6-1地下水的化学成分PPT课件
污染物在地下水系统中的迁移转化 ppt课件
ppt课件
36
如果在饱和BaSO4溶液中加KNO3,KNO3就完全电 离为K+和NO3-离子,结果使溶液中的离子总数骤 增,由于SO42-和Ba2+离子被众多的异号离子(K+, NO3-)所包围,活动性有所降低,运动变得困难, 因而Ba2+和SO42-有效浓度降低。促使下列平衡:
或 C = C0 . e-λ. z (6—2)
式中:C0——进入过滤介质的固体物质浓 度;
λ——过滤介质参数。
ppt课件
8
ppt课件
9
ppt课件
10
ppt课件
11
ppt课件
12
ppt课件
13
ppt课件
14
生物胶体
Ca 2 Na
3NH4Cl
土壤胶体
3NH
4
Ca2、Na
ppt课件
37
对难溶强电解质溶度积的理解和掌握,对实
际工作具有很大的指导意义,因此有必要以BaSO4 的溶度积关系式[Ba2+][SO42-]=Ksp为例做如下的总 结。
(1)当BaSO4的溶液与固体BaSO4接触而达到平衡 时,在BaSO4饱和溶液中[Ba2+]与[SO42-]的乘积在 温度一定时,是一个常数,不因固体BaSO4的量而 改变。在纯BaSO4的饱和溶液中,[Ba2+]=[SO42-]。
ppt课件
39
(3)若溶液中[Ba2+][SO42-] < Ksp,这时 如果该溶液与足够量的固体BaSO4相接触, 则有BaSO4溶解进入溶液。同样,这种溶 解作用也是直到溶液中[Ba2+][SO42]=Ksp时为止。
地下水的物理性质和化学成分ppt课件
-
地下水化学成分的性质
• 氢离子浓度 地下水的酸性和碱性的程度,取决于水中氢离子的浓
度大小 大多数地下水的pH值在6.5-8.5之间,北方地区多为
pH=7-8的弱碱水
20
-
地下水化学成分的性质
• 硬度 总硬度:地下水中所有Ca2+、Mg2+离子的总含量 暂时硬度:将水加热至沸腾周,由于形成碳酸盐沉淀
第四章 地下水的物理性质 和化学成分
1
-
4.1 地下水的物理性质
2
-
地下水的物理性质、化学成分特征是地下水与环境 (自然地理、地质背景及人类活动)长期作用的结果。 地下水的化学性质为认识和了解地下水形成的地质历史 条件和过程提供依据
地下水在岩石的孔隙、裂隙或溶洞中储存和运动时, 溶滤和溶解着岩石的可溶成份,使地下水变成了含有各 种矿物质的天然溶液,而且随着运动环境和运动过程的 变化,地下水的化学成分也不断地更迭着
(6) 镁离(Mg2+)
-
泥石
18
地下水化学成分的性质
• 总含盐量与总溶解固体(TDS) 总含盐量:存在于地下水中的离子、分子和微粒(不
包括气体)之总含量 总溶解固体(TDS):通常在105-110℃温度下将水样蒸
干后所得干涸残余物的总量
TDS ≈总含盐量-1/2HCO3TDS是反映地下水化学成分的主要指标:TDS含量低的 淡S要O水成42-为以分主HC要O3成-为分主;要T成DS分含;量T高DS的含盐量水中和等卤的水盐常质以水C常l-为以主
36
-
地下水在运动过程中的各种作用
(2)水中阳离子的浓度 水中某种阳离子浓度越大,则其交替吸附能力就越强,
甚至可以发生吸附能力小的交替岩土颗粒表面吸附能力 大的阳离子
第六章_地下水的化学成分及其形成作用
• 地下水是宝贵的液体矿产: 含大量盐类(如NaCl、KCl)或富集某 些稀散元素(Br、I、B、Sr等)的地下水是
宝贵的工业原料;
某些具有特殊物理性质与化学成分的 水具有医疗意义;
盐矿、油田、金属矿床所形成特定化学元 素的分散晕圈是找矿的重要标志。 污染物在地下水中散布,也会形成晕圈。 这就需要查明有关物质的迁移、分散规律 ,确定矿床或污染源的位置。
8
矿化度与主要离子之间的关系?
