正方体展开规律

合集下载

正方体展开图顺口溜

正方体展开图顺口溜

正方体展开图顺口溜
正方体展有规律,十一种类看仔细;中间四个成一行,两边各一无规矩;二三紧连错一个,三一相连一随意;两两相连各错一,三个两排一对齐。

一条线上不过四,田七和凹要放弃;相间之端是对面,间二拐角面相邻。

正方体简介
用六个完全相同的正方形围成的立体图形叫正方体。

侧面和底面均为正方形的直平行六面体叫正方体,即棱长都相等的六面体,又称“立方体”、“正六面体”。

正方体是特殊的长方体。

表面积
因为6个面全部相等,所以正方体的表面积=一个面的面积×6=棱长×棱长×6
设一个正方体的棱长为a,则它的表面积S:
S=6(a²)。

正方体折叠与展开口诀

正方体折叠与展开口诀

正方体折叠与展开口诀
正方体折叠与展开口诀:
1、正方体折叠:“头尾置中,侧面向内,顶面贴边,四面折叠。


2、正方体展开:“头尾相连,侧面向外,顶面对边,四角伸出。


详解:
1、正方体折叠:
(1)头尾置中:取正方体的一边,将它的头尾放在中间;
(2)侧面向内:取另一边,将它的侧面朝向中间;
(3)顶面贴边:将边贴在另一边的边上;
(4)四面折叠:就像将一个带有花纹的手帕折叠一样,将正方体的四个角折叠起来。

2、正方体展开:
(1)头尾相连:取正方体的一边,将它的头和尾连接在一起;
(2)侧面向外:取另一边,将它的侧面朝向外部;
(3)顶面对边:将顶面置于另一边的边上;
(4)四角伸出:将正方体的四个角分别从四个方向伸出去,形成正方体的模样。

万能解题法——正方体的展开和折叠

万能解题法——正方体的展开和折叠

正方体的展开和折叠——万能解题法
基本类型:
正方体展有规律,十一种类看仔细;中间四个成一行,两边各一无规矩;二三紧连错一个,三一相连一随意;两两相连各错一,三个两排一对齐。

一条线上不过四,田“7”和凹要放弃。

相对面:“I”型图不相连;“Z”型图在两端。

同行或同列隔一个的;“Z”字型两端(“Z”字型两端是指紧挨着中间竖线的两个面)。

解题思路:
1.通过相对面排除,相对面不相邻。

2.三面排除或确定。

在正方体8个顶点,每个顶点均连着三个面。

正方体只能看到图形的三个面。

比较这三个面在立体图形与平面图形中的位置来确定或排除。

在平面图形中,通过旋转、移动,让不相邻的面变成立体图形中相邻的面。

(1)旋转,即侧面“滚动”。

如果两个面的两个边构成90°的夹角,其中一个面旋转90度,让这两条边重合。

他们本身就是一条边,被剪开了,当然还能合上。

在滚动的过程抓住一个公共点,每次滚动只能滚动90度,并且在滚动的时候,滚动的面上面的图案也要跟着滚动变化。

(2)移动,即一字型平移。

当四个面排成一列或一行,其中一端的面直接移到另一端,只要保证相邻的面不变即可。

正方体的11种展开图形

正方体的11种展开图形

02
CHAPTER
正方体的展开图形分类
一字型展开图形
总结词
一字型展开图形是最简单的正方体展 开图形,它由两个矩形和四个等长的 三角形组成。
详细描述
在展开后,正方体的一个面完全展开 ,与底面平行,其他五个面则形成等 长的三角形。这种展开图形通常用于 折叠正方体纸盒。
L型展开图形
总结词
L型展开图形由一个矩形和两个等长的三角形组成,展开后的形状类似于英文 字母"L"。
VS
详细描述
在正方体的展开图形中,面数相等是判断 是否能够还原成正方体的一个重要标准。 如果展开图形中的面数与正方体的面数相 等,那么这个图形就有可能通过折叠还原 成正方体。
04
CHAPTER
正方体展开图形的应用
折纸艺术
折纸艺术是一种以纸张为主要材料的艺术形式,通过折叠、剪裁、拼贴等手法创 造出各种形态和形象。正方体的展开图形在折纸艺术中有着广泛的应用,如千纸 鹤、纸盒等。
在展开后,正方体的八个角完全展开, 形成等长的三角形,同时还有一个正 方形面完全展开。这种展开图形通常 用于折叠正方体纸盒的顶部和底部以 及四个侧面。
混合型展开图形
总结词
混合型展开图形由多种形状组成,包括矩形、三角形和正方形等。
详细描述
混合型展开图形是最复杂的正方体展开图形,它由多种形状组合而成,通常用于折叠复杂的正方体纸盒结构。这 种展开图形需要较高的空间想象能力和手工技巧才能完成。
谢谢
折纸艺术不仅可以培养人的创造力和动手能力,还可以作为装饰品和礼物赠送给 亲朋好友,传递美好祝福。
空间几何教学
空间几何是数学中的一门学科,主要研究空间图形的性质和 关系。正方体的展开图形是空间几何教学中的一个重要内容 ,通过让学生亲手制作正方体的展开图形,可以帮助学生更 好地理解空间几何的概念和原理。

正方体展开图口诀

正方体展开图口诀

正方体展开图口诀
正方体展有规律,十一种类看仔细;
中间四个成一行,两边各一无规矩;
二三紧连错一个,三一相连一随意;
两两相连各错一,三个两排一对齐。

一条线上不过四,田七和凹要放弃;
相间Z端是对面,间二拐角面相邻。

1.中间四个成一行,两边各一无规矩
"141"型,中间一行4个作侧面。

上下两个各作为上下底面,共有6种基本图形。

2.二三紧连错一个,三一相连一随意
“231”型,中间3个作侧面,共3种基本图形
3.两两相连各错一
"222"型,两行只能有1个正方形相连
4.三个两排一对齐
5.一条线上不过四
指在正方形展开图中,一条直线上的小正方形不会超过四个。

