6-1地下水的化学成分PPT课件

合集下载

污染物在地下水系统中的迁移转化 ppt课件

污染物在地下水系统中的迁移转化  ppt课件
实验反应出,在一定温度下,BaSO4, CaCO3等难溶强电解质在KNO3溶液中的溶 解度比在纯水中的大,并且KNO3的浓度 越大,难溶强电解质的溶解度和Ksp也变 得越大。
ppt课件
36
如果在饱和BaSO4溶液中加KNO3,KNO3就完全电 离为K+和NO3-离子,结果使溶液中的离子总数骤 增,由于SO42-和Ba2+离子被众多的异号离子(K+, NO3-)所包围,活动性有所降低,运动变得困难, 因而Ba2+和SO42-有效浓度降低。促使下列平衡:
或 C = C0 . e-λ. z (6—2)
式中:C0——进入过滤介质的固体物质浓 度;
λ——过滤介质参数。
ppt课件
8
ppt课件
9
ppt课件
10
ppt课件
11
ppt课件
12
ppt课件
13
ppt课件
14
生物胶体
Ca 2 Na
3NH4Cl

土壤胶体

3NH
4
Ca2、Na
ppt课件
37
对难溶强电解质溶度积的理解和掌握,对实
际工作具有很大的指导意义,因此有必要以BaSO4 的溶度积关系式[Ba2+][SO42-]=Ksp为例做如下的总 结。
(1)当BaSO4的溶液与固体BaSO4接触而达到平衡 时,在BaSO4饱和溶液中[Ba2+]与[SO42-]的乘积在 温度一定时,是一个常数,不因固体BaSO4的量而 改变。在纯BaSO4的饱和溶液中,[Ba2+]=[SO42-]。
ppt课件
39
(3)若溶液中[Ba2+][SO42-] < Ksp,这时 如果该溶液与足够量的固体BaSO4相接触, 则有BaSO4溶解进入溶液。同样,这种溶 解作用也是直到溶液中[Ba2+][SO42]=Ksp时为止。

地下水的物理性质和化学成分ppt课件

地下水的物理性质和化学成分ppt课件
19
-
地下水化学成分的性质
• 氢离子浓度 地下水的酸性和碱性的程度,取决于水中氢离子的浓
度大小 大多数地下水的pH值在6.5-8.5之间,北方地区多为
pH=7-8的弱碱水
20
-
地下水化学成分的性质
• 硬度 总硬度:地下水中所有Ca2+、Mg2+离子的总含量 暂时硬度:将水加热至沸腾周,由于形成碳酸盐沉淀
第四章 地下水的物理性质 和化学成分
1
-
4.1 地下水的物理性质
2
-
地下水的物理性质、化学成分特征是地下水与环境 (自然地理、地质背景及人类活动)长期作用的结果。 地下水的化学性质为认识和了解地下水形成的地质历史 条件和过程提供依据
地下水在岩石的孔隙、裂隙或溶洞中储存和运动时, 溶滤和溶解着岩石的可溶成份,使地下水变成了含有各 种矿物质的天然溶液,而且随着运动环境和运动过程的 变化,地下水的化学成分也不断地更迭着
(6) 镁离(Mg2+)
-
泥石
18
地下水化学成分的性质
• 总含盐量与总溶解固体(TDS) 总含盐量:存在于地下水中的离子、分子和微粒(不
包括气体)之总含量 总溶解固体(TDS):通常在105-110℃温度下将水样蒸
干后所得干涸残余物的总量
TDS ≈总含盐量-1/2HCO3TDS是反映地下水化学成分的主要指标:TDS含量低的 淡S要O水成42-为以分主HC要O3成-为分主;要T成DS分含;量T高DS的含盐量水中和等卤的水盐常质以水C常l-为以主
36
-
地下水在运动过程中的各种作用
(2)水中阳离子的浓度 水中某种阳离子浓度越大,则其交替吸附能力就越强,
甚至可以发生吸附能力小的交替岩土颗粒表面吸附能力 大的阳离子

