算法设计与分析实验报告
算法设计与分析实验报告
实验报告题目实验一递归与分治策略一、实验目的1.加深学生对分治法算法设计方法的基本思想、基本步骤、基本方法的理解与掌握;2.提高学生利用课堂所学知识解决实际问题的能力;3.提高学生综合应用所学知识解决实际问题的能力。
二、实验内容设计一个递归和分治算法,找出数组的最大元素,找出x在数组A中出现的次数。
三、实验要求(1)用分治法求解…问题;(2)再选择自己熟悉的其它方法求解本问题;(3)上机实现所设计的所有算法;四、实验过程设计(算法设计过程)1.设计一个递归算法,找出数组的最大元素。
2.设计一个分治算法,找出x在数组A中出现的次数。
3.写一个主函数,调用上述算法。
五、实验结果分析(分析时空复杂性,设计测试用例及测试结果)时间复杂性:最好情况下,O(n)最坏情况下:O(nlog(n)空间复杂性分析:O(n)六、实验体会通过写递归与分治策略实验,更加清楚的知道它的运行机理,分治法解题的一般步骤:(1)分解,将要解决的问题划分成若干规模较小的同类问题;(2)求解,当子问题划分得足够小时,用较简单的方法解决;(3)合并,按原问题的要求,将子问题的解逐层合并构成原问题的解。
做实验重在动手动脑,还是要多写写实验,才是硬道理。
七、附录:(源代码)#include"stdio.h"#define ElemType intint count(ElemType a[],int i,int j,ElemType x){int k=0,mid; //k用来计数,记录数组中x出现的次数if(i==j){if(a[i]==x) k++;return k;}else{mid=(i+j)/2;k+=count(a,i,mid,x);k+=count(a,mid+1,j,x);}return k;}ElemType Maxitem(ElemType a[],int n){ElemType max=a[n-1],j;if(n==1){max=a[n-1];return max;}else{j=Maxitem(a,n-1);if(j>max) max=j;return max;}}void main(void){ElemType a[]={1,5,2,7,3,7,4,8,9,5,4,544,2,4,123};ElemType b;ElemType x;int n;b=Maxitem(a,15);printf("数组的最大元素为%d\n",b);printf("输入想要计数的数组元素:\n");scanf("%d",&x);n=count(a,0,14,x);printf("%d在数组中出现的次数为%d次\n",x,n);}实验二动态规划——求解最优问题一、实验目的1.加深学生对动态规划算法设计方法的基本思想、基本步骤、基本方法的理解与掌握;2.提高学生利用课堂所学知识解决实际问题的能力;3.提高学生综合应用所学知识解决实际问题的能力。
算法设计与分析实验报告
算法设计与分析报告学生姓名学号专业班级指导教师完成时间目录一、课程内容 (3)二、算法分析 (3)1、分治法 (3)(1)分治法核心思想 (3)(2)MaxMin算法分析 (3)2、动态规划 (4)(1)动态规划核心思想 (4)(2)矩阵连乘算法分析 (5)3、贪心法 (5)(1)贪心法核心思想 (5)(2)背包问题算法分析 (6)(3)装载问题算法分析 (6)4、回溯法 (7)(1)回溯法核心思想 (7)(2)N皇后问题非递归算法分析 (7)(3)N皇后问题递归算法分析 (8)三、例子说明 (9)1、MaxMin问题 (9)2、矩阵连乘 (9)3、背包问题 (10)4、最优装载 (10)5、N皇后问题(非递归) (11)6、N皇后问题(递归) (11)四、心得体会 (11)五、算法对应的例子代码 (12)1、求最大值最小值 (12)2、矩阵连乘问题 (13)3、背包问题 (14)4、装载问题 (17)5、N皇后问题(非递归) (18)6、N皇后问题(递归) (20)一、课程内容1、分治法,求最大值最小值,maxmin算法;2、动态规划,矩阵连乘,求最少连乘次数;3、贪心法,1)背包问题,2)装载问题;4、回溯法,N皇后问题的循环结构算法和递归结构算法。
二、算法分析1、分治法(1)分治法核心思想当要求解一个输入规模为n,且n的取值相当大的问题时,直接求解往往是非常困难的。
如果问题可以将n个输入分成k个不同子集合,得到k个不同的可独立求解的子问题,其中1<k≤n,而且子问题与原问题性质相同,原问题的解可由这些子问题的解合并得出。
那末,这类问题可以用分治法求解。
分治法的核心技术1)子问题的划分技术。
2)递归技术。
反复使用分治策略将这些子问题分成更小的同类型子问题,直至产生出不用进一步细分就可求解的子问题。
3)合并技术。
(2)MaxMin算法分析问题:在含有n个不同元素的集合中同时找出它的最大和最小元素。
算法设计与分析实验报告三篇
算法设计与分析实验报告一实验名称统计数字问题评分实验日期2014 年11 月15 日指导教师姓名专业班级学号一.实验要求1、掌握算法的计算复杂性概念。
2、掌握算法渐近复杂性的数学表述。
3、掌握用C++语言描述算法的方法。
4.实现具体的编程与上机实验,验证算法的时间复杂性函数。
二.实验内容统计数字问题1、问题描述一本书的页码从自然数1 开始顺序编码直到自然数n。
书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。
例如,第6 页用数字6 表示,而不是06 或006 等。
数字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1,2, (9)2、编程任务给定表示书的总页码的10 进制整数n (1≤n≤109) 。
编程计算书的全部页码中分别用到多少次数字0,1,2, (9)三.程序算法将页码数除以10,得到一个整数商和余数,商就代表页码数减余数外有多少个1—9作为个位数,余数代表有1—余数本身这么多个数作为剩余的个位数,此外,商还代表1—商本身这些数出现了10次,余数还代表剩余的没有计算的商的大小的数的个数。
把这些结果统计起来即可。
