Optimization of Alkaline Protease Production from Bacillus sp. by Response Surface Methodology

合集下载

微生物蛋白酶国内外研究现状与应用展望

微生物蛋白酶国内外研究现状与应用展望

微生物蛋白酶国内外研究现状与应用展望蛋白酶是可以作用于蛋白质或多肽的一类物质,它可以催化肽键水解,在医药、纺织、洗涤剂、食品、有机合成及脱毛、制革等工业应用和学术研究方面得到了广泛应用,这些行业应用大约占到整个酶市场的60%。

蛋白酶水解蛋白质与化学法水解蛋白质比较,前者具有更加绿色、更加安全的诸多优点[1]。

关于蛋白酶的研究,最早是一些学者从胃蛋白酶、胰胰蛋白酶和糜蛋白酶这些蛋白酶开始研究的,到后来有研究学者发现,一切组织和细胞中、微生物等都含有蛋白酶。

1、微生物蛋白酶的分类及国内外研究进展如果以提取酶的途径来划分蛋白酶种类的话,可以将蛋白酶划分为微生物蛋白酶和植物蛋白酶以及动物蛋白酶和其他来源的蛋白酶[2]。

植物蛋白酶包括无花果蛋白酶、苦瓜蛋白酶等,最新有学者研究报道菠萝蛋白酶的生物活性特性比较广,临床应用价值也较高,可作为饲料添加剂,动物摄入以后有助于一些蛋白质的充分水解,增加动物消化吸收和缩短育肥周期等,并且其在医疗上的重要价值也得到全球学者的一致赞同[3]。

微生物蛋白酶是从细菌、酵母、霉菌或者放线菌等一些微生物中得到的一些酶,微生物蛋白酶又可以根据其适应环境的差异性分为适应极端条件的蛋白酶、碱性蛋白酶、中性蛋白酶、嗜盐蛋白酶及酸性蛋白酶,除此之外,还包括一些具有其他功能特性的蛋白酶。

随着基因工程、发酵技术的发展和新型发酵设备的开发,微生物逐渐成为工业酶制剂的核心来源。

徐建国等[4]从河滩涂表层的土壤中分离出了一株产蛋白酶活力比较强的菌株。

王萍[5]从自然界筛选到一株优良性能的海洋酵母HN311能够高产蛋白酶,其分类地位是Aureobasidium pullulans,在最适产酶条件下该菌株发酵液中蛋白酶活力可达623U/mL。

根据蛋白酶活性所适应的pH值不同可把蛋白酶分为酸性、碱性和中性蛋白酶,这3种蛋白酶因为受到了不同酸碱度的影响会有很大酶活性的不同,可由于不同的工业生产条件而起到不同的生产作用。

产蛋白酶菌的筛选及产酶条件优化

产蛋白酶菌的筛选及产酶条件优化

大庆师范学院本科生毕业论文蛋白酶产生菌培养条件的条件优化院(部)、专业生命科学学院生物技术研究方向微生物学学生姓名朱琳学号200901122598指导教师姓名张亦婷2013年06月01日摘要采用大庆师范学院生命科学学院花园附近土壤、农田土壤及体育场附近土壤作为样品,并从中筛选分离并得到产蛋白酶能力较高的菌株,经过初步鉴定该菌株属芽孢杆菌。

通过对其产酶条件进行优化,结果显示该菌产酶最佳碳源为质量浓度15g/L的乳糖,最佳氮源为质量浓度20g/L的尿素,最适初始pH值为6.5,最适发酵温度为35℃。

关键词:菌种筛选;鉴定;蛋白酶;条件优化AbstractThe sewage treatment plant soil near east institute, soil and soil samples near farms .Using milk hydrolysis circle screening model separating screening in high ability get protease whr1 strains. Preliminary appraisal of the fungus belong to bacillus. After the optimization of the condition, the capability of whr1 was improved, the optimal condition is: carbon source is sucrose 15g/L; nitrogen source is Yeast extract 20g/L, the pH is 6.5; fermentation temperature is 35℃.Key words:Screening;Identified;Protease;Conditions optimization目录摘要 (1)Abstract (2)1 引言 ...........................................................................................................................................................2 材料与方法 (3)2.2.2 实验材料 (3)2.2.1 菌株筛选 (3)3.1 菌株筛选 (6)3.1.1 菌株的分离筛选 (6)2.3 条件优化 (7)2.3.1 不同碳源对产酶的影响 (7)2.3.3不同氮源对产酶的影响 (8)2.3.4 培养基不同初始pH值对产酶的影响 (9)2.3.5 不同温度对产酶的影响 (10)4 结论 (10)11 引言蛋白酶是催化蛋白质中肽键水解的酶,是一类广泛应用于皮革、毛皮、丝绸、医药、食品、酿造等方面的重要工业用酶,也是目前世界上产销量最大的商业酶,其市场占有率约占整个商品酶销售量的60%,微生物蛋白酶从微生物中提取,不受资源、环境和空间的限制,具有动物蛋白酶和植物蛋白酶所不可比拟的优越性。