四、地下水的总矿化度及化学成分表示式
• 总矿化度的概念: 地下水中所含各种离子、分子与化合物的总量称为总矿 化度(总溶解固体),以每升水中所含克数(g/L)表示。 • 总矿化度的表征方式: a.习惯上以105 ℃一110 ℃时将水蒸干所得的干涸残余 物总量来表征; b. 在水质简分析中是用分析所得的阴阳离子含量相加, 然后减去HCO3
7
钾离子(K+): • 钾离子的来源: 含钾盐类沉积岩的溶解; 岩浆岩、变质岩中含钾矿物的风化溶解。 • 低矿化水中含量甚微,高矿化水中较多。 • K+大量地参与形成不溶于水的次生矿物(水云母、蒙脱 石、绢云母),并易为植物所摄取,因此,地下水中K+ 的含量要比Na+少得多。 • K+的性质与Na+相近,含量少,分析比较费事,故一般 情况下,将K+归并到Na+中,不另区分。
硫酸根离子(SO42-): • 不同矿化程度水中(SO42-)的含量: 高矿化水,含量仅次于Cl-,可达数g/L; 低矿化水,一般含量仅数mg/L; 中等矿化水, SO42-常成为含量最多的阴离子。 • 硫酸根离子(SO42-)来源: 含石膏或其它硫酸盐的沉积岩的溶解。 煤系地层含有黄铁矿;金属硫化物矿床附近。 化石燃料燃烧产生的SO2与氮氧化合物,构成富 含硫酸及硝酸的降水(酸雨),使地下水中SO42-增 加。
《水文地质学》第4章 地下水的化学成分及其形成
•地下水的化学特征•地下水化学成分的形成作用•地下水化学成分的基本成因类型•地下水化学成分的分析内容与分类图示1、地下水中主要气体成分氧、氮、硫化氢、二氧化碳2、地下水中气体成分及其反映的地球化学环境(1)地下水中溶解氧含量越多,说明其所处的地球化学环境愈有利于氧化作用进行;(2)氮气的单独存在,常可说明地下水起源于大气并处于还原环境;(3)硫化氢的出现说明地下水处于缺氧的还原环境;(4)地下水中二氧化碳愈多,其溶解碳酸盐类的能力以及对结晶岩类进行风化作用的能力愈强。
1、地下水中主要离子成分氯离子、硫酸根离子、重碳酸根离子、钠离子、钾离子、钙离子、镁离子2、离子成分与矿化度的变化(1)矿化度发生变化,地下水中占主要地位的离子成分也随之发生变化。
低矿化度水中常以碳酸根离子、钙离子与镁离子为主;(2)高矿化水则以氯离子与钠离子为主;(3)中等矿化水中,阴离子常以硫酸根离子为主,主要阳离子可以是钠离子,也可以是钙离子。
1、微量成分Br、I、B、Sr、Ba等;2、胶体Fe(OH)3、Al(OH)3、SiO2及有机质胶体;3、微生物(如硫细菌、脱氧细菌等);4、物理性质(如温度、透明度、颜色、放射性等)。
1、地下水的总矿化度(g/L)地下水中所含各种离子、分子与化合物的总量成为总矿化度;2、库尔洛夫式1、溶滤作用:在水与岩土相互作用下,岩土中的一部分物质转入地下水中,即为溶滤作用;溶滤作用结晶作用2、影响溶滤作用强度的因素(1)组成岩土的矿物盐类的溶解度;(2)岩土的空隙特征;(3)水的溶解能力;(4)水中二氧化碳、氧气等气体成分的含量决定着某些盐类的溶解能力。
水中二氧化碳含量愈高,溶解碳酸盐及硅酸盐的能力愈强,氧气的含量愈高,水溶解硫化物的能力愈强;(5)水的流动状况。
3、溶滤作用在时间上的阶段性(1)溶滤作用是一种与一定的自然地理与地质环境相联系的历史过程。
(2)首先易溶物质如氯化物由岩层转入水中,成为地下水中主要化学成分,并被水流带走而逐渐贫化;然后相对易溶物质如硫酸盐溶入水中,成为地下水的主要成分;随着溶滤作用的长期持续,岩层中保留下来的几乎只是难溶的碳酸盐和硅酸盐,地下水的化学成分也就以碳酸盐和硅酸盐为主。
水文地质学基础 第六章 地下水的化学成分及其形成作用.