第六章_地下水的化学成分及其形成作用

第六章_地下水的化学成分及其形成作用

• 地下水是宝贵的液体矿产: 含大量盐类(如NaCl、KCl)或富集某 些稀散元素(Br、I、B、Sr等)的地下水是
宝贵的工业原料;
某些具有特殊物理性质与化学成分的 水具有医疗意义;
盐矿、油田、金属矿床所形成特定化学元 素的分散晕圈是找矿的重要标志。 污染物在地下水中散布,也会形成晕圈。 这就需要查明有关物质的迁移、分散规律 ,确定矿床或污染源的位置。
8
矿化度与主要离子之间的关系?
四、地下水的总矿化度及化学成分表示式
• 总矿化度的概念: 地下水中所含各种离子、分子与化合物的总量称为总矿 化度(总溶解固体),以每升水中所含克数(g/L)表示。 • 总矿化度的表征方式: a.习惯上以105 ℃一110 ℃时将水蒸干所得的干涸残余 物总量来表征; b. 在水质简分析中是用分析所得的阴阳离子含量相加, 然后减去HCO3
7
钾离子(K+): • 钾离子的来源: 含钾盐类沉积岩的溶解; 岩浆岩、变质岩中含钾矿物的风化溶解。 • 低矿化水中含量甚微,高矿化水中较多。 • K+大量地参与形成不溶于水的次生矿物(水云母、蒙脱 石、绢云母),并易为植物所摄取,因此,地下水中K+ 的含量要比Na+少得多。 • K+的性质与Na+相近,含量少,分析比较费事,故一般 情况下,将K+归并到Na+中,不另区分。
硫酸根离子(SO42-): • 不同矿化程度水中(SO42-)的含量: 高矿化水,含量仅次于Cl-,可达数g/L; 低矿化水,一般含量仅数mg/L; 中等矿化水, SO42-常成为含量最多的阴离子。 • 硫酸根离子(SO42-)来源: 含石膏或其它硫酸盐的沉积岩的溶解。 煤系地层含有黄铁矿;金属硫化物矿床附近。 化石燃料燃烧产生的SO2与氮氧化合物,构成富 含硫酸及硝酸的降水(酸雨),使地下水中SO42-增 加。

《水文地质学》第4章 地下水的化学成分及其形成

《水文地质学》第4章 地下水的化学成分及其形成

•地下水的化学特征•地下水化学成分的形成作用•地下水化学成分的基本成因类型•地下水化学成分的分析内容与分类图示1、地下水中主要气体成分氧、氮、硫化氢、二氧化碳2、地下水中气体成分及其反映的地球化学环境(1)地下水中溶解氧含量越多,说明其所处的地球化学环境愈有利于氧化作用进行;(2)氮气的单独存在,常可说明地下水起源于大气并处于还原环境;(3)硫化氢的出现说明地下水处于缺氧的还原环境;(4)地下水中二氧化碳愈多,其溶解碳酸盐类的能力以及对结晶岩类进行风化作用的能力愈强。

1、地下水中主要离子成分氯离子、硫酸根离子、重碳酸根离子、钠离子、钾离子、钙离子、镁离子2、离子成分与矿化度的变化(1)矿化度发生变化,地下水中占主要地位的离子成分也随之发生变化。

低矿化度水中常以碳酸根离子、钙离子与镁离子为主;(2)高矿化水则以氯离子与钠离子为主;(3)中等矿化水中,阴离子常以硫酸根离子为主,主要阳离子可以是钠离子,也可以是钙离子。

1、微量成分Br、I、B、Sr、Ba等;2、胶体Fe(OH)3、Al(OH)3、SiO2及有机质胶体;3、微生物(如硫细菌、脱氧细菌等);4、物理性质(如温度、透明度、颜色、放射性等)。

1、地下水的总矿化度(g/L)地下水中所含各种离子、分子与化合物的总量成为总矿化度;2、库尔洛夫式1、溶滤作用:在水与岩土相互作用下,岩土中的一部分物质转入地下水中,即为溶滤作用;溶滤作用结晶作用2、影响溶滤作用强度的因素(1)组成岩土的矿物盐类的溶解度;(2)岩土的空隙特征;(3)水的溶解能力;(4)水中二氧化碳、氧气等气体成分的含量决定着某些盐类的溶解能力。