211188547_响应面法优化日本蛇菰多糖脱色、脱蛋白工艺

211188547_响应面法优化日本蛇菰多糖脱色、脱蛋白工艺

秦宇,华宗,张敏,等. 响应面法优化日本蛇菰多糖脱色、脱蛋白工艺[J]. 食品工业科技,2023,44(10):177−184. doi:10.13386/j.issn1002-0306.2022070206QIN Yu, HUA Zong, ZHANG Min, et al. Optimization of Decolorization and Deproteinization of Balanophora japonica Makino Polysaccharide by Response Surface Methodology[J]. Science and Technology of Food Industry, 2023, 44(10): 177−184. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070206· 工艺技术 ·响应面法优化日本蛇菰多糖脱色、脱蛋白工艺秦 宇1,华 宗1,张 敏1,姜薇薇1,2,3,4,*(1.云南农业大学理学院,云南昆明 650201;2.云南省药用植物生物学重点实验室,云南昆明 650201;3.西南中药材种质创新与利用国家地方联合工程研究中心,云南昆明 650201;4.云南特色植物提取实验室,云南昆明 650201)摘 要:研究日本蛇菰多糖双氧水脱色、Sevag 法脱蛋白的条件并对其进行工艺优化。

在单因素的基础上,以多糖脱色率为指标,采用响应面法设计三因素三水平实验对蛇菰多糖的脱色条件进行优化;以蛋白质脱除率、多糖保留率为指标,选取Sevag 试剂比例(氯仿:正丁醇)、样液:Sevag 试剂、振荡时间为因素水平设计响应面试验,得到最佳工艺条件。

结果表明,在pH 为8的条件下双氧水脱色最佳工艺为:双氧水用量为20%、脱色时间为46 min 、脱色温度为60 ℃,在此条件下蛇菰多糖的脱色率为84.21%。

响应面优化β-环糊精对工业骨胶的除臭工艺

响应面优化β-环糊精对工业骨胶的除臭工艺

2017年第36卷第7期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS·2615·化 工 进展响应面优化β-环糊精对工业骨胶的除臭工艺刘静,苏秀霞,崔明(陕西科技大学化学与化工学院,陕西 西安 710021)摘要:研究了β-环糊精对骨胶除臭的最佳工艺条件。

以骨胶为原料,在单因素试验的基础上,以β-环糊精用量、反应时间、反应温度及搅拌速率为自变量,骨胶的气味、黏度为响应值,根据Box-Benhnken 试验设计原理,采用四因素三水平的分析法模拟得到二次多项式回归方程的预测模型,优化骨胶的除臭工艺。

回归模型具有高度显著性,方程对试验拟合较好,可以对骨胶的气味、黏度进行很好的分析和预测,得出各因素对气味、黏度的影响大小,响应面分析图表明搅拌速率和反应时间的相互作用对黏度的影响显著;结果显示骨胶除臭的最佳优化条件为β-环糊精的用量为骨胶质量的6.3%,反应温度45.7℃,反应时间为90min ,搅拌速率300r/min ;优化后的骨胶气味良好,黏度为8.9Pa·s ;实测值与预测值的相对误差较小,说明最佳优化工艺的可靠性较高。

