9钢一铁总厂10高炉炉况严重失常及处理
炼铁高炉事故及应对措施[最终版]
炼铁高炉事故及应对措施[最终版]第一篇:炼铁高炉事故及应对措施[最终版]炼铁高炉安全事故及应对措施高炉冶炼事故主要有低料线、管道行程和崩料、悬料、风口灌渣、炉缸和炉底烧穿等。
如不及时处理,就会酿成大祸。
1.高炉突然断风处理高炉突然断风,应按紧急休风程序操作,同时组织出净炉内的渣和铁。
休风作业完成后,组织处理停风造成的各种异常事故。
如果设有拨风系统,应按照拨风规程作业,采取停煤、停氧等应急措施,按规程逐步恢复炉况。
2.高炉停电事故处理高炉停电事故处理应遵守下列规定:(1)高炉生产系统(包括鼓风机等)全部停电,应积极组织送电;因故不能送电时,应按紧急手动休风程序处理。
(2)煤气系统停电,应立即减风,同时立即出净渣、铁,防止高炉发生灌渣、烧穿等事故;若煤气系统停电时间较长,则应根据总调度室要求休风或切断煤气。
(3)炉顶系统停电时,高炉工长应酌情立即减风降压直至休风(先出铁、后休风);严密监视炉顶温度,通过减风、打水、通氮气或通蒸汽等手段,将炉顶温度控制在规定范围以内;立即联系有关人员尽快排除故障,及时恢复,恢复时应平衡风量、矿批与料线的关系,合理控制入炉燃料比。
(4)发生停电事故时,应将电源闸刀断开,挂上停电牌;恢复供电时,应确认线路上无人工作并取下停电牌,方可按操作规程送电。
(5)鼓风机停电按停风处理。
(6)水系统停电按停水处理。
3.高炉冷却系统事故处理就高炉主体来讲,冷却的目的是保护炉体设备,生成稳定的渣壳。
为了达到有效的冷却,必须提高水质,采用高效的冷却构件,对水进行有效的控制,既不危及耐火材料的寿命,又不致因冷却件的泄漏导致高炉运转失常或发生事故。
(1)高炉冷却系统应符合下列规定:①高炉本体冷却水压力都应大于炉内压力0.05MPa以上。
②高炉各区域的冷却水温度、流量和压力应满足设计要求。
③对热风阀和倒流阀的破损,进行常规“闭水量”检查;倒换工业水的供水压力,仍应大于风压0.05MPa;应按顺序倒换工业水,防止断水。
高炉日常操作以及常见事故的预防与处理
高炉的日常操作以及常见事故的处理和预防前言高炉的冶炼条件和冶炼过程是不断变化的,高炉操作者必须根据外围条件和炉况的变化及时采取相应的调剂,处理措施,以保持高炉长期处于良好的顺行状态。
炉况顺行状态出项恶化,高炉生产技术人员操作失误以及其他主,客观原因会引发炉况失常,如处理措施不当,会引发炉况进一步恶化,甚至导致事故的发生。
而事故的发生是最大的浪费。
对事故要防患于未然,消灭于萌芽。
一旦发生事故,需要在统一指挥下,主动而又沉着地组织抢救,避免事故扩大。
尽量使事故的损失降致最底。
如何有效的预防和处理高炉生产事故是一个十分重要的课题。
本文结合我厂广大炼铁工作者长期的生产实践,并参考有关炼铁专著,汇集而成以供高炉操作者在生产实践中参考使用,应水平有限,不足之处,恳请大家批评指正。
目录高炉炉况的日常调剂。
失常炉况的判断与处理。
常见事故预防与处理。
能源,介质类。
炉内操作。
炉前操作类。
冷却系统及其它本体系统。
高炉炉况的日常调剂炉况正常,顺行的特征(1)风量曲线光滑,无摆动尖峰(2)风量与顶压相适应(3)热风压力平稳,风压和风量相适应,风压曲线无“锯齿”形波动(4)除料罐均压出现尖峰外,顶压曲线平稳(5)煤气上升管四点的温差一般在50以内,平均温度的高低与冶炼品种,冶炼强度,布料方式,煤气利用率,矿石于炉温度及焦碳含水量等因素有关(6)炉喉温差一般在150以内,原燃料差时可达200(7)下料均匀顺畅,料速适宜(8)料面稳定,无偏料(9)风口明亮,工作均匀,无生降,无挂渣,破损少(10)炉缸活跃,渣铁流动性好,物理热充足,生铁化学成分合格,渣中FeO小于0.8%,炉渣碱度适中(11)铁口深度正常,出渣出铁稳定,均匀(12)炉体冷却设备(冷却壁,冷却板等)及其内衬温度分布合理,无剧烈波动。
炉况日常调剂炉况日常调剂主要有上部调剂。
下部调剂,负荷调剂及碱度调剂1,上部调剂我厂均采用无料钟炉顶布料,上部调剂在溜槽长度,旋转速度,倾动速度及中心喉管直径等都设定后,主要在与装料的顺序,料线,批重,布料矩阵及下料闸开度的选择。
高炉炉况失常总结
高炉炉况失常总结1. 引言高炉作为炼铁工艺的核心设备,其正常运行对保持铁水生产的连续性和稳定性至关重要。
然而在实际生产过程中,高炉炉况时常发生失常情况,这些失常情况严重影响了高炉的正常操作和矿石冶炼效果。
本文将总结高炉炉况失常情况的常见原因和解决方法,旨在为高炉操作人员提供参考和指导。
2. 原因分析高炉炉况失常的原因多种多样,我们可以从以下几个方面进行分析:2.1. 炉料成分突变炉料成分的突变是高炉炉况失常的常见原因之一,特别是在原料的质量有较大波动时。
比如,矿石含杂质增加、含水率变化、石灰石镁含量异常波动等都可能导致高炉炉况失常。
解决这个问题的方法是加强原料的控制和检测,提前发现和处理突变情况。
2.2. 石灰石质量变差石灰石是高炉冶炼过程中常用的矫正剂和炉渣形成物,其质量的好坏直接影响高炉的炉况稳定性。
如果石灰石质量下降,容易导致炉渣膨胀、炉况不稳定等问题。
解决这个问题的方法是选择优质的石灰石供应商,建立稳定可靠的供应链。
2.3. 炉底渣疏松或积扎炉底渣的疏松或积扎都会影响高炉的正常运行。
炉底渣疏松会导致炉冷风过大,降低高炉的产量;而炉底渣积扎会导致炉冷风过小,影响高炉渣的排出。
解决这个问题的方法是定期清理炉底渣,并加强炉底渣的监测和分析。
2.4. 风温异常风温异常是高炉冶炼过程中常见的失常情况之一,风温过高或过低都会影响高炉的正常运行。
风温过高会使煤气燃烧不充分,导致高炉炉况不稳定;而风温过低会使煤气在炉内燃烧不充分,影响炉内温度和反应效果。
解决这个问题的方法是加强风温的监测和调节控制。
3. 解决方法针对以上分析的失常原因,我们可以采取以下措施进行解决:3.1. 建立完善的原料控制系统建立完善的原料控制系统,包括原料成分的在线检测和实时监控。
通过及时掌握原料成分的变化情况,可以在炉料成分发生突变时及时调整炉况,保持高炉的稳定运行。
3.2. 优化石灰石采购和使用选择优质的石灰石供应商,在建立稳定可靠的供应链的同时,加强对石灰石质量的检测和控制。
高炉车间高炉炉况的调剂与失常的处理
高炉车间高炉炉况的调剂与失常的处理高炉生产是一个复杂的冶炼过程,受很多内外因素的影响,这些因素是经常变化的,因此高炉工作者应努力做到“分析好上班,操作好本班,照顾到下班”。
依据正确的观察、分析、判断、采取及时果断的调节措施,纠正由于种种原因所破坏的冶炼平衡,以保持炉况稳定顺行,一般情况下,影响炉况波动的主要因素有:1、原燃料物理、化学性质波动。
