数值分析习题集
数值分析习题集及答案[1].(优选)
![数值分析习题集及答案[1].(优选)](https://img.taocdn.com/s3/m/9ace1b7626fff705cd170a96.png)
数值分析习题集(适合课程《数值方法A 》和《数值方法B 》)长沙理工大学第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=( n=1,2,…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字27.982).8. 当N 充分大时,怎样求211N dx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2? 10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小.11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好?3--13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且 101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj j j x l x xk n =≡=∑ii) 0()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2nn y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆. 12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限. 19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.试求三次样条插值并满足条件 i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一?9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式. 10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若n f L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差. 15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数.17. 求a 、b 使[]22sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()n n x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26.2y a bx =+.27.用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:(1)101()()(0)()h h f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hhf x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰;(4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分10xedx-⎰并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2ba f f x dxb a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰. 6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1x e dx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nn n ππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误()f x第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。
数值分析课后习题及答案

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。
[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。
3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。
X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。
若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。
数值分析第5章习题

1. 过点),(),...,,(),,(551100y x y x y x 的插值多项式P(x)是()次的多项式 A. 6 B. 5 C. 4 D. 3 考查知识点:插值多项式的基本概念 答案:B2. 通过点),(),,(1100y x y x 的拉格朗日插值基函数)(),(10x l x l 满足() A. 0)(,0)(1100==x l x l B. 1)(,0)(1100==x l x l C. 0)(,1)(1100==x l x l D. 1)(,1)(1100==x l x l 考查知识点:拉格朗日插值基函数的性质 答案:D3. 设)(x L 和)(x N 分别是)(x f 满足同一插值条件的n 次拉格朗日和牛顿插值多项式,它们的插值余项分别是)(x r 和)(x e ,则(B.) 考查知识点:插值多项式的存在唯一性 A.)()(),()(x e x r x N x L =≠ B.)()(),()(x e x r x N x L == C.)()(),()(x e x r x N x L ≠=D.)()(),()(x e x r x N x L ≠≠解析:插值多项式存在唯一性定理可知,满足同一插值条件的拉格朗日插值多项式和牛顿插值实际上是同一个多项式,故,余项也相同。
4. =∇+∆k k y y _______ 考查知识点:差分的概念 答案:11-+-k k y y5. ]2,,2,2[]2,,2,2[,13)(817147f f x x x x f 和则+++=为 与[][]!80!8)(22221!7!7!7)(222)8(8710)7(710===⋯⋯===⋯⋯ξξf f f f ,,,,,,,根据差商和导数关系6. 的二次插值多项式为则时当)(4,3,0)(2,1,1x f ,x ,f x -=-= (拉格朗日插值) 解: 4,3,2,1,110210=-===-=y y x x x ,Lagrange 这里插值公式利用二次得,42=y)()()()(2211002x l y x l y x l y x L ++=3723653)1)(1(406)2)(1(32-+=-+⨯++--⨯-=x x x x x x7. 设2)(x x f =,则)(x f 关于节点2,1,0210===x x x 的二阶向前差分为_2_。
数值分析习题含答案

x1 )
f (x0)
(x
x 0 )( x x0 x1
x1 )
f ' ( x0 )
(x ( x1
x0)
2 2
x0 )
f ( x1 )
R ( x)
其中 R(x) 由以下计算得到: 构造辅助函数:
(t ) f (t ) N 2 (t ) (t (x x0 ) (t x0 ) ( x
2 2
x1 ) x1 )
f [ 2 ,2 ] =-2089 ,
0 1 2 7
0 1 7
f (x)
M ,
x
[ a , b ] ,证明:在任意相邻两节点间
R1 ( x )
1 8
Mh
2
。
x xi x xi M
1
f ( ) R1 i ( x ) 2 M 8 h 2,
h ,
2
x
8 ,n
[ xi , xi
1
]
R1 ( x )
max R1 i ( x )
1 2
s
2
[( x
xi
1
))( x
x
i
1 2
)( x
x i )]
e
4
h
3
[ s( s
1)( s
1)] 24
3 9
e h
4
3
10
6
3!