5. K+ ◆ 地下水中K+的含量只有Na+含量的4%~10%。 ◆ 一般将K+归并到Na+中进行分析,不另区分。
如Na+(+ K+ )
6. Ca2+(低矿化水的主要阳离子) ◆ 含量一般不超过数百mg/L ◆来源: ☆碳酸盐类沉积物及含石膏沉积物的溶解; ☆岩浆岩及变质岩中含钙矿物的风化溶解。 7. Mg2+ ◆ 化学性质及来源与Ca2 +相近,但地壳组成中 Mg2+比较少,因此含量通常较Ca2 +少。
化合物的当量=化合物分子量 / 阴(阳)离子价 meg/L=mg/L /离子的当量
☆德国度(H°) :相当于1L水中含10mgCa2+或 7.2mgMg2+的量。
1 meg/L=2.8 H°
4.地下水按硬度分类:
地下水类型 极软水 软 水 弱硬水 硬 水 极硬水
硬度(mg/L,以 CaCO3计)
<75
◆专项分析:
只分析一个或少数几个成分,分析项目根据具体任务确 定。
如:在对地下水质作动态观测时,可只选有代表性的离 子作定期分析;
为判明含水层之间是否有联系时,只需要作个别离子的 分析;
在为寻找饮用水源进行地下水调查时,需进行水中有毒 成分如As(砷)、Pb(铅)、F(氟)等项目的分析。
三、水化学分析资料整理
如:CO2可促进碳酸盐类的溶解。
二、地下水中主要离子成分
◆主要离子共7种: Cl-、SO42-、HCO3-、Na+、K+、Ca2+、Mg2+
◆占主要地位离子随矿化度(含盐量)的变化: ☆低矿化水以HCO3-及Ca2+ ,Mg2+为主; ☆中等矿化水以SO42-及Na+为主,阳离子也可以
是Ca2+ ; ☆高矿化水以Cl-及Na+为主。
水文地质学基础(课件)-中国地质大学(武汉)06_地下水的物理性质与化学性质
6.2 地下水的物理性质
6.2.2 温度
埋藏在不同深度的地下水,其温度变化规律不同。根据受热 源影响的不同,地壳表层可分为变温带、常温带及增温带。
变温带——受太阳辐射影响的地表极薄的带。近地表的地下水温 度受气温的影响较大,具有周期性的昼夜变化和季节变化:
温度具有昼夜变化的地下水,其埋藏深度一般在3-5m (1-2m)以内,
一个地区地下水的化学面貌,反映了该地区地下水的历史演变。
人类活动对地下水物理性质和化学性质的影响,在时间上虽然非 常短,然而,在许多情况下这种影响已经深刻地改变了地下水的 面貌!
