液压基本回路旁路节流调速回路
第六讲 液压基本回路
液压基本回路—增压回路
四、增压回路
使系统某一支路获得 较系统调定压力高的工作
压力
其特征是由增压缸供 油,从而使执行元件2有
较大的出力。
液压基本回路--平衡回路
五、平衡回路
平衡回路的功用在于使执行元件 的回油路上保持一定的背压值,以平 衡重力负载,使之不会因重力而自行 下降。 1.采用单向顺序阀的平衡回路 调整顺序阀的开启压力,使其和 液压缸下腔承压面积的乘积略大于垂 直运动部件的重力,则在重力的作用 下液压缸活塞不能自行下降,这时的 单向顺序阀称为平衡阀。适用于工作 负载固定且活塞闭锁要求不高的场合。
液压基本回路锁紧回路
2.采用液控单向阀的锁紧 回路 当系统停止工作时, 液控单向阀将执行元件的
进出油口关闭,执行元件
被锁紧。
液压基本回路多执行元件控制回路
第四节 多执行元件 控制回路 通过压力、流 量、行程控制来实 现多执行元件的预 定动作要求。 一、顺序动作回路 1.压力控制的顺序动 作回路 1)由顺序阀控制的顺 序动作回路
单 向 顺 序 阀
液压基本回路--平衡回路
2.采用液控制单向阀的平衡回路 不工作时液控制单向阀关 闭,油缸下腔的油液无法排出, 油缸无法下降。当油液上腔通 压力油时,控制油液进入液控 单向阀,使其打开,油缸下腔 的油液排出,油缸下降。
在回路中用液控单向阀闭 锁油液,泄漏少,闭锁性好。 单向节流阀可保证活塞下行运 动的平稳性。
变量泵油缸容积调速回路
速度控制回路--快速和速度换接回路
二、快速动作回路和速度换接回路
(一)快速运动回路
功能:使执行元件获得尽可能大的
工作速度,以提高生产效率,并使
功率得到合理的利用。 1.液压缸差动连接快速运动回路 差动连接和非差动连接的速度之比:
7液压系统基本回路
北京科技大学
北京科技大学
北京科技大学
2、减压回路
减压回路是使系统中某一部分通路具有较低
的稳定压力。
用于两级或多级的减压回路。
北京科技大学
调定压力比系统压力至少小0.5MPa
北京科技大学
3、增压回路 增压回路是使系统中某一部分通路具有较高的 稳定压力。它能使局部压力远远高于泵的压力。
北京科技大学
北京科技大学
②转矩与功率特性:
液压马达的输出转矩:Tm=Vm(pB-p0)/2π
液压马达的输出功率:Pm=nmTm=qB(pB-p0)
上式表明:马达的输出转矩 Tm与其排量Vm成正比;而马达的输出功率
Pm与其排量Vm无关,若进油压力pB与回油压力p0不变时,Pm=C,故此种 回路属恒功率调速。
北京科技大学
3、双泵供油快速回路
北京科技大学
北京科技大学
五、 速度换接回路
速度换接回路主要是用于使执行元件
在一个工作循环中,从一种运动速度变换
到另一种运动速度。
北京科技大学
1、快速与慢速的换接回路
北京科技大学
北京科技大学
2、两种不同速度间的换接回路
北京科技大学
两个调速阀并联式速度换接回路 。
(3)进油节流阀调速回路能获得更低的稳定速度;
(4)在负载为零时,对回油节流调速的密封不利;
北京科技大学
总之: 与进油节流阀调速回路一样,适用于轻
载,低速,负载变化不大的和对速度稳定性
要求不高的小功率场合。
北京科技大学
3、旁路节流调速回路
节流阀接在进口的分支路 ① ② 压力随负载变化; 溢流阀为安全阀;
2)与容积调速比
度稳定性好。
液压基本回路速控制回路节流调速回路
旁路节流调速只有节流损失,
无溢流损失,功率损失较小。
Pp p1qp P1 F p1 A1 p1q1
P Pp P1 p1qp p1q1 p1q
回路效率
P1 p1q1 q1
Pp
pq 1p
qp
用于功率较大且对速度稳定性要 求不高的场合
注意:节流调速回路速度负载特性比较软,变载荷下的运动平稳性比较差。为了克服
变量泵与液压缸组成的调速回路,其最大速度是由 泵的最大流量所决定的。
如果忽略泵的泄漏量,最低速度可以调到零。
因此,该调速回路的速度调节范围很大,可以实现 无级调速。
第28页/共48页
(3) 负载特性
执行元件输出转矩(力)和输出功率与变量泵调节参数 (排量)之间的关系。
当不考虑回路的损失时,液压马达的输出转矩(或缸的输出 推力)为
第9页/共48页
回路效率
进
p1q1 ppqp
p1q1 p(p q1+q)
( pp p)q1 ppqp
(c)调速范围
即最Байду номын сангаас工作速度与最小稳定工作速度之比:
vmax A节max vmin A节min
其中,
A节 m a x
Q泵 cp泵
可知,最大节流面积是由泵的流量和额定压力所决定的。
(d)最大承载能力 当泵的出口压力和油缸面积确定之后,液压缸的最大承载能力不变,为
Tv
F v