8
h
1 . 317
则用二次插值的步长应:
h
0 .6585
10
2
2-6 对区间 [a,b] 作步长为 h 的剖分,且 做线性插值,其误差限为 证明:区间上的误差限: 误差限: 2-7 设 f ( x ) 解: 自变量 1 2
数值分析习题

第一章 绪论习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。
1 若误差限为5105.0-⨯,那么近似数0.003400有几位有效数字?(有效数字的计算) 2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算)3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字?(有效数字的计算)4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算)5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。
(误差限的计算)6 设x 的相对误差为%a ,求nx y =的相对误差。
(函数误差的计算)7计算球的体积,为了使体积的相对误差限为%1,问度量半径r 时允许的相对误差限为多大?(函数误差的计算)8 设⎰-=11dx e x eI x n n ,求证: (1))2,1,0(11 =-=-n nI I n n(2)利用(1)中的公式正向递推计算时误差逐步增大;反向递推计算时误差逐步减小。
(计算方法的比较选择)第二章 插值法习题主要考察点:拉格朗日插值法的构造,均差的计算,牛顿插值和埃尔米特插值构造,插值余项的计算和应用。
1 已知1)2(,1)1(,2)1(===-f f f ,求)(x f 的拉氏插值多项式。
(拉格朗日插值)2 已知9,4,10===x x x y ,用线性插值求7的近似值。
(拉格朗日线性插值)3 若),...1,0(n j x j =为互异节点,且有)())(())(()())(())(()(11101110n j j j j j j j n j j j x x x x x x x x x x x x x x x x x x x x x l ----------=+-+-试证明),...1,0()(0n k x x l xnj k jk j =≡∑=。
数值分析(课后习题答案详解).ppt

x x 41 2 0 . 25 0 . 5451 1 1 再解 3 x 0 . 875 ,得 x 1 . 2916 2 2 2 0 3 1 . 7083 . 5694 x x 3 3
4 41 2 T 故得 GG 分解: A 1 2 3 2 2 3 3 3 1 1 16 11 4 2 T 3 1 LDL 分解为: A 1 4 4 1 2 3 1 1 9 1 2 2
一.习题1(第10页)
1-1.下列各数都是经过四舍五入得到的近似值 ,试分 别指出它们的绝对误差限,相对误差限和有效数字的位数.
x1=5.420,x2=0.5420,x3=0.00542,x4=6000,x5=0.6105.
解 绝对误差限分别为: 1=0.510-3,2=0.510-4, 3=0.510-5,4=0.5,5=0.5104 . 相对误差限分别为: r1=0.510-3/5.420=0.00923%, r2=0.00923%,r3=0.0923%,4=0.0083%,5=8.3%. 有效数位分别为: 4位,4位,3位,4位,1位. 1-2.下列近似值的绝对误差限都是0.005,试问它们有
2 11 2 1 2 故得 Crout 分解: A 4 3 13 6 12 1 1
1 2 11 2 1 2 LDM 分解为: A 21 13 3 3 4 1 1 1
几位有效数字. a=-1.00031,b=0.042,c=-0.00032
数值分析计算方法试题集及答案

数值分析复习试题第一章绪论一.填空题1.为精确值的近似值;为一元函数的近似值;*xx ()**x f y =()x f y =1为二元函数的近似值,请写出下面的公式::()**,*y x f y =()y x f y ,2=**e x x =-***r x xe x -=()()()*'1**y f x x εε≈⋅()()()()'***1**r r x f x y x f x εε≈⋅()()()()()**,**,*2**f x y f x y y x y x yεεε∂∂≈⋅+⋅∂∂()()()()()****,***,**222r f x y e x f x y e y y x y y y ε∂∂≈⋅+⋅∂∂2、计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫舍入误差。
3、分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有 6 位和7(三位有效数字)。
1.73≈-211.73 10 2-≤⨯4、设均具有3位有效数字,则的相对误差限为 0.0055 。
121.216, 3.654x x ==12x x 5、设均具有3位有效数字,则的误差限为 0.01 。
