一定的要求→进行水质评价。
6.2地下水的化学特征1.地下水中主要气体成分O 2、N 2 、CO 2、CH 4、H 2S 等。
1)O 2 、N 2地下水中的O 2 、N 2主要来源于大气。
地下水中的O 2含量多→说明地下水处于氧化环境。
在较封闭的环境中O 2耗尽,只留下N 2,通常说明地下水起源于大气,并处于还原环境。
2)H 2S 、甲烷(CH 4)发生化学反应岩石圈水圈交换化学成分地下水中出现H 2S 、CH 4 ,其意义恰好与出现O 2相反,说明→处于还原的地球化学环境。
3)CO 2CO 2主要来源于土壤。
化石燃料(煤、石油、天然气)→CO 2(温室气体)→温室效应→全球变暖。
地下水中含CO 2愈多,其溶解碳酸盐岩的能力便愈强。
2.地下水中主要离子成分7大离子:Cl -、SO 42-、HCO 3-、Na +、K +、Ca 2+、Mg 2+。
低矿化水中(M<1~2g/L ):HCO 3-、Ca 2+、Mg 2+为主(难溶物质为主);中矿化水中(M=2~5g/L ):SO 42-、Na +、Ca 2+为主; 高矿化水中(M>5g/L ):Cl -、Na +为主(易溶物质为主)。
造成这种现象的主要原因是水中盐类溶解度的不同: 1)Cl -主要出现在高矿化水中,可达几g/L ~ 100g/L 以上。
来源:① 来自沉积岩氯化物的溶解;② 来自岩浆岩中含氯矿物的风化溶解;碳酸盐溶 解 度矿 化 度小低H C O 3-S O 42-C l-大高硫酸盐氯盐③来自海水;④来自火山喷发物的溶滤;⑤人为污染:工业、生活污水及粪便中含有大量Cl-,因此居民点附近矿化度不高的地下水中,如Cl-含量超过寻常,则说明很可能已受到污染。
地下水的化学成分
Cl84.8 SO144.3 Na71.6Ca27.8
t52
2024/1/5
22
地下水的温度
• 地壳表层有两个热源:太阳和地球内部的热流。 • 根据温度变化特征,地壳可分为变温带、常温带和增温带。 • 变温带处于地壳表层,很薄,不超过30m,受太阳辐射影响,具
有昼夜变化和季节变化。但变化幅度小于气温。 • 变温带下是一个厚度很小的常温带,地温一般比当地年平均气温
– CH4及H2S:地下水中出现CH4及H2S,说明地下水处于还原环境。 这两种气体的生成,均在与大气隔绝的环境中,有机质存在, 在微生物参与的生物化学反应有关。
2024/1/5
7
地下水的化学特征
• 地下水中的气体成分
– CO2:除了大气中CO2随降水入渗外,地下水中的CO2主要来源 于土壤,土壤中有机质的发酵作用和植物的呼吸作用使土壤 中不断产生二氧化碳,并溶入经过土壤的地下水中。
高1-2C。 • 常温带下,地壳温度受地球内部热流影响,地温随深度增加而有
规律地升高,这便是增温带。地温梯度的概念。 • 地下水的温度受所处的地温控制。
2024/1/5
23
复习思考题
• 如何认识地下水是复杂的溶液? • 地下水含有哪些主要气体成分? • 地下水的主要离子成分有哪些?来源是什么? • 总矿化度; • 地下水化学成分的库尔诺夫表达式。
地下水的化学特征:主要离子成分
• 硫酸根离子(SO42-):中等矿化度水的主要阴 离子
–含量:低矿化水中,仅数毫克至数十毫克/升;高 矿化水中,数克/升至数十克/升。
–来源:1)沉积岩中含石膏或其他硫酸盐的溶解;2) 硫化物的氧化。