水中二氧化碳含量愈高,溶解碳酸盐及硅酸盐的能力愈强,氧气的含量愈高,水溶解硫化物的能力愈强;(5)水的流动状况。

3、溶滤作用在时间上的阶段性(1)溶滤作用是一种与一定的自然地理与地质环境相联系的历史过程。

(2)首先易溶物质如氯化物由岩层转入水中,成为地下水中主要化学成分,并被水流带走而逐渐贫化;然后相对易溶物质如硫酸盐溶入水中,成为地下水的主要成分;随着溶滤作用的长期持续,岩层中保留下来的几乎只是难溶的碳酸盐和硅酸盐,地下水的化学成分也就以碳酸盐和硅酸盐为主。

水文地质学基础 第六章 地下水的化学成分及其形成作用.

水文地质学基础 第六章 地下水的化学成分及其形成作用.
◆来源: 沉积岩、岩浆岩和变质岩的溶解;海水;
5. K+ ◆ 地下水中K+的含量只有Na+含量的4%~10%。 ◆ 一般将K+归并到Na+中进行分析,不另区分。
如Na+(+ K+ )
6. Ca2+(低矿化水的主要阳离子) ◆ 含量一般不超过数百mg/L ◆来源: ☆碳酸盐类沉积物及含石膏沉积物的溶解; ☆岩浆岩及变质岩中含钙矿物的风化溶解。 7. Mg2+ ◆ 化学性质及来源与Ca2 +相近,但地壳组成中 Mg2+比较少,因此含量通常较Ca2 +少。
化合物的当量=化合物分子量 / 阴(阳)离子价 meg/L=mg/L /离子的当量
☆德国度(H°) :相当于1L水中含10mgCa2+或 7.2mgMg2+的量。
1 meg/L=2.8 H°
4.地下水按硬度分类:
地下水类型 极软水 软 水 弱硬水 硬 水 极硬水
硬度(mg/L,以 CaCO3计)
<75
◆专项分析:
只分析一个或少数几个成分,分析项目根据具体任务确 定。
如:在对地下水质作动态观测时,可只选有代表性的离 子作定期分析;
为判明含水层之间是否有联系时,只需要作个别离子的 分析;
在为寻找饮用水源进行地下水调查时,需进行水中有毒 成分如As(砷)、Pb(铅)、F(氟)等项目的分析。
三、水化学分析资料整理
如:CO2可促进碳酸盐类的溶解。
二、地下水中主要离子成分
◆主要离子共7种: Cl-、SO42-、HCO3-、Na+、K+、Ca2+、Mg2+
◆占主要地位离子随矿化度(含盐量)的变化: ☆低矿化水以HCO3-及Ca2+ ,Mg2+为主; ☆中等矿化水以SO42-及Na+为主,阳离子也可以
是Ca2+ ; ☆高矿化水以Cl-及Na+为主。