在实际生产和科研工作中,对地下水的物理性质 和化学性质的研究,有着重要意义:
阐明地下水的起源与形成; 揭示许多地质过程; 水质评价。 研究地下水中化学元素的时空分布特征和迁移转化 规律的学科是——水文地球化学。
度最小;钙的硫酸盐,特别是钙、镁 的碳酸盐的溶解度最小。
盐类 NaCl
溶解度 (0℃,g/L)
350
随着矿化度的增加,钙镁的碳 酸盐首先达到饱和析出,继续增大时, 钙的硫酸盐也饱和析出,因此,高矿 化水中便以易溶的氯和钠占优势了, 由于氯化钙的溶解度更大,因此在矿
KCl 290
MgCl2 CaCl2 Na2SO4 MgSO4 CaSO4
6.2.3 颜色
地下水的颜色主要由其成分和悬浮于其中的杂质所决定: 一般的地下水为无色; 含硫化氢气体的水,在氧化后由于有硫磺胶体产生,故常呈翠绿色; 硬度大的水为浅蓝色,含氧化亚铁的水呈浅蓝绿色,含氧化铁的水 呈褐红色;
含腐殖质的水多呈暗黄褐色。
含有悬浮杂质的水,其颜色决定于悬浮物的颜色,颜色深浅则取 决于悬浮物的多少。
分级
说
明
地下水化学成分组成
第5页/共107页
元素 来源
特性
重碳酸根 各种碳酸盐岩和 主要受碳酸平衡的控制;
和碳酸根 离子
多种沉积岩中碳 酸盐胶结物;
碳酸钙、碳酸镁的溶解度很低,含量
CO2溶于水
受到的Ca2+限制。
可以在酸性水以外的任何天然水中遇
到;
在低矿化度水中占主导地位。
第6页/共107页
宏量元素(续)
元素 来源
特性
钠离子
蒸发
蒸发相中富含16O 液相中富含18O
18 0 / 16O汽 < 18O/16O液
第37页/共107页
通常用同位素分馏系数(α)来表示同一体系中两种 物质(物相)之间同位素分馏的程度,其定义式为:
AB
RA RB
1 8O水 汽
(1
8O
/1 6O)水
铝硅酸盐矿物的风 化;盐岩沉积层, 分散在岩石土壤中 的盐岩
钠的所有盐类都具有较高的溶 解度,因此钠的迁移性是很强 的,仅次于氯;
交换吸附反应使之从溶液中析 出,所以在水的矿化度增长过 程中,Na+的增长有时会落后 于Cl-。
高矿化度时钠成为主要阳离子
第7页/共107页
元素 钾离子
来源
铝硅酸盐矿物的风 化;钾盐矿床
Cl-、SO42-、 HCO3-、 Na+、 K+、Ca2+、Mg2+
Fe3+ 、Fe2+ 、NO3-、CO32-、 SiO2
Br 、I 、As 、Sr
第3页/共107页
2 元素的水文地球化学特性
宏量元素
元素 来源
特性
氯离子
盐岩的沉积层、 氯化钠、镁、钙盐的溶解度都很大, 钾盐矿床、风化 它不形成难溶的矿物; 岩浆岩;火山喷 不被胶体所吸附; 溢;降水;废水 也不能被生物积累。
第六章地下水
1
2
3
4
5
6
重力水的特点:能传递静水压力;具有溶解固体物质的能力;无 抗剪强度;流动时,产生动水压力,能带走土中细颗粒 地下水对工程建筑的影响:地下工程施工时,对基坑开挖,排水 等方面均产生很大影响 二.含水层与隔水层 (一)含水层 透水:水在岩土体空隙中流动的性能 含水层:能透水又饱含重力水的岩土层 常见的含水层:砂层,粉砂层,碎石层,块石层 含水层的构成要具备的条件: 1.具有良好的储水空间,即空隙大,孔径大,空隙连通性好;含 水层上下左右要有隔水层防止漏空 2.具有良好的补给来源 (二)隔水层
20