121.216, 3.654x x ==12x x +6、已知近似值是由真值经四舍五入得到,则相对误差限为0.0000204 .2.4560A x =T x 7、递推公式如果取作计算,则计算到时,误差为,⎧⎪⎨⎪⎩0n n-1y =y =10y -1,n =1,2,0 1.41y =≈10y ;这个计算公式数值稳定不稳定 不稳定 .8110 2⨯8、精确值,则近似值和分别有 3 位和14159265.3*=π141.3*1=π1415.3*2=π4 位有效数字。
9、若,则x 有 6 位有效数字,其绝对误差限为1/2*10-5 。
*2.71828x e x =≈=10、 设x*的相对误差为2%,求(x*)n 的相对误差0.02n11、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;12、计算方法主要研究( 截断 )误差和( 舍入 )误差;13、为了使计算 的乘除法次数尽量地少,应将该表达式()()2334610111y x x x =++----改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+。
数值分析习题

习题11. 填空题(1) 为便于算法在计算机上实现,必须将一个数学问题分解为 的 运算; (2) 在数值计算中为避免损失有效数字,尽量避免两个 数作减法运算;为避免误差的扩大,也尽量避免分母的绝对值 分子的绝对值; (3) 误差有四大来源,数值分析主要处理其中的 和 ; (4) 有效数字越多,相对误差越 ; 2. 用例1.4的算法计算10,迭代3次,计算结果保留4位有效数字.3. 推导开平方运算的误差限公式,并说明什么情况下结果误差不大于自变量误差.4. 以下各数都是对准确值进行四舍五入得到的近似数,指出它们的有效数位、误差限和相对误差限.95123450304051104000003346087510., ., , ., .x x x x x -==⨯===⨯5. 证明1.2.3之定理1.1.6. 若钢珠的的直径d 的相对误差为1.0%,则它的体积V 的相对误差将为多少。
(假定钢珠为标准的球形)7. 若跑道长的测量有0.1%的误差,对400m 成绩为60s 的运动员的成绩将会带来多大的误差和相对误差.8. 为使20的近似数相对误差小于0.05%,试问该保留几位有效数字.9. 一个园柱体的工件,直径d 为10.25±0.25mm,高h 为40.00±1.00mm,则它的体积V 的近似值、误差和相对误差为多少. 10 证明对一元函数运算有r r xf x f x k x k f x εε'≈=()(())(),()其中 并求出157f x x x ==()tan ,.时的k 值,从而说明f x x =()tan 在2x π≈时是病态问题.11. 定义多元函数运算111,,(),n ni i i i i i S c x c x εε====≤∑∑其中求出S ε()的表达式,并说明i c 全为正数时,计算是稳定的,i c 有正有负时,误差难以控制. 12. 下列各式应如何改进,使计算更准确:111 11212 11-cos23 14 00xy x x xy x xy x x y p p q p q -=-++===>>(),()()()(),()(),(,,)习题21. 填空题(1) Gauss 消元法求解线性方程组的的过程中若主元素为零会发生 ;. 主元素的绝对值太小会发生 ;(2) Gauss 消元法求解线性方程组的计算工作量以乘除法次数计大约为 . 平方根法求解对称正定线性方程组的计算工作量以乘除法次数计大约为 ;(3) 直接LU 分解法解线性方程组时的计算量以乘除法计为 , 追赶法解对角占优的三对角方程组时的计算量以乘除法计为 ; (4) ,⎪⎪⎭⎫⎝⎛=2011A =1A , =2A , =)(A ρ ; (5) 1100>⎪⎪⎭⎫⎝⎛=t t A , )(A ρ , 2cond ()A = ; (6) 0>>>⎪⎪⎪⎭⎫⎝⎛=a b c c b a A , )(A ρ , 2cond ()A = ; 2.用Gauss 消元法求解下列方程组b Ax =⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---=101,112221111)1(b A , ⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫⎝⎛=1111,4321343223431234)2(b A 3.用列主元消元法解下列方程组b Ax =.⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛---=674,5150710623)1(b A ⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=6720,5616103423221020)2(b A 4. 用Gauss -Jordan 消元法求:1011012111-⎪⎪⎪⎭⎫ ⎝⎛-- 5.用直接LU 分解方法求1题中两个矩阵的LU 分解,并求解此二方程组.6.用平方根法解方程组b Ax =321422131116,A b ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭7. 