v 如果忽略系统泄漏,可认为 速度不受负载影响,其速度-负 载特性曲线。
A节3 A节2
A节1<A节2<A节3
A节1 v
Fmax
F 在不同节流面积下,速度-负载特性曲线。 F
第22页/共48页
(整理)液压基本回路
中宽带钢厂液压钳工基础知识培训液压系统有简单的、有复杂的,但这些复杂的回路也是由简单的基本回路组成,因此了解和掌握基本回路,是判断和处理故障的基础,下面就常见的基本回路给大家逐一讲解。
第一节压力控制回路一.调压回路当系统中需要两种以上压力时,可采用多级调压回路。
图4-1为一种采用两个溢流阀的多级调压回路。
图4-2为两个溢流阀串联连接的二级调压回路。
图4-3为一种采用电液比例溢流阀的多级调压回路。
二.减压回路当多油路系统中某一支路需要一稳定的较低压力并可进行调节时,可在系统中设立减压回路。
图4-6为一种可远程控制的两级减压回路,其实与图4-1的区别仅是阀3。
三.卸荷回路当工作部件短时间暂停工作时,一般都让液压泵在空载状态下运转,也就是让泵与电机进行卸荷,一般功率在3Kw以上的液压系统,大多设有能实现这种功能的卸荷回路。
图4-7采用H型(也可用M型、K型)滑阀机能的换向阀组成的卸荷回路图4-8采用二位二通电磁阀与溢流阀并联连接的方法组成卸荷回路。
图4-9中二位二通电磁阀安装在先导式溢流阀的外控油路上,卸荷时(电磁阀通电),泵输出流量通过溢流阀的溢流口流回油箱。
四.保压回路某些机械在其工作循环的某一阶段需要在液压泵卸荷或系统压力变动时,保持其恒定的压力,这就需要在液压系统中设置保压回路。
最简单的办法是在需要保压的油腔设置单向阀,使油液不能回流;要求较高时,常采用补油保压的办法。
图4-13采用蓄能器补油的保压回路,当泵卸荷时,单向阀4把夹紧油路与卸荷回路隔开,由蓄能器5补偿夹紧油路中的泄漏,使其压力基本保持不变。
五.增压与增力回路当系统中某一支路需要较高压力时可采用增压来提高局部工作压力,或采用增力回路使工作部件的输出作用力增大。
图4-15所示,增压器4由一个活塞缸a 和一个柱塞缸b串联而成。
增压倍数等于面积Aa与Ab之比。
六.平衡回路为了防止立式液压缸或垂直运动的工作部件(如起重机起吊重物)由于自重而自行下滑,可设置平衡回路,即,在立式缸的下行回路上设置适当的液阻,使立式缸的回油腔中产生一定的背压与自重相平衡。
旁路节流调速回路工作原理
旁路节流调速回路工作原理旁路节流调速回路是一种用于控制电机转速的反馈系统。
它采用了旁路节流控制阀和流量传感器,通过调节节流阀门的开度来控制液压马达的进出口压力,从而控制电机的转速。
下面将详细介绍旁路节流调速回路的工作原理。
旁路节流调速回路的基本组成部分包括电机、液压泵、控制阀、液压马达、流量传感器和控制器。
电机将电能转化为机械能,驱动液压泵工作。
液压泵通过吸入液体并施加压力,将液体输送到控制阀。
控制阀可调节液体的流量,通过流入和流出液体的节流阀门控制液压马达的进出口压力。
液压马达将液体压力转化为机械能,驱动负载旋转。
流量传感器用于实时测量液体的流量,将其反馈给控制器,控制器根据流量信号调整节流阀门的开度,实现对电机转速的精确控制。
旁路节流调速回路的工作原理可以分为以下几个步骤:1.电机驱动液压泵工作,液压泵供给液体进入控制阀。
液体在控制阀中分为两路,一路通过节流阀门流入液压马达,另一路通过控制阀的旁路流回油箱。
2.控制阀调节液体流入液压马达的节流阀门的开度,实现对液压马达进口压力的控制。
节流阀门越小,进口压力越高,液压马达所转矩越大,转速越高。
3.液压马达根据进口压力的大小转化为机械能,驱动负载旋转。
负载的旋转速度与液压马达的转速相对应。
4.流量传感器实时测量液体的流量,将信号反馈给控制器。
控制器根据流量信号与设定值进行比较,根据误差调整节流阀门的开度。
5.控制器通过改变节流阀门的开度来调整进口压力,进而控制液压马达的转速。
具体而言,如果流量过大,控制器会减小节流阀门的开度,增加阻尼作用,使进口压力下降,降低液压马达的转速;反之,如果流量过小,控制器会增加节流阀门的开度,减小阻尼作用,使进口压力增加,提高液压马达的转速。
通过不断调整节流阀门的开度,控制器可以实现对电机转速的精确控制。
当转速达到设定值时,控制器会根据流量信号与设定值的误差进行调整,维持转速稳定。
旁路节流调速回路具有以下特点:1.精确控制能力:通过流量传感器实时测量液体流量,控制器能够根据误差调整节流阀门的开度,实现对电机转速的精确控制。
在实验报告中简述液压基本回路——节流调速回路安装调试的步骤及注意事项。
在实验报告中简述液压基本回路——节流调速回路安装调试的步骤及注意事项。