(二)管涌(潜蚀):在渗透水流的作用下,土中细颗粒在粗颗粒形成 的孔隙中移动,以致流失,最终导致土体中形成贯 通的流动通道,造成土体坍塌 易于发生管涌的土层:不均匀的砂土层 管涌处理措施: 1.基坑外排水 2.打板桩 3.保护渗流出口 (1)汲水井:在过滤管与井壁之间充填反滤层 (2)土石坝:垂直截渗;水平铺盖 4.改良土石性质
7
隔水层:相对不透水的岩土层 常见的隔水层:粘土层,完整致密的岩石 三.地下水的补给与排泄 补给:含水层从外界获得水量的过程 排泄:含水层耗失水量的过程 径流:地下水由补给区到排泄区流动的过程 # 补给与排泄是含水层与外界进行水量和盐分交换的过 程,径流则是含水层内部水量和盐分的交流过程
8
四.地下水的形成条件 1.地质条件 岩性:岩土体中空隙大小,数量,连通情况 构造:构造发育程度,越发育,裂隙越多,越连通,透水性能越 好,储水越多 2.气候条件 影响地下水水量 3.地貌条件 水由高向底处流动,故低洼地区,地下水埋藏浅,水量大; 高处埋藏深,水量小。一般平原,山前区易于储水,山区很难储 存大量的地下水 4.人为因素:过量开采地下水,导致地下水水位降低,水量减少
第六章地下水的化学成分及其形成作用
水的 味道
咸味
涩味 苦味 清凉可口 味美适口
水中含有 NaCL
水中含有 Na2SO4 水中含有 MgCL2或 MgSO4 水中含有重 CO2 水中含有重碳酸钙、镁
六、比重(specific gravity) 地下水的比重取决于其中所溶解盐分的含量。地下淡水的比重通常认为与化 学纯水的比重相同,其数值为1。水中溶解的盐分越多,比重越大,有的可达 1.2--1.3。
四、嗅味(smell) 用鼻子闻,地下水一般是无气味的,但当其中含有某些离子或某种气体时, 则出现特殊的气味。例如:水中含有H2S气体时,具有臭鸡蛋气味;水中亚铁 盐含量很高时具有铁腥气味;含有腐殖质时具有腐草(沼泽)气味。水的气味 在低温时很难判断,加热到40 ℃时气味最明显。
地下水的物理性质
五、味道(sapor) 用嘴尝。地下水的味道取决于它的化学成分。
分 类 极软水 软水 微硬水 硬水 极硬水 Ca2+ 和Mg2+ 毫克当量 / L 德国度
<1.5 1---3 3---6 6---10 >10
< 4.2 4.2---8.4 8.4---16.8 16.8---25.2 > 25.2
6.2.4 地下水的总矿化度及化学表示式
酸碱度 PH=-lg[ H+ ]
测定地下水颜色的方法:取两支无色透明玻璃试管,一支装蒸馏水, 一支装被测地下水, 在管下衬以白纸,自上而下观测其颜色。
地下水的物理性质
三、透明度(diaphaneity) 地下水的透明度取决于水中固体与胶体悬浮物的含量。 地下水按透明度分为四 级:透明的、微浊的、混浊的和极浊的。 透明度的测定方法:通过盛水样的试管,以看清 3mm粗线的水深来确定。
地下水的化学成分及其形成作用PPT课件
• Si、Al、Fe等元素,虽然在地壳中含量很大,但由于难 溶于水,地下水中含量通常不大。
.
15
• 一般情况下,随着总矿化度(总溶解固体)的变化,地 下水中占主要地位的离子成分也随之发生变化,即 :
.
8
6.2 地下水的化学特征
• 主要气体成分 • 主要离子成分 • 其他成分 • 总矿化度及化学成分表示式
.
9
一、地下水中主要气体成分
• 地下水中常见的气体成分:
O2、N2、CO2、CH4、H2S等。尤以前三种为主。 通常情况下,地下水中气体含量不高,只有几mg/L到 几十mg/L。
• 研究地下水中气体成分的意义:
.
