地下水化学成分形成的主要影响因素全解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地下水化学成分形成的主要影响因素
地下水化学成分形成的主要影响因素有四大类:分别是自然地理因素、地质因素和水文因素、生物因素和人为因素,下面将详细分析并举例说明其主要的影响因素。
一.自然地理因素
包含地形;水文;气候(气象/降水/气温/蒸发)。
(1)地形:影响水交替条件,而水交替条件又影响水的化学成分和矿化度。地形切割强烈,水的交替条件就好,有利于淡水的形成。反之,则形成高矿化度的咸水或盐水。如山区形成碳酸型水,而平原易形成硫酸水或氯化物型水
(2)水文:密集的水文网有利含水层的水交替条件。盐分的带出及淡潜水的形成。在水文网稀疏的条件下,地下水径流受阻,从而使潜水矿化度增高。
(3)气候
①气象
②降水
大气降水能使地下水的储存量、矿化度和化学成分发生明显变化。
降雨对地下水化学成分的影响,可以分为直接与间接两种作用方式,所谓直接方式,是指雨水中的化学组分,通过包气带直接入渗补给地下水;间接方式,是指雨水在经过包气带并与岩土发生复杂的物理化学作用过程中进入地下水。实际上,地下水化学成分的变化,是在上述
两种过程中共同完成的只不过在降雨为pH值过低的酸雨时与岩土的作用更强烈,地下水化学成分的变化更深刻罢了。
i.据苏州市某厂周围1984年检测的浅层地下水中SO42-含量和水的化学类型,由资料看出,硫酸型水广泛分布,面积约为五平方公里,其中C8井点矿化度为2.21克/升,总硬度高达50.7德国度,为全市之冠;尤其是距该厂北侧30米左右的C5、C3。井孔点(为浅钻孔,水位埋深1米),地下水中SO42-含量居然高达2.63 一2.494克/ 升,矿化度达到4.93 一5.21 克/ 升,总硬度为2 5.2一4 1.6德国度,明显的与该厂经常排放高浓度的SO42-所形成的酸雨有密切关系,地下水中的SO42-含量如此之高,与酸雨中的高含量的SO42-的直接入渗有关,也是酸雨中高浓度的H+与本区浅部土层中丰富的铝硅酸盐( 100克土中含有SiO2 +A l2O3达到80克左右) 强烈作用的结果。
ii.因子F3[2]的得分表现为地下水小于地表水,在马鞍山收费站和胡家湾最高,这两个点属于地表河流系统,说明岩溶地下水中的Na+、Cl-受到地表水体中溶质的影响.然而,由表3.1的分析可知,金佛山地区的大部分岩溶地下水样品中Na+、Cl-并不高,基本与大气降水接近,可以认为其主要来自大气降水。
③气温
关中盆地气温对地下水富集氟离子的影响。地下水中的氟主要来源于基岩"土壤中的含氟矿物"呈吸附态的氟和氟络合物!但是氟由固相转入液相,由吸附态变为解析态,其迁移转化过程和量受到多种因
素的影响,其中温度的影响阐述如下:图2表示了10~12月份地下水水温与F离子含量关系图。在枯水期,温度较低的情况下,地下水温在7~18℃波动,而高氟地下水温主要集中在13~16℃,最大值出现在13.5~14.5℃。一般情况下,水温高时有利于含氟矿物的溶解和呈吸附态氟的解析,有利于氟在水中富集。这是因为水温高,氟离子的活性增强,岩石"土壤表面的呈吸附态的氟易于解离,并在水中富集; 同时岩石"土壤等的含氟的化合物溶解度增大,导致水中的氟含量升高!但从图中可以看出,在16~18℃范围内,虽然地下水温度较高,但氟离子的含量却相对较小,这是因为在温度较高时,离子的活性增强,其他离子的溶解对氟离子起到了抑制作用。这也说明水温主要是起到促进含氟矿物及呈吸附态氟的解析和溶解,并不是水中氟含量高的主要因素,只是引起地下水中氟离
子含量高的一个有利因素。