关键词:骨胶;响应面;β-环糊精;除臭中图分类号:TQ431.5 文献标志码:A 文章编号:1000–6613(2017)07–2615–06 DOI :10.16085/j.issn.1000-6613.2016-2262Optimization on deodorization of β-cyclodextrin in industrial boneglue by response surfaceLIU Jin g ,SU Xiuxia ,CUI Ming(College of Chemistry and Chemical Engineering ,Shaanxi University of Science & Technology ,Xi’an 710021,Shaanxi ,China )Abstract :The objective of this study is to optimize deodorization conditions for industrial bone glue with β-cyclodextrin. Residues from bone glue were used in this paper. On the basis of single-factor test ,the response surface methodology was utilized to investigate the effects of β-cyclodextrin content ,reaction time ,reaction temperature and stirring rate. The odor and viscosity of the bone glue were chosen as response value. The regression model had a high significance level ,and the established regression equations fit with experimental results well and showed good prediction for the odor and viscosity value of bone glue. The influences of each factor on the smell and viscosity were obtained. The response surface plots showed that the interaction between stirring rate and reaction time was outstanding. The results showed that the optimal conditions for deodorization of β-cyclodextrin content was 6.3% of bone glue amount ,reaction temperature of 45.7℃,reaction time of 90min ,stirring rate of 300r/min. The bone glue after optimized deodorization process had a good smell and a viscosity of 8.9 Pa·s. The relative error between the measured value and the predicted value is small ,which indicates that the reliability of the optimal optimization process is high.Key words :bone glue ;response surface ;β-cyclodextrin ;deodorization近些年来,纸张和木材行业的大力发展,使得胶黏剂的使用量大大增加。

219401814_响应面法优化铁皮石斛软糖配方及其抗氧化活性分析

219401814_响应面法优化铁皮石斛软糖配方及其抗氧化活性分析

王元川,高雪梅,杨宝君,等. 响应面法优化铁皮石斛软糖配方及其抗氧化活性分析[J]. 食品工业科技,2023,44(13):197−206.doi: 10.13386/j.issn1002-0306.2022090061WANG Yuanchuan, GAO Xuemei, YANG Baojun, et al. Optimization of Dendrobium offcinale Fondant Formulation and Its Antioxidant Activity Determination by Response Surface Methodology[J]. Science and Technology of Food Industry, 2023, 44(13):197−206. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090061· 工艺技术 ·响应面法优化铁皮石斛软糖配方及其抗氧化活性分析王元川,高雪梅,杨宝君,聂 龙*(滇西应用技术大学普洱茶学院,云南普洱 665000)摘 要:以铁皮石斛为主要原料,以赤藓糖醇、柠檬酸、明胶为辅料来制作铁皮石斛软糖。

以感官评定为指标,采用单因素实验和响应面试验研究铁皮石斛软糖的最佳制作工艺及配方。

再运用最优铁皮石斛软糖对DPPH 自由基、超氧阴离子自由基清除实验及其还原能力的测定来说明软糖的体外抗氧化活性;同时测定铁皮石斛软糖的质构特性。

结果表明:铁皮石斛添加量为92.90%,明胶添加量18.30%,柠檬酸添加量0.14%,赤藓糖醇添加量29.20%为最佳,此时感官评分为83.50分。

根据最优配方制得的铁皮石斛软糖,分析得出其还原糖、多酚含量分别为30.03 g/100 g 、0.85 mg/g 。

体外抗氧化分析结果显示,铁皮石斛软糖的体外抗氧化活性与V C 相近,铁皮石斛软糖对1,1-二苯基-2-三硝基苯肼(DPPH )自由基的半数有效浓度(IC 50)为0.50 mg/mL 、清除超氧阴离子自由基的IC 50值为0.13 mg/mL ,可证明铁皮石斛软糖具有良好的抗氧化能力。

219316054_蛋白桑叶中蛋白质提取工艺优化及6种蛋白酶酶解物体外降血糖活性分析

219316054_蛋白桑叶中蛋白质提取工艺优化及6种蛋白酶酶解物体外降血糖活性分析

曹天丽,郝巨辉,李卫东. 蛋白桑叶中蛋白质提取工艺优化及6种蛋白酶酶解物体外降血糖活性分析[J]. 食品工业科技,2023,44(12):232−241. doi: 10.13386/j.issn1002-0306.2022110141CAO Tianli, HAO Juhui, LI Weidong. Optimization of Protein Extraction and Analysis of Hypoglycemic Activity in Vitro of 6Different Enzymatic Hydrolysates from Protein Mulberry Leaves[J]. Science and Technology of Food Industry, 2023, 44(12): 232−241.(in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110141· 工艺技术 ·蛋白桑叶中蛋白质提取工艺优化及6种蛋白酶酶解物体外降血糖活性分析曹天丽,郝巨辉,李卫东*(北京中医药大学中药学院,北京 102488)摘 要:为开发利用蛋白桑叶中蛋白质资源,对其蛋白质提取工艺及酶解物体外降血糖活性进行研究。