11
1.氧(02)、氮(N2)
• 02的化学性质远较N2活泼,在较封闭的环境中, 02将耗尽而只留下N2 。因此, N2的单独存在, 通常可说明地下水起源于大气并处于还原环境。
• 大气中的惰性气体(A、Kr、Xe)与N2的比例恒
定,即(A+Kr+Xe)/ N2 =0.0118。比值等于此数,
说明N2是大气起源的;小于此数,则表明水中含
• 人类活动的影响改变了地下水的化学面貌。 • 地下水的化学成分是地下水与环境(自然地理、地
质背景、人类活动)——长期相互作用的产物。 • 某区地下水的化学面貌,反映该区地下水的历史演变
。研究地下水的化学成分,可以帮助我们回溯一个 地区的水文地质历史,阐. 明地下水的起源与形成。2
• 水是最为常见的良好溶剂:
.
4
• 地下水是宝贵的液体矿产:
含大量盐类(如NaCl、KCl)或富集某些 稀散元素(Br、I、B、Sr等)的地下水是宝 贵的工业原料;
6第六章 地下水的化学成分及其形成作用
第六章 地下水的化学成分及其形成作用6.1 概 述地下水不是化学纯的H 2O ,而是一种复杂的溶液。
天然:人为:人类活动对地下水化学成分产生影响。
地下水的化学成分是地下水与环境、以及人类活动长期相互作用的产物。
一个地区地下水的化学面貌,反映了该地区地下水的历史演变。
水是最为常见的良好溶剂,可溶解、搬运岩土中的某些组分。
水是地球中元素迁移富集的载体。
利用地下水,各种行业对水质都有一定的要求→进行水质评价。
6.2 地下水的化学特征1.地下水中主要气体成分O 2 、N 2 、CO 2 、CH 4 、H 2S 等。
1)O 2 、N 2地下水中的O 2 、N 2主要来源于大气。
地下水中的O 2含量多→说明地下水处于氧化环境。
在较封闭的环境中O 2耗尽,只留下N 2,通常说明地下水起源于大气,并处于还原环境。
2)H 2S 、甲烷(CH 4)地下水中出现H 2S 、CH 4 ,其意义恰好与出现O 2相反,说明→处于还原的地球化学环境。
3)CO 2CO 2主要来源于土壤。
化石燃料(煤、石油、天然气)→CO 2(温室气体)→温室效应→全球变暖。
地下水中含CO 2愈多,其溶解碳酸盐岩的能力便愈强。
2.地下水中主要离子成分7大离子:Cl -、SO 42-、HCO 3-、Na +、K +、Ca 2+、Mg 2+。
低矿化水中(M<1 ~ 2g/L ):HCO 3-、Ca 2+、Mg 2+为主(难溶物质为主);发生化学反应岩石圈水圈交换化学成分中矿化水中(M=2 ~ 5g/L ):SO 42-、Na +、Ca 2+为主; 高矿化水中(M>5g/L ):Cl -、Na +为主(易溶物质为主)。
造成这种现象的主要原因是水中盐类溶解度的不同: 1)Cl -主要出现在高矿化水中,可达几g/L ~ 100g/L 以上。
来源:① 来自沉积岩氯化物的溶解;② 来自岩浆岩中含氯矿物的风化溶解; ③ 来自海水;④ 来自火山喷发物的溶滤;⑤ 人为污染:工业、生活污水及粪便中含有大量Cl -,因此居民点附近矿化度不高的地下水中,如Cl -含量超过寻常,则说明很可能已受到污染。
第一章地下水的化学成分
摩尔浓度:常见的摩尔浓度表示方法有两种, 一种是以每升溶液中所含溶质的摩尔数来表 示,另一种是以每千克溶液中所含物质的摩 尔数来表示。
当量浓度:离子的摩尔浓度(mol/L)与其离子 价的乘积。1eq/L=1000meq/L。
按水中所含成分的分布和含量:
分类
主要组分
含量
>5 mg/ L
主要成分
Cl-、SO42-、 HCO3-、 Na+、K+、 Ca2+、Mg2+、SiO2 B、NO3-、CO32-、F-、Sr、Fe Br 、I 、As 、Li、Sn等
特性
钠的所有盐类都具有较高的溶解度, 因此钠的迁移性是很强的,仅次于氯。 交换吸附反应使之从溶液中析出,所 以在水的矿化度增长过程中,Na+的 增长有时会落后于Cl-。高矿化度时 钠成为主要阳离子
钾离子
钙离子
