有机波谱第二章红外光谱解读

合集下载

波谱解析-第二章

波谱解析-第二章

• 利用这个公式对分子的一个振动自由度进行计算, 大概估算一下,这个分子可能有多少个吸收峰。 • 比如水分子,属于非线性分子,它的振动自由度 =3x3-6=3,也就是水分子有三种振动形式。第一 个是不对称伸缩振动;二是对称伸缩振动;三是 面内弯曲振动,如果扫描水的红外光谱,它对应 有三个吸收峰。
• 理论上,一个振动自由度产生一个红外吸收峰,但 由于有的振动是非红外活性的,故不产生吸收峰, 这也是实际吸收峰数减少的原因之一。
第二章
第一节 基本理论
红外光谱
一、基础知识 1、红外光谱:红外区的电磁波照射分子,能够引 起分子振动能级和转 动能级的跃迁,振-转光谱。 分子当中有很多化学键,化学键两端的原子不 是静止不动的,它总是在平衡位置作振动。红外线 的能量可以提供原子的振动能级从基态到激发态的 一个跃迁。
• 红外都是分子振动光谱。通过谱图解析可 以获取分子结构的信息。任何气态、液态、 固态样品均可进行红外光谱测定,这是其 它仪器分析方法难以做到的。由于每种化 合物均有红外吸收,尤其是有机化合物的 红外光谱能提供丰富的结构信息,因此红 外光谱是有机化合物结构解析的重要手段 之一。
例2 CO2分子(有一种振动无红外活性),它是典型的 线性分子,3n-5=4个振动自由度。
CO2 分子其简正振动的数目为
3×3 – 5 = 4,但只有两个红外吸收峰,
其原因为
不对称伸缩 νs = 2349cm-1
C O O
+
-
+
面内弯曲 δs = 667cm-1
面外弯曲 δs = 667cm-1
• 对于对称伸缩振动,正电荷中心是碳,负电 荷中心是氧,虽然说C,O之间的距离发生变化, 但是由于它高度对称,偶极矩的变化是0,正 负电荷中心始终重合,是一种红外的非活性 振动。它是不会产生吸收峰的。 • 两种弯曲振动,他们的频率是一样的,都是 667,这两种振动形式所产生的吸收峰合二为 一,我们把这种称之为简并。 • 虽然说CO2,有四种振动自由度,有四种振动 形式,但是它在红外区所产生的吸收峰只有 两个。

有机化合物光谱解析第二章红外光谱

有机化合物光谱解析第二章红外光谱

第二章 红外光谱(Infrared Spectrum )
1、基本知识
红外光谱:红外线可引起分子振动能级和转动能级的跃迁, 所以又称振转光谱。
红外光的三个区域:
1)近红外区:12500~4000cm-1(0.8~2.5m),主要用于研究分子中的OH、N-H、C-H键的振动倍频与组频。
2)中红外区:4000~400cm-1(2.5~25m),主要用于研究大部分有机化 合物的振动基频。
吸收峰常发生分裂,形成两个峰,这种现象叫振动偶合。
6. 样品的物理状态的影响 丙酮的羰基在气态下为1738cm-1, 而在液态下为1715cm-1。
4.2 外部因素
1. 溶剂影响 极性基团的伸缩频率常常随溶剂的极性增大而降低。 以羧酸的羰基为例:
2. 仪器的色散元件 棱镜:分辨率低 光栅:分辨率高
下列化合物在红外区域内可能有那些吸收?
(五)羰基的伸缩振动区(1900~1650 cm-1 )
(六)双键的对称伸缩振动区(1680~1500 cm-1 )
(七)C-H弯曲振动区(面内)(1475~1300 cm-1 )
下列两化合物在1475~1300cm-1区域内有何吸收?
s:1386cm-1, 1367cm-1
二、红外光谱中的八个重要区段
例1. 下列(A),(B),(C)三种化合物将分别在IR 光谱中哪一段有吸收?各因什么振动类型引起?
(B) (C)
红外光谱八区域详细介绍 (一) O-H、N-H伸缩振动区(3750~3000cm-1)
顺式1,2-环戊二醇的 CCl4稀溶液,在3000~ 3700cm-1有几个峰?
2, 立体构象的确定 (有3450cm-1)
3, 分子的互变异构与同分异构的确定