–特点:受硫酸钙溶解度的控制,不够稳定,最高含 量也比氯离子低得多。
工学水文地质学地下水的化学成分及其形成作用
chd-qw
16
④如何判断非大气来源的氮
用氩、氪、氙与氮的比值确定
大气中它们的比值恒定(Ar+Kr+Xe)/N2=0.0118
=0.0118 大气来源
<0.0118 N2多,有非大气来源 >0.0118 一般Ar(氩)多
如果地下水中上述比值正好等于0.0118,说明氮 无其它来源,仅大气起源。
chd-qw
4
目前研成是地质历史时期的 产物,所以要从地质历史的角度去研究;
2.水中的化学组分的存在是与地下水的起源 紧密联系在一起的,不同起源,组分不同;
3.组分在地下水中达到饱和的状态,要注意 地下水的运动过程,运动使地下水不断更 新,达到平衡而未达到饱和;
腐植质 → 暗黄色 → 鱼腥味
H2CO3 → 甜味 有机质 → 甜味(不适于饮用)
NaCl → 咸味
Na2SO4 → 涩味
MgCl2或MgSO4 → 苦味
H2S+碳酸气 → 酸味
chd-qw
10
5.2.2 地下水的其它物理性质
1.比重 2.颜色 3.透明度 4.放射性
chd-qw
11
§ 5.3 地下水的化学成分
4.要注意后期的变化--吸附、混合,使其 再一次发生变化。
chd-qw
5
§5.2 地下水的物理、化学性 质(physical characteristic)
地下水的物理性质包括: 水 温 temperature、 颜 色 color、 透 明 度 transparence 、 味 道 taste、 气 味 odor、比重、放射性、导电性electric conductivity等。
水文地质学基础第6章地下水的化学成分及其形成作用
人为因素
农业活动
农业活动中使用的化肥和农药会随着雨水渗入地下,对地下水的 化学成分造成影响。
工业废水排放
工业废水中的各种化学物质会随着废水渗入地下,对地下水的化 学成分造成影响。
采矿活动
采矿活动会改变地下水的水动力条件,使得地下水与矿坑中的溶 液发生混合,从而改变地下水的化学成分。
06
地下水化学成分的利用与 保护
影响因素
长期变化的影响因素主要包括人类活动、气候变化和地质构造等。这些因素会 影响地下水的补给、径流和排泄条件,从而影响地下水化学成分的变化。
地下水化学成分的空间变化
空间变化
地下水化学成分的空间变化是指在不同地点或不同深度上,地下水化学成分的变 化情况。由于地下水的形成和运动受到地质构造、地层岩性和地形地貌等多种因 素的影响,因此地下水化学成分的空间变化通常比较复杂。
沉淀和溶解作用
沉淀和溶解作用
地下水中的化学成分在一定的条件下会形成沉淀或重新溶 解,从而改变地下水的化学成分。
沉淀和溶解作用的条件
沉淀和溶解作用的条件包括温度、压力、pH值、离子浓 度等。当这些条件发生变化时,地下水中的化学成分也会 发生变化。
沉淀和溶解作用的产物
沉淀和溶解作用可以形成各种矿物和岩石,如硬水垢、矿 泉水的形成等。同时,沉淀和溶解作用也会影响地下水的 硬度和酸碱度。
维持生态平衡
地下水参与水循环,对地表植被、土壤保持和水 生生态系统等具有重要影响,维持生态平衡。
3
地质灾害预警
地下水的异常变化可以预警地质灾害,如地震、 滑坡等。
地下水化学成分研究的意义
评估水质
01
了解地下水的化学成分有助于评估其水质,判断是否适合人类
饮用、农业灌溉等。