如以下的图形都不是正方体的展开图。

6.田七和凹要放弃
指在正方体展开图中,不会有“田”字型、“凹”字型的形状。

如以下的图形都不是正方体的展开图。

7.相间Z端是对面
相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面,“z”字端处的小正方形是正方体的对面。

如下面的展开图中,“1”对“5”,“2”对“4”,“3”对“6”。

8.间而拐角两面相邻
中间隔着两个小正方形或拐角型的三个面是正方形的邻面。

拐角型如下图所示。

巧记正方体11种展开图的规律

巧记正方体11种展开图的规律

巧记正方体11种睁开图的纪律
先生配合研讨了几条纪律,愿望对大家的教授教养有所帮忙:
正方体睁开11种,找纪律很好记.
中央4个连续串,双方各一随意放.
二三紧连错一个,三一相连一随意.
两两相连各错一.三个两排一对齐.
先找同层隔一面,再找异层隔二面,
剩下两面必相对,两个开端按次序.
正方体表面展开图(一四一型:6种)口诀:中间四个一连串,两边各一随便放
(二三一型:3种)口诀:二三紧连挪一个,三一相连一随便
(二二二型:1种)口诀:两两相连各挪一
(三三型1种)口诀:三个两排一对齐。

巧记正方体11种展开图的规律

巧记正方体11种展开图的规律

巧记正方体11种展开图的规律
老师共同研究了几条规律,希望对大家的教学有所帮助:
正方体展开11种,找规律很好记。

中间4个一连串,两边各一随便放.
二三紧连错一个,三一相连一随便。

两两相连各错一。

三个两排一对齐。

先找同层隔一面,再找异层隔二面,
剩下两面必相对,两个起头按顺序。

正方体表面展开图(一四一型:6种)口诀:中间四个一连串,两边各一随便放
(二三一型:3种)口诀:二三紧连挪一个,三一相连一随便
(二二二型:1种)口诀:两两相连各挪一
(三三型1种)口诀:三个两排一对齐。

正方体的展开图与相对面分布规律

正方体的展开图与相对面分布规律

正方体的展开图与相对面分布规律正方体的展开与折叠是《图形的初步认识》这一章的重要内容,而探索正方体的展开图的相对面分布的规律更是其中的一个难点。

下面就谈一谈如何快速地确定相对面,供同学们学习时参考。

一、“141”型(共6种)展开图特点:在这类展开图中,最长的一行(或列)有四个正方形(如图1~6所示)在这种类型中,有4个正方形“直线”相连,其余2个正方形分别在“直线”两旁,位置任意.相对面特点:图1~图6有四个面在同一层,可作为一类.确定相对面的方法是:一、三层的两个面是相对面,第二层四个面中不相邻的两个面是相对面。

二、“231”型(共3种)展开图特点:在这类展开图中,最长的一行(或列)有3个正方形(如图7~9)。

在“231”型中,“3”所在的行(或列)必须在中间,“2"、“1”所在行(或列)分属两边(前后不分)。

也就是正方体展开后,如有三个面在“直线”相连,另2个面在“直线”相连面一旁,另一面在它另一旁.故该种情况有3种。

相对面特点: 图7~图9有三个面在同一层,剩下的三个面分别在上下两侧,可作为一类。

确定相对面的方法是:抓中间层;中间层中不相邻的两个面一定是相对面,中间的那个面与离它最远的面是相对面;余下的两个面是相对面。

三、“222”型(只有1种)展开图特点:在展开图中,最多只有2个正方形“直线”相连。

正如“二面三行,像楼梯”。

如图10所示展开图相对面:,相邻两层不相邻的两个面一定是相对面,这样就可以先确定出两对不同的相对面,剩下的两个面一定是相对面.面A对面D,面B对E,面C对面F。

四、“33”型(只有1种)犹如“三面两行,两台阶"如图中相对面每层中不相邻的两个面是相对面,剩下的两个面是相对面。

面A 对面C,面D对F,面B对面E。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正方体展开规律
立体图形的相关问题可以转化为平面图形来研究,但是初一学生的空间想象能力较差,只有引导他们通过探索总结出规律才是最好的办法。

一、立方体平面展开图中的特点
1、当我们从立方体的某顶点出发,最多只能观察到三个面,这三个面中必包括三组相对面中的各一个,且两个相对的面不能被同时看到。

2、平面展开图形中的每一个正方形至少有一边与其他正方形相连。

3、立方体的平面展开图中一个公共顶点处最多只能出现三个正方形,与一个正方形相邻的正方形最多只能有四个。

4、立方体中原来处于相对位置上的两个面,展开后的正方形无公共顶点和公共边;反之,有公共顶点或公共边的两个正方形折叠成立方体后,必成为相邻面,不可能成为相对面。

二、立方体平面展开图的形式
立方体由6个大小完全相同的正方形组成,由于选择剪开的棱不一样,所以表面展开图有11种,可归类为:“141”型、“132”型、“222”型、“33”型四种。

凡是出现“田”字形的一定不是,凡是出现“凹”字形的也一定不是,五连长链和六连长链均不是立方体的表面展开图。

巧记立方体展开图,有一首小儿歌。

中间4个一连串,两边各一随便放。

二三紧连错一个,三一相连一随便。

两两相连各错一,三个两排一对齐。

要找两个相对面,切记相隔一个面。

相关文档
最新文档