波谱解析第2 章 红外光谱

波谱解析第2 章 红外光谱

1 K 2c
2015-7-8
药物分析学科组
药学院
双原子分子的实际势能 曲线并非抛物线,在经 韦 Morse修正后,表现为如 国 兵 图2-2所示的实线部分 (化学键)。 由图2-3可知:
(1)振动能(势能)是 原子间距离的函数。振 动时振幅加大,则振动 能也相应增加。
2015-7-8
药物分析学科组
药学院
韦 国 兵
2015-7-8
药物分析学科组
药学院
(2)在常温下,分子处于最低的振动能级,化
韦 国 兵
学键振动与简谐振动模型非常近似(仅当振动量 子数V=3或4时,势能曲线才显著偏离简谐振动 曲线)。由于通常的红外吸收光谱主要讨论从基 态跃迁到第一激发态(V0V1),以及从基态直接 跃迁到第二激发态(V0 V2)引起的吸收。因此,
2

2015-7-8
药物分析学科组
药学院
(一)量子力学处理的振动能量
韦 国 兵 • 因 • 有
v


1



c
K m
v 1307

• 所以:
1 K v 2c u
• 结论:双原子基团的基本振动频率的大小与化学键两 端原子的折合相对原子质量和化学键的力常数K的大小 有关;化学键力常数K越大,折合相对原子质量m越小, 则谐振子的振动频率越大,即振动吸收峰的波数越大。
如:单原子分子、同核分子:He、Ne、N2、O2、 Cl2、H2 等。 没有红外活性 。
2015-7-8
药物分析学科组
药学院
一、红外吸收产生的条件
韦 国 兵
• 红外辐射的能量必须与分子发生跃迁的 两振动能级间的能量差别相等,即: E L V h 或 L V • 分子在振动过程中其偶极矩必须发生变 化,即Δμ≠0,即只有红外活性振动才能 产生吸收峰。两个条件缺一不可。 • 红外非活性振动是造成基频峰数小于基 本振动自由度的另一个原因

波谱分析课件—红外光谱

波谱分析课件—红外光谱
用“η”表示
基团的键角不 发生变化,基 基团的键角交替 团只是作为一 发生变化 个整体在分子 的对称平面内 左右摇摆
两个H原子核 在垂直于纸面 的方向上振动, 两个H原子核 且运动方向相 运动方向相反 同---同时向纸 面的同一侧运 动
3
骨架 振 动
定义
多原子分子的骨架振动产生,
如苯环的骨架振动。
晶格振动。
振动频率
以双原子为例,在双原子作伸缩振动时,可以 将其视为一个简单的谐振子。根据经典力学原理, 简谐振动遵循胡克定律:
m1
m2
1 2
K m
式中: ν ----振动频率 K ----化学键的力常数(N· -1) m
对于双原子分子来讲,可
用折合质量 μ(Kg)代替 m:
1 2
红外光谱的发展历史
在十九世纪初就发现了红外线,到1892年有人利 用岩盐棱镜和测热幅射计(电阻温度计)测定了20多 种有机化合物的红外光谱 1905年科伯伦茨发表了128种有机和无机化合物 的红外光谱,红外光谱与分子结构间的特定联系才被 确认。 到1930年前后,随着量子理论的提出和发展,红 外光谱的研究得到了全面深入的开展,并且测得大量 物质的红外光谱。 1947年第一台实用的双光束自动记录的红外分光光 度计问世。这是一台以棱镜作为色散元件的第一代红外 分光光度计。
产生红外吸收峰。而
, C
O
, N C
,H O
NH2 等强极性基团的伸缩振动吸收均为强吸收。
2
诱导效应
使基团极性降低的诱导效应导致基团的吸收
强度减小; 使基团极性升高的诱导效应导致基团的吸收 强度增加。 例如:
C N 为强极性基团,其
C N 吸收带尖