(包括烧结、球团粉末量、原燃料)2、气候条件变化(即气温、温度、下雨、下雪等)3、设备状况影响(包括热风炉及装料设备故障,冷却设备漏水,喷煤设备故障,铁口失常,检测设备失灵等)。
4、操作因素。
6.1正常炉况的标志:6.1.1炉缸工作全面均匀活跃,炉温充沛,煤气流分布合理稳定,下料均匀。
具体表现为“风口明亮”,炉缸周围工作均匀,风口前无大块生料,不挂渣、涌渣,焦炭活跃,风口破损少。
6.1.2渣铁物理热充足,流动性好,渣碱度正常,渣沟不结厚壳,渣中带铁少。
6.1.3下料均匀,两个料尺图像及记录曲线都没有陷落、停滞、时快时慢现象。
记录曲线呈规则的锯齿状,两探尺要求同时达到料线,料线差最多不超过0.5m。
6.1.4炉温在规定范围内波动。
6.1.5风量、风压和透气性曲线,波动范围小,无明显锯齿状,风压和风量相适应,风量和料速相适应。
6.1.6炉喉煤气圆周均匀,炉喉十字测温曲线与炉顶摄像仪成像一致。
6.1.7炉顶煤气温度曲线呈一定温度范围波动的一条宽带,各点互相交织,组成的温度带有规则的波动。
6.1.8炉喉、炉身温度变化不大,在规定范围内炉身静压正常,无剧烈波动,在图形上呈一条平稳的波动不大的曲线。
6.1.9上、下部压差相对稳定在正常范围内。
6.1.10、炉体冷却水温差在规定范围内波动且相对稳定。
6.2正常炉况时操作:6.2.1为了达到稳定、高产、优质、低耗和高炉长寿,正常的操作制度应保持正常的煤气分布和充足的炉缸温度,以达到最有利的高炉冶炼正常进行的热制度。
6.2.2稳定冶炼强度,稳定炉温,稳定炉渣碱度,加强炉况分析。
高炉设备运行中的常见故障及其解决方法
高炉设备运行中的常见故障及其解决方法高炉是钢铁工业中非常重要的设备,负责将矿石冶炼成熔融铁水。
然而,在高炉设备的运行过程中,常常会遇到一些故障,这些故障可能会对生产效率造成影响甚至导致设备停工。
本文将介绍高炉设备运行中常见的故障,并提供相应的解决方法。
一、炉缸结渣炉缸结渣是高炉设备运行中最常见的故障之一。
炉缸结渣指的是在高炉炉缸内壁形成的结状物,这些结状物会堵塞高炉的通道,影响原料和燃料的正常流动,从而导致高炉冷风温度升高、产量下降等问题。
解决方法:1.增加矿石熔融性能:适当增加石灰石的添加量,提高石灰石的熔融性能,减少炉缸结渣的可能性。
2.合理调整煤气流量:通过调整煤气流量,保持高炉内的正压状态,防止煤气逆流,减少炉缸结渣的发生。
3.定期清理炉缸:每隔一段时间,对高炉炉缸进行清理,清除结渣,防止结渣堵塞通道。
二、风口堵塞风口是高炉冷风进入高炉的通道,它的通畅与否对高炉的正常运行至关重要。
然而,在高炉设备的运行过程中,风口常常会发生堵塞的情况,主要原因是烟气中含有大量的粉尘和颗粒物,这些物质会附着在风口内壁上,逐渐堆积形成堵塞。
解决方法:1.定期清理风口:每隔一段时间,对风口进行清理,清除附着在风口内壁上的粉尘和颗粒物,保持风口的通畅。
2.增加风口数量:根据实际情况,在高炉上增加风口数量,减少单个风口的负荷,降低风口堵塞的风险。
3.使用防堵塞材料:在风口内壁涂覆一层防堵塞材料,减少粉尘和颗粒物的附着,延缓风口堵塞的速度。
三、废气处理系统故障高炉运行过程中产生大量废气,这些废气含有大量的烟尘和有害气体,如果废气处理系统故障,将会对环境产生严重污染。
常见的废气处理系统故障包括除尘器堵塞、吸收塔溢流等。
解决方法:1.定期维护除尘器:定期对除尘器进行检查,清除堵塞物,保持除尘器的正常运行。
2.增加吸收塔容量:根据实际情况,适时增加吸收塔的容量,提高处理废气的效率,防止溢流发生。
3.加强监测和预警:设置废气处理系统的监测装置,实时监测废气处理系统的运行情况,及时发现故障并采取相应措施。
高炉失常炉况处理
高炉失常炉况的预防、处理及工艺考核炉况失常是炉况顺行恶化的结果,高炉操作者应及时判断炉况的变化趋势,并果断采取相应的措施,防止炉况进一步恶化。
炉况失常分为三类:煤气流分布失常,热制度失常和造渣制度失常。
一、悬料的征兆是什么?如何处理?1、形成原因悬料是炉料透气性与煤气流运动极不适应、炉料停止下降的失常现象。
各种炉况失常、恶化最终都能导致悬料。
按部位分为上部悬料、下部悬料;还可按形成原因分为炉凉、炉热。
原材料粉末多、煤气流失常等引起的悬料。
产生主要原因有:1)原燃料质量变差2)压差控制过高3)管道行程及崩料4)大量渣铁未出干净5)炉温陡然升高6)渣皮脱落7)炉墙结瘤等异常情况2、主要征兆:料尺停滞不动风压急剧升高,风量随之自动减少炉顶煤气压力降低上部悬料时上部压差高,风口焦炭仍然活跃,下部悬料时下部压差过高,部分风口焦炭不活跃(要注意当风压、风量、风口工作及上、下部压差都正常,只是料尺停滞时,应首先检查料尺是否有卡尺现象。
)3、处理:处理悬料是一件十分细致的工作,一定要及时处理,除休风后复风初期的悬料外,一般都要求立即处理,悬料时间不要超过20min,处理越早,越易恢复正常,损失也越少。
二时要分析不同情况的悬料,采取正确的方法,力争一次坐料成功,避免出铁前坐料。
1)炉温正常、风口工作正常的突然上部悬料,是上部局部透气性与煤气流不适应造成的,可用高压、常压转换或坐料来进行处理,回风压力一般为原风压的70%左右。
2)炉热造成的悬料,必须采取降低炉温的措施,只有控制住热行,坐料后才可以消除悬料,第一次坐料后回风压力约为原风压的60%左右。
3)炉凉悬料切不可采取降低炉温措施,而是在坐料后用小风量回复,在保证顺行的同时恢复炉温正常。
4)坐料后应临时采取疏松边缘的装料制度,连续悬料时,回风压力要低,并应缩小批重,集中加净焦或减轻焦炭负荷,尤其是冷悬料,净焦可多加些,并及早改为停止喷吹燃料所需的焦炭负荷。
5)连续两次坐料后料尺仍不能自由活动,可改按风压操作,争取料尺自由活动。
高炉炉内事故预案及处理
一、预案背景高炉作为钢铁生产的核心设备,在生产过程中,由于各种原因,可能会发生炉内事故,如炉顶煤气着火、炉缸埋矿、炉内大喷等。
为有效应对这些事故,降低事故损失,保障生产安全,特制定本预案。
二、事故类型及处理措施1. 炉顶煤气着火(1)事故原因:炉顶煤气泄漏、煤粉自燃等。
(2)处理措施:①立即停止上料,关闭炉顶放散阀,切断煤气来源。
②启动消防设施,对火源进行灭火。
③对泄漏点进行检查,修复泄漏。
④通知相关岗位,确保安全。
2. 炉缸埋矿(1)事故原因:炉缸冷却不良、炉料偏析等。
(2)处理措施:①降低炉况,减少炉缸压力。
②调整炉料结构,增加冷却剂。
③检查炉缸冷却系统,确保冷却效果。
④恢复正常生产。
3. 炉内大喷(1)事故原因:炉料结构不合理、炉内压力异常等。
(2)处理措施:①立即停止上料,关闭炉顶放散阀,切断煤气来源。
②启动消防设施,对火源进行灭火。
③检查炉内压力,调整炉内气氛。