地下水的物理性质、化学成分及其形成作用
§2 地下水的物理性质
地下水的物理性质包括水温、颜色、透明度、味道、气味、比 重、放射性、导电性。它在一定程度上反映了地下水的化学成分及其 存在的环境条件。
一、地下水的温度
水温变化范围-5℃以下-100℃以上。在寒带和多年积雪地带,浅层的 地下水温可低达-5℃以下;在温带和亚热带的平原、丘陵区浅层地下水的年 平均温度一般接近于当地年平均气温;在火山活动地区及地壳深处,地下水的 温度很高,可超过100℃。如我国广东丰良地区在地下800m深处,打出了 103.5℃的热水。
③增温带:
❖ 常温带以下,地温受地球内热影响,随深度加大而有规律地升高—— 增温带。 深度每增加100m温度增加的值称地热增温率(地温梯度, 单位:℃/100m),温度每增加一度深度增加的值称地热增温级。 各地增温级不同, 华北:33-43m;北方山区:50m;古老结晶岩区:1000m; 近火山区:1m;一般山区:33m,由于变化不大,故地下水“冬 暖夏凉”。
地下水的温度受其赋存与循环所处的地温控制:
❖ 变温带中浅埋地下水显示微小的水温季节变化。 ❖ 常温带地下水温与当地年平均气温很接近。(地温年变化幅度小于
0.1℃) ❖ 增温带地下水随其赋存与循环深度的加大而提高,成为热水甚至蒸汽。 ❖ 利用年平均气温t、年常温带深度h、地温梯度r,可计算某一深度H的
❖ 如地下水中含有重碳酸钙、重碳酸镁及碳酸时,水味便爽快、适口, 人们称这种水为“甜水”
❖ 如含氯化物会使水发咸味 ❖ 含硫酸钠、硫酸镁使水变苦,而且常引起饮用者呕吐、腹痛和腹泻
❖ 含盐分过多时水味发涩
❖ H2S与碳酸气同时存在有酸味,有机质有甜味,但不适饮用。
地下水的物理性质、化学成分及其形成作用
三、硫化氢(H2S)
1、分布特征 (1)一般地下水中含量很少,多在1mg/L以下。 (2)在油田地下水及现代火山活动区地下水中,H2S 含量较高,可达几百mg/L~几十g/L,H2S的存在说明地 下水处于还原环境。 2、来源 (1)有机物来源:含硫蛋白质的分解,经常出现在 生物残骸腐烂的地方。 (2)无机来源:缺氧条件下,脱硫酸作用使硫酸盐 还原分解而产生H2S;火山喷发气体的析出。 3、与人体健康关系 H2S>2mg/L以上的地下水,称为H2S矿水,H2S矿水 可治疗多种外伤及皮肤病。
四、二氧化碳(CO2)
1、基本概念 A)游离CO2 B)平衡CO2
溶解于水中的CO2统称为游离CO2 与HCO3-相平衡的CO2,称为平衡CO2
CO2 H 2O H HCO3
C)侵蚀性CO2
当水中“游离CO2”,大于“平衡CO2”时,多 余部分的CO2对碳酸和金属构件等具有侵蚀 性,这部分CO2,即为“侵蚀性CO2”
CaCO3 CO2 H 2O 2HCO3 Ca 2
四、二氧化碳(CO2)
2.来源:
空气中的CO2。 空气中的CO2按体积只占0.3%,可造成水中0.5mg/L的CO2 地下水中的C02主要来源于土壤(有机质残骸的发酵作用 与植物的呼吸作用使土壤中源源不断产生C02并溶入流经 土壤的地下水中)。 如在地下6米深的空气中含7%的CO2,比地面空气中的
研究特征:不能从纯化学角度,孤立、静止地研究地下
ቤተ መጻሕፍቲ ባይዱ
水的化学成分及其形成,必须从水与环境长期相互作用