第2-4章 红外光谱、拉曼光谱与紫外光谱

第2-4章   红外光谱、拉曼光谱与紫外光谱

纵坐标
吸光和透光的强度一般用吸光率A%和透光率T%来表示, 二者关系为:
•A%+T%=1
7
2.1.4 聚合物的光谱分析
• 当电磁辐射与聚合物相互作用时,若聚合物吸收电磁辐射能
产生量子共振,就能获得聚合物光谱。
• 可用来研究聚合物的单体、均聚物及共聚物的化学组成以及 链结构、聚集态结构、高聚物的反应和变化过程。 相邻基团相互影响不大,谱图与其重复单 元的小分子谱图类似。 相邻基团之间有特殊的影响,光谱所获得 是整个大分子(或晶格)的信息,与重复结构 单元的小分子谱图有明显的区别。
运动能级跃迁;
•分子可选择性地吸收电
磁波使分子内能提高。
电磁波波长越短,频率越快,能量越高。
X£ É Ï ­ ä ß
200nm
Ï à °É û à ×Í ¼ ¿ ¼ ¹
400nm 800nm
ì à à º Í ¹
2.5mm 25mm
Þ ß ç ¨ Î Ï µ ²
600MHz 60MHz
l ¢ ¨¢ Î ² ¡ ç Ó ¨ µ Ê ²
体分为 π-π 共轭、 p-π 共轭和超共轭效应 三类 。
• 酯基中与羰基(C=O)C相连的烷氧基同时具有给电子的 诱导效应和吸电子的的共轭效应,但诱导效应更强些,所
以整体上呈现给电子效应。
25
b 共轭效应
由于共轭作用形成了大π键, 使C=C-C=O的键长平均化, 羰基碳原子上正电荷减少,C=O 的双键性减小,键的力常数变小。 于是C=O的频率降低为1695cm-1。 c 空间效应
吸收光谱(如红外、紫外吸收光谱)
光谱分析法
发射光谱(如荧光光谱) 散射光谱(如拉曼光谱)
2
分子运动
电子绕原子核运动 原子核的振动 原子核的转动

有机波谱分析-红外解析

有机波谱分析-红外解析

与纯化合物的标准进行对照。多组分试样应在测定前尽量预
(2) 试样中不应含有游离水。水本身有红外吸收,会严重
先用分馏、萃取、重结晶、区域熔融或色谱法进行分离提纯。
干扰样品谱,而且还会侵蚀吸收池的盐窗。
(3) 试样的浓度和测试厚度应选择适当,以使光谱图中的 大多数吸收峰的透射比处于10%~80%范围内。
12
12+16
2.多原子分子振动光谱 多原子基团有更多的振动形式,可以出现一个以上基频振 动吸收带,吸收带的数目与分子的自由度有关。 自由度的数目等于分子中所有原子在空间的位置所需要坐 标的总数。 3N = 平动 + 转动 + 振动 振动自由度 = 3N – 6 振动自由度 = 3N – 5 - 非线性分子 -- 线性分子
原理:光源发出的辐射经干涉仪转变为干涉光,通 过试样后,获得干涉谱图,其中包含的光信息需要由 计算机进行快速傅立叶变换,转变成可供解析的普通 红外谱图。
傅里叶变换红外光谱仪工作原理图
迈克尔干涉仪工作原理图
特点:(1) 扫描速度极快(1/60s),信噪比高。
(2) 不需要分光,光通量大,灵敏度很高。
分子的振动频率决定分子基团吸收的红外光频率, 即红外吸收位置。
1 2 K

m1 m2 m1 m2
K为双原子形成的化学键力常数
m1和m2分别为质量两个原子 相对原子量
振动频率

原子的质量
化学键强度
有关
键类型: 力常数: 峰位:
—CC — > —C =C — > —C — C — 15 17 9.5 9.9 4.5 5.6 4.5m 6.0 m 7.0 m
色散型红外光谱仪与紫外-可见光谱仪有什么区别?