摘要:一、引言二、节流调速回路原理简介三、安装调试步骤1.准备工作2.安装回路元件3.检查液压油4.启动液压泵5.调试节流阀6.检测调整结果四、注意事项1.安全操作2.检查元件质量3.调整合适的工作参数4.保持油液清洁5.定期检查和维护五、结论正文:一、引言液压基本回路——节流调速回路在工程机械、自动化设备等领域具有广泛应用。
为了保证设备正常运行,掌握安装调试步骤及注意事项至关重要。
本文将简述节流调速回路的安装调试步骤,并提醒大家在操作过程中应注意的事项。
二、节流调速回路原理简介节流调速回路是通过调整节流阀的开度,从而改变液压缸进油量,实现液压缸速度调节。
节流阀的开度越大,液压缸速度越快;反之,则越慢。
这种调速方式结构简单,成本低,适用于中低压、中小流量的液压系统。
三、安装调试步骤1.准备工作:清理工作场地,确保液压元件及管路干净无尘。
检查各元件型号、尺寸和连接方式,确保正确安装。
2.安装回路元件:根据设计图纸,将液压泵、节流阀、液压缸等元件按顺序连接起来。
注意检查各元件的连接螺纹、密封件和紧固件,确保连接可靠。
3.检查液压油:确保液压油品质合格,油量充足。
液压油应具有良好的一致性、抗氧化性和抗乳化性能。
4.启动液压泵:打开电源,启动液压泵,检查泵运行是否正常。
如有异常声音、振动或发热现象,应立即停机检查。
5.调试节流阀:缓慢调整节流阀开度,观察液压缸速度变化。
根据实际需求,调整至合适的开度,使液压缸速度满足工作要求。
6.检测调整结果:测试液压系统各项性能指标,如压力、流量、速度等。
如有偏差,可根据实际情况进行微调。
四、注意事项1.安全操作:在调试过程中,严禁非工作人员靠近。
操作人员应佩戴劳动保护用品,注意防止意外伤害。
2.检查元件质量:确保选购的液压元件质量可靠,避免因元件质量问题导致系统故障。
3.调整合适的工作参数:根据设备实际需求,合理调整液压系统的工作压力、流量等参数。
第七章液压基本回路(速度回路)
3)变量泵-变量马达的 容积调速
3.容积节流调速(联合调速)
容积节流调速回路是采用压力补偿型变
量泵供油,通过对节流元件的调整来改 变流入或流出液压执行元件的流量来调 节其速度;而液压泵输出的流量自动地 与液压执行元件所需流量相适应。这种 回路虽然有节流损失,但没有溢流损失, 其效率虽不如容积调速回路,但比节流 调速回路高。其运动平稳性与调速阀调 速回路相同,比容积调速回路好
1)进油路节流调速回路 (进口节流)
回路结构如图 所示,节流阀 串联在泵与执 行元件之间的 进油路上。它 由定量泵、溢 流阀、节流阀 及液压缸(或 液压马达)组 成。
通过改变节流阀的开口量(即通流截面
积AT)的大小,来调节进入液压缸的流 量,进而改变液压缸的运动速度。 定量泵输出的多余流量由溢流阀溢流回 油箱。为完成调速功能,不仅节流阀的 开口量能够调节,而且必须使溢流阀始 终处于溢流状态。 在该调速回路中,溢流阀的作用一是 调整并基本恒定系统压力;二是将泵输 出的多余流量溢流回油箱。
出口节流调速回路的速度—负载特性:
与进口节流调速回路基本相同
•进口与出口节流阀调速回路比较
(1)出口节流阀调速回路: 液压缸回油腔形成一定背压,能承受负值负载 (与液压缸运动方向相同的负载力)。 流经节流阀而发热的油液,直接流回油箱冷却。 (2) 进口节流阀调速回路: 液压缸回油路上设置背压阀后,才能承受负值负 载。故增加节流调速回路的功率损失。 流经节流阀而发热的油液,还要进入液压缸,对 热变形有严格要求的精密设备会产生不利影响。 对同一个节流阀可使液压缸得到比出口节流阀调 速回路更低的速度。
调速回路按改变流量的方法不同可分
为三类: 节流调速回流 容积调速回路 容积节流调速回路
液压基本回路旁路节流调速回路
液压基本回路旁路节流调速回路这种回路由定量泵、安全阀、液压缸和节流阀组成,节流阀安装在与液压缸并联的旁油路上,其调速原理如图7-3所示。
图7—3旁路节流调速回路定油泵输出的流量q B,一部分(q1)?? 进入液压缸,一部分(q2)通过节流阀流回油箱。
溢流阀在这里起安全作用,回路正常工作时,溢流阀不打开,当供油压力超过正常工作压力时,溢流阀才打开,以防过载。
溢流阀的调节压力应大于回路正常工作压力,在这种回路中,缸的进油压力p1等于泵的供油压力p B,溢流阀的调节压力一般为缸克服最大负载所需的工作压力的p1max1.1~1.3倍.4)采用调速阀的节流调速回路前面介绍的三种基本回路其速度的稳定性均随负载的变化而变化,对于一些负载变化较大,对速度稳定性要求较高的液压系统,可采用调速阀来改善起速度-负载特性。
图7—4调速阀进油节流调速回路采用调速阀也可按其安装位置不同,分为进油节流、回油节流、旁路节流三种基本调速回路。
图7-4为调速阀进油调速回路。
图7-4(a)为回路简图,图7-4(b)为其速度—负载特性曲线图。