水文地质学基础(课件)-中国地质大学(武汉)06_地下水的物理性质与化学性质

水文地质学基础(课件)-中国地质大学(武汉)06_地下水的物理性质与化学性质

6.2 地下水的物理性质
6.2.2 温度
埋藏在不同深度的地下水,其温度变化规律不同。根据受热 源影响的不同,地壳表层可分为变温带、常温带及增温带。
变温带——受太阳辐射影响的地表极薄的带。近地表的地下水温 度受气温的影响较大,具有周期性的昼夜变化和季节变化:
温度具有昼夜变化的地下水,其埋藏深度一般在3-5m (1-2m)以内,
一个地区地下水的化学面貌,反映了该地区地下水的历史演变。
人类活动对地下水物理性质和化学性质的影响,在时间上虽然非 常短,然而,在许多情况下这种影响已经深刻地改变了地下水的 面貌!
在实际生产和科研工作中,对地下水的物理性质 和化学性质的研究,有着重要意义:
阐明地下水的起源与形成; 揭示许多地质过程; 水质评价。 研究地下水中化学元素的时空分布特征和迁移转化 规律的学科是——水文地球化学。
度最小;钙的硫酸盐,特别是钙、镁 的碳酸盐的溶解度最小。
盐类 NaCl
溶解度 (0℃,g/L)
350
随着矿化度的增加,钙镁的碳 酸盐首先达到饱和析出,继续增大时, 钙的硫酸盐也饱和析出,因此,高矿 化水中便以易溶的氯和钠占优势了, 由于氯化钙的溶解度更大,因此在矿
KCl 290
MgCl2 CaCl2 Na2SO4 MgSO4 CaSO4
6.2.3 颜色
地下水的颜色主要由其成分和悬浮于其中的杂质所决定: 一般的地下水为无色; 含硫化氢气体的水,在氧化后由于有硫磺胶体产生,故常呈翠绿色; 硬度大的水为浅蓝色,含氧化亚铁的水呈浅蓝绿色,含氧化铁的水 呈褐红色;
含腐殖质的水多呈暗黄褐色。
含有悬浮杂质的水,其颜色决定于悬浮物的颜色,颜色深浅则取 决于悬浮物的多少。
分级

地下水化学成分组成

地下水化学成分组成

第5页/共107页
元素 来源
特性
重碳酸根 各种碳酸盐岩和 主要受碳酸平衡的控制;
和碳酸根 离子
多种沉积岩中碳 酸盐胶结物;
碳酸钙、碳酸镁的溶解度很低,含量
CO2溶于水
受到的Ca2+限制。
可以在酸性水以外的任何天然水中遇
到;
在低矿化度水中占主导地位。
第6页/共107页
宏量元素(续)
元素 来源
特性
钠离子
蒸发
蒸发相中富含16O 液相中富含18O
18 0 / 16O汽 < 18O/16O液
第37页/共107页
通常用同位素分馏系数(α)来表示同一体系中两种 物质(物相)之间同位素分馏的程度,其定义式为:
AB

RA RB
1 8O水 汽
(1
8O
/1 6O)水
铝硅酸盐矿物的风 化;盐岩沉积层, 分散在岩石土壤中 的盐岩
钠的所有盐类都具有较高的溶 解度,因此钠的迁移性是很强 的,仅次于氯;
交换吸附反应使之从溶液中析 出,所以在水的矿化度增长过 程中,Na+的增长有时会落后 于Cl-。
高矿化度时钠成为主要阳离子
第7页/共107页
元素 钾离子
来源
铝硅酸盐矿物的风 化;钾盐矿床
Cl-、SO42-、 HCO3-、 Na+、 K+、Ca2+、Mg2+
Fe3+ 、Fe2+ 、NO3-、CO32-、 SiO2
Br 、I 、As 、Sr
第3页/共107页
2 元素的水文地球化学特性
宏量元素
元素 来源
特性
氯离子
盐岩的沉积层、 氯化钠、镁、钙盐的溶解度都很大, 钾盐矿床、风化 它不形成难溶的矿物; 岩浆岩;火山喷 不被胶体所吸附; 溢;降水;废水 也不能被生物积累。

第六章地下水

第六章地下水

1
2
3
4
5
6
重力水的特点:能传递静水压力;具有溶解固体物质的能力;无 抗剪强度;流动时,产生动水压力,能带走土中细颗粒 地下水对工程建筑的影响:地下工程施工时,对基坑开挖,排水 等方面均产生很大影响 二.含水层与隔水层 (一)含水层 透水:水在岩土体空隙中流动的性能 含水层:能透水又饱含重力水的岩土层 常见的含水层:砂层,粉砂层,碎石层,块石层 含水层的构成要具备的条件: 1.具有良好的储水空间,即空隙大,孔径大,空隙连通性好;含 水层上下左右要有隔水层防止漏空 2.具有良好的补给来源 (二)隔水层
20
(二)管涌(潜蚀):在渗透水流的作用下,土中细颗粒在粗颗粒形成 的孔隙中移动,以致流失,最终导致土体中形成贯 通的流动通道,造成土体坍塌 易于发生管涌的土层:不均匀的砂土层 管涌处理措施: 1.基坑外排水 2.打板桩 3.保护渗流出口 (1)汲水井:在过滤管与井壁之间充填反滤层 (2)土石坝:垂直截渗;水平铺盖 4.改良土石性质
7
隔水层:相对不透水的岩土层 常见的隔水层:粘土层,完整致密的岩石 三.地下水的补给与排泄 补给:含水层从外界获得水量的过程 排泄:含水层耗失水量的过程 径流:地下水由补给区到排泄区流动的过程 # 补给与排泄是含水层与外界进行水量和盐分交换的过 程,径流则是含水层内部水量和盐分的交流过程
8
四.地下水的形成条件 1.地质条件 岩性:岩土体中空隙大小,数量,连通情况 构造:构造发育程度,越发育,裂隙越多,越连通,透水性能越 好,储水越多 2.气候条件 影响地下水水量 3.地貌条件 水由高向底处流动,故低洼地区,地下水埋藏浅,水量大; 高处埋藏深,水量小。一般平原,山前区易于储水,山区很难储 存大量的地下水 4.人为因素:过量开采地下水,导致地下水水位降低,水量减少