四.程序代码#include<iostream.h>int s[10]; //记录0~9出现的次数int a[10]; //a[i]记录n位数的规律void sum(int n,int l,int m){ if(m==1){int zero=1;for(int i=0;i<=l;i++) //去除前缀0{ s[0]-=zero;zero*=10;} }if(n<10){for(int i=0;i<=n;i++){ s[i]+=1; }return;}//位数为1位时,出现次数加1//位数大于1时的出现次数for(int t=1;t<=l;t++)//计算规律f(n)=n*10^(n-1){m=1;int i;for(i=1;i<t;i++)m=m*10;a[t]=t*m;}int zero=1;for(int i=0;i<l;i++){ zero*= 10;} //求出输入数为10的n次方int yushu=n%zero; //求出最高位以后的数int zuigao=n/zero; //求出最高位zuigaofor(i=0;i<zuigao;i++){ s[i]+=zero;} //求出0~zuigao-1位的数的出现次数for(i=0;i<10;i++){ s[i]+=zuigao*a[l];} //求出与余数位数相同的0~zuigao-1位中0~9出现的次数//如果余数是0,则程序可结束,不为0则补上所缺的0数,和最高位对应所缺的数if(yushu==0) //补上所缺的0数,并且最高位加1{ s[zuigao]++;s[0]+=l; }else{ i=0;while((zero/=10)>yushu){ i++; }s[0]+=i*(yushu+1);//补回因作模操作丢失的0s[zuigao]+=(yushu+1);//补回最高位丢失的数目sum(yushu,l-i-1,m+1);//处理余位数}}void main(){ int i,m,n,N,l;cout<<"输入数字要查询的数字:";cin>>N;cout<<'\n';n = N;for(i=0;n>=10;i++){ n/=10; } //求出N的位数n-1l=i;sum(N,l,1);for(i=0; i<10;i++){ cout<< "数字"<<i<<"出现了:"<<s[i]<<"次"<<'\n'; }}五.程序调试中的问题调试过程,页码出现报错。
算法设计与分析实验报告_3
实验一全排列、快速排序【实验目的】1.掌握全排列的递归算法。
2.了解快速排序的分治算法思想。
【实验原理】一、全排列全排列的生成算法就是对于给定的字符集, 用有效的方法将所有可能的全排列无重复无遗漏地枚举出来。
任何n个字符集的排列都可以与1~n的n个数字的排列一一对应, 因此在此就以n个数字的排列为例说明排列的生成法。
n个字符的全体排列之间存在一个确定的线性顺序关系。
所有的排列中除最后一个排列外, 都有一个后继;除第一个排列外, 都有一个前驱。
每个排列的后继都可以从它的前驱经过最少的变化而得到, 全排列的生成算法就是从第一个排列开始逐个生成所有的排列的方法。
二、快速排序快速排序(Quicksort)是对冒泡排序的一种改进。
它的基本思想是: 通过一趟排序将要排序的数据分割成独立的两部分, 其中一部分的所有数据都比另外一部分的所有数据都要小, 然后再按此方法对这两部分数据分别进行快速排序, 整个排序过程可以递归进行, 以此达到整个数据变成有序序列。
【实验内容】1.全排列递归算法的实现。
2.快速排序分治算法的实现。
【实验结果】1.全排列:快速排序:实验二最长公共子序列、活动安排问题【实验目的】了解动态规划算法设计思想, 运用动态规划算法实现最长公共子序列问题。
了解贪心算法思想, 运用贪心算法设计思想实现活动安排问题。
【实验原理】一、动态规划法解最长公共子序列设序列X=<x1, x2, …, xm>和Y=<y1, y2, …, yn>的一个最长公共子序列Z=<z1, z2, …, zk>, 则:..i.若xm=yn, 则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列...ii.若xm≠yn且zk≠x., 则Z是Xm-1和Y的最长公共子序列...iii.若xm≠yn且zk≠y.,则Z是X和Yn-1的最长公共子序列.其中Xm-1=<x1, x2, …, xm-1>, Yn-1=<y1, y2, …, yn-1>, Zk-1=<z1, z2, …, zk-1>。
算法课设实验报告(3篇)
第1篇一、实验背景与目的随着计算机技术的飞速发展,算法在计算机科学中扮演着至关重要的角色。
为了加深对算法设计与分析的理解,提高实际应用能力,本实验课程设计旨在通过实际操作,让学生掌握算法设计与分析的基本方法,学会运用所学知识解决实际问题。
二、实验内容与步骤本次实验共分为三个部分,分别为排序算法、贪心算法和动态规划算法的设计与实现。
1. 排序算法(1)实验目的:熟悉常见的排序算法,理解其原理,比较其优缺点,并实现至少三种排序算法。
(2)实验内容:- 实现冒泡排序、快速排序和归并排序三种算法。
- 对每种算法进行时间复杂度和空间复杂度的分析。
- 编写测试程序,对算法进行性能测试,比较不同算法的优劣。
(3)实验步骤:- 分析冒泡排序、快速排序和归并排序的原理。
- 编写三种排序算法的代码。
- 分析代码的时间复杂度和空间复杂度。
- 编写测试程序,生成随机测试数据,测试三种算法的性能。
- 比较三种算法的运行时间和内存占用。
2. 贪心算法(1)实验目的:理解贪心算法的基本思想,掌握贪心算法的解题步骤,并实现一个贪心算法问题。
(2)实验内容:- 实现一个贪心算法问题,如活动选择问题。
- 分析贪心算法的正确性,并证明其最优性。
(3)实验步骤:- 分析活动选择问题的贪心策略。
- 编写贪心算法的代码。
- 分析贪心算法的正确性,并证明其最优性。
- 编写测试程序,验证贪心算法的正确性。
3. 动态规划算法(1)实验目的:理解动态规划算法的基本思想,掌握动态规划算法的解题步骤,并实现一个动态规划算法问题。
(2)实验内容:- 实现一个动态规划算法问题,如背包问题。
- 分析动态规划算法的正确性,并证明其最优性。
(3)实验步骤:- 分析背包问题的动态规划策略。
- 编写动态规划算法的代码。
- 分析动态规划算法的正确性,并证明其最优性。
- 编写测试程序,验证动态规划算法的正确性。