其工作原理与采用节流的进油节流阀调速回路相似。
在这里当负载F变化而使p 1变化时,由于调速阀中的定差输出减压阀的调节作用,使调速阀中的节流阀的前后压差Δp保持不变,从而使流经调速阀的流量q 1不变,所以活塞的运动速度v也不变。
其速度—负载特性曲线如图7-4(b)所示。
由于泄漏的影响,实际上随负载F的增加,速度v有所减小。
在此回路中,调速阀上的压差Δp包括两部分:节流口的压差和定差输出减压口上的压差。
所以调速阀的调节压差比采用节流阀时要大,一般Δp≥5×105Pa,高压调速阀则达10×105Pa。
这样泵的供油压力pB相应地比采用节流阀时也要调得高些,故其功率损失也要大些。
这种回路其他调速性能的分析方法与采用节流阀时基本相同。
综上所述,采用调速阀的节流调速回路的低速稳定性、回路刚度、调速范围等,要比采用节流阀的节流调速回路都好,所以它在机床液压系统中获得广泛的应用。
液压传动与控制----液压基本回路.
1
2
Δ
节
B
1
B
图3-54
进口节流调速回路
特点-工作过程中 ①泵的流量Q和泵供油压力pB是不变的,带动 泵的电动机功率也是不变的; ②流量Q和油压pB ,却按最高速度和最大负载 来选择; ③当系统在低速、轻载下工作时,有相当大的 一部分功率被损耗掉,损失的功率变成热能 使系统油温升高; ④由于液压缸回油腔没有背压,所以运动平稳 性较差;
缓冲与补油 回路等。
一、限压回路 作用-限制液压系统的额定工作压力和最高工作 压力,保证系统的安全。
图3-29 定量泵系统压力调定回路
图3-30 变量泵系统安全回路
二、调压回路 作用-系统有若干个工作压力的需要,为满足系 统的需求,则有几级工作压力的限制。 1.二级调压回路 (下页图) 图中有两个溢流阀,各自调整的压力不同,但 需要与其他阀配合使用。
(2)用二位电磁铁组成的卸荷回路
(附图)
这两种方法简单,但换向阀切换时会产生换向 冲击(液压冲击),仅适用于低压、小流量 (<40L/min)的系统中。
2.电磁溢流阀组成的卸荷回路 该回路适用于大流量的液压系统中,电磁阀与 溢流阀共阀体,选择规格较大的阀。
电磁溢流阀组成的卸荷回路
(动画7-3先导型溢流阀卸载)回路.swf)
△
节
图3-57
旁路节流调速回路
特点- ①节流阀开口为零时,液压缸速度最大。随着 节流阀开口的增大,液压缸速度逐渐减小; ②当节流阀开口增大后液阻很小,液压泵压力 就不会高,系统的承载能力将显著减小; ③这种回路,节流阀的开度不能过大,只能在 小流量范围内进行调节,调节范围小。 从调速范围、小流量稳定性及承受负负载力等 方面来看出口节流调速性能最好,进口节流 调速次之,旁路式最差。
第七章 液压传动系统基本回路
一、调压回路
调压回路的功用是调节、稳定或限定液压系统主油 路或局部油路压力的回路。
调压回路的显著特征是必有溢流阀存在。在定量泵 系统中,溢流阀起调压、稳压作用;在变量泵系统中, 溢流阀则起限定系统最高压力,防止系统过载的作用
7.2 压力控制回路
1、单级调压回路
在液压泵出口处设置并联 溢流阀2即可组成单级调 压回路,从而控制了液压 系统的工作压力。在定量 泵系统中,液压泵的供油 压力可以通过溢流阀来调 节。在变量泵系统中,用安 全阀来限定系统的最高压 力,防止系统过载。若系 统中需要二种以上的压力, 则可采用多级调压回路。
液压基本回路可分为方向控制回路、压力控制 回路、速度控制回路(调速回路)和多执行元件控 制回路。其中,速度控制回路是液压系统的核心部 分,其主要功能是传递动力。其他回路起辅助作用, 同样也是液压系统正常工作不可缺少的组成部分, 其功用不在于传递动力,而在于实现某些特定的功 能。
第七章 液压传动系统基本回路
A1
P1= pp
q1 Δq
pp qp
A2
v
P2
F
q2
△p
AT
节流调速回路
变压式节流调速 回路(旁路节流)
1、回路特征
节流阀位于旁路 上,与执行元件并联。 溢流阀在此处作安全 阀。油泵出口压力随 负载变化而变化
A1
A2
液压基本回路速度回路
可编辑ppt
5
1)进油路节流调速回路 (进口节流)
可编辑ppt
回路结构如图 所示,节流阀 串联在泵与执 行元件之间的 进油路上。它 由定量泵、溢 流阀、节流阀 及液压缸(或 液压马达)组 成。
6
通过改变节流阀的开口量(即通流截面
积AT)的大小,来调节进入液压缸的流
量,进而改变液压缸的运动速度。
可编辑ppt
18
在容积调速回路中,根据油路的循环方 式不同可分为开式回路和闭式回路。
根据液压泵与执行元件组合方式,容积 调速回路: 变量泵-定量执行元件的容积调速 定量泵-变量马达的容积调速 变-定量执行元件的 容积调速回路
泵-缸开式 泵-缸闭式