的角度,去揭示地下水化学演变的内在依据与规律。因 为地下水水质的演变具有时间上继承的特点: 自然地理与地质发展历史给予地下水的化学面貌以 深刻影响。
地下水的化学成分及其形成作用概述地下水是天然溶液
第六章地下水的化学成分及其形成作用第一节概述地下水是天然溶液。
地下水在参与自然界水循环过程中,与大气圈、水圈与生物圈同时发生着水量交换、化学成分的交换(—水质状况)。
水是良好的溶剂,地下水在空隙中运移时,可以溶解岩石中的组分,使地下水的化学成分丰富多彩。
地下水的物理性质:温度、颜色、嗅、味、密度、导电性与放射性地下水的化学性质:气体成分、离子成分、胶体物质、有机质等地下水的放射性、微生物成分等。
第二节地下水的化学特征一、地下水中常见的气体成分主要有氧()、氮()、二氧化碳()、硫化氢()、甲烷(),常见的气体成分与地下水所处环境,地下水的来源有关。
(1)氧()、氮()来源:在大气成分中、含量很高,随降水一起入渗进入地下含水层中。
反过来,如果地下水中富含与——也说明地下水是大气起源。
由于活跃,在地下水运动中易发生氧化作用而消耗,因此,大气起源的地下水中,也可能独立存在。
此外,氮还有生物起源与变质起源。
指示意义:含量高指示氧化环境;封闭环境下,氧被耗尽只剩下,则为大气起源封闭环境。
(2)硫化氢()、甲烷()来源:这两种气体,都是在封闭环境下生成的。
如是在有机物与微生物参与的生物化学过程中形成,还原环境下地下水中的→,在成煤过程中,在还原作用下产生,使煤田水富含。
同理,甲烷()是成油和油气藏形成过程的结果,油田水富含甲烷()。
指示意义:富含和的地下水,指示封闭的还原环境。
(3)二氧化碳()大气降水中的含量较低,地下水中主要来源:①主要源于土壤层(入渗过程溶于水中):有机质残骸发酵产生、植物呼吸作用产生②碳酸盐岩地层的脱碳酸作用③深部高温下,变质作用生成④人类活动,在使用化石燃料(煤、石油、天然气)时,大气中的增加作用:地下水中增加,水对碳酸盐岩的溶解、结晶岩风化溶解的能力愈强!(4)地下水中气体成分特征小结:①气体成分——指示地下水所处的地球化学环境氧化环境还原环境②气体成分增加水对盐类的溶解能力→促进水—岩的化学反应(即相互作用)二、地下水中的主要离子成分(1)概述:地下水中组分很多,而分布广、含量多的主要有七种离子阴离子:,,阳离子:,,,离子成分含量与什么有关?①各种元素的丰度(克拉克值)—即某元素在地壳化学成分中的重量百分比②该元素组成的化合物在水中的溶解度在自然界,丰度较高的元素,如Si、Al、Fe,在水中含量很低;而某些丰度较低的,如Cl、S、C,在水中含量却很高。
水文地质学 地下水的化学成分及其形成作用
未蒸发浓缩前,地下水为低矿化水,随着蒸发浓缩,溶解 度小的钙、镁的重碳酸盐部分析出,S042-及Na+逐渐成为主 要成分。继续浓缩,水中硫酸盐达到饱和并开始析出,便将 形成以C1-、Na+为主的高矿化水。 (3)产生浓缩作用的条件 1)干旱或半干旱的气候; 2)较浅的地下水位埋深; 3)空间上位于地下水流动系统的势汇—排泄处。
二氧化碳(CO2):地下水中的CO2主要来源于土壤。有机质 残骸的发酵作用与植物的呼吸作用使土壤中源源不断产 生CO2,并溶入流经土壤的地下水中。 含碳酸盐类的岩石,在深却高温下,也可以变质生成 C02: CaCO3 = CaO+CO2 (9—1) 工业与生活应用化石燃料 ( 煤、石池、天然气 ) ,使大气 中人为产生的C02明显增加。 地下水中含CO2 愈多,其溶解碳酸盐岩与对结晶岩进行风 化作用的能力便愈强。