三、实验结果与分析1. 排序算法实验结果:- 冒泡排序:时间复杂度O(n^2),空间复杂度O(1)。
算法分析与设计实验报告
算法分析与设计实验报告算法分析与设计实验报告一、引言算法是计算机科学的核心,它们是解决问题的有效工具。
算法分析与设计是计算机科学中的重要课题,通过对算法的分析与设计,我们可以优化计算机程序的效率,提高计算机系统的性能。
本实验报告旨在介绍算法分析与设计的基本概念和方法,并通过实验验证这些方法的有效性。
二、算法分析算法分析是评估算法性能的过程。
在实际应用中,我们常常需要比较不同算法的效率和资源消耗,以选择最适合的算法。
常用的算法分析方法包括时间复杂度和空间复杂度。
1. 时间复杂度时间复杂度衡量了算法执行所需的时间。
通常用大O表示法表示时间复杂度,表示算法的最坏情况下的运行时间。
常见的时间复杂度有O(1)、O(log n)、O(n)、O(n log n)和O(n^2)等。
其中,O(1)表示常数时间复杂度,O(log n)表示对数时间复杂度,O(n)表示线性时间复杂度,O(n log n)表示线性对数时间复杂度,O(n^2)表示平方时间复杂度。
2. 空间复杂度空间复杂度衡量了算法执行所需的存储空间。
通常用大O表示法表示空间复杂度,表示算法所需的额外存储空间。
常见的空间复杂度有O(1)、O(n)和O(n^2)等。
其中,O(1)表示常数空间复杂度,O(n)表示线性空间复杂度,O(n^2)表示平方空间复杂度。
三、算法设计算法设计是构思和实现算法的过程。
好的算法设计能够提高算法的效率和可靠性。
常用的算法设计方法包括贪心算法、动态规划、分治法和回溯法等。
1. 贪心算法贪心算法是一种简单而高效的算法设计方法。
它通过每一步选择局部最优解,最终得到全局最优解。
贪心算法的时间复杂度通常较低,但不能保证得到最优解。
2. 动态规划动态规划是一种将问题分解为子问题并以自底向上的方式求解的算法设计方法。
它通过保存子问题的解,避免重复计算,提高算法的效率。
动态规划适用于具有重叠子问题和最优子结构的问题。
3. 分治法分治法是一种将问题分解为更小规模的子问题并以递归的方式求解的算法设计方法。
算法设计与分析实验报告
算法设计与分析实验报告算法设计与分析实验报告引言:算法设计与分析是计算机科学中的重要课程,它旨在培养学生解决实际问题的能力。
本次实验旨在通过设计和分析不同类型的算法,加深对算法的理解,并探索其在实际应用中的效果。
一、实验背景算法是解决问题的步骤和方法的描述,是计算机程序的核心。
在本次实验中,我们将重点研究几种经典的算法,包括贪心算法、动态规划算法和分治算法。
通过对这些算法的设计和分析,我们可以更好地理解它们的原理和应用场景。
二、贪心算法贪心算法是一种基于局部最优选择的算法,它每一步都选择当前状态下的最优解,最终得到全局最优解。
在实验中,我们以背包问题为例,通过贪心算法求解背包能够装下的最大价值物品。
我们首先将物品按照单位重量的价值从大到小排序,然后依次将能够装入背包的物品放入,直到背包无法再装下物品为止。
三、动态规划算法动态规划算法是一种通过将问题分解为子问题,并记录子问题的解来求解整体问题的算法。
在实验中,我们以斐波那契数列为例,通过动态规划算法计算斐波那契数列的第n项。
我们定义一个数组来保存已经计算过的斐波那契数列的值,然后通过递推公式将前两项的值相加得到后一项的值,最终得到第n项的值。
四、分治算法分治算法是一种将问题分解为更小的子问题,并通过递归求解子问题的算法。
在实验中,我们以归并排序为例,通过分治算法对一个无序数组进行排序。
我们首先将数组分成两个子数组,然后对子数组进行递归排序,最后将两个有序的子数组合并成一个有序的数组。
五、实验结果与分析通过对以上三种算法的设计和分析,我们得到了以下实验结果。
在贪心算法中,我们发现该算法能够在有限的时间内得到一个近似最优解,但并不能保证一定得到全局最优解。
在动态规划算法中,我们发现该算法能够通过记忆化搜索的方式得到准确的结果,但在问题规模较大时,其时间复杂度较高。
在分治算法中,我们发现该算法能够将问题分解为更小的子问题,并通过递归求解子问题,最终得到整体问题的解。
常见算法设计实验报告(3篇)
第1篇一、实验目的通过本次实验,掌握常见算法的设计原理、实现方法以及性能分析。
通过实际编程,加深对算法的理解,提高编程能力,并学会运用算法解决实际问题。
二、实验内容本次实验选择了以下常见算法进行设计和实现:1. 排序算法:冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序。
2. 查找算法:顺序查找、二分查找。
3. 图算法:深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)。
4. 动态规划算法:0-1背包问题。
三、实验原理1. 排序算法:排序算法的主要目的是将一组数据按照一定的顺序排列。
常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序和堆排序等。
2. 查找算法:查找算法用于在数据集中查找特定的元素。
常见的查找算法包括顺序查找和二分查找。
3. 图算法:图算法用于处理图结构的数据。
常见的图算法包括深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)等。
4. 动态规划算法:动态规划算法是一种将复杂问题分解为子问题,通过求解子问题来求解原问题的算法。
常见的动态规划算法包括0-1背包问题。
四、实验过程1. 排序算法(1)冒泡排序:通过比较相邻元素,如果顺序错误则交换,重复此过程,直到没有需要交换的元素。
(2)选择排序:每次从剩余元素中选取最小(或最大)的元素,放到已排序序列的末尾。
(3)插入排序:将未排序的数据插入到已排序序列中适当的位置。
(4)快速排序:选择一个枢纽元素,将序列分为两部分,使左侧不大于枢纽,右侧不小于枢纽,然后递归地对两部分进行快速排序。
(5)归并排序:将序列分为两半,分别对两半进行归并排序,然后将排序好的两半合并。
(6)堆排序:将序列构建成最大堆,然后重复取出堆顶元素,并调整剩余元素,使剩余元素仍满足最大堆的性质。
2. 查找算法(1)顺序查找:从序列的第一个元素开始,依次比较,直到找到目标元素或遍历完整个序列。