用追赶法解三对角方程组b Ax =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------=00001,2100012100012100012100012b A8.证明:(1)单位下三角阵的逆仍是单位下三角阵.(2)两个单位下三角阵的乘积仍是单位下三角阵.9.由111211----=n L L L L ,(见(2.18)式),证明:⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-111111,321323121n n n n n l l l ll l l L10.证明向量范数有下列等价性质:∞∞∞∞≤≤≤≤≤≤xn x xxn x x x n x x 21212)3()2()1(11.求下列矩阵的()12,,,A A A A ρ∞.()()5131312110212326;.A A ⎛⎫⎛⎫⎪== ⎪ ⎪-⎝⎭⎪⎝⎭12.求()2cond A()()10099129998cos sin ;.sin cos A A θθθθ-⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭13.证明:(1)若A 是正交矩阵,即T A A I =, 则()2cond 1A =;(2)若A 是对称正定阵, 1λ是A 的最大特征值, n λ是最小特征值,则()12cond nA λλ=. 习题31. 填空题:(1) 当A 具有严格对角线优势或具有对角优势且 时,线性方程组Ax =b 用Jacobi 迭代法和Gauss -Seidel 迭代法均收敛;(2) 当线性方程组的系数矩阵A 对称正定时, 迭代法收敛.(3) 线性方程组迭代法收敛的充分必要条件是迭代矩阵的 小于1; SOR 法收敛的必要条件是 ;(4) 用迭代法求解线性方程组,若q = ρ (B ), q 时不收敛, q 接近 时收敛较快, q 接近 时收敛较慢; (5)1112,A ⎛⎫= ⎪⎝⎭J B = ;S B = ; ()J B ρ= ; ()S B ρ= .2.用Jacobi 迭代法和Gauss -Seidel 迭代法求解方程组(1) ⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛453210*********x x x ; (2)⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---7161411151118321x x x 各分量第三位稳定即可停止.3.用SOR 法解方程组,取0.9ω=,与取1ω= (即Gauss-Seidel 法)作比较.1233215573132573x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭. 4.下面是一些方程组的系数阵,试判断它们对Jacobi 迭代法,Gauss-Seidel 迭代法的收敛性(1)⎪⎪⎪⎭⎫ ⎝⎛211231125; (2)⎪⎪⎭⎫ ⎝⎛2321;(3)212121212⎛⎫⎪⎪ ⎪-⎝⎭; (4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----210012*********2; (5)⎪⎪⎪⎪⎪⎭⎫⎝⎛------------101111511111011115 ; (6)112211221122111⎛⎫ ⎪ ⎪ ⎪⎝⎭. 5.方程组0,0,2211212122211211≠≠⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛a a b b x x a a a a证明用Jacobi 迭代法收敛的充要条件是:122112112<=a a a a r . 6.设为实数;a a a a a a a A ,111⎪⎪⎪⎭⎫ ⎝⎛=(1)若A 正定,a 的取值范围;(2)若Jacobi 迭代法收敛,a 的取值范围.习题41. 填空题:(1) 幂法主要用于求一般矩阵的 特征值,Jacobi 旋转法用于求对称矩阵的 特征值;(2) 古典的Jacobi 法是选择 的一对 元素将其消为零;(3) QR 方法用于求 矩阵的全部特征值,反幂法加上原点平移用于一个近似特征值的 和求出对应的 . 2.用幂法求矩阵.⑴⎪⎪⎪⎭⎫ ⎝⎛111132126, ⑵⎪⎪⎪⎭⎫⎝⎛---20101350144按模最大的特征值和对应的特征向量,精确到小数三位.3.已知: ⎪⎪⎪⎭⎫⎝⎛---=1321291111111A取t =15,作原点平移的幂法,求按模最大特征值.4. ⎪⎪⎪⎭⎫ ⎝⎛=10141101414A用反幂法加原点平移求最接近12的特征值与相应的特征向量,迭代三次.5.若A 的特征值为t n ,,,,21λλλ 是一实数,证明:t i -λ是tI A -的特征值,且特征向量不变.6.已知()321,,Tx =求平面反射阵H 使()00,*,Ty Hx ==,即使x 的1,3两个分量化零.7. ⎪⎪⎪⎭⎫ ⎝⎛=612133231A试用Jacobi 旋转法求作一次旋转,消去最大的非对角元,写出旋转矩阵,求出θ角和结果.8.