铝硅酸盐矿物的风 化;钾盐矿床
一般只有钠含量的4~10%,动植 物有机质可以从水中吸收钾
石灰岩、白云岩 , 硫酸钙和碳酸钙的溶解度低,天然 水中Ca2+的含量一般很低。只有在 石膏的溶解和含钙 深层氯化钙卤水中,Ca2+的含量才 硅酸岩的风化,阳 可以达到n*10g/L。低矿化度的水中, 离子交换 钙离子经常占优势 。 主要是白云岩、泥 灰岩和其他岩石的 溶解。 镁盐溶解度比钙盐大,但镁盐在地 壳中分布不广,易被植物吸收,所以 很少见到镁占主要成分的水。
高TDS水中主要的阳离子,含量最高可达数十g/L。
• 来源:
沉积岩中岩盐及其它钠盐的溶解;
海水; 岩浆岩和变质岩区含钠矿物的风化溶解。
钾离子(K+): • 钾离子的来源: 含钾盐类沉积岩的溶解; 岩浆岩、变质岩中含钾矿物的风化溶解。 • 低TDS水中含量甚微,高TDS水中较多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– 地下水中CO2的含量增多,其溶解碳酸盐岩的能力和对结晶 岩进行风化的能力都会增强。有侵蚀CO2和游离CO2之说。
• 人类活动温对室大效应气是的指影透射响阳之光一的密:闭温空室间由效于应与外界缺乏热交换而
– 人2年9为人0p产类p形而所一m生每成地吸层,的年的面收厚1排C9增 , 厚保O8放0暖从的温2明年到后而玻效显,大放产璃应增大气出生,,加的大使气就中长气地是。中CO短变球太1C92O暖变辐阳为世2的成射短浓5纪效了却波3度中*应一被辐1升叶0。个大射8高,t大大气可。到大气暖中以3气中房的透3的。二过中8p二据氧大CpO氧估化气m2。化计碳射浓碳,等入1度9就如物地9为1像果质面,
• 地下水动力学(Hydro-dynamics),是水文地质学的 另一个分支,专门研究地下水运动规律和水量的学科。
• 地下水中元素的迁移不能脱离地下水的运动,不能孤 立、静止地研究地下水的化学成分及其形成规律。正 确的观点是:
– 水文地球化学的研究必须与地下水运动的研究相结合; – 必须从水与环境长期相互作用的角度,揭示地下水化学演化
– 人类活动也对地下水的化学成分造成影响,特定条 件下,人类活动的影响非常显著。
– 大多数情况下,地下水化学成分的改变都伴随着水 量的交换而发生。
• 因此,地下水的化学成分是地下水与环境长期 相互作用的产物。化学成分是地下水的重要特 征之一。
2021/3/15
2021
3
概述
• 地下水是良好的溶剂。
– 来源:1)沉积岩中岩盐或其他氯化物的溶解;2) 岩浆岩中含氯矿物的风化溶解;3)来自海水或海 风;4)火山喷发物的溶滤;5)人为污染,如工业、 生活污水中含有大量的Cl-。
– 特点:是地下水中最稳定的离子(不被吸收、吸附、 不析出)
2021/3/15
– 构成这些离子的元素有两类:地壳中含量较高,且较易溶于 水的元素;地壳中含量不算高,但是极易溶于水的元素。
– 随着地下水总矿化度的变化,占主要地位的离子成分也随之 变化:低矿化度水,常以重碳酸根离子、钙离子和镁离子为 主;高矿化度水,则以氯离子和钠离子为主;中等矿化度水 中,阴离子常以硫酸根离子为主,阳离子以钠离子或钙离子 为主。
2021/3/15
定义:地下水中所含的各种离子、分子与化合物 的总量,称为总矿化度(总溶解固体)。
2021
10
地下水的化学特征
• 盐类的溶解度与地下水矿化度、主要离子含量之间的关 系。表6-1(0°C)。
盐类 NaCl
溶解度 350
盐类 MgSO4
溶解度 270
KCl
290
CaSO4
1.9
MgCl
没有大气,地表平均温度就会下降到- 23℃,而实际地表平 均温度为15℃,这就是说温室效应使地表温度提高38℃。
2021/3/15
2021
8
温室效应
2021/3/15
2021
9
地下水的化学特征
• 地下水的主要离子成分:分布广且含量高的离子
包括氯离子、硫酸根离子、重碳酸根离子、钠离子、 钾离子、钙离子和镁离子,共七种离子.