算法设计与分析实验报告
算法设计与分析实验报告教师:学号:姓名:实验一:串匹配问题实验目的:(1) 深刻理解并掌握蛮力法的设计思想;(2) 提高应用蛮力法设计算法的技能;(3) 理解这样一个观点: 用蛮力法设计的算法, 一般来说, 经过适度的努力后, 都可以对算法的第一个版本进行一定程度的改良, 改进其时间性能。
三、实验要求:( 1) 实现BF 算法;(2 ) 实现BF 算法的改进算法: KMP 算法和BM 算法;(3 ) 对上述3 个算法进行时间复杂性分析, 并设计实验程序验证分析结果。
#include "stdio.h"#include "conio.h"#include <iostream>//BF算法int BF(char s[],char t[]){ int i; int a; int b; int m,n; m=strlen(s); //主串长度n=strlen(t); //子串长度printf("\n*****BF*****算法\n");for(i=0;i<m;i++){ b=0; a=i; while(s[a]==t[b]&&b!=n){a++; b++; }if(b==n){ printf("查找成功!!\n\n"); return 0;}}printf("找不到%s\n\n",t); return 0; }//前缀函数值,用于KMP算法int GETNEXT(char t[],int b){ int NEXT[10]; NEXT[0]=-1;int j,k; j=0; k=-1; while(j<strlen(t)){if ((k==-1)||(t[j]==t[k])){j++;k++;NEXT[j]=k; }else k=NEXT[k];}b=NEXT[b];return b;}//KMP算法int KMP(char s[],char t[]){int a=0; int b=0;int m,n; m=strlen(s); //主串长度n=strlen(t); //子串长度printf("\n*****KMP算法*****\n");while(a<=m-n){while(s[a]==t[b]&&b!=n){a++;b++; }if(b==n){printf("查找成功!!\n\n");return 0;}b=GETNEXT(t,b);a=a-b;if(b==-1) b++;}printf("找不到%s\n\n",t);return 0; } //滑动距离函数,用于BM算法int DIST(char t[],char c){ int i=0,x=1;int n; n=strlen(t);while(x&&i!=n-1){if(t[i]==c)x=0;else i++;}if(i!=n-1)n=n-1-i;return n; } //BM算法结果分析与体会:glibc里的strstr函数用的是brute-force(naive)算法,它与其它算法的区别是strstr不对pattern(needle)进行预处理,所以用起来很方便。
算法设计与分析实验报告
ቤተ መጻሕፍቲ ባይዱCost(L)=+
Cost(R)=+
如果用W(i,j)表示Q(i)+的和,于是可以得到检索树T的预期成本是:
P(k)+Cost(L)+Cost(R)+W(0.k-1)+W(k,n),
如果T是最优的,则上式必定为最小值。则必须有Cost(L)=C(0,k-1)和Cost(R)=C(k,n),而且k应该选择使得P(k)+ C(0,k-1)+ C(k,n)+W(0,k-1)+W(k,n)最下的k值。
2.最优二分检索树问题设计分析
已知一个固定的标识符集合,希望产生一个构造二分检索树的方法。可以预料,同一个标识符集合有不同的二分检索树,而不同的二分检索树有不用的性能特征。由于一般的检索树具有不同的概率,另外,也要做一些不成功的检索,即对不在这棵树中标识符的检索。假定给出的标识符集合为{},其中,设P(i)是对 的检索概率,Q(i)是正被检索的标识符X的概率,而标识符X满足 <X<,1<=i<=n,那么就是不成功的概率。明显的有=1.
算法设计与分析实验报告
山东技术科技学院
一、
1.掌握贪心方法、动态规划的基本思想
2.了解适用贪心方法、动态规划的问题类型,并能设计相应的贪心法算法
3.掌握贪心算法、动态规划算法时间空间复杂度分析,以及问题复杂性分析方法
二、
1.实现单源点生成最短路径的贪心方法,完善算法,求出长度,并推导路径上的结点序列
1
主函数main
FindWays()函数流程图
Ni=n
Y
Length=0
Y
N
1
2.
《算法设计与分析》实验报告模板 (1)
《算法设计与分析》实验报告
学号:姓名:
实验一分治法求解众数问题
一、实验目的
1.掌握分治法的设计思想并能熟练应用;
2.理解分治与递归的关系。
二、实验题目
在一个序列中出现次数最多的元素称为众数,根据分治法的思想设计算法寻找众数。
三、实验程序
四、程序运行结果
实验二动态规划法求解单源最短路径问题
一、实验目的
1.深刻掌握动态规划法的设计思想;
2.熟练应用以上算法思想求解相关问题。
二、实验题目
设有一个带权有向连通图,可以把顶点集划分成多个互不相交的子集,使得任一条边的两个顶点分属不同子集,称该图为多段图。
采用动态规划法求解多段图从源点到终点的最小代价路径。
三、实验程序
四、程序运行结果
实验三贪心法求解单源点最短路径问题
一、实验目的
1.掌握贪心法的设计思想;
2.分析比较同一个问题采用不同算法设计思想求解的结果。
二、实验题目
设有一个带权有向连通图,可以把顶点集划分成多个互不相交的子集,使得任一条边的两个顶点分属不同子集,称该图为多段图。
采用贪心法求解多段图从源点到终点的最小代价路径。
三、实验程序
四、程序运行结果
实验四回溯法求解0/1背包问题
一、实验目的
1.掌握回溯法的设计思想;
2.掌握解空间树的构造方法,以及在求解过程中如何存储求解路径;
二、实验题目
给定n种物品和一个容量为C的背包,选择若干种物品(物品不可分割),使得装入背包中物品的总价值最大。
采用回溯法求解该问题。
三、实验程序
四、程序运行结果。
《算法设计与分析》课程实验报告
《算法设计与分析》课程实验报告实验序号:实验项目名称:随机化算法一、实验题目1.N后问题问题描述:在n*n格的棋盘上放置彼此不受攻击的n个皇后,任何两个皇后不放在同一行同一列,同一斜线上,问有多少种放法。