设 ()()()()⎪⎪⎭⎫⎝⎛=⨯⨯⨯⨯222322333100T T T 已知λ是1T 的特征值,相应的特征向量为()Ta a a 321,,,证明λ也是T 的特征值,相应的特征向量为()Ta a a 0,0,,,321.9. 证明定理4.5.10. 证明(4.21)中的s A 和1+s A 相似.习题51.填空题(1) 用二分法求方程310x x +-=在[0,1]内的根,迭代一次后,根的存在区间为 ,迭代两次后根的存在区间为 ;(2) 设()f x 可微,则求方程()x f x =根的Newton 迭代格式为 ;(3) 2()(5)x x C x ϕ=+-,若要使迭代格式1()k k x x ϕ+=局部收敛到α=C 取值范围为 ;(4) 用迭代格式1()k k k k x x f x λ+=-求解方程32()10f x x x x =---=的根,要使迭代序列{}k x 是二阶收敛,则k λ= ;(5) 迭代格式12213k k kx x x +=+收敛于根α= ,此迭代格式是 阶收敛的.2.证明Newton 迭代格式(5.10)满足12()lim2()k k kf f εαεα+→∞''=-'3. 方程3291860, [0,)x x x x -+-=∈+∞的根全正实根,试用逐次扫描法(h =1),找出它的全部实根的存在区间,并用二分法求出最大实根,精确到0.01.4.用二分法求下列方程的根,精度0.001ε=.(1) 340 [2,1]x x x -+=∈-- (2) 1020 [0,1]x e x x +-=∈5.用迭代法求3250x x --=的正根,简略判断以下三种迭代格式:(1) 3152k k x x +-=; (2) 1252k k x x +=- ; (3)1k x +=在02x =附近的收敛情况,并选择收敛的方法求此根.精度410ε-=.6. 方程x e x-=(1) 证明它在(0,1)区间有且只有一个实根; (2) 证明 ,,,101==-+k ex kx k ,在(0,1)区间内收敛;(3) 用Newton 迭代法求出此根,精确到5位有效数字. 7.对方程3310x x --=,分别用(1) Newton 法0(2)x =;(2) 割线法01(2, 1.9)x x ==求其根.精度410ε-=.8.用迭代法求下列方程的最小正根(1) 5420x x --=; (2) 2tan 0x x -=; (3) 2sin x x = 9.设有方程 230xx e -=(1) 以1h =,找出根的全部存在区间;(2) 验证在区间[0,1]上Newton 法的区间收敛定理条件不成立; (3) 验证取00.21x =, 用Newton 法不收敛;(4) 用Newton 下山法,取00.21x =求出根的近似值,精度410ε-=.10.分别用Jacobi 法,Gauss —Seidel 法求解非线性方程组22230250x y x y +-=⎧⎨+-=⎩在(1.5,0.7)附近的根,精确到410-.11.分别用Newton 法,简化Newton 法求解非线性方程组s i nc o s 01x y x y +=⎧⎨+=⎩在(0,1)附近的根,精确到410-.习题61.填空题(1) 设53()1f x x x x =+++,则[0,1]f ,[0,1,2]f = ,[0,1,2,3,4,5]f = ;[0,1,2,3,4,5,6]f = .(2) 设01(),(),,()n l x l x l x 是以节点0,1,2,…,n 的Lagrange 插值基函数,则()njj jl x ==∑ ;0()njj jl k ==∑ .(3) 设(0)0,(1)16,(2)46,[0,1]f f f f ====则 ,[0,1,2]f = ,()f x 的二次Newton 插值多项式为 .2.已知函数2)(x ex f -=的数据如下试用二次,三次插值计算=0.35,=0.55的近似函数值,使其精度尽量地高. 3.利用x sin 在3,4,6,0πππ=x 及2π处的值,求5sin π的近似值,并估计误差.4计算积分⎰=xdt ttx f 0sin )(, 当)(x f =0.45时的x 的取值. 5.试用Newton 插值求经过点(-3,-1),(0,2),(3,-2),(6,10)的三次插值多项式.6.求满足)()(),()(1100x f x P x f x P ==及)()(00x f x P '='的次数不超过2次的插值多项式)(x P ,并给出其误差表达式.7.设i x 是互异节点,)(x l j 是Lagrange 插值基函数(n j ,,2,1,0 =),证明(1)1)(0≡∑=nj jx l;(2)k nj jk j x x l x≡∑=0)( (n k ,,2,1,0 =);(3)0)()(0≡-∑=nj j k jx l x x(n k ,,2,1,0 =).8.设有如下数据试计算此表中函数的差分表,并分别利用Newton 向前,向后插值公式求出它的插值多项式. 9.试构造一个三次Hermite 插值多项式使其满足5.0)1( ,2)1( ,5.0)0( ,1)0(='=='=f f f f10.已知函数)(x f 的数据表分别用x =0.75的近似值. 11.