④修复喷口,恢复正常生产。
三、事故预防措施1. 加强设备维护,确保设备正常运行。
2. 严格执行操作规程,避免人为失误。
3. 定期检查炉内气氛,确保安全。
4. 做好应急预案演练,提高应急处置能力。
5. 加强人员培训,提高安全意识。
四、事故报告及处理流程1. 发现事故后,立即上报上级领导。
2. 上级领导接到报告后,组织相关部门进行事故调查。
3. 根据事故原因,制定整改措施。
4. 对事故责任人进行追责。
5. 事故处理完毕后,进行总结,完善预案。
五、附则1. 本预案自发布之日起实施。
2. 本预案由安全生产管理部门负责解释。
3. 本预案如有变更,需经安全生产管理部门批准。
高炉失常原因及对策
高炉失常原因及对策
段福彬;肖祖斌;江明道
【期刊名称】《冶金与材料》
【年(卷),期】2018(038)006
【摘要】针对高炉因热风炉热风出口温度高,高炉长期低产量、低风温、低煤比、高焦比操作,对高炉炉况失常并且风口小套、中套及大套频繁烧损的原因进行剖析,采取了有效的应对措施,总结出了西(林)钢高炉在设备问题影响正常操作及现有原燃料质量的条件下的操作技术经验。
【总页数】2页(P73-73)
【作者】段福彬;肖祖斌;江明道
【作者单位】[1]西林钢铁集团有限公司,黑龙江伊春153025;[1]西林钢铁集团有限公司,黑龙江伊春153025;[1]西林钢铁集团有限公司,黑龙江伊春153025
【正文语种】中文
【中图分类】TF549
【相关文献】
1.包钢8#高炉气流分布失常的原因分析及处理 [J], 张志平;赵洋;沈后望;白文广;张占军
2.邢钢3号高炉炉况长期失常原因及处理 [J], 翟利军;刘立勇;窦秀林
3.水钢四号高炉炉况失常的原因分析 [J], 郎黔;刘欣
4.马钢A#高炉炉况失常原因分析 [J], 丁彬斌
5.高炉失常原因及对策 [J], 段福彬;肖祖斌;江明道
因版权原因,仅展示原文概要,查看原文内容请购买。
高炉炉况失常及处理
第二节高炉炉况失常及处理三、失常炉况的标志及处理1. 失常炉况的概念由于某种原因造成的炉况波动,调节得不及时、不准确和不到位,造成炉况失常,甚至导致事故产生;采用一般常规调节方法,很难使炉况恢复,必须采用一些特殊手段,才能逐渐恢复正常生产;2.炉况失常原因◆基本操作制度不相适应;◆原燃料的物理化学性质发生大的波动;◆分析与判断的失误,导致调整方向的错误;◆意外事故;包括设备事故与有关环节的误操作两个方面;3.失常炉况的种类低料线、悬料、炉墙结厚、炉缸堆积、炉冷、炉缸冻结、高炉结瘤等;4.低料线高炉用料不能及时加入到炉内,致使高炉实际料线比正常料线低0.5m或更低时,即称低料线;◆低料线的原因:①上料设备及炉顶装料设备发生故障;②原燃料无法正常供应;③崩料、坐料后的深料线;◆低料线的危害:①破坏炉料的分布,恶化了炉料的透气性,导致炉况不顺;②炉料分布被破坏,引起煤气流分布失常,煤气的热能和化学能利用变差,导致炉凉;③低料线过深,矿石得不到正常预热,势必降低焦炭负荷,使焦比升高;④炉缸热量受到影响,极易发生炉冷,风口灌渣等现象,严重时会造成炉缸冻结;⑤炉顶温度升高,超过正常规定,烧坏炉顶设备;⑥损坏高炉炉衬,剧烈的气流波动会引起炉墙结厚,甚至结瘤现象发生;⑦低料线时,必然采取赶料线措施,使供料系统负担加重,操作紧张;◆低料线的处理:①由于上料设备系统故障不能拉料,引起顶温高,开炉顶喷水或炉顶蒸汽控制顶温,必要时减风;②不能上料时间较长,要果断停风;造成的深料线大于4 m,可在炉喉通蒸汽情况下在送风前加料到4m以上;③由于冶炼原因造成低料线时,要酌情减风,防止炉凉和炉况不顺;④低料线1 h以内应减轻综合负荷5%~l0%;若低料线l h以上和料线超过3 m在减风同时,应补加净焦或减轻焦炭负荷,以补偿低料线所造成的热量损失;⑤当装矿石系统或装焦炭系统发生故障时,为减少低料线,在处理故障的同时,可灵活地先上焦炭或矿石,但不宜加入过多;一般而言集中加焦不能大于4批;集中加矿不能大于2批,而后再补回大部分矿石或焦炭;当低料线因素消除后应尽快把料线补上;⑥赶料线期间一般不控制加料,并且采取疏导边沿煤气的装料制度;当料线赶到3 m 以上后、逐步回风;当料线赶到2.5 m以上后,根据压量关系情况可适当控制加料,以防悬料;⑦低料线期间加的炉料到达软熔带位置时,要注意炉温的稳定和炉况的顺行;⑧当低料线不可避免时,一定要果断减风,减风的幅度要取得尽量降低低料线的效果,必要时甚至停风;5.悬料炉料停止下降,延续超过正常装入两批料的时间,即为悬料;经过3次以上坐料未下,称顽固悬料;◆悬料的原因:悬料主要原因是炉料透气性与煤气流运动不相适应;◆悬料的种类:按部位分为上部悬料、下部悬料;按形成原因分为炉凉、炉热、原燃料粉末多、煤气流失常等引起的悬料;◆悬料主要征兆:①悬料初期风压缓慢上升,风量逐渐减少,探尺活动缓慢;②发生悬料时炉料停滞不动;③风压急剧升高,风量随之自动减少;④顶压降低,炉顶温度上升且波动范围缩小甚至相重叠;⑤上部悬料时上部压差过高,下部悬料时下部压差过高;◆悬料的预防:①低料线、净焦下到成渣区域,可以适当减风或撤风温,绝对不能加风或提高风温;②原燃料质量恶化时,应适当降低冶炼强度,禁止采取强化措施;③渣铁出不净时,不允许加风;④恢复风温时,幅度不超过50C/h,加风时每次不大于150 m3/min;⑤炉温向热料慢加风困难时,可酌情降低煤量或适当撤风温;◆悬料处理:①出现上部悬料征兆时,可立即用改常压不减风操作;出现下部悬料征兆时,应立即减风处理;②炉热有悬料征兆时,立即停氧、停煤或适当撤风温,及时控制风压;炉凉有悬料征兆时应适当减风;③探尺不动同时压差增大,透气性下洚,应立即停止喷吹,改常压放风坐料;坐料后恢复风压要低于原来压力;④当连续悬料时,应缩小料批,适当发展边沿及中心,集中加净焦或减轻焦炭负荷;⑤坐料后如探尺仍不动,应把料加到正常料线后不久进行第二次坐料;第二次坐料应进行彻底放风;⑥如悬料坐不下来可进行休风坐料;⑦每次坐料后,应按指定热风压力进行操作,恢复风量应谨慎;⑧悬料可临时撤风温处理,降风温幅度可大些;坐料后料动,先恢复风量、后恢复风温;⑨冷悬料难于处理,每次坐料后都应注意顺行和炉温,防热悬料和炉温反复;严重冷悬料,避免连续坐料,只有等净焦下达后方能好转,此时应及时改为全焦操作;⑩连续悬料不好恢复,可以停风临时堵风口;⑾连续悬料坐料,炉温要控制高些;⑿坐料前应观察风口,防止灌渣与烧穿,悬料坐料期间应积极做好出渣出铁工作;⒀严重悬料指炉顶无煤气,风口不进风等,则应喷吹铁口后再坐料;⒁悬料消除,炉料下降正常后,应首先恢复风量到正常水平,然后根据情况,恢复风温、喷煤及负荷;6.