有机波谱第二章红外光谱解读

有机波谱第二章红外光谱解读

1.3 分子偶极变化与峰强
1.3.1 峰强度表示方法 谱带强度单位为透射率(T)或吸收强度(A)。它们
可以用透过样品的出射光强度I与入射光强度I0表示:
T = I / I0 A = lg(I0 / I) = lg(1 / T)
在单色光和溶液的实验条件下,溶液的吸收可遵从BeerLambert定律:吸收度与溶液c和吸收池的厚度l成正比,即:
发生振动能级跃迁需要能量的大小取决于键两端原子的 折合质量和键的力常数,即取决于分子的结构特征。
化学键键强越强(即键的力常数 K 越大)原子折合质量 越小,化学键的振动频率越大,吸收峰将出现在高波数区。
吸收频率随键的强度的增加而增加,随键连原子的质量增 加而减少。化学键力常数:单键—4~8 双键—8~12 叁 键—12~18
1.3.2决定峰强的因素
(1)振动过程中偶极矩的变化
基频吸收谱带的强度取决于振动过程中偶极矩变化的 大小。只有具有极性的键在振动过程中才出现偶极矩的变 化,在键周围产生稳定的交变电场才能与频率相同的辐射 电磁波作用,从而吸收相应能量使振动跃迁到激发态,得 到振动光谱。这种振动称为红外活性振动。
高极性键的振动,产生强度大的吸收谱带,如羟基、羰 基、硝基等强极性基团都具有很强的红外吸收谱带。
K为 化学键的力常数, 与键能和键长有关; m 为双原子的折合质 量.
2、质量和力常数的影响
有机化合物中个别的化学键可以近似地看作是双原子 分子,这样就可以利用双原子分子的振动公式来理解化学
键的振动:
v
=
1 2πc
(K / u)1/2 = 1303
K (m1 + m2) 1 / 2 m1m2
K:力常数,m1 和 m2 分别为二个振动质点的质量数。

有机波谱结构解析(红外光谱)

有机波谱结构解析(红外光谱)

第二章 红外光谱)红外光谱就是当红外光照射有机物时,用仪器记录下来的吸收情况(被吸收光的波长及强度等),用来进行分析的方法。

红外线可分为三个区域:l /m m 0.82.550100012500400020010n /cm -1¿¿¿¿¿¨¿ü¿¿«Ó¬ÐѻĨ½­ÍÊ«Ó¬ÐÒì´¯·Ê¬ª´¯»§µìÒì´¯·Ê²¼¬ª´¯«·Ã³¡¢ª´Ã³ÇÐÀ«´Ë§Ð͸ú¶ÕÁØÊ´¨¾¼«ÓËïÐ͸ú«Ó¬Ðº®¶«ÓËï·ÊÎùë±Æ«Ó«ÓËïËÞ¸ú¼óËê·ÊºëÇíÐ͸úËê红外光谱法主要讨论有机物对中红区的吸收。

有机化合物波谱分析-红外.ppt

有机化合物波谱分析-红外.ppt

①对称伸缩振动以s
HH
HH
②不对称伸缩振以as表示。
C
C
(2)弯曲振动(bending vibration),也叫变角振动,以δ表示
①面内弯曲振动以δs表示。
HH C
HH C
②面外弯曲振动,以δo.o.p表示
剪式振动 s 面内摇摆
HH C
HH C
面外摇动 扭曲变形
8
3. 振动图示
按能量高纸顺序排列,通常是:as >s >δs >δo.o.p
OCO 对称伸缩
OCO
OCO
O CO
不对称伸缩 弯曲(x,y平面) 弯曲(y,z平面)
峰简并为1个
12
第二章 红外光谱(Infrared spectra IR)
(三)峰强 1、峰强的表示方法
红外光谱中峰的强度一般用百分透光率T%或吸光度A 表示。物质对红外光的吸收符合Lambert-Beer定律。 测试样品的浓度大,吸收峰强。 1)百分透光率:T%=I/I0×100% 2)吸光度:A=lgI0/I=lgT0/T A---------吸光度 I0---------吸收峰基线的透射比 I----------峰顶的透射比 3)百分吸收率:百分吸收率=(100-T)% 4)摩尔吸光系数
25
第二章 红外光谱(Infrared spectra IR)
稀溶液(游离状态),OH3650~3600cm-1 浓度增加(氢键),OH3515cm-1(二聚体),3350cm-1 (多聚体)
乙醇在 不同浓 度下分 子间氢 键的影

26
第二章 红外光谱(Infrared spectra IR)
5、互变异构:峰位移
3

有机波谱解析红外

有机波谱解析红外
RCH=CHR
1653(中) 顺 1650(中) 反 1675(弱)
895-885强 730-650弱且宽
980-965强
三取代
1680(中-弱)
840-790强
四取代 无
四取代
1670(弱-无)