2.主元素问题问题描述:设A是含有n个元素的数组,如果元素x在A中出现的次数大于n/2,则称x是A的主元素。
给出一个算法,判断A中是否存在主元素。
二、实验目的(1)通过N后问题的实现,体会拉斯维加斯随机算法的随机特点:运行次数随机但有界,找到的解一定为正确解。
但某次运行可能找不到解。
(2)通过实现主元素的不同算法,了解蒙特卡罗算法的随机特性:对于偏真的蒙特卡罗算法,找到为真的解一定是正确解;但非真的解以高概率给出解的正确率------即算法找到的非真解以小概率出现错误。
同时体会确定性算法与随机化算法的差异及各自的优缺点。
(3)通过跳跃表的实现,体会算法设计的运用的广泛性,算法设计的思想及技巧不拘泥独立问题的解决,而在任何需要计算机解决的问题中,都能通过算法设计的技巧(无论是确定性还是随机化算法)来灵巧地解决问题。
此实验表明,通过算法设计技巧与数据组织的有机结合,能够设计出高效的数据结构。
三、实验要求(1)N后问题分别以纯拉斯维加斯算法及拉斯维加斯算法+回溯法混合实现。
要求对同一组测试数据,完成如下任务a.输出纯拉斯维加斯算法找到解的运行次数及运行时间。
b.输出混合算法的stopVegas值及运行时间c.比较a、b的结果并分析N后问题的适用情况。
(2)主元素问题,要求对同一组测试数据,完成如下任务:a.若元素可以比较大小,请实现O(n )的确定性算法,并输出其运行时间。
b.(选做题)若元素不可以比较大小,只能比较相同否,请实现O(n) 确性算法,并输出其运行时间。
c.实现蒙特卡罗算法,并输出其运行次数及时间。
d.比较确定性算法与蒙特卡罗算法的性能,分析每种方法的优缺点。
(3)参照教材实现跳跃表(有序)及基本操作:插入一个结点,删除一个结点。
算法分析与设计实验报告
算法分析与设计实验报告实验一分治策略排序一、实验目的1)以排序问题为例,掌握分治法的基本设计策略;2)熟练掌握合并排序算法的实现;3)熟练掌握快速排序算法的实现;4) 理解常见的算法经验分析方法。
二、算法思路1. 合并排序算法思想:分而治之(divide - conquer);每个递归过程涉及三个步骤第一, 分解: 把待排序的 n 个元素的序列分解成两个子序列, 每个子序列包括 n/2 个元素.第二, 治理: 对每个子序列分别调用归并排序MergeSort, 进行递归操作第三, 合并: 合并两个排好序的子序列,生成排序结果.最坏时间复杂度最好时间复杂度空间复杂度2.快速排序算法思想:通过一躺排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一不部分的所有数据都要小,然后再按次方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
假设要排序的数组是A[1]……A[N],首先任意选取一个数据(通常选用第一个数据)作为关键数据,然后将所有比它的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一躺快速排序。
一躺快速排序的算法是:1)、设置两个变量I、J,排序开始的时候I:=1,J:=N;2)以第一个数组元素作为关键数据,赋值给X,即X:=A[1];3)、从J开始向前搜索,即由后开始向前搜索(J:=J-1),找到第一个小于X的值,两者交换;4)、从I开始向后搜索,即由前开始向后搜索(I:=I+1),找到第一个大于X的值,两者交换;5)、重复第3、4步,直到I=J;三、实验内容:1. 准备实验数据要求:编写一个函数data-generate,生成2000个在区间[1,10000]上的随机整数,并将这些数输出到外部文件data.txt中。
这些数作为本算法实验的输入数据。
2. 实现合并排序算法要求:实现mergesort算法。
输入:待排数据文件data.txt;输出:有序数据文件resultsMS.txt(注:建议将此排好序的数据作为实验二的算法输入);程序运行时间TimeMS。
算法分析与设计实验报告
算法分析与设计实验报告1. 引言算法是计算机科学中的核心概念之一,它为解决问题提供了一种清晰、有效的方法。
本实验报告旨在通过分析与设计一个特定算法的实验过程,来加深对算法的理解和应用。
2. 实验背景在现代社会中,算法的应用无处不在。
无论是搜索引擎的排序算法,还是社交媒体的推荐算法,都离不开算法的支持。
因此,学习算法的分析与设计,对于计算机科学相关领域的学生来说具有重要的意义。
3. 实验目的本实验的主要目的是通过分析与设计一个特定算法,加深对算法的理解和应用。
通过实际操作,学生将能够熟悉算法的设计过程,并能够分析算法的效率和复杂性。
4. 实验步骤4.1 确定算法目标在开始实验之前,我们需要明确算法的目标。
在本实验中,我们将设计一个排序算法,用于对一组数字进行排序。
4.2 了解算法原理在设计算法之前,我们需要对目标算法的原理进行深入了解。
在本实验中,我们将选择经典的冒泡排序算法作为实现对象。
冒泡排序算法的基本思想是通过比较相邻的元素,并根据需要交换位置,使得每一轮循环都能使最大(或最小)的元素“冒泡”到数组的末尾。
通过多次迭代,最终实现整个数组的排序。
4.3 实现算法在了解算法原理后,我们将根据算法的步骤逐步实现。
具体步骤如下:1.遍历待排序数组,从第一个元素开始。
2.比较当前元素与下一个元素的大小。
3.如果当前元素大于下一个元素,则交换它们的位置。
4.继续比较下一个元素,直到遍历完整个数组。
5.重复上述步骤,直到没有需要交换的元素。
4.4 测试算法在实现算法之后,我们需要对其进行测试,以验证其正确性和效率。
我们可以准备一组随机的数字作为输入,并对算法进行测试。
通过比较输入和输出结果,我们可以判断算法是否正确。
同时,我们还可以通过计算算法的时间复杂性和空间复杂性来评估其效率。
在本实验中,我们将使用时间复杂性分析来评估算法的效率。
4.5 分析与总结通过测试和分析,我们将得出算法的执行时间和空间复杂性。
算法设计与分析实验报告