连续塌料探尺停滞不动,然后又突然下落,称为塌料;连续停滞、塌料称为连续塌料;◆连续塌料的危害:影响矿石预热和还原,特别是下部连续塌料,能使炉缸急剧向凉,甚至造成炉缸冻结事故;◆连续塌料的征兆:①探尺连续出现停滞和塌落现象;②风压、风量不稳,剧烈波动,风量接受能力变差;③顶压出现向上尖峰,并且剧烈波动,顶压逐渐变小;④风口工作不均,部分风口有生降和涌渣现象,严重时自动灌渣;⑤炉温波动,严重时铁水温度显著下降,放渣困难;◆处理方法:①立即减风到能够制止崩料的程度,使风压、风量达到平稳;②适当减轻焦炭负荷,严重时加入适量净焦;③临时缩小矿批,减轻焦炭负荷,采用疏导边缘和中心的装料或酌情疏导边缘;④出铁后彻底放风坐料,回风压力应低于放风前压力,争取探尺自由活动;⑤只有炉况转为顺行,炉温回升时才能逐步恢复风量;⑥减氧或停氧;7.炉缸堆积◆炉缸堆积的原因:①原、燃料质量差,强度低,粉末过多,特别是焦炭强度降低影响更大;②操作制度不合理;主要包括:长期边缘过分发展,鼓风动能过小,或长期减风,易形成中心堆积;长期边缘过重或鼓风动能过大,中心煤气过度发展,易形成边缘堆积;长期冶炼高标号铸造生铁,或长期高炉温、高碱度操作;造渣制度不合理,Al2O3和MgO含量过高,炉渣粘度过大;长期过量喷吹;冷却强度过大,或设备漏水,造成边缘局部堆积;◆炉缸堆积的类型:炉缸中心堆积和边缘堆积两种,见表4—28;表4—28高炉炉缸堆积对比表◆炉缸堆积征兆:①接受风量能力变坏,热风压力较正常升高,透气性指数降低;②中心堆积上渣率显著增加,出铁后,放上渣时间间隔变短;③放渣出铁前憋风、难行、料慢,放渣出铁时料速显著变快,憋风现象暂时消除;④风口下部不活跃,易涌渣、灌渣;⑤渣口难开,带铁,伴随渣口烧坏多;⑥铁口深度容易维护,打泥量减少,严重时铁门难开;⑦风口大量破损,多坏在下部;⑧边缘堆积一般先坏风口,后坏渣口;中心堆积一般先坏渣口,后坏风口;⑨边缘结厚部位水箱温度下降;◆炉缸堆积处理:①改善原、燃料质量,提高强度,筛除粉末;②边缘过轻则适当调整装料制度,若需长期减风操作,可缩小风口面积、改用长风口或临时选择堵塞部分风口;③边缘过重,除适当调整布料外,可根据炉温减轻负荷,扩大风口;④改变冶炼铁种;冶炼铸造铁时,改炼炼钢生铁;冶炼炼钢生铁时,加均热炉渣、锰矿洗炉;降低炉渣碱度,改变原料配比,调整炉渣成分;⑤减少喷吹量,提高焦比,既避免热补偿不足,又改善料柱透气性;⑥适当减小冷却强度;加强冷却设备的检查,防止冷却水漏入炉内;⑦保持炉缸热量充沛,风、渣口烧坏较多时,可增加出铁次数、临时堵塞烧坏次数较多的风口;渣口严重带铁时,出铁后应打开渣口喷吹,连续烧坏应暂停放渣;⑧若因护炉引起,应视炉缸水温差的降低,减少含钛炉料的用量,改善渣铁流动性;⑨处理炉缸中心堆积,上部调整装料顺序和批重,以减轻中心部位的矿石分布量;⑩若因长期边重,引起炉缸边缘堆积,上部调整装料,适当疏松边缘;另外,在保持中心气流畅通的情况下,适当扩大风口面积;8.炉冷炉冷是指炉缸热量严重不足,不能正常送风,渣铁流动性不好,可能导致出格铁、大灌渣、悬料、结厚、炉缸冻结等恶性事故;◆炉冷发生的原因:1冷却设备大量漏水未及时发现和处理,停风时炉顶打开水未关;2缺乏准备的长期停风之后的送风;3长时间计量和装料错误,使实际焦炭负荷或综合负荷过重,或煤气利用严重恶化,未能及时纠正;4连续塌料或严重管道行程,未得到及时制止;5长期低料线作业,处理不当;6边缘气流过分发展、炉瘤、渣皮脱落以及人为操作错误等;◆初期向凉征兆:1风口向凉;2风压逐渐降低,风量自动升高;3在不增加风量的情况下,下料速度自动加快;4炉渣变黑,渣中FeO含量升高,炉渣温度降低;5容易接受提温措施;6顶温、炉喉温度降低;7压差降低,透气性指数提高,下部静压力降低;8生铁含硅降低,含硫升高,铁水温度不足;◆严重炉冷征兆:1风压、风量不稳,两曲线向相反方向剧烈波动;2炉料难行,有停滞塌陷现象;3顶压波动,悬料后顶压下降;4下部压差由低变高,下部静压力变低,上部压差下降;5风口发红,出现生料,有涌渣、挂渣现象;6炉渣变黑,渣铁温度急剧下降,生铁含硫升高;◆处理方法:1必须抓住初期征兆,及时增加燃料喷吹量,提高风温,必要时减少风量,控制料速,使料速与风量相适应;2要及时检查炉冷的原因,如果炉冷因素是长期性的,应减轻焦炭负荷;3严重炉凉且风口涌渣时,风量应减少到风口不灌渣的最低程度;为防止提温造成悬料,可临时改为按风压操作,保持顺行;4炉冷时除采取减少风量、提高风温、增加燃料喷吹量等提温的措施外,上部应加入净焦和减轻焦炭负荷;5组织好炉前工作;当风口涌渣时,及时排放渣铁,防止自动灌渣,烧坏风口;6严重炉冷且风口涌渣,又已悬料时,只有在出渣出铁后才允许坐料;放风时,当个别风口进渣时,可加风吹回不宜过多并立即往吹管打水,不急于放风,防止大灌渣;7若高炉只是一侧炉凉时,首先应检查冷却设备是否漏水发现漏水后及时切断漏水水源;若不是漏水造成的经常性偏炉凉,应将此部位的风口直径缩小;9.炉缸冻结由于炉温大幅度下降导致渣铁不能从铁口自动流出时,就表明炉缸已处于冻结状态;◆炉缸冻结的原因:1高炉长时间连续塌料、悬料、发生管道且未能有效制止;2由于外围影响造成长期低料线;3上料系统称量有误差或装料有误,造成焦炭负荷过重;4冷却器损坏大量漏水流入炉内,没有及时发现和处理;5无计划的突然长期休风;6装料制度有误,导致煤气利用严重恶化,没有及时发现和处理;7炉凉时处理失当;◆炉缸冻结的处理:1果断采取加净焦的措施,并大幅度减轻焦炭负荷,净焦数量和随后的轻料可参照新开炉的填充料来确定;炉子冻结严重时,集中加焦量应比新开炉多些,冻结轻时则少些;同时应停煤、停氧把风温用到炉况能接受的最高水平;2堵死其他方位风口,仅用铁口上方少数风口送风,用氧气或氧枪加热铁15,尽力争取从铁口排出渣铁;铁口角度要尽量减小,烧氧气时,角度也应尽量减小;3尽量避免风口灌渣及烧出情况发生,杜绝临时紧急休风,尽力增加出铁次数,千方百计及时排净渣铁;4加强冷却设备检查,坚决杜绝向炉内漏水;5如铁口不能出铁说明冻结比较严重,应及早休风准备用渣口出铁、保持渣口上方两个风口送风,其余全部堵死;送风前渣口小套、三套取下,并将渣口与风口间用氧气烧通,并见到红焦炭;烧通后将用炭砖加工成外形和渣口三套一样、内径和渣口小套内径相当的砖套装于渣口三套位置,外面用钢板固结在大套上;送风后风压不大于0.03 MPa,堵铁口时减风到底或休风;6如渣口也出不来铁,说明炉缸冻结相当严重,可转入风口出铁,即用渣口上方两个风口,一个送风,一个出铁,其余全部堵死;休风期间将两个风口问烧通,并将备用出铁的风口和二套取出,内部用耐火砖砌筑,深度与二套齐,大套表面也砌筑耐火砖,并用炮泥和沟泥捣固并烘干,外表面用钢板固结在大套上;出铁的风口与平台间安装临时出铁沟,并与渣沟相连,准备流铁;送风后风压不大于0.03 MPa,处理铁口时尽量用钢钎打开,堵口时要低压至零或休风,尽量增加出铁次数,及时出净渣铁;7采用风口出铁次数不能太多,防止烧损大套;风口出铁顺利以后,迅速转为备用渣口出铁,渣口出铁次数也不能太多,砖套烧损应及时更换,防止烧坏渣口二套和大套;渣口出铁正常后,逐渐向铁口方向开风口,开风口速度与出铁能力相适应,不能操之过急,造成风口灌渣;开风口过程要进行烧铁口,铁口出铁后问题得到基本解决,之后再逐渐开风口直至正常;10.