9.4.3脱碳酸作用
在还原环境中,当有有机质存在时,脱硫酸细菌能使S042还原为H2S: S042-+2C+2H2O—H2S+2HCO3 结果使地下水中 S042- 减少以至消失, 2HCO3- 增加, pH 值变大。 封闭的地质构造,如储油构造,是产生脱硫酸作用的有 利环境。因此,某些油由水中出现H2S,而S042-含量很低。 这一特征可以作为寻找油田的辅助标志。
9.4.5 阳离子交替吸附作用
(1) 阳离子交替吸附作用 岩土颗粒表面带有负电荷,能够吸附阳离子。一定条件下,颗 粒将吸附地下水中某些阳离子,而将其原来吸附的部分阳离子转 为地下水中的组分,这便是阳离子交替吸附作用。 不同的阳离子,其吸附自大而小顺序为: H+>Fe3+>Al3+>Cl>Mg2+>K+>Na+ 。离子价愈高,离子半径愈大,水化离子半径愈 小,则吸附能力愈大。H+则是例外。 当含Ca2+为主的地下水,进入主要吸附有Na+的岩土时,水中 的Ca2+便臵换岩土所吸附的一部分Na+,使地下水中Na+增多而Ca2+ 减小。
地下水的化学成分及其形成作用
总之,地下水的化学成份是地下水与环境以及 人类活动长期相互作用的产物。
第二节 地下水的化学特征
一、地下水中的主要气体成份
常见 O2 , N2 , CO2 , CH 4 , H2S 等,尤以前三种为 主。气体成份一方面能说明地下水所处的地球化 学环境;另一方面,有些气体能够增强水溶解盐 类的能力,促进某些化学反应。
有微生物参与了生物化学反应, (三)CO₂ 主要来源于土壤。 1、有机残骸发酵作用与植物呼吸作用使土壤
中不断产生CO₂溶入径流土壤的地下水中; 2、含碳酸盐类的岩石,在深部高温下,也可
变质生成CO₂:
CaCO3 400℃ CaO CO2
地下水中CO₂愈多,其溶解碳酸盐的能力越强。
其化学成分受岩性、气候、地形等因素的影响。 绝大部分地下水属于溶滤水。 二、沉积水 指与沉积物大体同时生成的古地下水。 河、湖、海相沉积物中的水具有不同的原始成份,
在漫长的地质年代中水质又经历了一系列复杂变化, 通常是一些高矿化的咸水。
三、内生水
20世纪初,曾把岩浆看作温泉分异的产物, 后来发现,在大多数情况下,温泉是大气降水 渗入到深部加热后重新升到地表形成的。近年 来,某些学者通过对地热系统的热均衡分析得 出,仅靠水渗入深部获得的热量无法解释某些 高温水的出现,认为应有10%—30%的水来自 地球深部圈层的高热流体的加入,这样,源自 地球深部圈层的内生水又逐渐为人们所重视。 但内生水的研究,至今尚不成熟。
(2)含钠矿物的风化溶解;
5、K⁺
来源:(1)含钾盐类沉积岩的溶解;
(2)变质岩、岩浆岩盐中含钾矿物的风化溶解。
6、Ca⁺²
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章地下水的化学成分及其形成作用第一节概述地下水是天然溶液。
地下水在参与自然界水循环过程中,与大气圈、水圈与生物圈同时发生着水量交换、化学成分的交换(—水质状况)。
水是良好的溶剂,地下水在空隙中运移时,可以溶解岩石中的组分,使地下水的化学成分丰富多彩。
地下水的物理性质:温度、颜色、嗅、味、密度、导电性与放射性地下水的化学性质:气体成分、离子成分、胶体物质、有机质等地下水的放射性、微生物成分等。