共轭烯烃
与烯烃同
向低波数位移,变宽
与烯烃同
吸收峰 振 动
化合物
炔烃
C-H拉伸(或 伸缩)
3310-3300 较强
有机波谱解析红外
3.1.2 近红外、中红外和远红外
波段名称 近红外 中红外 远红外
波长 μ 0.75—2.5
2.5-25 25-1000
波数(cm-1) 13300-4000
4000-400 400-10
3.1.3 红外光谱的表示方法
红外光谱是研究波数在4000-400cm-1范围内不同 波长的红外光通过化合物后被吸收的谱图。谱图以波 长或波数为横坐标,以透光度为纵坐标而形成。 透光度以下式表示:
1750-1680 2720
1770-1750(缔合时在1710) 气相在3550,液固缔合时在3000-2500 (宽峰)
1800 1860-1800 1800-1750 1735 1690-1650 3520,3380(游离)缔合降低100 2260-2210
说明
3.4 影响峰位置变化的因素
1500-400cm-1区域又叫指纹区. 这一区域主要是: C-C、C-N、C-O 等单键和各种弯曲振动的 吸收峰,其特点是谱带密集、难以辨认。
3.3.2 重要官能团的红外特征吸收
吸收 振


化合物
烷烃
C-H拉伸(或伸缩) 2960-2850cm-1

波谱解析红外光谱

波谱解析红外光谱
2. 仪器的色散元件: 棱镜与光栅的分辨率不同。
四. 影响峰强的因素
1.峰强的表示方法:
纵坐标为百分透过率(T%), 横坐标为波数(ν, cm-1-); T%越大, 吸收峰越强; 峰强也可用摩 尔吸光系数(εa)表示:
T%=(I/I0 )×100% εa=1/(c×L)lg(T0/T) εa﹥100时, 很强峰(vs); εa=20~100时,强峰(s); εa=10~20时, 中强峰 (m); εa﹤1时,弱峰(w)
O
O
O
R C R' R C
C
1715
1690
1665
共轭效应使 电子离域,双键性 ,K
但在p-π共轭体系中,诱导效应与共轭效应常常同
时存在, 谱带的位移方向取决于哪一个作用占主
导地位, 例如,RCONH2、RCOR、RCOOR、 RCOCl中羰基的伸缩振动频率大小顺序。
共轭与诱导效应共存时的情况
(一). 内部因素
1.电子效应: 通过导致成键原子间电子杂
化状态与电子云分布发生 变化, 因而改变力常数而影 响相应谱带的位置。 (1).诱导效应(-I)一些极性共价键, 随着取代基电 负性的不同,电子密度发生变化, 引起键的振动谱带位移。
F>Cl>Br>I>OCH3>NHCOCH3>C6H6>H>CH3
*分子的能量: E分子=E移+E转+E振+E电子 E光子=hν光=ΔE振
*化学键的偶极矩与分子的偶极矩(μ): *红外光可分为三个区域:
近红外区(泛频区): 12500-4000 cm-1 (波 数ν-);
中红外区(基本振动区) : 4000-400 cm-1 远红外区(转动区) : 400-25 cm-1

有机波谱分析--红外光谱

有机波谱分析--红外光谱

11
●与结构因素、化学环境等因素有关。 同一种化学键,同一种振动方式,分子结构不同,
振动频率不同; 化学环境不同,振动频率也不同。
12
3、红外光谱产生的条件
A. 辐射光的频率=分子振动固有频率。即:ν振= ν辐 这一条件决定了红外吸收峰的位置,即红外光
谱的横坐标。
13
B. 振动的偶极矩必须发生变化,既:Δμ≠0 只有偶极矩发生变化的振动才能引起分子内能
弯曲振动频率都很低。
5
2. 化学键的振动频率
●最简单的振动形式—简谐振动 ●谐振子模型:m1、m2为两个小球(原子)的质量,r表示
弹簧(化学键)的长度。
r
6
=c/ - = 1/ 波数(cm-1)
●振动方程式(Hooke定律)
1
2
(
1
m1
1)
m2
K:键的力常数,单位为10-5N·cm-1(dyn·cm-1) 与键能成正比。
◆若无1600~1675 cm-1峰,则无不对称C=C; 无2100~2300cm-1峰,则不存在C≡CH基团。
◆用弯曲振动特征判断取代情况。
◆高度对称的烯烃和炔烃的碳-碳骨架吸收峰可通过拉曼光 谱研究其是否存在。
◆用骨架峰位判断是否存在共轭双键,但不能判断共轭体系 大小;用UV光谱可弥补其不足。
http://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi
2. The NIST Chemistry WebBook
/chemistry
29
四、有机化合物的特征频率
振动形式不同但峰位一致的现象称为振动简并。
CH伸缩 CC伸缩
3310
2120