算法设计与分析实验报告《算法设计与分析》实验报告实验一递归与分治策略应用基础学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期第九周一、实验目的1、理解递归的概念和分治法的基本思想2、了解适用递归与分治策略的问题类型,并能设计相应的分治策略算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:以下题目要求应用递归与分治策略设计解决方案,本次实验成绩按百分制计,完成各小题的得分如下,每小题要求算法描述准确且程序运行正确。
1、求n个元素的全排。
(30分)2、解决一个2k*2k的特殊棋牌上的L型骨牌覆盖问题。
(30分)3、设有n=2k个运动员要进行网球循环赛。
设计一个满足要求的比赛日程表。
(40分)提交结果:算法设计分析思路、源代码及其分析说明和测试运行报告。
三、设计分析四、算法描述及程序五、测试与分析六、实验总结与体会#include "iostream"using namespace std;#define N 100void Perm(int* list, int k, int m) {if (k == m){for (int i=0; i<m; i++)cout << list[i] << " ";cout << endl;return;}else{for (int i=m; i<k; i++){swap(list[m], list[i]);Perm(list, k, m+1);swap(list[m], list[i]);}}}void swap(int a,int b){int temp;temp=a;a=b;b=temp;}int main(){int i,n;int a[N];cout<<"请输入排列数据总个数:";cin>>n;cout<<"请输入数据:";for(i=0;i<n;i++){cin>>a[i];}cout<<"该数据的全排列:"<<endl;Perm(a,n,0);return 0;}《算法设计与分析》实验报告实验二递归与分治策略应用提高学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期一、实验目的1、深入理解递归的概念和分治法的基本思想2、正确使用递归与分治策略设计相应的问题的算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:从以下题目中任选一题完成,要求应用递归与分治策略设计解决方案。
算法设计与分析 实验报告
算法设计与分析实验报告1. 引言本实验报告旨在介绍算法设计与分析的相关内容。
首先,我们将介绍算法设计的基本原则和步骤。
然后,我们将详细讨论算法分析的方法和技巧。
最后,我们将通过一个实例来演示算法设计与分析的过程。
2. 算法设计算法设计是解决问题的关键步骤之一。
它涉及确定问题的输入和输出,以及找到解决方案的具体步骤。
以下是算法设计的一般步骤:2.1 理解问题首先,我们需要全面理解给定问题的要求和约束。
这包括确定输入和输出的格式,以及问题的具体要求。
2.2 制定算法思路在理解问题后,我们需要制定解决问题的算法思路。
这涉及确定解决问题的高层次策略和步骤。
通常,我们使用流程图、伪代码等工具来表示算法思路。
2.3 编写算法代码在制定算法思路后,我们可以根据思路编写实际的算法代码。
这可能涉及选择适当的数据结构和算法,以及编写相应的代码来实现解决方案。
2.4 调试和测试编写算法代码后,我们需要进行调试和测试,以确保算法的正确性和可靠性。
这包括检查代码中可能存在的错误,并使用不同的测试样例来验证算法的正确性。
3. 算法分析算法分析是评估算法性能的过程。
它涉及确定算法的时间复杂度和空间复杂度,以及评估算法在不同输入情况下的执行效率。
3.1 时间复杂度时间复杂度是衡量算法执行时间随输入规模增长的速度。
常见的时间复杂度包括常数时间复杂度 O(1)、线性时间复杂度 O(n)、对数时间复杂度 O(log n)、平方时间复杂度 O(n^2) 等。
通过分析算法中的循环、递归等关键部分,可以确定算法的时间复杂度。
3.2 空间复杂度空间复杂度是衡量算法所需空间随输入规模增长的速度。
它通常用于评估算法对内存的使用情况。
常见的空间复杂度包括常数空间复杂度 O(1)、线性空间复杂度 O(n)、对数空间复杂度 O(log n) 等。
通过分析算法中的变量、数组、递归栈等关键部分,可以确定算法的空间复杂度。
3.3 执行效率评估除了时间复杂度和空间复杂度外,我们还可以通过实验和测试来评估算法的执行效率。
算法设计与分析实验报告
算法设计与分析实验报告1. 引言本实验旨在设计和分析一个算法,解决特定的问题。
通过对算法的设计、实现和性能分析,可以对算法的优劣进行评估和比较。
本报告将按照以下步骤进行展开:1.问题描述2.算法设计3.算法实现4.性能分析5.结果讨论和总结2. 问题描述在本实验中,我们面临的问题是如何在一个给定的无序数组中寻找一个特定元素的位置。
具体而言,给定一个包含n个元素的数组A和一个目标元素target,我们的目标是找到target在数组A中的位置,如果target不存在于数组中,则返回-1。
3. 算法设计为了解决上述问题,我们设计了一个简单的线性搜索算法。
该算法的思想是从数组的第一个元素开始,逐个比较数组中的元素与目标元素的值,直到找到匹配的元素或搜索到最后一个元素。
算法的伪代码如下:function linear_search(A, target):for i from 0 to len(A)-1:if A[i] == target:return ireturn -14. 算法实现我们使用Python编程语言实现了上述线性搜索算法。
以下是算法的实现代码:def linear_search(A, target):for i in range(len(A)):if A[i] == target:return ireturn-15. 性能分析为了评估我们的算法的性能,我们进行了一系列实验。
我们使用不同大小的数组和不同目标元素进行测试,并记录了每次搜索的时间。
实验结果显示,线性搜索算法的时间复杂度为O(n),其中n是数组的大小。
这是因为在最坏的情况下,我们需要遍历整个数组才能找到目标元素。
6. 结果讨论和总结通过对算法的设计、实现和性能分析,我们可以得出以下结论:1.线性搜索算法是一种简单但有效的算法,适用于小规模的数据集。
2.线性搜索算法的时间复杂度为O(n),在处理大规模数据时可能效率较低。