液压缸的流量q1,可
实现对液压缸速度的 调节。
可编辑ppt
15
进口节流调速回路速度-负载特性
结 论 :
适 用 于
重 载
可编辑ppt
16
4)节流调速回路性能的改进
(1)进油节流+回油背压(背压阀) (2)调速阀节流
可编辑ppt
17
2.容积调速回路
节流调速回路由于存在着节流损失 和溢流损失,回路效率低,发热量 大,因此,只用于小功率调速系统。 在大功率调速系统中,多采用回路 效率高的容积式调速回路。
可编辑ppt
23
二、快速回路
执行机构在一个工作循环的不同阶 段要求有不同的运动速度和承受不 同的负载。在空行程阶段其速度较 高负载较小。采用快速回路,可以 在尽量减少液压泵流量的情况下使 执行元件获得快速。
定量液压泵输出的多余流量由溢流阀溢 回油箱。为了完成调速功能,不仅节流 阀的开口量能够调节,而且必须使溢流 阀始终处于开启溢流状态。
在该调速回路中,溢流阀的作用:
液压基本回路(有图)_图文
类型: 调速回路、增速回路、速度换接回路等
一、调速回路
节流调速回路
类 型
容积调速回路
进油节流调速回路 回油节流调速回路
旁路节流调速回路
变量泵-定量执行元件 定量泵-变量执行元件 变量泵-变量执行元件
容积节流调速回路:变量泵+流量阀
(一)节流调速回路
1、进油节流调速回路
回路组成方式:
将流量控制阀串接在执行元件 的进油路上,且在泵与流量阀 之间有与之并联的溢流阀 。
:
速度刚度 活塞运动速度随负载变化而变化的程度。用T表示
:
。
速度负载特性曲线(v-R曲线)
v AT1
AT2 AT3
0
分析:
AT1 > AT2 > AT3
Rmax
R
① R一定时,v与AT成正比 ;高速时的速度刚度比低速 时的小; ② AT一定时,R增加则速 度减小;重载区域的速度刚 度比轻载时的小。
(2)特点
PP qP (1)速度-负载特性分析
※ 列活塞受力平衡方程 ※ 求出节流阀前后压差:ΔP ※ 求出活)
v
AT1< AT2< AT3 AT1
0
分析:
AT3 AT2
Rmax3 Rmax2 Rmax1
R
① R一定时, AT越大,v越小,速度刚度越差;
2、回油节流调速回路
A1 A2
Py
qy
P1
q1
P2
q2
qp
Pp
回路组成方式:
将流量控制阀串接 在执行元件的回油 路上,且在泵与执 行元件之间有与之 并联的溢流阀。
(1)速度-负载特性分析
系统稳定工作时,活塞受力平衡方程:
液压传动基本回路
5、采用调速阀的调速回路
特点: 1) 速度稳定性大大提高; 2) 功率损失比同类采用节流阀的大。
双 点 划 线
虚线
6、调速阀(调速回路)与节流阀(调速回路) 比较: 1)压力-流量特性
2)速度-流量特性
v
AT1 AT2 AT3
AT1 > AT2 > AT3
v
AT1
AT1 < AT2< AT3
0
Rmax
的油路被关闭,泵 单独供油给缸;当 阀2复位后,蓄能器 供油给缸的有杆腔
快退。
因多了蓄
能器的功能所以用 二位五通换向阀。
三、减速回路
四、速度换接回路(速度切换回路、亦属换向回路)
AT2
AT1
快速-慢速的换接回路
采用调速阀串联的慢 速-慢速的换接回路
AT2
AT1
AT2
AT1
AT1 ≠AT2 采用调速阀并联的慢速-慢速的换接回路
AT1
① R一定时,小开度比大开 度好; ② AT一定时,R增加则速度 减小;重载区域的速度刚度 比轻载时的小。 R
0
Rmax
(2)特点
① ∵P2=0,没有背压,∴运动平稳性差;随负载变化, 速度变化,速度稳定性差。即V-R特性软。
② 压力油经节流阀进入液压缸,油的温升使系统泄漏增 加。 ③ 泵在恒压下工作,功率利用不合理。 ④ 存在溢流和节流损失,回路效率低。
4、连续、按比例进行压力调节回路
采用先导式比例电磁溢流阀,调节进入阀的输 入电流(或电压)的大小,即可实现系统压力的无 级调节。
优点:简单,压力切换平稳,更容易实现远距离控制或程控。
二、减压回路 作用:使系统某一部分油路(夹紧回路、控制回路、润 滑回路)具有较低的稳定压力。 1、单级减压回路 通主油路
液压基本回路—速度控制回路
7.3 速度控制回路
图7.24差动 连接快速运 动回路
两位三通电磁换向阀 右位工作,液压缸差 动连接,实现活塞的 快速运动。
7.3 速度控制回路
图7.25双泵 供油快速运 动回路
空载快速运动时,系统压 力低,低压大流量泵1和 高压小流量泵2同时向液 压缸供油,活塞快速运动;
工进慢速运动时,系统压 力升高,液控顺序阀3打 开,大流量液压泵1卸荷, 此时仅有小流量泵2向系 统供油,活塞慢速运动。
7.3 速度控制回路
图7.19旁油路 节流调速回路
7.3 速度控制回路
2.容积调速回路