第六章地下水的化学成分及其形成作用

第六章地下水的化学成分及其形成作用
墨水味 锈味 甜味 水中含有氧化亚铁 水中含有氧化铁 水中含有大量有机质
水的 味道
咸味
涩味 苦味 清凉可口 味美适口
水中含有 NaCL
水中含有 Na2SO4 水中含有 MgCL2或 MgSO4 水中含有重 CO2 水中含有重碳酸钙、镁
六、比重(specific gravity) 地下水的比重取决于其中所溶解盐分的含量。地下淡水的比重通常认为与化 学纯水的比重相同,其数值为1。水中溶解的盐分越多,比重越大,有的可达 1.2--1.3。
四、嗅味(smell) 用鼻子闻,地下水一般是无气味的,但当其中含有某些离子或某种气体时, 则出现特殊的气味。例如:水中含有H2S气体时,具有臭鸡蛋气味;水中亚铁 盐含量很高时具有铁腥气味;含有腐殖质时具有腐草(沼泽)气味。水的气味 在低温时很难判断,加热到40 ℃时气味最明显。
地下水的物理性质
五、味道(sapor) 用嘴尝。地下水的味道取决于它的化学成分。
分 类 极软水 软水 微硬水 硬水 极硬水 Ca2+ 和Mg2+ 毫克当量 / L 德国度
<1.5 1---3 3---6 6---10 >10
< 4.2 4.2---8.4 8.4---16.8 16.8---25.2 > 25.2
6.2.4 地下水的总矿化度及化学表示式
酸碱度 PH=-lg[ H+ ]
测定地下水颜色的方法:取两支无色透明玻璃试管,一支装蒸馏水, 一支装被测地下水, 在管下衬以白纸,自上而下观测其颜色。
地下水的物理性质
三、透明度(diaphaneity) 地下水的透明度取决于水中固体与胶体悬浮物的含量。 地下水按透明度分为四 级:透明的、微浊的、混浊的和极浊的。 透明度的测定方法:通过盛水样的试管,以看清 3mm粗线的水深来确定。

地下水的化学成分及其形成作用PPT课件

地下水的化学成分及其形成作用PPT课件
于水的(如O2、Ca、Mg、Na、K );或是地壳中含 量虽不很大,但极易溶于水的(Cl、以SO42-形式出现 的S)。
• Si、Al、Fe等元素,虽然在地壳中含量很大,但由于难 溶于水,地下水中含量通常不大。
.
15
• 一般情况下,随着总矿化度(总溶解固体)的变化,地 下水中占主要地位的离子成分也随之发生变化,即 :
.
8
6.2 地下水的化学特征
• 主要气体成分 • 主要离子成分 • 其他成分 • 总矿化度及化学成分表示式
.
9
一、地下水中主要气体成分
• 地下水中常见的气体成分:
O2、N2、CO2、CH4、H2S等。尤以前三种为主。 通常情况下,地下水中气体含量不高,只有几mg/L到 几十mg/L。
• 研究地下水中气体成分的意义:
.
11
1.氧(02)、氮(N2)
• 02的化学性质远较N2活泼,在较封闭的环境中, 02将耗尽而只留下N2 。因此, N2的单独存在, 通常可说明地下水起源于大气并处于还原环境。
• 大气中的惰性气体(A、Kr、Xe)与N2的比例恒
定,即(A+Kr+Xe)/ N2 =0.0118。比值等于此数,
说明N2是大气起源的;小于此数,则表明水中含
• 人类活动的影响改变了地下水的化学面貌。 • 地下水的化学成分是地下水与环境(自然地理、地
质背景、人类活动)——长期相互作用的产物。 • 某区地下水的化学面貌,反映该区地下水的历史演变
。研究地下水的化学成分,可以帮助我们回溯一个 地区的水文地质历史,阐. 明地下水的起源与形成。2
• 水是最为常见的良好溶剂:
.
4
• 地下水是宝贵的液体矿产:
含大量盐类(如NaCl、KCl)或富集某些 稀散元素(Br、I、B、Sr等)的地下水是宝 贵的工业原料;