本研究以蛋白桑叶为原料,采用超声辅助碱提酸沉法提取蛋白桑叶蛋白质。

通过单因素实验和响应面法优化提取工艺,以α-葡萄糖苷酶抑制率为评价指标,分析不同蛋白桑叶蛋白酶解产物体外降血糖活性。

结果表明,蛋白桑叶中蛋白质的最佳提取工艺为:氢氧化钠浓度0.125 mol/L 、提取温度40 ℃、提取时间40 min 和液料比37:1 mL/g 。

在此优化条件下,得到蛋白质提取率实际值为49.59%±0.45%,所得蛋白质等电点为pH3.5,吸水性为6.49±0.49 g/g ,吸油性为2.59±0.06 g/g ,乳化活性为7.40±0.17 m 2/g ,乳化稳定性为72.48%±3.03%。

从土壤里筛选产纤维素酶细菌的步骤

从土壤里筛选产纤维素酶细菌的步骤

从土壤中分离产几丁质酶的真菌作者:王春学号:11101680摘要:几丁质是自然界中储量仅次于纤维素的生物多聚体,它广泛存在于真菌、硅藻、节肢动物和原生动物等生物体中,是绝大多数真菌细胞壁的结构物质,同时还是昆虫中肠围食膜的主要成分[1].几丁质酶(Chitinase,EC3.4.1.14)[2]可催化水解几丁质的β21,4糖苷键生成N2乙酰2D2氨基葡萄糖(NAG),它在植物病虫害,尤其是对真菌病的防治方面,以及在几丁质废物的转化和利用等方面都具有重要作用,其研究受到人们的广泛重视.通过几丁质作为碳源,从土壤中筛选产几丁质酶菌株.1 材料与方法1.1 培养基1.1.1 平板培养基 (1)细菌几丁质培养基(分离用):蛋白胨10g,K2HPO40.7g,MgSO40.5g,KH2PO40.3g,胶体几丁质5.0g,琼脂15~20g,蒸馏水1L,pH值为7.2.(2)纯几丁质培养基:胶体几丁质 5.0g,KNO31.0g,NaCl0.5g,K2HPO40.5g,MgSO40.5g,FeSO40.01g,琼脂20g,蒸馏水1L,pH值为7.2.1.1.2 摇瓶培养基 (1)种子培养基(LB培养基):蛋白胨10g,酵母膏5g,NaCl10g,蒸馏水1L,pH值为7.0.(2)发酵培养基:用细菌几丁质培养基(分离用),但不加琼脂1.2 菌株的分离1.2.1 菌株初步分离从生产几丁质的工厂排污沟附近土壤采集土样,经过烘干及风化干燥,置于60目分样筛过筛,备用.称取1g土样放入加有9mL无菌水的离心管,分别稀释制成10-1,10-2,10-3,10-4,10-5,10-6不同稀释倍数的土壤溶液.从10-3,10-4,10-5,10-6不同稀度倍数的4管土壤稀释液中各吸取0.1mL,接种在纯几丁质培养基和细菌几丁质培养基的平板上,用涂布棒涂布均匀,在30℃下培养72h.1.2.2 菌种的二次筛选从第1次稀释涂布的平板中挑取可以产生透明圈的菌落,再一次通过稀释涂布的方法,将其接种于纯几丁质平板和细菌几丁质平板上,培养72h,以取得纯菌落平板.从第2次筛选的纯菌平板上选取水解圈直径与菌落直径比最大的菌种,将其接种于50mL的LB种子培养基上,12h后以2%的接种量接于100mL的细菌几丁质发酵培养基中,在30℃下进行扩大培养.1.3 菌种的鉴定1.3.1 细菌染色体DNA提取从新培养产几个质酶活性高的革兰氏阴性细菌平板上,挑取一环菌落至加有500μLTE缓冲液的1.5mL微量离心管中,混匀后沸水浴1.5min,迅速低温离心(12000r・min-1)10min,取上层清液分装后,置4℃下保存备用.1.3.2 16SrDNA引物根据16SrDNA的结构,应用B2/B3做引物,该引物扩增片段包含V8和V9两个高变区,扩增产物大小为1050bp(basepair,碱基对)左右.这两个引物序列为B2:5’2ACGGGCGGTGTGTAC23’;B3:5’2CCTACGGGAGGCAGCAG23’.1.3.3 聚合酶链反应(PCR)检测 PCR反应体系为20μL,二次蒸馏水12.6μL,10倍扩增缓冲液2.0μL,25mmol・L-1Mg2+1.6μL,各2.5mmol・L-1的脱氧核苷三磷酸(dNTP)0.4μL,20μmol・L-1引物各1.0μL,DNA模板1.0μL,5GU・L-1Taq酶0.4μL.PCR循环:94℃预变性5min,94℃变性60s,50℃退火60s,72℃延伸90s,循环30次,并在72℃后延伸15min.1.3.4 扩增产物的电泳分析用1倍的TAE缓冲液配制质量分数为1%琼脂糖凝胶.取PCR 扩增产物10μL,加2μL溴酚蓝指示剂,混匀后加样,于100V下电泳1.5h,紫外灯下观察电泳结果.1.3.5 序列测定与分析将观察到的PCR产物切胶,用胶回收试剂盒回收后,连接到pMD182T上,送北京奥科生物公司进行测序.然后,将测序结果通过GeneBank进行BLAST序列比对,得出结果参考文献[1] BROGLIEKE.Chitinaseandplantprotection[J].RevPlantPathol,1993,2:4112421.[2] 李力,黄胜元,关雄.产几丁质酶的苏云金杆菌菌株筛选及酶合成条件研究[J].中国病毒学,2000,15(51):94297.[3] CHANGYu2cheng,YANGChiyea,LIChin,etal.IdentificationofBacillussp,Escherichiacoli,Salmonellasp,StaphylococcusspandVibriospwith16SribosomalDNA2basedoligonucleotidearrayhybridization[J].Internation2 alJournalofFoodMicrobiology,2006,107:1312137.[4] 张龙翔,张庭芳,李令媛.生化实验技术[M].北京:高教出版社,1997:1112116.[5] MOOREER,KRUGERAS,HAUBENL,etal.16SrRNAgenesequenceanalysesandinter2andintragenericre2lationshipsofXanthomonasspeciesandStenotrophomonasmaltophilia[J].FEMSMicrobiolLett,1997,151(2):1452 153.[6] MIYAJIT,OTTAY,SHIBATAT,etal.PurificationandcharacterizationofextracellularalkalineserineproteasefromStenotrophomonasmaltophiliastrainS21[J].LettApplMicrobiol,2005,41(3):2532257.[7] MADHA VAPNK,BAIJUTV,SANDHYAC,etal.ProcessoptimizationforantifungalchitinaseproductionbyTrichodermaharzianum[J].ProcessBiochem,2004,39:158321590.[8] NAWANINN,KAPADNISBP.Optimizationofchitinaseproductionusingstatisticsbasedexperimentaldesigns[J].ProcessBiochem,2005,40:6512660。