01 容积调速回路是通过改变变量泵或变量马达排量以调节执行元件的 运动速度。
02
容积调速回路无溢流损失和节流损失,且液压泵的工作压力随负载 的变化而变化,效率高,发热量少,其缺点是变量泵结构复杂,价
格较高。
03 按油液循环方式,容积调速回路分为开式和闭式,如图7.20所示。
7.3.1 调速回路
➢ 液压执行元件速度的变换是通过改变其输入流量或液压马达的排量 实现的。常用的调速方法有三种: 1 节流调速—定量泵供油,流量阀改变进入执行元件的流量; 2 容积调速—采用变量泵或变量马达实现调速; 3 容积节流调速—采用变量泵和流量阀联合调速。
7.3 速度控制回路
7.3.1 调速回路
7.3 速度控制回路
7.3.2 快速运动回路
01 执行元件在一个工作循环的不同阶段要求有不同的运动速度和承受不 同的负载,如在空行程阶段速度较高负载较小。
02 采用快速回路,使执行元件获得较快的速度,以提高生产效率。 03 常见的快速运动回路有:
差动连接快速运动回路,如图7.24所示。 双泵供油快速运动回路,如图7.25所示。 蓄能器快速运动回路,如图7.26所示。
第六章液压基本回路ppt课件
(1) 该 回路速度负载特性、最大承载 能力、损失功率和效率基本相同。
(2) 与进油节流调速回路的比较
a. 承受负值负载的能力 b.运动平稳性 c.发热及泄漏的影响 d.实现压力控制的方便性 e.停车后的起动性能
3.旁路节流调速回路(动画演示)
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
动画演示
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
3.采用液控单向阀的平衡回路 4.采用远控平衡阀的平衡回路
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
(四)卸荷回路
1.功用
是在液压泵不停止 转动时,使其输出的 流量或压力在很低的 情况下工作。
2.类型
(1)换向阀卸荷回路
M、H、K型中位机能的三位换向阀处于中位时,泵即卸荷 。 (动画)
(2)二通插装阀卸荷回路(动画)
当二位二通电磁阀通电后,主阀上腔接通油箱,主阀口全开,泵 即卸荷。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
(七)泄压回路
1.功用 液压系统在保压过程中,由
于油液压缩和机械部分产生弹 性变形,因而储存了相当的能 量,若立即换向,则会产生压 力冲击。因而对容量大的液压 缸和高压系统应在保压与换向 之间采取泄压措施。
第八章 液压基本回路知识汇总
第八章 液压基本回路知识汇总1.液压基本回路是指为了实现特定功能而把某些液压元件和管路按照一定的方式组合起来的油路结构。
主要有速度控制回路、压力控制回路及方向控制回路等。
2.调速回路的调速特性、机械特性及功率特性是考察调速回路性质及用途的主要评价标准。
3.节流调速回路是通过改变回路中流量控制元件的通流截面积的大小来控制流入/流出执行元件的流量,从而达到调节执行元件速度的目的。
4.进口节流调速回路和出口节流调速回路,都属于定压式节流调速回路,在这两种回路中,液压泵出口并联的溢流阀做溢流阀使用,在调速过程中一直处于打开状态,因此一般的出口压力恒定。
5.进口节流调速回路调速回路图机械特性11q A υ=,11Fp A =,1()m T T q CA p =∆,11()mT p q CA p p =-11111()mT p mq CA p A F A A υ+==-1)机械特性在同一节流阀通流面积下,负载压力越大,速度变动越大,速度刚度越小; 在相同的负载压力下,节流阀的开口越大,执行元件的速度越高,在负载相同的干扰情况下,速度变动量越大,速度刚度越小因此,进口节流调速系统适应于低速轻载的场合。
2)功率特性p p pP p q =,11111q P F Fp q A υ===111111()()p p p p p T p T P P P p q p q p q q p p q p q p q ∆=-=-=+∆--∆=∆+∆功率损失包含两部分,溢流压力损失p p q ∆和节流损失1T p q ∆。