6第六章 地下水的化学成分及其形成作用

6第六章  地下水的化学成分及其形成作用

第六章 地下水的化学成分及其形成作用6.1 概 述地下水不是化学纯的H 2O ,而是一种复杂的溶液。

天然:人为:人类活动对地下水化学成分产生影响。

地下水的化学成分是地下水与环境、以及人类活动长期相互作用的产物。

一个地区地下水的化学面貌,反映了该地区地下水的历史演变。

水是最为常见的良好溶剂,可溶解、搬运岩土中的某些组分。

水是地球中元素迁移富集的载体。

利用地下水,各种行业对水质都有一定的要求→进行水质评价。

6.2 地下水的化学特征1.地下水中主要气体成分O 2 、N 2 、CO 2 、CH 4 、H 2S 等。

1)O 2 、N 2地下水中的O 2 、N 2主要来源于大气。

地下水中的O 2含量多→说明地下水处于氧化环境。

在较封闭的环境中O 2耗尽,只留下N 2,通常说明地下水起源于大气,并处于还原环境。

2)H 2S 、甲烷(CH 4)地下水中出现H 2S 、CH 4 ,其意义恰好与出现O 2相反,说明→处于还原的地球化学环境。

3)CO 2CO 2主要来源于土壤。

化石燃料(煤、石油、天然气)→CO 2(温室气体)→温室效应→全球变暖。

地下水中含CO 2愈多,其溶解碳酸盐岩的能力便愈强。

2.地下水中主要离子成分7大离子:Cl -、SO 42-、HCO 3-、Na +、K +、Ca 2+、Mg 2+。

低矿化水中(M<1 ~ 2g/L ):HCO 3-、Ca 2+、Mg 2+为主(难溶物质为主);发生化学反应岩石圈水圈交换化学成分中矿化水中(M=2 ~ 5g/L ):SO 42-、Na +、Ca 2+为主; 高矿化水中(M>5g/L ):Cl -、Na +为主(易溶物质为主)。

造成这种现象的主要原因是水中盐类溶解度的不同: 1)Cl -主要出现在高矿化水中,可达几g/L ~ 100g/L 以上。

来源:① 来自沉积岩氯化物的溶解;② 来自岩浆岩中含氯矿物的风化溶解; ③ 来自海水;④ 来自火山喷发物的溶滤;⑤ 人为污染:工业、生活污水及粪便中含有大量Cl -,因此居民点附近矿化度不高的地下水中,如Cl -含量超过寻常,则说明很可能已受到污染。