炉墙结厚炉墙结厚分为上部结厚和下部结厚;上部结厚主要是由于对边缘管道行程处理不当,原燃料含钾、钠高或粉末多,低料线作业,炉内高温区上移且不稳定等因素造成的;下部结厚多是炉温、炉渣碱度大幅波动,长期边缘气流不足,炉况长期失常,冷却强度过大,以及冷却设备漏水,长期堵风口等因素造成的;11.连续崩料的征兆和处理方法征兆(1)料尺连续出现停滞和塌落现象(2)风压风量不稳、剧烈波动,接受风量能力差;(3)炉顶煤气压力出现尖峰,剧烈波动;(4)风口工作不均,部分风口生降和涌渣现象,严重时自动灌渣;炉温波动,严重时渣铁温度显著下降,放渣困难;连续崩料会影响矿石的预热与还原,特别是高炉下部连续崩料,能使炉缸急剧向凉,必要时果断处理,处理方法是:(1)立即减风到能够制止崩料的程度,使风压风量达到平稳;(2)加入适当数量的净焦(3)临时缩小料批,减轻焦炭负荷,适当发展边缘;(4)出铁后彻底放风坐料,回风压力应低于放风前压力;(5)只有炉况转为顺行,炉温回升是才能逐步恢复风量;。
炼铁高炉事故及应对措施
炼铁高炉安全事故及应对措施高炉冶炼事故主要有低料线、管道行程和崩料、悬料、风口灌渣、炉缸和炉底烧穿等。
如不及时处理,就会酿成大祸。
1.高炉突然断风处理高炉突然断风,应按紧急休风程序操作,同时组织出净炉内的渣和铁。
休风作业完成后,组织处理停风造成的各种异常事故。
如果设有拨风系统,应按照拨风规程作业,采取停煤、停氧等应急措施,按规程逐步恢复炉况。
2.高炉停电事故处理高炉停电事故处理应遵守下列规定:(1)高炉生产系统(包括鼓风机等)全部停电,应积极组织送电;因故不能送电时,应按紧急手动休风程序处理。
(2)煤气系统停电,应立即减风,同时立即出净渣、铁,防止高炉发生灌渣、烧穿等事故;若煤气系统停电时间较长,则应根据总调度室要求休风或切断煤气。
(3)炉顶系统停电时,高炉工长应酌情立即减风降压直至休风(先出铁、后休风);严密监视炉顶温度,通过减风、打水、通氮气或通蒸汽等手段,将炉顶温度控制在规定范围以内;立即联系有关人员尽快排除故障,及时恢复,恢复时应平衡风量、矿批与料线的关系,合理控制入炉燃料比。
(4)发生停电事故时,应将电源闸刀断开,挂上停电牌;恢复供电时,应确认线路上无人工作并取下停电牌,方可按操作规程送电。
(5)鼓风机停电按停风处理。
(6)水系统停电按停水处理。
3.高炉冷却系统事故处理就高炉主体来讲,冷却的目的是保护炉体设备,生成稳定的渣壳。
为了达到有效的冷却,必须提高水质,采用高效的冷却构件,对水进行有效的控制,既不危及耐火材料的寿命,又不致因冷却件的泄漏导致高炉运转失常或发生事故。
(1)高炉冷却系统应符合下列规定:①高炉本体冷却水压力都应大于炉内压力0. 05MPa以上。
②高炉各区域的冷却水温度、流量和压力应满足设计要求。
③对热风阀和倒流阀的破损,进行常规“闭水量”检查;倒换工业水的供水压力,仍应大于风压0.05MPa;应按顺序倒换工业水,防止断水。
④确认风口破损,应尽快减控水或更换。
⑤各冷却部位的水温差及水压,应每2h至少检查一次,发现异常,应及时处理,并做好记录;发现炉缸区域温差升高,应加强检查和监测,并采取措施直至休风,防止炉缸烧穿。
高炉常见事故及处理
高炉常见事故及处理办法一、鼓风机突然停风1.原因:1、鼓风机断电2、风机设备故障3、岗位人员误操作2.主要危险:1、煤气向送风系统倒流,造成送风管道甚至风机爆炸。
2、引起煤气管道产生负压,吸入空气爆炸。
3、可能造成全部风口,吹管甚至弯头严重灌渣。
3.处理:发生鼓风机突然停机时应立即进行如下操作1、立即关闭冷风大闸及混风调节阀,全开放风阀2、停止喷煤及富氧,停止下料3、TRT改手动,调压阀组改手动,自动阀,量程阀全开,快开阀关4、打开炉顶放散伐,关闭煤气截断阀。
5、向炉顶除尘器下降管处通蒸汽。
6、发出停风信号,通知热风炉关热风阀,开冷风伐和烟道阀,开倒流休风阀。
7、组织炉前工人检查各风口,发现进渣立即打开弯头的窥视孔大盖,防止炉渣灌死吹管和弯头,同时组织炉前出铁。
4.注意事项1、事故发生时炉内按处理程序快速果断处理2、打风口大盖时,注意避开风口正面,防止渣铁液流出造成烧烫伤3、出铁时用较大钻头(直径50—55MM)全开铁口二、高炉水压突然降低及突然停水1.原因:1、循环水泵站停电2、设备故障3、供水管道破裂4、操作失误5、过滤器或管道堵塞2.主要危险:1、风渣口套在失去冷却条件下短时间即可烧出,大量红焦及渣铁喷出炉外,给设备及人员安全带来极大威胁。
2、炉身冷却系统大量烧损及堵塞,缩短一代炉龄。
3、炉内煤气侵入冷却水管道产生爆炸危险。
3.处理:1、当水压降低低以正常水压时,立即联系水泵站,查明原因立即处理2、供水系统故障致冷却水压降低时,炉内改常压操作,减风至风压较水压低50kpa维持生产,但水压低于100kpa时立即休风。
3、高压水故障改低压水,炉内改常压操作。
4、当水压降低并迅速停水时立即放风,按紧急休风程序操作,组织出铁渣。
5、若有备用水源的情况下尽快给小、中、大套给水,防止烧坏。
6、关闭总水阀门及分水阀门,防止煤气进入管道及突然来水。
7、检查各冷却设备特别是风渣口是否烧坏,组织处理及更换。
8、热风炉全停水时,立即休风,如换炉过程中换完炉后停风。
钢铁厂高炉事故应急处置方案
钢铁厂高炉事故应急处置方案钢铁厂高炉作为钢铁生产的核心设备,其运行状况直接关系到生产的安全与稳定。
然而,由于高炉工艺复杂、操作条件苛刻,难免会发生各种事故。
为了有效应对高炉事故,最大限度地减少人员伤亡和财产损失,保障生产的正常进行,特制定本应急处置方案。
一、高炉事故类型及危害(一)高炉爆炸高炉内的压力过高、煤气泄漏等原因可能导致爆炸事故。
爆炸会造成设备严重损坏、建筑物坍塌,甚至人员伤亡。
(二)煤气中毒高炉煤气中含有一氧化碳等有毒气体,一旦泄漏,可能导致人员中毒,严重时危及生命。
(三)炉体坍塌炉衬损坏、冷却系统故障等原因可能导致炉体坍塌,不仅会损坏设备,还可能引发火灾、爆炸等次生事故。
(四)高温灼伤高炉内温度极高,若发生喷溅、泄漏等情况,可能导致人员高温灼伤。
二、应急组织机构及职责(一)应急指挥中心成立以厂长为总指挥的应急指挥中心,负责全面指挥和协调事故应急处置工作。