功率特性6.在进口节流调速回路中,如果负载压力增大,则液压泵的输出功率如何变化?执行元件的运动速度如何变化?系统的溢流功率损失如何变化?7.出口节流调速回路回路原理图功率特性1)机械特性112()Tmp mCA p A F A υ+=-所以出口节流调速回路具有与进口节流调速回路同样的机械特性2)功率特性同样存在溢流损失和节流损失 8.进口与出口节流调速回路比较:承受负值负载的能力、运动平稳性、油液发热对系统影响、起动性能、调速范围 9.旁路节流调速回路111111()()p pt m pt T q q q q v A A F Fq k CA A A v A -∆-∆==--=1) 溢流阀在回路中做安全阀使用,因此液压泵的出口压力随负载变化,因此属于变压是节流调速,溢流阀中无溢流损失2) 节流阀的开口面积越大,执行元件的速度越低3) 在同一节流阀开口情况下,负载越大,速度的变化率越小,刚度越好; 4) 节流阀开口越大,执行元件的速度越低,所能承载的负载越小 5) 只有节流损失,而无溢流损失,效率高10.三种节流调速回路的比较(1)速度—负载特性曲线。
液压系统的基本回路
(1) 进油节流调速回路
进油节流调速回路是将节流 阀装在执行机构的进油路上, 调速原理如图6-20所示。
根据进油节流调速回路的特 点,节流阀进油节流调速回路 适用于低速、轻载、负载变化 不大和对速度稳定性要求不高 的场合。
图6-20 进油节流调速回路
(2) 回油节流调速回路
回油节流调速回路将节流阀安装
活塞的液压作用力Fa推动大 小活塞一起向右运动,液压
缸b的油液以压力pb进入工作 液压缸,推动其活塞运动。
其关系如下:
pb
pa
Aa Ab
三、增压回路
2.双作用增压回路
四、保压回路
有些机械设备在工作过程中,常常要求液压执行机构在 工作循环的某一阶段内保持一定压力,这时就需要采用保 压回路。保压回路可在执行元件停止运动或仅仅有工件变 形所产生的微小位移的情况下使系统压力基本保持不变。
一、启停回路
当执行元件需要频繁地启动或停止时,系统中经常采用 启、停回路来实现这一要求。
二、换向回路 1. 简单换向回路
简单换向回路是指在液压泵和执行元件之间加装普通换向 阀,就可实现方向控制的回路。如图6-2、6-3所示。
2.复杂换向回路
采用特殊设计的机液换向阀,以行程挡块推动机动 先导阀,由它控制一个可调式液动换向阀来实现工作 台的换向,既可避免“换向死点”,又可消除换向冲 击。这种换向回路,按换向要求不同可分为 时间控制 制动式 和 行程控制制动式 两种。
图6-19 采用顺序阀的平衡回路
第三节 速度控制回路
速度控制回路是调节和变换执行元件运动速度的回路,它包 括调速回路、快速回路和速度换接回路。
一、调速回路
调速回路主要有以下三种方式: (1)节流调速回路 (2)容积调速回路 (3)容积节流调速回路
第六章液压基本回路
3、速度控制回路二 快速和速度换接回路
快速运动回路
功用 使执行元件获得尽可能大的工作速度,以提高生产率 或充分利用功率。
液压缸差动连接快速运动回路
将液压缸有杆腔回油和液压泵
供油合在一起进入液压缸无杆腔, 活塞将快速向右运动, 差动连 接与非差动连接的速度之比为
v ’1/v1=A1/(A1-A2)
在差动回路中,泵的流量和缸
的有杆腔排出的流量合在一起流 过的阀和管道应按合成流量来选 择规格,否则会导致压力损失过 大,泵空载时供油压力过高。
双泵供油快速运动回路
外控顺序阀3(卸载阀)和溢流阀5分别设定双泵供油和小
流量泵2供油时系统的最高工作压力。当系统压力低于阀3 调定压力时,两个泵同时向系统供油,活塞快速向右运动; 系统压力达到或超过阀3调定压力时,大流量泵1通过阀3卸 载,单向阀4自动关闭,只有小流量泵向系统供油,活塞慢 速向右运动。
5、多执行元件控制回路
如果一个油源给多个执行元件供油,各执 行元件因回路中压力、流量的相互影响而 在动作上受到牵制。我们可以通过压力、 流量、行程控制来实现多执行元件预定动 作的要求。
同时调节泵的排量和流量控制阀来调速——容积节流调速回路。
限压式变量泵和调速阀的调速回路 差压式变量泵和节流阀的调速回路
定量泵节流调速回路
回路组成:定量泵,流量控制阀(节流阀、调速阀等), 溢流阀,执行元件。其中流量控制阀起流量调节作用,溢 流阀起压力补偿或安全作用。
按流量控制阀安放位置的不同分:
卸载阀3的调定压力至
少应比溢流阀5的调定压
力低10%~20%。大流
量泵卸载减少了动力消耗, 回路效率较高。
这种回路常用在执行元
7第七章 液压基本回路
液压缸的运动速度v=q/A (q--输入流量;A--有效作用面积) 2.调速回路的主要方式:
节流调速回路:由定量泵供油,用流量阀调节进入或流出执行机构 的流量来实现调速;
容积调速回路:用调节变量泵或变量马达的排量来调速; 容积节流调速回路:用限压变量泵供油,由流量阀调节进入执行机 构的流量,并使变量泵的流量与调节阀的调节流量相适应来实现调速。 此外还可采用几个定量泵并联,按不同速度需要,启动一个泵或几个泵 供油实现分级调速。
1.利用液压泵的保压回路
maojian@
2.利用蓄能器的保压回路
maojian@
3.自动补油保压回路