第二节地下水的化学特征一、地下水中常见的气体成分主要有氧()、氮()、二氧化碳()、硫化氢()、甲烷(),常见的气体成分与地下水所处环境,地下水的来源有关。
(1)氧()、氮()来源:在大气成分中、含量很高,随降水一起入渗进入地下含水层中。
反过来,如果地下水中富含与——也说明地下水是大气起源。
由于活跃,在地下水运动中易发生氧化作用而消耗,因此,大气起源的地下水中,也可能独立存在。
此外,氮还有生物起源与变质起源。
指示意义:含量高指示氧化环境;封闭环境下,氧被耗尽只剩下,则为大气起源封闭环境。
(2)硫化氢()、甲烷()来源:这两种气体,都是在封闭环境下生成的。
如是在有机物与微生物参与的生物化学过程中形成,还原环境下地下水中的→,在成煤过程中,在还原作用下产生,使煤田水富含。
同理,甲烷()是成油和油气藏形成过程的结果,油田水富含甲烷()。
指示意义:富含和的地下水,指示封闭的还原环境。
(3)二氧化碳()大气降水中的含量较低,地下水中主要来源:①主要源于土壤层(入渗过程溶于水中):有机质残骸发酵产生、植物呼吸作用产生②碳酸盐岩地层的脱碳酸作用③深部高温下,变质作用生成④人类活动,在使用化石燃料(煤、石油、天然气)时,大气中的增加作用:地下水中增加,水对碳酸盐岩的溶解、结晶岩风化溶解的能力愈强!(4)地下水中气体成分特征小结:①气体成分——指示地下水所处的地球化学环境氧化环境还原环境②气体成分增加水对盐类的溶解能力→促进水—岩的化学反应(即相互作用)二、地下水中的主要离子成分(1)概述:地下水中组分很多,而分布广、含量多的主要有七种离子阴离子:,,阳离子:,,,离子成分含量与什么有关?①各种元素的丰度(克拉克值)—即某元素在地壳化学成分中的重量百分比②该元素组成的化合物在水中的溶解度在自然界,丰度较高的元素,如Si、Al、Fe,在水中含量很低;而某些丰度较低的,如Cl、S、C,在水中含量却很高。
这说明元素组成的化合物的溶解度起主要作用。
(2)主要离子的相对含量与地下水中的总含盐量(TDS)关系常见地下水的化学成分特征,与地下水的矿化度(或TDS)具有以下关系矿化度:低→ 中→ 高阴离子:阳离子:我们可以得出主要离子构成的盐类溶解度的大小为:碳酸盐类 < 硫酸盐类 < 氯化物(氯盐)(3)主要离子成分的来源低矿化度水中的常见离子:,,常共同出现在低矿化度水中。
来源沉积盐岩的溶解、岩浆岩、变质岩等的风化溶解,如风化溶解反应式:沉积盐岩的溶解反应式:高矿化度水中的常见离子:,,常出现在高矿化度水中。
来源沉积盐岩(钠盐、钾盐)的溶解,以及岩浆岩、变质岩的风化溶解,有时也有海水海风影响。
变质岩的风化溶解反应式:中等矿化度水中的常见离子:,常出现在中等矿化度水中。
其中,来源于沉积盐类溶解、金属硫化物的氧化、火山喷发,气体氧化、以及人类活动燃烧煤产生大量,大气中过高时,会出现降“酸雨”现象(如一些工业城市上空)。
(4)主要离子成分在地下含水系统(岩层)中的分布插图6-1,表示了水中主要阴离子沿流程的变化特点。
请思考?相应的阳离子和矿化度(TDS),沿流程如何变化?插图6-1 主要阴离子沿流程变化特点(图中+号表示含量多少)三、地下水中的其他成分次要离子:阳离子,如阴离子,如及等微量组分:有Br、I、F、B、Sr等化合物构成的胶体:主要有,及等,有时可占到相当比例。