其职责包括:制定应急处置方案、下达应急指令、协调各部门之间的工作、向上级主管部门报告事故情况等。
(二)抢险救援组由生产部门、维修部门的技术骨干组成。
负责事故现场的抢险救援工作,如控制泄漏、扑灭火灾、抢修设备等。
(三)医疗救护组由厂内医务室和附近医院的医护人员组成。
负责对受伤人员进行现场急救和转运治疗。
(四)治安保卫组由保卫部门人员组成。
负责事故现场的治安保卫工作,设置警戒线,疏散无关人员,保障救援通道畅通。
(五)后勤保障组由行政部门、物资部门人员组成。
负责提供应急救援所需的物资、设备、车辆等保障工作。
三、预防措施(一)设备维护定期对高炉设备进行检查、维护和保养,确保设备处于良好运行状态。
重点检查炉体、冷却系统、煤气管道等关键部位,及时发现和处理隐患。
(二)人员培训加强对操作人员的培训,提高其操作技能和安全意识。
操作人员必须严格按照操作规程进行操作,严禁违规作业。
(三)安全监测安装完善的安全监测系统,对高炉内的压力、温度、煤气浓度等参数进行实时监测,一旦发现异常,及时报警并采取措施。
高炉炉况判断与冶炼过程失常和处理
判断生铁含硅高低,主要以铁水流动过程中火花 大小、多少,以及试样冷却后的断口颜色为依据。 铁水含硅低时,在出铁过程中,火花矮而多;铁 水流动性好,不粘铁沟,铁样断口为白色。随着 铁水含硅量的提高,火花逐渐变大、变少。
看火花估计含硅量要综合看出铁的全过程。既要 看主沟火花的多少,又要看小坑出口及其他地方 的火花情况,同时还要注意铁水的流速对火花的 影响,一般流速快时火花多,这要与硅过低的情 况区分开来。
④用铁水流动性判断含硅量
冶炼铸造生铁时:当[Si]为1.5%~2.0%时,铁水 流动性良好,但比炼钢铁黏些;当[Si]大于2.5% 时,铁水变黏,流动性变差,随着[Si]的升高黏 度增大。
冶炼炼钢生铁时:铁水流动性良好,不粘沟。
2)看出铁判断生铁含硫:
高炉炉温充足时,生铁中[Si]升高而[S]降低。 炉凉时,生铁中[Si]降低而[S]升高;当炉 缸温度发生变化时,生铁中[S]的波动幅度比 [Si]大。
①炉缸温度通常是指炉渣与铁水的温度水平。炉 热时,渣温充足,光亮夺目。在正常碱度时,炉 渣流动性良好,不易粘沟。上下渣温基本一致。 渣中不带铁,上渣口出渣时有大量煤气喷出,渣 流动时,表面有小火焰。冲水渣时,呈大的白色 泡沫浮在水面。
②炉凉时,渣温逐渐下降,渣的颜色变为暗红, 流动性差,易粘沟,渣口易被凝渣堵塞,打不开; 上渣带铁多,渣口易烧坏,喷出的煤气量少,渣 面起泡,渣流动时,表面有铁花飞溅。冲水渣时, 冲不开,大量黑色硬块沉于渣池。
⑩在酸性渣范围内,渣表面由粗糙变为光滑而有 光泽时,说明碱度由高到低,渣易拉丝,渣呈酸 性;在碱性渣范围内的炉渣断口呈石头状,表面 粗糙。
此外,在看渣时,还应注意比较上渣与下渣的渣 温和碱度是否均匀。出渣时前后渣温变化预示着 炉况凉热的趋势,这对全面掌握炉缸工作状态和 炉缸温度水平都有很大益处。
第五章 失常炉况的处理
第五章失常炉况的处理高炉冶炼是一个复杂的过程,它受到许多主客观因素的影响,炉况的波动是经常的,炉况的稳定和平衡是相对的。
高炉操作者首先要学会综合判断炉况,熟练掌握各种调节方法。
要分析好上班,操作好本班,照顾好下班,搞好四班衔接。
在操作中做到勤观察、勤分析,坚持早动、少动,准确无误。
一、正常炉况的标志:表现在三个方面,六个指标,一个互相适应,一个正常,即:上升煤气流分布合理稳定:(顶温<300℃,四点极差<50℃;煤气分布,十字测温曲线合理,均匀,稳定)下降物料流均匀顺畅;(料尺均匀,不塌,不偏,不滑,不悬,各尺差别≯0.5mm;压量关系平稳,全风量且风量与料速相适应)炉内温度场分布合理:(渣铁流畅,圆周纵向热负荷(炉衬温度,水温差)均匀稳定)煤气流分布与装料制度相适应。
渣铁排放正常。
二、边缘过分发展,中心过重由于上下部调剂不适应或调剂不当,动能过低或溜槽磨漏,边缘负荷轻造成大部分煤气沿边缘上升,因而煤气利用恶化,消耗升高,同时炉衬及冷却设备受到的侵蚀加重。
长期边缘过轻会导致炉缸中心堆积,炉凉,焦比升高,甚至出现连续塌料,管道,悬料,炉墙结厚等炉况严重失常现象。
(一)征兆:1、炉喉煤气边缘CO2含量比正常下降,中心CO2上升,煤气曲线最高点向中心移动,呈馒头状曲线,混合煤气中CO2降低,CO/CO2比值升高。
2、十字测温边缘温度升高,中心温度降低。
3、料尺有滑落现象,料速不均。
4、风压尚平稳但降低,曲线呆滞,易产生风压锐降,然后突然上升而悬料。
5、顶压频繁出现向上尖峰。
6、顶温升高,顶温曲线展开。
7、炉腰,炉身冷却水温差,炉墙温度升高,波动大。
8、初期风口很亮,后出现风口工作不均,有升降,涌渣,灌渣现象。
9、渣铁物理热低,渣中(FeO)波动且升高,铁中〔S〕升高。
10、严重时冷却设备损坏,风口损坏。
(二)处理方法1、采用疏导中心加重边缘的多环布料制度,单环布料时增大矿焦角或角差,以加重边缘负荷。
高炉特殊炉事故案及处理
三、特殊炉况的预案及处理:
④出现中心管道时,高炉可临时增加内环的矿石布 料份数。
⑤若出现边缘管道时,无钟高炉可在管道部位采用 扇形布料或定点布料装若干批炉料。
⑥管道行程严重时要加净焦若干批,以疏松料柱, 防止炉凉。
⑦采取上述措施无效时,可放风坐料,并适当加净 焦,恢复时压差要相应降低10-20kpa。
2、渣铁物理热充足、流动性良好,渣铁分离较好,渣中 含Fe少,炉渣结构致密,碱度适宜。
3、铁水流动性良好,炉温稳定,表面无油皮薄膜。 4、炉料下降速度正常且均匀,两探尺下降深度基本一致。 5、煤气流分布合理有效,风量、风压稳定,炉顶压力无 剧烈波动,各上升管煤气温度相近,且成规律性波动。
二、失常炉况分类:
三、特殊炉况的预案及处理:
(2)严重炉凉的处理: ①必须抓住初期征兆,及时增加喷吹燃料量,提高风 温,必要时减少风量,控制料速,使料速与风量相适应。 ②如果炉凉因素是长期性的,应减轻焦炭负荷。 ③剧凉时,风量应减少到风口不灌渣的最低程度,为 防止提温造成悬料,可临时改为按风压操作。 ④剧凉时除采取下部提高风温、减少风量、增加喷吹 燃料量等提高炉温的措施外,上部要适当加入净焦和减轻 焦炭负荷。
⑧如管道行程长期不能得到处理,应考虑休风堵部 分风口,然后再逐渐恢复炉况。
三、特殊炉况的预案及处理:
4、严重炉凉:
(1)严重炉ห้องสมุดไป่ตู้征兆:
①风压、风量不稳,两曲线向相反方向剧烈波动。 ②炉料难行,有停滞塌陷现象。 ③炉顶压力波动,悬料后顶压下降。 ④下部压差由低变高,下部静压力降低,上部压 差下降。
⑤风口发红,出现生料,有涌渣、挂渣现象。 ⑥炉渣变黑,渣、铁温度急剧下降,生铁含硫量 上升。