波谱分析-第二章 (红外光谱)(1)

波谱分析-第二章 (红外光谱)(1)
例如:HCl,k = 5.1N· cm-1
v = 1303
5.1 (1 + 35.5) 1× 35.5
1/2 -1 cm = 2993
C—C C=C
k ~ 5 N· cm-1 k ~ 10 N· cm-1
= 1193 cm-1 = 1687 cm-1
C≡C
C—H
k ~ 15 N· cm-1
1/2
K (m1 + m2) 1 1/2 v = 1303 (K / u ) = m1m2 2πc
K:力常数,m1 和 m2 分别为二个振动质点的质量数
吸收频率随键的强度的增加而增加,随键连原子的质 量增加而减少。化学键力常数:单键—4~8 双键— 8~12 叁键—12~18 利用实验得到的键力常数和计算式,可以估算各种类 型的基频峰的波数

五 六
λ
10-8
10-6 10
10-4 400 800
10-2
100
102 cm nm um
γ射 线
X射 线
紫 外 光
可 见 光
红外光 IR 微波
无线电波
1 cm = 107nm
1cm = 104um
通常的红外光谱频率在4000~625cm-1之间,正是一般 有机化合物的基频振动频率范围,可以给出丰富的结构信息: 谱图中的特征基团频率可以指出分子中官能团的存在;全部 光谱图则反应整个分子的结构特征。除光学对映体外,任何 两个不同的化合物都具有不同的红外光谱。
(二)简偕振动
分子是由各种原子以化学键相互连接而生成。可以用 不同质量的小球代表原子,以不同强度的弹簧代表各种化
学键,它们以一定的次序互相连接,就成为分子的近似机 械模型。这样就可以根据力学定理来处理分子的振动。

红外光谱解析

红外光谱解析
,n=14>4.
第二章 红外光谱
3C8H7N,确定结构
有机化合物波谱分析
0
第二章 红外光谱
有机化合物波谱分析
解:1不饱和度Ω=1+8+0.51-7=6
23030cm-1,1607cm-1,1580cm-1和1450cm-1的 峰表明含有苯环,用去4个不饱和度.
根据2得苯环结构和817cm-1强峰,表明该物质为 苯的对二取代物.
9 分子式为 C4H6O2,红外光谱如下,试推其结构.
第二章 红外光谱
有机化合物波谱分析
解:1不饱和度Ω=1+4+0.50-6=2
21762cm-1表明含有C=O,且3700~3200cm-1无尖 锐吸收峰,表明不含-OH,-COOH.在 2720~2750cm-1无吸收峰,表明不含-CHO.又因为 在2830~2810cm﹣1没有吸收峰,所以没有— OCH3.
3000~2700cm-1为处的吸收表明含有甲基和亚甲 基.
1464cm-1处的表明显示有亚甲基.
综上,该化合物为CH3-CH24-CH3或3-甲基戊烷.
第二章 红外光谱
5推测C8H8纯液体
有机化合物波谱分析
第二章 红外光谱
有机化合物波谱分析
1不饱和度Ω=1+8+0.50-8=5
23100~3000cm-1,1630cm-1,1500cm-1,1450cm1处的峰表明含有苯环.
3770cm-1和700cm-1处双峰显示苯环为单取代,并 且990cm-1和910cm-1处强峰表明含有端乙烯基, 因此,该结构为苯乙烯.
23000~2800cm-1的峰为νCH-CH3,-CH2-,0cm-1 处孤峰表明有孤立-CH3,1460cm-1说明含有CH2-.因此,含有孤立-CH3和