碱性蛋白酶产生菌的筛选

碱性蛋白酶产生菌的筛选

文章编号:1001-3717(2006)01-0070-03碱性蛋白酶产生菌的筛选3李树文,陆秀华,尚海利(莱阳农学院生命科学院,山东青岛266109)摘要:本试验从5份土壤中共筛选出产碱性蛋白酶菌株9株,即SHL-4、SHL-6、SHL-7、SHL-10、SHL-8、SHL-11、SHL-12、SHL-18、SHL-20,其中SHL-4、SHL-6、SHL-7、SHL-10产酶效果较好;采用正交试验设计,初步地确定了菌株SHL-4产酶培养基组分,即蛋白胨0.5%、牛肉膏1.5%。

关键词:碱性蛋白酶;筛选;菌株中图分类号:Q939.97文献标识码:AScerrning R ning of Alkaline Protease Producing StrainsL I Shu2wen,L U Xiu2hua,SHAN G Hai2li(Life Science College,L AC,Qingdao266109,China)Abstract:Nine st rains producing alkaline p rotease were screened out f rom five soil samples,namely SHL-4、6、7、10、8、11、12、18、20,SHL-4、6、7、10of which wit h high protease activity.Through an or2 t hogonal test,t he p roducing protease cult ure medium of t he SHL-4st rain was confirmed preliminarily, namely0.5%of pepto ne,1.5%of beef ext ract.K ey w ords:alkaline protease;screening;st rain 碱性蛋白酶是指在碱性的条件下具有活性,能够水解蛋白质肽键的酶类。