对函数()sin f x x =进行分段线性插值,要求误差不超过5105.0-⨯,问步长h 应如何选取.12用三转角插值法求满足下述条件的三次样条插值函数(1) 0000.1)25.0(='S ,6868.0)53.0(='S (2) 2)25.0(-=''S , 6479.0)53.0(=''S 13. 证明定理6.6.习题81.填空题(1) 1n +个点的插值型数值积分公式()()nbj j aj f x dx A f x =≈∑⎰的代数精度至少是 ,最高不超过 .(2) 梯形公式有 次代数精度,Simpson 公式有 次代数精度. (3) 求积公式20()[(0)()][(0)()]2hhf x d xf f h h f f h α''≈++-⎰中的参数α=时,才能保证该求积公式的代数精度达到最高,最高代数精度为 .2.确定下列求积公式的求积系数和求积节点,使其代数精度尽量高,并指出其最高代数精度. (1) )2()()0()(21020h f A h f A f A dx x f h++≈⎰ (2))](3)(2)1([)(2111x f x f f A dx x f ++-≈⎰-(3)1123111()(1)33f x dx A f A f A f -⎛⎫⎛⎫=-+-+ ⎪ ⎪⎝⎭⎝⎭⎰ (4) )1()0()()(321111f A f A x f A dx x f ++≈⎰- (5))()()(212x f x f dx x f +≈⎰3.分别利用复化梯形公式,复化Simpson 公式,复化Cotes 公式计算下列积分 (1) ⎰+1024dx x x(n =8)(2) ⎰10dx x (n =10)(3) ⎰-12dx ex (n =10)(4) (n =6)(5)⎰20sin πdx xx(n =8) 4.用Romberg 公式计算积分(1) ⎰-1022dx e x π (精度要求510-=ε) (2) ⎰+404cos 1dx x (精度要求510ε-=)5.分别取节点数为2,3,4利用Gauss -Legendre 求积公式计算积分 (1) ⎰-+44211dx x , (2) ⎰-10dx e x , (3) 311dx x ⎰ 6.利用Gauss 型求积公式,分别取节点数2,3,4计算积分 (1) ⎰+∞-0dx x e x , (2) ⎰+∞∞--+dx x e x212 7.用节点数为4的Gauss -Laguerre 求积公式和Gauss -Hermite 求积公式计算积分 ⎰+∞-=02dx e I x 的近似值,并与准确值2π=I 作比较.8.分别用两点公式与三点公式求2)1(1)(x x f +=在x =1.0,x =1.2的导数值,并估计误差,其中)(x f 的数据由下表给出9.已知)(x f x e -=的数据如下取=0.1,=0.2,分别用二点、三点公式计算=2.7处的一阶和二阶导数值.习题91.填空题(1) 解初值问题的Euler 法是 阶方法,梯形方法是 阶方法,标准R -K 方法是 阶方法.(2) 解初值问题()20(),(0)1y x x y y '=-=时,为保证计算的稳定性,若用经典的四阶R -K 方法,步长0h << .采用Euler 方法,步长h 的取值范围为 ,若采用Euler 梯形方法,步长h 的取值范围为 若采用Adams 外推法,步长h 的范围为 ,若采用Adams 内插法,步长h 的取值范围为 .(3) 求解初值问题Euler 方法的局部截断误差为 Euler 梯形方法的局部截断误差为 , Adams 外推法的局部截断误差为 Adams 内插法的局部截断误差为 .2.对初值问题⎪⎩⎪⎨⎧=≤≤-+='0)0(1021122y x y x y试用Euler 法取步长h =0.1和h =0.2计算其近似解,并与准确解21x y x=+进行比较. 3.利用Euler 预测-校正法和四阶经典R -K 方法,取步长h =0.1,求解方程⎪⎩⎪⎨⎧=≤≤+='1)0(10y x y x y 并与准确解x e x x y 21)(+--=进行比较.4.用待定系数法推导二步法公式)85(12111-++-++=i i i i i f f f h y y 并证明它是三阶公式,求出它的局部截断误差.5.用Adams 预测-校正法求解⎪⎩⎪⎨⎧=≤≤-='1)0(102y x y y 并与准确解1()1y x x=+进行比较. 6.用Euler 中点公式计算0 2.5(0)1y yx y '⎧=-≤≤⎨=⎩取步长h =0.25,与准确解x e y -=比较,并说明中点公式是不稳定的.7.写出用经典的R -K 方法及Adams 预测-校正法解初值问题⎪⎩⎪⎨⎧==+='+-='0)0(,1)0(782z y yz x z z y y的计算公式.8.写出用Euler 方法及Euler 预测-校正法解二阶常微分方程初值问题⎩⎨⎧='==+''0)0(,1)0(0sin y y y y的计算公式.9.证明用单步法1,(,)22i i i i i i h h y y hf x y f x y +⎛⎫=+++ ⎪⎝⎭解方程ax y 2-='的初值问题,可以给出准确解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n -1 n -1
12. 证明
å
k =0 n -1
f k Dg k = f n g n - f 0 g 0 - å g k +1 Df k .