有机波谱解析课件红外光谱

有机波谱解析课件红外光谱

有机物分子结构的解析
通过红外光谱可以确定有机物的 官能团、键的存在形式和结构。
多样性样品的特征鉴别
有机化学反应的机理解析
红外光谱可以帮助鉴别有机样品, 包括药物、化妆品、食品等。
通过红外光谱可以观察和解读有 机化学反应过程中的变化和中间 产物。
结束语
通过本次有机波谱解析课件的学习,我们了解了红外光谱的基本原理、应用以及在有机化学中的重要性。希望 大家能够运用所学的知识解析更多样的化合物结构,并探索更多的应用领域。 谢谢大家!
包括吸收光谱、透射光谱和反射光谱。
红外光谱的应用
广泛用于有机化学、材料科学、生物医药等领 域的结构鉴定和分析。
光谱解析方法
通过与标准谱图的对比、基本频率的判断等方 式来解析光谱。
研究领域
从药物研发到环境监测,红外光谱在科学研究 和工业实践中起着至关重要的作用。
红外光谱仪的原理
红外光谱仪是通过红外辐射与样品之间的相互作用,测量样品在不同波长下的吸收、透射或反射情况,从而得 到样品的光谱图像。
光源系统
产生红外光束的光源,通常使用 热辐射源或激光辐射源。
选择系统
检测系统
选择样品与光束相互作用的方式, 包括光栅、滤光片和干涉仪等。
将红外辐射转化为电信号的检测 器,常用的有热电偶和半导体探 测器。
红外光谱的解释
通过对红外光谱中各种谱带的解释,我们可以了解样品中化学键的类型、存在形式以及它们周围的环境。
1
基本谱图的解释
包括吸收峰的位置、强度和宽度等信息,反映了样品中各种官能团的存在。
2
谱峰的解释
通过分析谱峰的位置、形状和强度,可以推断出样品中的化学键类型和它们的相对数量。
3
谱峰位置和强度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有机化合物波谱分析
第二章 红外光谱
学习要求:
1、了解红外光谱的一般原理 2、掌握官能团的吸收波数与结构的关系 3、掌握红外光谱解析的步骤、熟练运用红外光 谱解析有机分子结构
一 红外光谱的基础知识 二 红外光谱的重要吸收区段 三 红外光谱在结构解析中的应用
第一节 红外光谱基础知识
1.1 红外光谱
振动自由度=3 n- 平动自由度-转动自由度 非线性分子: 振动自由度=3 n-6 线 性 分 子: 振动自由度=3 n-5
绝大多数化合物红外吸收峰数远小于理论计算振动自由度(原因:无偶极矩 变化的振动不产生红外吸收;吸收简并;吸收落在仪器检测范围以外;仪器 分辨率低,谱峰重叠等。)如水分子和二氧化碳分子 。
利用实验得到的键力常数和计算式,可以估算各种类型的 基频峰的波数
例如:HCl,k = 5.1N·cm-1
v
= 1303
5.1 (1 + 35.5)
1/2
=
2993
cm -1
1×35.5
C—C C=C C≡C C—H
k ~ 5 N·cm-1 = 1193 cm-1 k ~ 10 N·cm-1 = 1687 cm-1 k ~ 15 N·cm-1 = 2066 cm-1 k ~ 5 N·cm-1 = 3042 cm-1
发生振动能级跃迁需要能量的大小取决于键两端原子的 折合质量和键的力常数,即取决于分子的结构特征。
化学键键强越强(即键的力常数 K 越大)原子折合质量 越小,化学键的振动频率越大,吸收峰将出现在高波数区。
吸收频率随键的强度的增加而增加,随键连原子的质量增 加而减少。化学键力常数:单键—4~8 双键—8~12 叁 键—12~18
K为 化学键的力常数, 与键能和键长有关; m 为双原子的折合质 量.
2、质量和力常数的影响
有机化合物中个别的化学键可以近似地看作是双原子 分子,这样就可以利用双原子分子的振动公式来理解化学
键的振动:
v
=
1 2πc
(K / u)1/2 = 1303
K (m1 + m2) 1 / 2 m1m2
K:力常数,m1 和 m2 分别为二个振动质点的质量数。