maojian@
第二节
速度控制回路
调速回路 快速回路
速度换接回路
maojian@
一、调速回路
1.调速回路的基本原理
液压马达的转速nM=q/V
2. 在泵-缸回油节流调速回路中,三位四通换向阀处于不同位置时,可使液 压缸实现快进—工进-端点停留—快退的动作循环。试分析:在( )工况 下,泵所需的驱动功率为最大;在( )工况下,缸输出功率最小。 (A)快进 (B)工进 (C)端点停留 (D)快退
(B、C;C)
3. 系统中中位机能为P型的三位四通换向阀处于不同位置时,可使单活塞杆 液压缸实现快进—慢进—快退的动作循环。试分析:液压缸在运动过程中, 如突然将换向阀切换到中间位置,此时缸的工况为( );如将单活塞杆缸 换成双活塞杆缸,当换向阀切换到中位置时,缸的工况为( )。(不考虑 惯性引起的滑移运动) (A)停止运动 (B)慢进 (C)快退 (D)快进 (D;A)
maojian@
2.流量控制式同步回路 (1)用调速阀控制的同步回路
液压基本回路的安装与调试—速度控制回路的设计、安装与调试
(二)容积调速回路
变量泵+定量执行元件 定量泵+变量马达
变量泵+变量马达
(二)容积调速回路
(二)容积调速回路
定 量 泵 + 变 量 马 补油泵 达
过载 保护
控制补 油压力
回路的速度刚性受负载变化影响:
随着负载增加,因泵和马达的泄漏增加, 致使马达输出转速下降
(二)容积调速回路
变 量 泵 + 变 量 马 达
2.应用Fluidsim软件进行对所设计的 液压回路进行仿真;
3.在FESTO液压实训台上对液压回路 进行安装和调试,分别测量液压缸前 进及返回行程时间、工作压力和背压 ,填写表;
平面磨床液压回路数据测量
方向
p
p1
p2
t
前进行程
返回行程
活塞无杆腔面积: APN=2.0cm2 活塞有杆腔面积: APR=1.2cm2 油缸的行程: s=0.2m
任务6.2 速度控制回路的设计、安装与调试
教学目标
1.熟知速度控制回路的类型及应用; 2.能够根据控制要求进行速度控制回路的设计与
仿真; 3.能够根据原理图进行速度控制回路的安装、调
试与故障排除。
知识点 速度控制回路
一. 调速回路
缸的速度:v=q/A 液压缸A确定,改变输 入缸q来调速
马达转速:n=q/VM 改变q 来调速
低速段,马达排量调至最大,从小到大调节变量泵排量
高速段,泵为最大排量,从大到小调节变量马达的排量
(三)容积节流调速回路
(三) 容积节流调速回路
二. 快速运动回路
差动连接快速回路
节
流
调
蓄能器快速回路
速
回
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液压基本回路旁路节流调速回路
这种回路由定量泵、安全阀、液压缸和节流阀组成,节流阀安装在与液压缸并联的旁油路上,其调速原理如图7-3所示。
图7—3旁路节流调速回路
定油泵输出的流量q B,一部分(q1)?? 进入液压缸,一部分(q2)通过节流阀流回油箱。
溢流阀在这里起安全作用,回路正常工作时,溢流阀不打开,当供油压力超过正常工作压力时,溢流阀才打开,以防过载。
溢流阀的调节压力应大于回路正常工作压力,在这种回路中,缸的进油压力p1等于泵的供油压力p B,溢流阀的调节压力一般为缸克服最大负载所需的工作压力的p1max1.1~1.3倍.
4)采用调速阀的节流调速回路前面介绍的三种基本回路其速度的稳定性均随负载的变化而变化,对于一些负载变化较大,对速度稳定性要求较高的液压系统,可采用调速阀来改善起速度-负载特性。
图7—4调速阀进油节流调速回路
采用调速阀也可按其安装位置不同,分为进油节流、回油节流、旁路节流三种基本调速回路。
图7-4为调速阀进油调速回路。
图7-4(a)为回路简图,图7-4(b)为其速度—负载特性曲线图。
其工作原理与采用节流的进油节流阀调速回路相似。
在这里当负载F变化而使p 1变化时,由于调速阀中的定差输出减压阀的调节作用,使调速阀中的节流阀的前后压差Δp保持不变,从而使流经调速阀的流量q 1不变,所以活塞的运动速度v也不变。
其速度—负载特性曲线如图7-4(b)所示。
由于泄漏的影响,实际上随负载F的增加,速度v有所减小。
在此回路中,调速阀上的压差Δp包括两部分:节流口的压差和定差输出减压口上的压差。
所以调速阀的调节压差比采用节流阀时要大,一般Δp≥5×105Pa,高压调速阀则达10×105Pa。
这样泵的供油压力pB相应地比采用节流阀时也要调得高些,故其功率损失也要大些。
这种回路其他调速性能的分析方法与采用节流阀时基本相同。
综上所述,采用调速阀的节流调速回路的低速稳定性、回路刚度、调速范围等,要比采用节流阀的节流调速回路都好,所以它在机床液压系统中获得广泛的应用。