3.在实际应用中,我们可以根据具体的问题和数据特征选择合适的搜索算法,以提高搜索效率。
算法设计与分析 实验报告
算法设计与分析实验报告算法设计与分析实验报告一、引言在计算机科学领域,算法设计与分析是非常重要的研究方向。
本次实验旨在通过实际案例,探讨算法设计与分析的方法和技巧,并验证其在实际问题中的应用效果。
二、问题描述本次实验的问题是求解一个整数序列中的最大子序列和。
给定一个长度为n的整数序列,我们需要找到一个连续的子序列,使得其和最大。
三、算法设计为了解决这个问题,我们设计了两种算法:暴力法和动态规划法。
1. 暴力法暴力法是一种朴素的解决方法。
它通过枚举所有可能的子序列,并计算它们的和,最终找到最大的子序列和。
然而,由于需要枚举所有子序列,该算法的时间复杂度为O(n^3),在处理大规模数据时效率较低。
2. 动态规划法动态规划法是一种高效的解决方法。
它通过定义一个状态转移方程,利用已计算的结果来计算当前状态的值。
对于本问题,我们定义一个一维数组dp,其中dp[i]表示以第i个元素结尾的最大子序列和。
通过遍历整个序列,我们可以利用状态转移方程dp[i] = max(dp[i-1]+nums[i], nums[i])来计算dp数组的值。
最后,我们返回dp数组中的最大值即为所求的最大子序列和。
该算法的时间复杂度为O(n),效率较高。
四、实验结果与分析我们使用Python编程语言实现了以上两种算法,并在相同的测试数据集上进行了实验。
1. 实验设置我们随机生成了1000个整数作为测试数据集,其中包含正数、负数和零。
为了验证算法的正确性,我们手动计算了测试数据集中的最大子序列和。
2. 实验结果通过对比实验结果,我们发现两种算法得到的最大子序列和是一致的,验证了算法的正确性。
同时,我们还对两种算法的运行时间进行了比较。
结果显示,暴力法的运行时间明显长于动态规划法,进一步证明了动态规划法的高效性。
五、实验总结通过本次实验,我们深入了解了算法设计与分析的方法和技巧,并通过实际案例验证了其在解决实际问题中的应用效果。
我们发现,合理选择算法设计方法可以提高算法的效率,从而更好地解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科实验报告课程名称:算法设计与分析实验项目:递归与分治算法实验地点:计算机系实验楼110专业班级:物联网1601 学号: 05学生姓名:***指导教师:***2018年 05月 04 日实验一递归与分治算法实验目的与要求1.进一步熟悉C/C++语言的集成开发环境;2.通过本实验加深对递归与分治策略的理解和运用。
实验课时2学时实验原理分治(Divide-and-Conquer)的思想:一个规模为n的复杂问题的求解,可以划分成若干个规模小于n的子问题,再将子问题的解合并成原问题的解。
需要注意的是,分治法使用递归的思想。
划分后的每一个子问题与原问题的性质相同,可用相同的求解方法。
最后,当子问题规模足够小时,可以直接求解,然后逆求原问题的解。
实验题目1.上机题目:格雷码构造问题Gray码是一个长度为2n的序列。
序列无相同元素,每个元素都是长度为n的串,相邻元素恰好只有一位不同。
试设计一个算法对任意n构造相应的Gray码(分治、减治、变治皆可)。
对于给定的正整数n,格雷码为满足如下条件的一个编码序列。
(1)序列由2n个编码组成,每个编码都是长度为n的二进制位串。
(2)序列中无相同的编码。
(3)序列中位置相邻的两个编码恰有一位不同。
2.设计思想:根据格雷码的性质,找到他的规律,可发现,1位是0 1。
两位是00 01 11 10。
三位是000 001 011 010 110 111 101 100。
n位是前n-1位的2倍个。
N-1个位前面加0,N-2为倒转再前面再加1。
3.代码设计:归式,就是如何将原问题划分成子问题。
2.递归出口,递归终止的条件,即最小子问题的求解,可以允许多个出口。
3.界函数,问题规模变化的函数,它保证递归的规模向出口条件靠拢(2)递归与非递归之间如何实现程序的转换?(3)分析二分查找和快速排序中使用的分治思想。
答:1.一般根据是否需要回朔可以把递归分成简单递归和复杂递归,简单递归一般就是根据递归式来找出递推公式(这也就引申出分治思想和动态规划)。
2.复杂递归一般就是模拟系统处理递归的机制,使用栈或队列等数据结构保存回朔点来求解。
(4)分析二次取中法和锦标赛算法中的分治思想。
二次取中法:使用快速排序法中所采用的分划方法,以主元为基准,将一个表划分为左右两个子表,左子表中的元素均小于主元,右子表中的元素均大于主元。
主元的选择是将表划分为r部分,对找出r个中的中间值,并求r组的中间值中的中间值。
锦标赛算法:两两分组比较,大者进入下一轮,知道剩下1个元素max为止。
在每次比较中淘汰较小元素,将被淘汰元素记录在淘汰它的元素的链表上。
检查max的链表,从中知道最大元素,即second本科实验报告课程名称:算法设计与分析实验项目:贪心算法实验地点:计算机系实验楼110专业班级:物联网1601 学号: 05学生姓名:俞梦真指导教师:郝晓丽2018年 05月 04日实验二贪心算法实验目的与要求1.理解贪心算法的基本思想;2.运用贪心算法解决实际问题,加深对贪心算法的理解和运用。
实验课时4学时(课内2学时+课外2学时)实验原理贪心算法的思想:(1)贪心算法(Greedy Approach)能得到问题的最优解,要证明我们所做的第一步选择一定包含着一个最优解,即存在一个最优解的第一步是从我们的贪心选择开始。
(2)在做出第一步贪心选择后,剩下的子问题应该是和原问题类似的规模较小的子问题,为此我们可以用数学归纳法来证明贪心选择能得到问题的最优解。
实验题目1.上机题目:最小延迟调度问题给定等待服务的客户集合A={1,2,…,n},预计对客户i的服务时长为t i>0,T=(t1,t2,…,t n),客户i希望的服务完成时刻为d i>0,D=(d1,d2,…,d n);一个调度f:A→N,f(i)为客户i的开始时刻。
如果对客户i的服务在d i之前结束,那么对客户i的服务没有延迟,即如果在d i之后结束,那么这个服务就被延迟了,延迟的时间等于该服务的实际完成时刻f(i)+t i减去预期结束时刻d i。