第一章地下水的化学成分

第一章地下水的化学成分

摩尔浓度:常见的摩尔浓度表示方法有两种, 一种是以每升溶液中所含溶质的摩尔数来表 示,另一种是以每千克溶液中所含物质的摩 尔数来表示。
当量浓度:离子的摩尔浓度(mol/L)与其离子 价的乘积。1eq/L=1000meq/L。
按水中所含成分的分布和含量:
分类
主要组分
含量
>5 mg/ L
主要成分
Cl-、SO42-、 HCO3-、 Na+、K+、 Ca2+、Mg2+、SiO2 B、NO3-、CO32-、F-、Sr、Fe Br 、I 、As 、Li、Sn等
特性
钠的所有盐类都具有较高的溶解度, 因此钠的迁移性是很强的,仅次于氯。 交换吸附反应使之从溶液中析出,所 以在水的矿化度增长过程中,Na+的 增长有时会落后于Cl-。高矿化度时 钠成为主要阳离子
钾离子
钙离子
铝硅酸盐矿物的风 化;钾盐矿床
一般只有钠含量的4~10%,动植 物有机质可以从水中吸收钾
石灰岩、白云岩 , 硫酸钙和碳酸钙的溶解度低,天然 水中Ca2+的含量一般很低。只有在 石膏的溶解和含钙 深层氯化钙卤水中,Ca2+的含量才 硅酸岩的风化,阳 可以达到n*10g/L。低矿化度的水中, 离子交换 钙离子经常占优势 。 主要是白云岩、泥 灰岩和其他岩石的 溶解。 镁盐溶解度比钙盐大,但镁盐在地 壳中分布不广,易被植物吸收,所以 很少见到镁占主要成分的水。
高TDS水中主要的阳离子,含量最高可达数十g/L。
• 来源:
沉积岩中岩盐及其它钠盐的溶解;
海水; 岩浆岩和变质岩区含钠矿物的风化溶解。
钾离子(K+): • 钾离子的来源: 含钾盐类沉积岩的溶解; 岩浆岩、变质岩中含钾矿物的风化溶解。 • 低TDS水中含量甚微,高TDS水中较多。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– 含碳酸类岩石在高温下的变质作用,而会产生CO2。
– 地下水中CO2的含量增多,其溶解碳酸盐岩的能力和对结晶 岩进行风化的能力都会增强。有侵蚀CO2和游离CO2之说。
• 人类活动温对室大效应气是的指影透射响阳之光一的密:闭温空室间由效于应与外界缺乏热交换而
– 人2年9为人0p产类p形而所一m生每成地吸层,的年的面收厚1排C9增 , 厚保O8放0暖从的温2明年到后而玻效显,大放产璃应增大气出生,,加的大使气就中长气地是。中CO短变球太1C92O暖变辐阳为世2的成射短浓5纪效了却波3度中*应一被辐1升叶0。个大射8高,t大大气可。到大气暖中以3气中房的透3的。二过中8p二据氧大CpO氧估化气m2。化计碳射浓碳,等入1度9就如物地9为1像果质面,
• 地下水动力学(Hydro-dynamics),是水文地质学的 另一个分支,专门研究地下水运动规律和水量的学科。
• 地下水中元素的迁移不能脱离地下水的运动,不能孤 立、静止地研究地下水的化学成分及其形成规律。正 确的观点是:
– 水文地球化学的研究必须与地下水运动的研究相结合; – 必须从水与环境长期相互作用的角度,揭示地下水化学演化
– 人类活动也对地下水的化学成分造成影响,特定条 件下,人类活动的影响非常显著。
– 大多数情况下,地下水化学成分的改变都伴随着水 量的交换而发生。
• 因此,地下水的化学成分是地下水与环境长期 相互作用的产物。化学成分是地下水的重要特 征之一。
2021/3/15
2021
3
概述
• 地下水是良好的溶剂。
– 来源:1)沉积岩中岩盐或其他氯化物的溶解;2) 岩浆岩中含氯矿物的风化溶解;3)来自海水或海 风;4)火山喷发物的溶滤;5)人为污染,如工业、 生活污水中含有大量的Cl-。
– 特点:是地下水中最稳定的离子(不被吸收、吸附、 不析出)
2021/3/15
– 构成这些离子的元素有两类:地壳中含量较高,且较易溶于 水的元素;地壳中含量不算高,但是极易溶于水的元素。