中国弯颈霉多糖抗氧化和抑制氧化应激活性研究

中国弯颈霉多糖抗氧化和抑制氧化应激活性研究

白明健,周颖,程昊,等. 中国弯颈霉多糖抗氧化和抑制氧化应激活性研究[J]. 食品工业科技,2024,45(2):333−341. doi:10.13386/j.issn1002-0306.2023030199BAI Mingjian, ZHOU Ying, CHENG Hao, et al. Antioxidant and Oxidative Stress Inhibitory Activities of Tolypocladium sinense Polysaccharide[J]. Science and Technology of Food Industry, 2024, 45(2): 333−341. (in Chinese with English abstract). doi:10.13386/j.issn1002-0306.2023030199· 营养与保健 ·中国弯颈霉多糖抗氧化和抑制氧化应激活性研究白明健,周 颖,程 昊,边 聪,李名正,李 林*,张春晶*(齐齐哈尔医学院医学技术学院,黑龙江齐齐哈尔 161006)O −2摘 要:目的:探究中国弯颈霉菌丝体多糖(Tolypocladium sinense polysaccharide ,TSP )的体外抗氧化活性和抑制过氧化氢诱导小鼠胰岛MIN6细胞氧化应激导致的细胞凋亡。

方法:采用热水浸提法提取中国弯颈霉菌丝体多糖,随后测定其超氧阴离子自由基(superoxide anion ,·)、羟自由基(hydroxy radical ,·OH )、对1,1-二苯基苦基苯肼自由基(P-1,1-diphenylpicryl phenylhydrazine radical ,DPPH·)清除能力;采用200 μmol/L 过氧化氢(hydrogen peroxide ,H 2O 2)诱导小鼠胰岛MIN6细胞氧化应激,给予高剂量和低剂量TSP (0.625、0.156 mg/mL )进行保护,MTT 法测定MIN6细胞生存率;倒置显微镜观察细胞形态;采用试剂盒测定培养基中乳酸脱氢酶(lactate dehydrogenase ,LDH )水平,细胞内超氧化物歧化酶(superoxide dismutase ,SOD )活性和丙二醛(malondialdehyde ,MDA )含量;流式细胞术检测细胞凋亡;Western Blot 检测核因子E2相关因子2(nuclear factor E2-related factor2,Nrf-2)和磷酸化c-Jun 氨基末端激酶(phosphorylated c-jun N-terminal kinase ,pJNK )相对表达量。

牛血红蛋白肽的酶解工艺优化及其亚铁螯合物结构、稳定性研究

牛血红蛋白肽的酶解工艺优化及其亚铁螯合物结构、稳定性研究

祝超智,温耀涵,许龙,等. 牛血红蛋白肽的酶解工艺优化及其亚铁螯合物结构、稳定性研究[J]. 食品工业科技,2024,45(8):75−87. doi: 10.13386/j.issn1002-0306.2023040048ZHU Chaozhi, WEN Yaohan, XU Long, et al. Optimization of Enzymatic Hydrolysis of Bovine Hemoglobin Peptide and Study on Structure and Stability of Ferrous Chelate[J]. Science and Technology of Food Industry, 2024, 45(8): 75−87. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023040048· 研究与探讨 ·牛血红蛋白肽的酶解工艺优化及其亚铁螯合物结构、稳定性研究祝超智1,温耀涵1,许 龙1,张秋会1,王兴辉1,赵改名1, *,韩广星2(1.河南农业大学食品科学技术学院,河南郑州 450002;2.临沂综合实验站,山东临沂 273300)摘 要:本研究以牛血为原料,提取牛血红蛋白进行酶解,筛选最适的酶解蛋白酶,采用单因素结合响应面试验探究最佳酶解工艺,通过扫描紫外光谱,傅里叶红外光谱,扫描电镜和全自动氨基酸分析仪等技术对制备的牛血红蛋白肽铁螯合物(Bovine Hemoglobin Peptide Iron Chelate ,BHP-Fe )进行结构表征,并通过热重分析和体外模拟胃肠道消化探究其体外稳定性。