k = 0 2
13. 证明
å D
j = 0
b
2
b
2
b
2
b
ii) 若 f ( xi ) = S ( xi )(i = 0,1,L , n) , 式 中 x i 为 插 值 节 点 , 且 a = x0 < x1 < L < xn = b , 则
ò S ²( x) [ f ²( x) - S ²( x) ]dx = S ²(b) [ f ¢(b) - S ¢(b)] - S ²(a ) [ f ¢(a ) - S ¢(a) ] .
4. 给出 cos x,0°≤x ≤90°的函数表,步长 h =1′=(1/60)°,若函数表具有 5 位有效数字, 研究用线性插值求 cos x 近似值时的总误差界. 5. 设 xk = x0 + kh ,k=0,1,2,3,求 max l2 ( x) .
x0 £ x £ x 3
并证明当 n ® ¥ 时, jn ( x ) 在 [ a , b ] 上一致收敛到 f ( x ) . 21. 设 f ( x ) = 1/(1 + x 2 ) ,在 -5 £ x £ 5 上取 n = 10 ,按等距节点求分段线性插值函数 I h ( x ) , 计算各节点间中点处的 I h ( x ) 与 f ( x ) 的值,并估计误差. 22. 求 f ( x) = x 2 在 [ a , b ] 上的分段线性插值函数 I h ( x ) ,并估计误差. 23. 求 f ( x) = x 4 在 [ a , b ] 上的分段埃尔米特插值,并估计误差. 24. 给定数据表如下:
25. 若 f ( x ) Î C 2 [ a , b ] , S ( x ) 是三次样条函数,证明 i)
; òa [ f ²( x)] dx - òa [ S ²( x)] dx = òa [ f ²( x) - S ²( x)] dx + 2 òa S ²( x) [ f ²( x) - S ²( x) ]dx
Da, Db, Dc. 证明面积的误差 Ds 满足 Ds Da Db Dc £ + + . s a b c
第二章 插值法
1. 根据(2.2)定义的范德蒙行列式,令
1 Vn ( x) = Vn ( x0 , x1 ,L , xn -1 , x ) = L 1
证明 Vn ( x ) 是 n 次多项式,它的根是 x0 ,L , xn -1 ,且
误差增加,而相对误差却减小. 11. 序列 { y 满足递推关系 yn = 10 yn -1 - 1 (n=1,2,…),若 y0 = n } 计算到 y 10 时误差有多大?这个计算过程稳定吗?
6 12. 计算 f = ( 2 - 1) ,取 2 » 1.4 ,利用下列等式计算,哪一个得到的结果最好?
1 1 3 , (3 2 2) , ,99 - 70 2. ( 2 + 1)6 (3 + 2 2)3
13. f ( x) = ln( x -
x 2 - 1) ,求 f(30)的值.若开平方用六位函数表,问求对数时误差有多大?若
改用另一等价公式
ln( x - x 2 - 1) = - ln( x + x 2 + 1)
计算数学教研室
5
课程:数值方法
数值分析习题集
3. 在次数不超过 6 的多项式中,求 f ( x) = sin 4 x 在 [ 0, 2p ] 的最佳一致逼近多项式. 4. 假设 f ( x ) 在 [ a , b ] 上连续,求 f ( x ) 的零次最佳一致逼近多项式. 5. 选取常数 a ,使 max x - ax 达到极小,又问这个解是否唯一?
* * * * * x1 = 1.1021, x2 = 0.031, x3 = 385.6, x4 = 56.430, x5 = 7 ´ 1.0.
4. 利用公式(3.3)求下列各近似值的误差限:
* * * * * * * * * * * (i ) x1 + x2 + x4 , (ii) x1* x2 x3 , (iii ) x2 / x4 , 其中 x1 , x2 , x3 , x 4 均为第 3 题所给的数.