降低风温,为增加风量创造有利条件。
高炉炉况失常后的恢复规范
高炉炉况失常后的恢复规范炉况失常是高炉最大的工艺事故,失常后高炉的产量、质量、寿命均受到极大的影响,为减少高炉失常带来的不利后果,有必要对高炉炉况失常后的恢复进行规范,具体如下:一、炉况失常后的恢复分为四个阶段高炉失常后,炉况的恢复按照先后顺序,分为:炉温恢复阶段、顺行恢复阶段、炉型恢复阶段和炉缸状态恢复阶段。
二、炉温恢复阶段1、绝大部分的炉况失常是由于炉凉引起,充足的炉温是炉况恢复的基础。
2、恢复中退负荷和加净焦一定要足够,本着宁多勿少、宁热勿凉的原则,留有足够的余地。
3、对于由于炉凉导致炉况失常的炉子,提炉温要造成一定过热,抬高炉温基础,才有利于炉况较快恢复。
送风后能采取的提温措施都要考虑。
4、炉温基础抬起来过后,降炉温要缓,严禁降炉温过快造成二次炉凉、炉况反复。
5、基础负荷是一个相对的概念,它是随炉料结构、原燃料质量、冶炼强度等而变化的。
三、顺行恢复阶段1、绝大部分的炉况失常都有低料线,赶料线是炉况恢复的前期工作。
2、赶料线过程中要求上、下部相适应。
上部料制要相对疏松边缘,下部要堵风口、低风压。
赶料速度要和风压匹配、赶料速度要和顶温匹配等。
3、堵风口本着集中堵、宁多勿少的原则。
4、赶料过程中,顶温要逐步下降,不能下降过快,同时每一批下料前,顶温要有明显的回头。
5、压差和料线深浅、焦负荷大小相匹配,尤其是料线过深(料柱过短)、负荷过低时,压差一定要低,严防赶料线过程中悬料。
6、风压和风口数量要想适应。
一般地,最高风压=正常风压-10×堵风口数。
7、加风必须要等压力平稳后加。
加到一定的压力后,必须要上部料开始动了后才能继续加。
每次加风后要关注透气性变化,透气性降得太多要及时减回来。
四、炉型恢复阶段1、炉况失常必定造成炉墙粘结,高炉实际操作炉型发生变化。
2、炉型恢复的核心是发展边缘气流,洗掉炉墙粘结物。
3、较高炉温、较高顶温、较低风温、较大煤气量条件下发展边缘气流对洗炉墙最为有利。
4、发展边缘气流对洗炉墙时一定要考虑最大冷却能力,严防炉墙粘结物掉下后,加上高温、高速煤气流,造成冷却设备烧坏。
高炉出铁事故原因及采取的措施
1、炉温低
2、铁口深,开口孔径小,没有完全打开出铁口
3、捅铁口时,粘钢钎将铁口凝结
1、提高炉温
2、铁口过深应控制打泥量
3、开口孔径适宜,有小流铁及时用软铁棍捅开铁口
4、凝结后及时用氧气烧穿
出铁放炮
1、铁口堵泥没有烘干、潮湿。
2、冷却设备漏水
1、烘干后出铁
2、使用无水炮泥
3、加强设备检查,发现漏水时及时堵炮,休风更换冷却设备
2铁口过深时开口操作勿使钻杆损伤泥套上沿1提高炉温2铁口过深应控制打泥量3开口孔径适宜有小流铁及时用软铁棍捅开铁口4凝结后及时用氧气烧穿1烘干后出铁2使用无水炮泥3加强设备检查发现漏水时及时堵炮休风更换冷却设备1铁口浅时开口孔径小严禁钻漏2炉前做好各种准备工作出铁3抓好正点出铁率出铁流大适当减风4改善炮泥质量加强对铁口泥包的维护铁水流出后又凝结出铁放炮出铁跑大流跑焦炭封不住铁口1上次未出净或本次晚点出铁渣铁量多2铁口深度过浅3钻漏铁口铁口孔径大4潮铁口出铁5炉况不顺铁前憋压或悬料6炮泥质量差与泥包的脱落7冶炼强度高焦炭质量差块度小炉热1泥套破损烧坏炮头2泥炮故障不能顺利打泥3堵口时铁口前凝渣抗炮1开口时钻头应对准出铁口中心2捅出铁口时于铁口前架横梁3堵口前清理铁口前凝渣4时刻保持铁口泥套完好铁中发现泥套损坏应减风或休风堵铁口
高炉出铁事故原因及采取的措施
项目
原因
采取的措施
出铁口难开
1、炮泥耐压、抗折强度过大
2、铁口泥心内夹有凝铁
3、开口机钻头老化
1、加强炮泥制备工艺管理,改变炮泥配料组成
2、出净渣铁,铁口适当喷射
3、钻头老化时更新
4、打不开时用氧气烧开出铁口
铁口连续过浅
1、渣铁未出净,炉缸内积存大量渣铁
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5炉况失常处理的分析
5.1前期炉况处理受挫与操作思想保守有很大关 系。在进行开风口恢复过程中,由于害怕风口频繁 烧坏出现炉况反复,操作上意见不统一致使错过了 高炉开风口的时机使高炉陷入了一个用风与烧风 口的反反复复怪圈。lO月27日4’风口大套烧坏 后,保守思想更加严重,基本上24小时以上才敢开 1个风口,烧坏又退回到2个风口,有3天多时问 维持在2个风口送风。由于风口少,炉缸没有空 间,极易再烧风口。 5.2统一操作思想,积极稳妥向前恢复,并配以一
2炉况失常的经过
lO月22日8:18休风计划检修16 h。休风前 10月21日22:20发现11。风口小套漏水,未更换, 休风后发现除了ll。风口,7’风口也漏水。
10月23日6:16检修超时近5h复风,复风后 对罐晚点,第一炉拖到3h以后才出。8:50开始出 现风口烧损现象(12。、15’风口小套漏水),14:40 又发现13样小套漏水,到18:45休风60分,更换了 烧坏的12’、13’、15。风口小套。此后复风恢复进 程较快,到24日0:00风口已全部捅开,24日2:10 发现14。风口小套漏水,未更换。6:45冷渣铁从 12‘、13’风口穿出,被迫紧急休风,风口全部灌渣, 一直处理到11:15计5.5h才复风,复风后因8‘风 口吹开,再次休风l h13 min。至此炉况进一步恶 化,加剧了炉缸堆积,炉况处于严重失常状态。
不懈的努力下率先化开,炉缸空间逐步增大开始慢 慢变活。由于5’一ll’基本上没有烧漏过,故在 12。一15’间的渣铁隔层化通后,炉况恢复进程顺 利,开风口速度加快,基本做到开一个活跃一个再 开一个,随着堵着的风口一个个被捅开,风量逐步 恢复,炉缸越来越活跃,到18日4’风口打开(剩
3’已闷风口),炉况失常处理终于告一段落(见
(7)控制合适的[Si]、[S]和炉渣碱度。11月12 13以后[Si]控制在1.5%。2.5%,炉渣碱度基本上 控制在1.1左右,渣铁流动性得到明显改善。
6结语
(1)发生炉缸堆积后的处理措施首先是改善原 料条件特别是焦炭的质量,减少粉末人炉。提高高 炉料柱强度,增加料柱透气性。
(2)选择合理的热制度和造渣制度,保证炉缸 充沛的物理热,控制好炉温、碱度;合理配置锰矿和 萤石洗炉料用量,控制好渣铁成分,改善渣铁流动 性。这是处理失常炉况的重要手段。
此次炉况严重失常与休风前炉况基础较差、风 口漏水以及检修超时有很大关系。但复风后恢复 不力丧失了事故前期处理时机。
生产组织原因,对罐晚点,复风第一炉铁出铁 延迟是最初风口烧坏的直接原因。
决策不果断,风口烧坏不及时更换,漏水长时 间进入炉内,炉缸热量大量损失,是事故扩大的主 要原因。
事故休风处理组织不力,延长了事故处理时 间。