④蒸发
关中盆地蒸发对地下水富集氟的影响。高氟地下水形成的首要条件是具有供氟能力强的氟源,包括基岩和土壤中的含氟矿物,以及呈吸附态的氟和氟络合物。由关中盆地氟病区分布图可以看出,轻病区处大部分位于渭北黄土台塬处及河流高级阶地区,包气带主要为黄土或黄土状亚粘土,垂直节理发育,大气降水垂向入渗,土质上疏下实,溶滤作用强烈,包气带中可溶性氟含量较高,该区域水力坡度较大,侧向径流条件较好,潜水位埋深较深,地下水中的氟主要来自水—岩界面间的含氟矿物的溶解与溶滤; 中病区位于二三级阶地处,水力坡度变缓,侧向溶滤作用更加明显,地下水中的氟含量变高; 重病区主要位于构造洼地处,该区域水位埋深浅,蒸发浓缩作用强烈,地下水中的氟随着毛细带上升,受到某些矿物的吸附而滞留在包气带中,随着降雨的入渗,水—岩界面间的含氟矿物通过溶滤作用进入地下水中。图6反映了土壤样本的不同深度处的可溶性氟含量的大小。图7 表示氟含量与不同的水文地球化学地段间的关系。从图6中可以看出,0~0.2m包气带土壤中的可溶氟含量随着深度的增加而增加,基本上在0.2m左右可溶氟的含量最高,说明0.2m以下的包气带可溶性氟主要来自表层,溶滤作用使得可溶性氟在包气带中向下迁移; 而XAT001土壤表层的可溶性氟含量最大,说明表层土已受到了污染。可溶性氟的含量总体上呈减少趋势,0.2~0.5m处的包气带土壤可溶性氟的含量基本上变化很小,说明0.2~0.5m为可溶性氟的吸附带,由于吸附作用的存在使得可溶性氟向水中迁移的量减小,但溶滤作用促进土壤中可溶性氟向地下水中氟转化的总方向并未改变。
图7则说明,PTW004、FCW001和PTW001位于冲洪积扇处,该处水力坡度大"水循环交替积极,以溶滤作用为主,地下水中的氟含量普遍较低; 而淋溶—蒸发地段位于黄土塬和高级阶地处,氟含量的升高主要是因为侧向溶滤作用的加强。由于受到洛河的稀释作用,D004、D001 两点的氟含量相对较小; 强烈蒸发地段位于卤泊滩的塬面洼地处,该地段水位埋藏较浅,水流滞缓,以蒸发浓缩作用为主。图6和图7则说明了氟向地下水中的迁移主要取决于溶滤作用,而地下水中氟的聚集主要取决于蒸发浓缩作用。
二.地质因素和水文地质因素:包含地质构造;土壤、岩石的矿物成
分和水—岩作用时间(地下水流速)
地质及水文地质条件对地下水化学成分的形成在一定程度上起
着决定性的作用,这主要表现在地形地貌、岩层性质、地下水循环条件及埋藏的不同,其化学成分往往有很大的差别。
在新生界含水岩组的地下水中,水化学成分在空间上的变化较大,在盐池南北分水岭以东地区,地下水水力坡度大,径流较好,水交替作用强烈,地下水类型以HCO3·SO4水为主,分水岭以西地区,地下水水力坡度小,水化学类型通常为SO4·Cl型水。
罗汉洞含水岩组的地下水化学类型以SO4·Cl水为主。该含水岩组在盐池南北分水岭以东多被薄层第四系覆盖,在盐池县周围的新生界和罗汉洞组的TDS含量均较高,在盐池南北分水岭以西大部分地区被薄层第四系和第三系双重覆盖,在研究区的西南部两个含水岩组的含量都有明显的减小。另外两个含水岩组SO42-和Cl-的含量分布特征在盐池县城周围以及研究区的西南部都有相似的分布特征。由此可以看出,该含水岩组地下水的主要来源为新生界含水岩组里补给。
环河含水岩组的地下水总体由南向北径流,且净流滞缓,水力坡度约为1.7%,水质较差,由于地下水流缓慢,水化学类型变化不明显,以SO4·Cl型和SO4·HCO3为主。
(1)地质构造:断裂使岩石发生破坏并形成裂隙,由于断裂构造发育很深,这样沿着这些深大断裂从深部涌出热的,有时带气体的矿水,甚至卤水,从而使浅部地下水化学成分发生急剧变化。