7. 设 f ( x ) Î C 2 [ a , b ] 且 f ( a) = f (b) = 0 ,求证
max
a £ x£b
计算数学教研室
3
课程:数值方法
x
数值分析习题集
x
8. 在 -4 £ x £ 4 上给出 f ( x) = e 的等距节点函数表,若用二次插值求 e 的近似值,要使截 断误差不超过 10- 6 ,问使用函数表的步长 h 应取多少?
计算,求对数时误差有多大? 计算数学教研室 2
课程:数值方法
数值分析习题集
14. 试用消元法解方程组 15. 已知三角形面积 s =
{
10 x1 +1010 x 2 =10 ; x1 + x2 = 2. 假定只用三位数计算,问结果是否可靠?
1 p ab sin c, 其中 c 为弧度, 0 < c < ,且测量 a ,b ,c 的误差分别为 2 2
5. 计算球体积要使相对误差限为 1%,问度量半径 R 时允许的相对误差限是多少? 6. 设 Y0 = 28, 按递推公式
1 Yn = Yn -1 - 783 ( n=1,2,…) 100
计算到 Y100 .若取 783 ≈27.982(五位有效数字),试问计算 Y 100 将有多大误差? 7. 求方程 x 2 - 56 x + 1 = 0 的两个根,使它至少具有四位有效数字( 783 ≈27.982). 8. 当 N 充分大时,怎样求
并由此求出分段三次埃尔米特插值的误差限. 18. 求一个次数不高于 4 次的多项式 P ( x ) ,使它满足 P(0) = P(- k + 1) 并由此求出分段三次 埃尔米特插值的误差限. 19. 试求出一个最高次数不高于 4 次的函数多项式 P ( x ) ,以便使它能够满足以下边界条件
ò
+¥
N
1 dx ? 1 + x 2
2
9. 正方形的边长大约为 100 ㎝,应怎样测量才能使其面积误差不超过 1 ㎝ ? 10. 设 S =
1 2 gt 假定 g 是准确的,而对 t 的测量有±0.1 秒的误差,证明当 t 增加时 S 的绝对 2 2 » 1.41 (三位有效数字),
数值分析习题集
周 富 照
(适合课程《数值方法 A》和《数值方法 B》 )
长沙理工大学
课程:数值方法
数值分析习题集
第一章 绪 论
1. 设 x>0,x 的相对误差为δ,求 ln x 的误差.
n 2. 设 x 的相对误差为 2%,求 x 的相对误差.
3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出 它们是几位有效数字:
0 1 7 0 1 7 4 16. f ( x) = x + x + 3 x + 1 ,求 f é , 28 ù ë 2 , 2 , L , 2 ù û 及 f é ë 2 , 2 ,L û .
17. 证明两点三次埃尔米特插值余项是
R3 ( x) = f (4) (x)( x - xk ) 2 ( x - xk +1 ) 2 / 4!, x Î ( xk , xk +1 )
x0 L x
2 x0
L L L
n x 0
L x 2
L x n
1 xn -1
2 n xn L x -1 n -1
Vn ( x) = Vn -1 ( x0 , x1 ,L , xn -1 )( x - x0 )L ( x - xn -1 ) .
2. 当 x= 1 , 1 , 2 时, f(x)= 0 , 3 , 4 ,求 f(x)的二次插值多项式. 3. 给出 f(x)=ln x 的数值表用线性插值及二次插值计算 ln 0.54 的近似值. x lnx 0.4 0.916291 0.5 0.693147 0.6 0.510826 0.7 0.357765 0.8 0.223144
P(0) = P¢(0) = 0 , P(1) = P¢(1) = 1 , P (2) = 1 .
20. 设 f ( x) Î C [ a , b ] ,把 [ a , b ] 分为 n 等分,试构造一个台阶形的零次分段插值函数 jn ( x)
计算数学教研室
4
课程:数值方法
数值分析习题集
x j y j
0.25 0.5000
0.30 0.5477
0.39 0.6245
0.45 0.6708
0.53 0.7280
试求三次样条插值 S ( x ) 并满足条件 i) ii)
S ¢(0.25) = 1.0000, S ¢(0.53) = 0.6868; S ²(0.25) = S ²(0.53) = 0.
y j = Dyn - Dy0 .
14. 若 f ( x) = a0 + a1 x + L + an -1 x n -1 + an x n 有 n 个不同实根 x1 , x2 ,L , x n ,证明
å f ¢( x ) = {