原子间沿着键的轴方向的伸长和缩短,叫做伸缩振动, 用表示。振动时键长有变化但键角没有变化:
非对称伸缩
对称伸缩
组成化学键的原子离开键的轴面而上下左右的弯曲,叫做 弯曲振动,用 表示。弯曲振动时键长不变而键角发生变化:
平面摇摆
剪式振动
非平面摇摆
扭曲振动
(3) 影响吸收峰数目的因素
吸收峰减少原因:没有偶极矩变化的振动不产生红外吸 收;吸收频率相同,简并为一个吸收峰;有时频率接近, 仪器分辨不出,表现为一个吸收峰;有些吸收程度太弱, 仪器检测不出;有些吸收频率超出了仪器的检测范围。
红外光谱中的吸收带是由于分子吸收一定频率的红外 光,发生振动能级的跃迁的。
按量子力学的观点,当分子吸收红外光谱发生跃迁时, 要满足一定的要求,即振动能级是量子化的,可能存在的能 级满足下式:
E 振 =( V+ 1/2 )h n
n : 化学键的 振动频率; V : 振动量子数。
任意两个相邻的能级间的能量差为:
在有机化合物分子中,同一个原子上有几个化学键, 因此必须考虑键与键之间振动的相互影响。
在C-C-H型化学键中,它们的伸缩振动频率差别较大, 彼此之间的影响较小,基本上是独立进行的。
研究对象:具有红外活性的化合物,即含有共价键、并在 振动过程中伴随有偶极矩变化的化合物。 用途:结构鉴定、定量分析和化学动力学研究等。
红外光谱以波长(或波数)为横坐标,以表示吸收带的 位置。以透射百分率(Transmittance %,符号T%)为纵 坐标,表示吸收强度,吸收带为向下的谷。
红外光谱研究始于20世纪初期,自1940年商品红外光 谱仪问世以来,红外光谱在有机化学研究中得到了广泛的应 用。
1.2 分子化学键振动与能级
简偕振动
分子是由各种原子以化学键相互连接而生成。可以用 不同质量的小球代表原子,以不同强度的弹簧代表各种化 学键,它们以一定的次序互相连接,就成为分子的近似机 械模型。这样就可以根据力学定理来处理分子的振动。
1.2.1双原子分子振动 对于双原子分子,可认为分子中的原子以平衡点为中
1.2.2 多原子分子振动
(1) 分子振动的自由度 理论上讲,分子的每一种振动形式都会产生一个基频吸收
峰,即一个多原子分子产生的基频峰的数目等于分子所有的振 动形式的数目。
分子的基本振动理论峰数,可由振动自由度来计算,对 于由 n 个原子组成的分子,其自由度为3 n。
3n= 平动自由度 + 振动自由度 + 转动自由度 分子的平动自由度为3, 转动自由度为:非线性分子3,线性分子2
简单地说,当用一束波长连续变化的单色红外光线透射 某一物质时,该物质的分子对某些波长,若以波长或波数为横坐标,以百分吸收率为纵坐标, 这样记录下来的曲线图形,就是该物质的红外光谱。
光谱的产生: 分子中基团的振动和转动能级跃迁产生振 -转光谱,称红外光谱。 所需能量:
(2)非偕振动
双原子分子并非理想的谐振子,计算出的基频吸收带只 是一个近似值,非谐振子的双原子分子的真实吸收峰比按谐 振子处理波数低。
用谐振子振动的规律近似描述分子振动:=0 → =1 产生的吸收谱带叫做基本谱带或基频峰,最强;=0 → =2,3产生的吸收谱带叫倍频峰,弱。
(2) 振动的基本类型
心,以非常小的振幅作周期性的振动即化学键的振动类似 于连接两个小球的弹簧 ,它们的机械振动模型是以力常 数为k的弹簧连接m1、m2的两个小球:



根据胡克(Hooke)定律,两个原子的伸展振动视为一
种简谐振动,其波数可依下公式近似估计:
v=
1 λ
=
v c
=
1 2πc
(K / u)1/2
u
=
m1m2 m1 + m2
吸收峰增多原因:产生倍频峰( 0 2、 3) 和组频峰(各种振动间相互作用而形成)——统称泛频; 振动偶合—相邻的两个基团相互振动偶合使峰数目增多; 费米共振—当倍频或组合频与某基频峰位相近时,由于相 互作用产生强吸收带或发生峰的分裂,这种倍频峰或组频 峰与基频峰之间的偶合称为费米共振。
(4)振动偶合
相关文档
最新文档