万方数据
总第39期
马良,方亮等:马钢一铁总厂lO。高炉炉况严重失常及处理
·15·
系列强有力措施是炉况恢复的成功经验。 (1)根据高炉恢复情况及已开风口工作状况适
时开风口。捅风口的原则为优先开未重复烧坏的 风口及从铁口方向开始依次开。
(2)改善原燃料质量。停用外购三类焦,改用 外购二类焦,增强骨架作用。
死和更换时间长,进一步恶化炉缸状况,炉况恢复 进程受重大挫折。
4.2炉况失常基本消除 11月9日3。风口大套被烧后,高炉操作者重
新反思了处理思路,统一了操作思想,坚定不移打 开风口增加进风,扩大炉缸空间是减少风口烧损几 率“华山一条路”。通过耐心处理,11月12日开 始,炉况恢复进程明显加快,风口烧损漏水频率降 低,铁口1侧12’一18年1月
安徽冶金科技职业学院学报
Journal 0f Anhui Vocational College of Metallurgy aIld Technd%7
Vd.18.No.1 Jan.2008
马钢一铁总厂1 O#高炉炉况严重失常及处理
马 良,方亮,吴 钢,丁彬斌,聂晓敏
(马钢股份公司生产部 安徽马鞍山243000)
万方数据
· 14·
安徽冶金科技职业学院学报
2008年第1期
级焦。焦碳质量变差,尤其是热态强度变差后,对
高炉炉况顺行稳定影响加大,料柱骨架作用和透气 性变差,热压波动大,炉况顺行变差。
表2合资济原焦和合资滕州焦主要质量指标
品种
lilt %
Ad Vd《 St,d M40 M10 C砒 CSR 焦末
%
6:45一II:15、lI:
343
32—12:45
lO月25日
1’小套、3‘小 套、3,小套
19:12—19:35、22: 55—23:50
78
10月26日
20小套、40中 套、30小套
4:56—6:38、10:55 一ll:25、12:28— 12:45
149
2。小套、15。小
10月27日 套、4。中套、大 16:34—23:15
400
在
10月28日 15’小套
4:35—6:48
133
10月29日 15。中套
2:20—4:30
130
IO月31日 15’中套
8:30一ll:30
180
11月1日 2‘小套
17:18一18:08
50
11月2日 14。小套
20:17—20:45
28
11月3日
13’小套、14。 大套
23:53—
7
11月5日
表3)。
表3 11月10日一11月18日开风口恢复情况
时问
开风口情况
休风封3’风口.复风开ll’、13。、14。、15。风口。 11.10 后发现12’、13。风口烧,休风后开1。、14。、15。风
口
8:50开13’风口,22:10开12‘风口,因水温差高休
11.1l
风堵12’、13。风口
2:ol,13’风口吹开,2,36开12’风口,20:30开11’ 11.12 风口
(3)加锰矿、萤石和空焦、组合料洗炉。通过加 锰矿和萤石洗炉,改善渣铁流动性,有利于渣铁排 除,打开空间。集中加空焦和组合料,一方面是增 加软熔带区域焦窗厚度。改善料柱的透气性,另一
方面对因风口烧坏、高炉频繁休风造成的风口带至 炉腹下沿区域结厚进行热洗处理。
(4)加强渣铁排放。通过缩短出铁间隔时间, 增加出铁次数,使炉缸中化出的渣铁能及时排放出 来,尤其是每开1个风口,前两炉出铁非常关键。 平均每天出铁达到18。20次。
%
%
%
%
%
%
%
济原 9.84 12.52 1.62 O.83 83.4 7.8 35.5 54.5 11.2
滕州 10.2 12.47 1.76 O.82 83.2 8.2 3"/.5 50.8 15.1
由于10’高炉上料系统没有备用操作系统,DP 网络故障不能上料只能休风处理;炉顶料流阀磨 通,气流不易控制;炉前铁口维护不好,铁口易垮, 渣铁处理不好;炉内操作控制不好,时常出现高 [Si]低[S]和高碱度炉渣等多种原因炉况出现多次 反复,炉况出现恶化趋势,高炉出现了出铁前料速 明显变慢,出铁后憋风暂时消除,铁口深度容易维 护,打泥量减少。热压波动大,不易接受风量,炉缸 变小,明显的炉缸堆积征兆。 3.2复风后炉况恢复不力
11.13 7:46开lO。风口。14:∞开9’风口。23:15开8’风
口
11.14 10:10开2。风El,11:00开7。风口,14:30—16:49 换2+、11’风口(漏水)堵
11.15
0:35开1l’风口,7:加开6‘风口。14:45开5。风 口。16:45开2’风口
11.18 11:30开4’风口(仅剩3’已封风口)
(3)加强对冷却器的监控,做好查漏制漏工作, 对已查出的漏水点要及时处理,避免因漏水造成事 故扩大而增加炉况处理难度。
(4)合适的高风速,充足的鼓风动能是处理炉 缸堆积的基础,确保下部活跃,上部气流稳定可以 增强炉况的抗波动性,有助于加快炉况恢复进程。
(5)加强炉前渣铁处理,及时排尽渣铁,是炉况 处理的必要前提。
(6)坚定信心、耐心处理,积极稳妥向前恢复, 是炉况处理成功的关键。
参考文献
[1]惠志刚,王茂华,赵志群.高炉异常炉况与炉瘤事故 [M].延边人民出版社,2005.4
[2]张殿有.高炉冶炼操作技术[M].北京:冶金"r zlk出 版社。2006.3
[3] 由文采.实用高炉炼铁技术[M].北京:冶金工业出 版社.2002.6
收稿日期.'2007—12—13 作者简介:马良(1963一),男,马钢股份公司生产部,高级工程师,从 事炼铁生产与技术工作多年。
表I 10月23日一11月14日风口烧损情况
日期
漏水风口
休风时段
累计时间 /niln
10月23日
12·、15·、13· 小套
18:45—19:45
60
lO月24日 14’小套
thigh No.10 Blast Furnace at Mamashan Iron and Steel Co.Ltd.It introduced the united thought formed
No.10 Blast Fumaee.The situation returned to normal by taking some technical nleasuI℃s to reduce the tuyere datnage.
The Situation of SeriOUS Disorders and Trentment of
the No.1 O BF of First Iron—smelting Plant at Masteel MA Liang etc.
Abstract:This article aims to analyze and summarize the reason of the frequent tuyere damage of