有机质:经常以胶体方式存在于地下水中。
有机质的存在,常使地下水酸度增加,并有利于还原作用。
地下水中还存在各种微生物:如,硫细菌、铁细菌、脱硫酸细菌等;在污染水中,还有各种致病细菌。
第三节地下水的温度地下水的温度受其赋存与循环处所的地温控制。
变温带:浅埋地下水显示微小的水温季节变化。
常温带:地下水水温与当地年平均气温很接近,这两带的地下水,常给人以“冬暖夏凉”的感觉。
增温带:地下水随其赋存与循环深度的加大而提高,成为热水甚至蒸汽。
如西藏羊八井的钻孔,获得温度为160℃的热水与蒸汽,地下水水温的计算:已知年平均气温(t)、年常温带深度(h)、地温梯度(r)时,可概略计算某一深度(H)的地下水水温(T),即:地下水循环深度计算:利用地下水水温(T),可以推算其大致循环深度(H),即:地温梯度的平均值约为3℃/100m。
通常变化于1.5—4℃/l00m之间,但个别新火山活动区可以很高。
如西藏羊八井的地温梯度为300℃/100m。
第四节地下水化学成分的形成作用本节讨论的地下水化学成分的形成作用包括:溶滤作用——水与岩的相互作用,经常发生浓缩作用——蒸发排泄条件下发生脱碳酸作用——在温度与压力发生变化时发生脱硫酸作用——在还原环境下发生,→↑阴离子交替吸附作用——岩土表面吸附阳离子与水中阳离子的作用混合作用——2种或以上不同类型地下水交汇混合时发生人为活动的作用一、溶滤作用1、定义:在地下水与岩土相互作用下,岩土中某些组分向地下水中转移的过程,其结果是,岩土失去部分可溶物质,地下水中获得相应的化学组分,通常水的矿化度会增高。
如:(岩——水作用)离子2、影响因素(水和岩两个方面考虑)岩土的化学组分:通常流经什么样岩土,就会有什么样的水化学特征如:石灰岩地区常见水、花岗岩地区常见水组分的可溶性:与组分的溶解度和溶解速度有关;盐分溶解度的差异,使易溶组分很快进入水中,而难溶组分缓慢进入水中。
水的溶解能力:与水的矿化度(TDS)、气体组分(,)含量有关a.水中已溶组分的多少——即水的矿化度大小,随着盐份在水中的含量增高,水的溶解能力逐渐降低b.水中某些气体组分含量越高,如,气体含量高,可以增相应盐类的溶解度—增加硫化物的氧化,而被溶解—增加碳酸盐类的溶解度通常,入渗到地下的水(如降水、河水等),矿化度很低,随着水在地下含水岩层的运移,与岩土发生溶滤作用后,不断有新的盐份被溶解到水中,地下水的矿化度(TDS)增高,水的溶解能力就会下降。
地下水的流动(交替)性:地下水的流动性是维系水的溶解能力的条件。
而地下水的流动性取决于水的径流和交替强度(即V与Q):停滞与流动很缓慢的地下水,溶解能力最终会降低为零,溶滤作用很弱地下水流动速度快,水交替(更新)迅速,,不断被补充,低TDS水不断更新已经降低溶解能力的水,保持水的溶解能力。
请思考:如果某一地区,地下水流动很快,水交替(循环)迅速,水化学特征如何?也就是说,某一地区溶滤作用进行的很强烈,长期作用结果地下水中的矿化度高(TDS)如何?水中阴离子和水中阳离子以什么为主?3、溶滤作用的结果:长期强烈溶滤作用的结果,地下水以低矿化度的难溶离子为主,如或水。
这是由溶滤作用的阶段性决定的!设想岩层中原来含有包括氯化物、硫酸盐、碳酸盐及硅酸盐等各种矿物盐类。