一个调度f的最大延迟是所有客户延迟时长的最大值max i∈A{f(i)+t i d i}。
附图2所示是不同调度下的最大延迟。
使用贪心策略找出一个调度使得最大延迟达到最小。
2.设计思想:贪心思想,按照他们的截止时间从小到大排序,如果截止时间相同按照花费时间从小到大排序。
然后按照f_min(所有客户延迟时长的最大值)=max(works[i].cost+time-works[i].deadline,f_min);寻找最所有客户延迟时长的最大值。
3.代码设计:ost);for(int i=0;i<n;i++)scanf("%d",&works[i].deadline),works[i].id=i+1;sort(works,works+n,cmp);int f_min=0;int time=0;for(int i=0;i<n;i++){ost+time>works[i].deadline)f_min=max(works[i].cost+time-works[i].deadline,f_min);ost;}printf("Maximum delay:\n");printf("%d\n",f_min);printf("Complete the order of tasks:\n");运行结果:思考题(1)哈夫曼编码问题的编程如何实现?答:哈夫曼树,又名最优树,给定n个权值作为n的叶子结点,构造一颗二叉树,若带权路径长度达到最小,成这样的二叉树为最优二叉树,也称哈夫曼树。
实现步骤:1、初始化: 根据给定的n个权值{w1,w2,…..wn..}构成n棵二叉树的集合F={T1,T2….Tn},其中每棵二叉树中只有一个带权Wi的根结点,左右子树均空。
2、找最小树:在F中选择两棵根结点权值最小的树作为左右子树构造一-棵新的二叉树,且至新的二叉树的根结点的权值为其左右子树,上根结点的权值之和。
3、删除与加入: 在F中删除这两棵树,并将新的二叉树加入F中。
4、判断:重复前两步(2和3),直到F中只含有一棵树为止。
该树即为哈夫曼树。
(2)使用贪心策略求解背包问题。
答:首先计算每种物品单位重量的价值vi/wi,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。
若将这种物品全部装入背包后,背包内的物品总重量未达到w,则选择单位重量价值次高的物品并尽可能多地装入背包。
依此策略一直地进行下去直到背包满重为止。
算法的主要计算时间在于将各种物品依其单位重量的价值从大到小排序。
因此,算法的计算时间上界为O(nlogn)。
(3)分析普里姆算法和克鲁斯卡尔算法中的贪心策略。
答:1、普里姆算法贪心策略:要记录到S中的下一条边(u,v)是一条不在S中,且使得SU{u,v}的权值之和也是最小的边时间复杂度:O(n^2) 空间复杂度:O(n^2)2、克鲁斯卡尔算法中的贪心策略:选取属于不同联通分量且构成权值最小且不形成回路的两个顶点组成的边、本科实验报告课程名称:算法设计与分析实验项目:动态规划实验地点:计算机系实验楼110 专业班级:物联网1601 学号: 05学生姓名:俞梦真指导教师:郝晓丽2018年 05月 07日实验三动态规划算法实验目的与要求1.理解动态规划算法的基本思想;2.运用动态规划算法解决实际问题,加深对贪心算法的理解和运用。
实验课时4学时(课内2学时+课外2学时)实验原理动态规划(Dynamic Programming)算法思想:把待求解问题分解成若干个子问题,先求解子问题,然后由这些子问题的解得到原问题的解。
动态规划求解过的子问题的结果会被保留下来,不像递归那样每个子问题的求解都要从头开始反复求解。
动态规划求解问题的关键在于获得各个阶段子问题的递推关系式:(1)分析原问题的最优解性质,刻画其结构特征;(2)递归定义最优值;(3)自底向上(由后向前)的方式计算最优值;(4)根据计算最优值时得到的信息,构造一个最优解。
实验题目1.上机题目:最大子段和问题给定n个整数(可以为负数)组成的序列(a1,a2,…,a n),使用动态规划思想求该序列的子段和的最大值。
注:当所有整数均为负整数时,其最大子段和为0。
例如,对于六元组(2, 11, 4, 13, 5, 2),其最大字段和为:a2 + a3 + a4 = 20。
除了动态规划,该问题可以使用顺序求和+比较(蛮力法)和分治法求解,思考其求解过程。
2.设计思想动态规划思想:dp[i],表示到当前i的最大字段和为多少,而他的字段和时要不就是前面的最大字段和加上本身的数值要不就是自身的数值。
状态转移方程:dp[i]=max(dp[i],dp[i-1]+a[i]);#include<iostream>#include<cstdio>#include<cmath>#include<cstring>using namespace std;const int maxn=1000+10;int dp[maxn];int a[maxn];., n),需安排在某战区n个点上,角色i在j点上的攻击力为A ij,使用回溯法设计一个布阵方案,使总的攻击力最大。
注:个人决定A矩阵的初始化工作。
该问题求解算法的输入数据形如附图4所示。
2.设计思想:利用回溯法搜索寻找解空间树。
深度优先搜索,设立访问标记进行剪枝,并将总共的攻击力作为参数不断传入。
寻找最大的攻击力。
数值的存储用的是二位数组,用ans_pos记录过程。
...Xn)来表示,其中Xi是放置皇后i所在的列号。
这意味着所有的解都是N元组(1,2,3,.......,N)的置换。
解空间大小为N!。
其次我们看约束条件:因为解空间已经给我们排除了不在同一行(因为每个皇后分别已经对应不同的行号)的约束条件。
我们要判断的是不在同一列和不在同一斜线的约束。
因为Xi表示皇后所在的列号,所以第k个皇后和第i个皇后同列的判断条件是X(k)=X(i)。
所以不同列的判段条件是X(k)!=X(i),1<k<i 。
又因为同一斜线的特征是要么行号和列号之和不变(右高左低)要么是行号和列号只差相等(左高右低),所以第k个皇后和第i个皇后在同斜线的判断条件是 i+X(i)= k+X(k) 或 i-X(i) =k-X(k),两式合并得 |X(i)-X(k)|=|i-k| 。
(5)使用回溯法求解装载问题。
答:基本思路:容易证明,如果一个给定装载问题有解,则采用下面的策略可得到最优装载方案。