558.1 (18°C) Na2CO3
193.9 (18°C)
CaCl
731.9 (18°C) MgCO3
0.1
Na2SO4
50
2021/3/15
氯盐溶解度最大,硫酸盐次之,碳酸盐最小。
2021
11
地下水的化学特征:主要离子成分
• 氯离子(Cl-):高矿化度水的主要阴离子
– 含量:低矿化水中,仅数毫克至数十毫克/升;高 矿化水中,数克/升至100克/升以上。
的内在机制与规律。
2021/3/15
2021
6
地下水的化学特征
• 地下水中的气体成分:有O2、N2、CO2、CH4及H2S 等。气体成分在水中含量不高,几个~几十个毫克; 但有一定的作用:可指示地下水的化学环境,侵蚀 CO2可增强地下水的溶解能力。
– O2和N2:地下水中的氧气和氮气主要来源于大气降水的入渗。 水中溶解的氧气越多,则越有利于氧化作用的进行。氧气远 比氮气活泼,在封闭环境中,氧将会耗尽只留下氮气,因此 氮气的单独存在说明处于还原环境,地下水起源于大气。另 外,大气中的惰性气体与氮气的比例恒定,等于0.0118,如 果地下水中的比例等于此值,则说明氮气来源于大气。
– 地下水溶解岩石的组成成分,搬运这些组分,并在 某些情况下将其中的某些组分析出。
– 水是地球中元素迁移、分散与聚集的载体。 – 水也是许多地质过程的参与者,如岩溶、沉积、成
矿等地质过程中都有地下水的化学作用。
2021/3/15
2021
4
概述
• 地下水的利用和防治都需要关注地下水的水质, 主要就是地下水的化学成分。
– 如饮用水对水质有严格的要求,需要进行水质评价 – 富含大量盐类或富集稀有元素的水本身就是液体矿床。 – 具有特殊物理性质和化学成分的地下水具有医疗意义。 – 控制污染物在地下水中的扩散,需要查明有关污染物的迁移、
分散规律,确定污染源和扩散途径。
2021/3/15
2021
5
概述
• 水文地球化学(Hydro-geo-chemistry),是水文地 质学的一个分支,是专门研究地下水中化学成分的迁 移、聚集与分散的规律,并加以应用的科学。
– CH4及H2S:地下水中出现CH4及H2S,说明地下水处于还原 环境。这两种气体的生成,均在与大气隔绝的环境中,有机 质存在,在微生物参与的生物化学反应有关。
2021/3/15
2021
7
地下水的化学特征
• 地下水中的气体成分
– CO2:除了大气中CO2随降水入渗外,地下水中的CO2主要 来源于土壤,土壤中有机质的发酵作用和植物的呼吸作用使 土壤中不断产生二氧化碳,并溶入经过土壤的地下水中。
水文地质学
第七讲
地下水的化学成分及其形成作下水化学成分概述 • 地下水的化学特征
– 主要气体成分 – 主要离子成分 – 地下水化学成分表达式
• 地下水的温度
2021/3/15
2021
2
概述
• 地下水不是化学纯的H2O,而是复杂的溶液。
– 赋存并运移于岩石空隙中的地下水,不断地与岩土 发生化学反应,溶解岩石中的矿物质,与所接触的 岩石圈、水圈、生物圈进行化学成分的交换;