– 随着地下水总矿化度的变化,占主要地位的离子成分也随之 变化:低矿化度水,常以重碳酸根离子、钙离子和镁离子为 主;高矿化度水,则以氯离子和钠离子为主;中等矿化度水 中,阴离子常以硫酸根离子为主,阳离子以钠离子或钙离子 为主。
2021/3/15
定义:地下水中所含的各种离子、分子与化合物 的总量,称为总矿化度(总溶解固体)。
2021
10
地下水的化学特征
• 盐类的溶解度与地下水矿化度、主要离子含量之间的关 系。表6-1(0°C)。
盐类 NaCl
溶解度 350
盐类 MgSO4
溶解度 270
KCl
290
CaSO4
1.9
MgCl
没有大气,地表平均温度就会下降到- 23℃,而实际地表平 均温度为15℃,这就是说温室效应使地表温度提高38℃。
2021/3/15
2021
8
温室效应
2021/3/15
2021
9
地下水的化学特征
• 地下水的主要离子成分:分布广且含量高的离子
包括氯离子、硫酸根离子、重碳酸根离子、钠离子、 钾离子、钙离子和镁离子,共七种离子.
558.1 (18°C) Na2CO3
193.9 (18°C)
CaCl
731.9 (18°C) MgCO3
0.1
Na2SO4
50
2021/3/15
氯盐溶解度最大,硫酸盐次之,碳酸盐最小。
2021
11
地下水的化学特征:主要离子成分
• 氯离子(Cl-):高矿化度水的主要阴离子
– 含量:低矿化水中,仅数毫克至数十毫克/升;高 矿化水中,数克/升至100克/升以上。
的内在机制与规律。
2021/3/15
2021
6
地下水的化学特征
• 地下水中的气体成分:有O2、N2、CO2、CH4及H2S 等。气体成分在水中含量不高,几个~几十个毫克; 但有一定的作用:可指示地下水的化学环境,侵蚀 CO2可增强地下水的溶解能力。
– O2和N2:地下水中的氧气和氮气主要来源于大气降水的入渗。 水中溶解的氧气越多,则越有利于氧化作用的进行。氧气远 比氮气活泼,在封闭环境中,氧将会耗尽只留下氮气,因此 氮气的单独存在说明处于还原环境,地下水起源于大气。另 外,大气中的惰性气体与氮气的比例恒定,等于0.0118,如 果地下水中的比例等于此值,则说明氮气来源于大气。
– 地下水溶解岩石的组成成分,搬运这些组分,并在 某些情况下将其中的某些组分析出。
– 水是地球中元素迁移、分散与聚集的载体。 – 水也是许多地质过程的参与者,如岩溶、沉积、成
矿等地质过程中都有地下水的化学作用。
2021/3/15
2021
4
概述
• 地下水的利用和防治都需要关注地下水的水质, 主要就是地下水的化学成分。
– 如饮用水对水质有严格的要求,需要进行水质评价 – 富含大量盐类或富集稀有元素的水本身就是液体矿床。 – 具有特殊物理性质和化学成分的地下水具有医疗意义。 – 控制污染物在地下水中的扩散,需要查明有关污染物的迁移、
分散规律,确定污染源和扩散途径。
2021/3/15
2021
5
概述
• 水文地球化学(Hydro-geo-chemistry),是水文地 质学的一个分支,是专门研究地下水中化学成分的迁 移、聚集与分散的规律,并加以应用的科学。
– CH4及H2S:地下水中出现CH4及H2S,说明地下水处于还原 环境。这两种气体的生成,均在与大气隔绝的环境中,有机 质存在,在微生物参与的生物化学反应有关。
2021/3/15
2021
7
地下水的化学特征
• 地下水中的气体成分
– CO2:除了大气中CO2随降水入渗外,地下水中的CO2主要 来源于土壤,土壤中有机质的发酵作用和植物的呼吸作用使 土壤中不断产生二氧化碳,并溶入经过土壤的地下水中。
水文地质学
第七讲
地下水的化学成分及其形成作下水化学成分概述 • 地下水的化学特征
– 主要气体成分 – 主要离子成分 – 地下水化学成分表达式
• 地下水的温度
2021/3/15
2021
2
概述
• 地下水不是化学纯的H2O,而是复杂的溶液。
– 赋存并运移于岩石空隙中的地下水,不断地与岩土 发生化学反应,溶解岩石中的矿物质,与所接触的 岩石圈、水圈、生物圈进行化学成分的交换;
相关文档
最新文档