开始阶段水流作用,盐最易溶水中→随水带去,不断转入岩层中盐贫化随后,相对易溶的盐也被溶入水中→随水带走,岩层中盐也贫化最后(岩土中),只剩较难溶的碳酸盐类,溶滤的结果水中的化学成分就以较难溶的碳酸盐(或硅酸盐)为主二、浓缩作用1、定义:地下水在蒸发排泄条件下,水分不断失去,盐分相对浓集,而引起的一系列地下水化学成分的变化过程。
用一个理想模式,来理解浓缩作用:矿化度:350mg/L 700mg/L 1400mg/L … 2800mg/L插图6-2 浓缩作用(过程)理想模式水份失去过程→盐分相对浓集,水的矿化度不断增高,相应的水的化学成分也发生变化。
实际上地下水在蒸发过程中,发生的浓缩作用与上述理想模式是不同的!!●地下水在蒸发过程中,水分失去还有补充,盐分积累后随水流也会不断补充,因此,实际的蒸发作用可以产生含盐量很高的地下水(卤水)或盐渍化的土地。
2、浓缩作用的结果:往往形成高矿化度的以易溶离子为主的地下水(,为主的)●蒸发浓缩前,地下水为低矿化水,阴离子以为主,阴离子以与为主。
●随着蒸发浓缩,溶解度小的钙、镁的重碳酸盐部分析出,及逐渐成为主要成分。
●继续浓缩,硫酸盐达到饱和并析出,水便形成以、为主的高矿化水浓缩作用的影响因素——与蒸发排泄的影响因素相同。
因此,地下水化学成分形成作用受区域自然地理与地质条件的影响,地下水的化学特征往往具有一定的分带性(空间上的)。
3、浓缩作用的基本条件:●干旱或半干旱的气候●低平地势控制下较浅的地下水位埋深●有利于毛细作用的颗粒细小的松散岩土最后一个必备的条件是地下水流动系统的势汇——排泄处,因为只有水分源源不断地向某一范围供应,才能从别处带来大量的盐分,并使之集聚。
三、脱碳酸作用:(钟乳石、石笋、泉华均是脱碳酸作用的结果)1、发生条件:环境的温度和压力变化。
水中的溶解度受环境的温度和压力控制。
随温度升高或压力降低,一部分便成为游离从水中逸出,发生脱碳酸作用。
脱碳酸作用反应式:2、脱碳酸的结果:地下水中及、减少,矿化度(TDS)降低,pH↓(略低)深部地下水上升成泉时,脱碳酸作用在泉口往往形成钙华。
温度较高的深层地下水,由于脱碳酸作用使、从水中析出,阳离子通常以为主。
四、脱硫酸作用1、发生条件:在还原环境中,有有机质存在,在脱硫酸细菌参与下,SO42—还原为H2S,反应式:2、脱脱硫的结果:地下水中减少以至消失,增加,pH值变大。
封闭的地质构造,如储油构造,是产生脱硫酸作用的有利环境。
因此,某些油田水中出现,而含量很低。
这一特征可以作为寻找油田的辅助标志。
五、阳离子吸附交替作用1、定义:岩土颗粒表面带有负电荷,一定条件下,颗粒将吸附地下水中某些阳离子,而将其原来吸附的部分阳离子转为地下水中的组分,这便是阳离子交替吸附作用。
不同的阳离子,其吸附于岩土表面的能力不同,按吸附能力,自大而小顺序为:。
离子价愈高,离子半径愈大,水化离子半径愈小,则吸附能力愈大。
则是例外。
2、结果:岩土吸附的阳离子与水中阳离子交换,岩土与水中阳离子都发生变化。
如:含为主的地下水,进入主要吸附有的岩土时,水中的便置换岩土所吸附的一部分,使地下水中曾多而减小。
3、影响因素:阳离子交替吸附作用的规模取决于岩土的吸附能力,与岩土的比表面积。
●颗粒愈细,比表面积愈大,交替吸附作用的规模也就愈大。
因此,粘土及粘土岩类最容易发生交替吸附作用,而致密的结晶岩中,不发生这种作用。
六、混合作用1、发生条件:成分不同的两种水汇合在一起,形成化学成分与原来两者都不相同的地下水。