结果表明:胃蛋白酶和碱性蛋白酶分步酶解为最适酶解方法。

在胃蛋白酶初步酶解的基础上,得到碱性蛋白酶最佳酶解条件:料液比1:3,酶解pH9.8,酶解温度41 ℃,酶添加量5900 U/g ,酶解时间2 h 。

米渣蛋白碱性蛋白酶酶解条件优化

米渣蛋白碱性蛋白酶酶解条件优化

1 材料与方法 1.1 材料与仪器 米渣:武汉金德戈糖业有限公司;碱性蛋 白酶:酶活60000 u/g,武汉市华顺生物技术有 限公司。 1.2 试验方法 1.2.1 米渣预处理 米渣过80目筛,用酒精、正己 烷、水混合体系脱脂2 h后,冷冻干燥得到样品。 1.2.2 起泡性(FC)的测定[6] 取酶解液100 mL,在 高剪切分散乳化机上以13000 r/min搅拌2 min,记 下泡沫高度(mL)。
7 f [7-8] I 1.2.3 水解度的测定 在不同的pH值下,蛋白 f f f#f/Cf f %)
£ .Q IUPU IUPU 质的肽键断裂在羧基和α-氨基之间产生质子交换 '$

间的函数关系,通过对回归方程的分析来寻求最 优工艺参数 [9]。单因素试验结果确定酶解时间90 min、温度55 ℃。以pH、加酶量和底物浓度为自 变量,以蛋白质的水解度为响应值设计了3因素3 水平共15个试验点的响应面分析试验,试验的因 素和水平见表1。 2 结果与分析 2.1 酶解时间对水解度和起泡性的影响 根据前期试验确定酶解pH值为8.5、加酶量 2%、酶解温度为55 ℃、底物浓度为6%,酶解时 间设计7个水平:30、60、90、120、150、180 min。
*通讯作者 收稿日期:2012-06-15 基金项目:湖北工业大学博士科研启动项目(BSQD0818)。 作者简介:许尨(1988—),女,硕士研究生,研究方向为大米蛋白化学改性。
· 60 ·
食品科技
2012年 第 37卷 第 12期 FOOD SCIENCE AND TECHNOLOGY
食品开发
米渣是大米生产乳酸、淀粉糖、柠檬酸等产 品时产生的副产品,目前,米渣主要作为饲料低 价出售。米渣富集了大米中的蛋白质,因此蛋白 质含量高达60%以上(干基)。米渣蛋白具有大米 蛋白的一切优点[1-5],但米渣蛋白经过了淀粉糖加

具有抗氧化活性青稞酒糟蛋白酶解液对H202诱导HepG2细胞的保护作用

具有抗氧化活性青稞酒糟蛋白酶解液对H202诱导HepG2细胞的保护作用

具有抗氧化活性青稞酒糟蛋白酶解液对H2O2诱导HepG2细胞的保护作用陈丽花1,陈少华1,荣玉芝1,冯声宝2,张叶挺3,钟研威4,江津津4*(1.上海应用技术大学香料香精化妆品学部,上海201418)(2.青海互助天佑德青稞酒股份有限公司,青海海东810500)(3.上海崇明致富酿造有限公司,上海202158)(4.广州城市职业学院食品科学与美食养生学院,广东广州510405)摘要:为实现青稞酒糟的高值化利用,该研究在提取青稞酒糟蛋白基础上,以DPPH自由基清除率和还原力为指标优化了青稞酒糟蛋白酶解液的制备工艺,并对该酶解液的体外抗氧化活性和细胞保护作用进行了探究。

结果表明:青稞水酒糟和青稞白酒糟均含有丰富的蛋白质,含量分别为31.46 g/100 g和18.47 g/100 g;超声纤维素酶法辅助碱提酸沉法对青稞水酒糟的蛋白提取率高达76.10%(m/m),白酒糟的为29.88%;碱性蛋白酶最适合用于青稞水酒糟蛋白的酶解,其最佳酶解条件为:料液比1:60(m/V),超声时间15 min,酶添加量3.7%(m/m)及酶解时间3.5h,此条件下制得的青稞水酒糟蛋白酶解液的DPPH自由基清除率高达95.02%;不同浓度的青稞水酒糟蛋白酶解液对HepG2细胞活力没有负面影响;随着青稞水酒糟蛋白酶解液浓度的升高,对经H2O2诱导的细胞内ROS逐渐降低,酶解液浓度为5.0 mg/mL(m/V)时可使受损细胞内的ROS比损伤组低约50%。

该研究成果可为青稞水酒糟蛋白酶解液的制备及其在保健食品、化妆品中的高值化利用提供参考。

关键词:青稞酒糟;蛋白酶解液;抗氧化活性;细胞活性文章编号:1673-9078(2024)03-28-38DOI: 10.13982/j.mfst.1673-9078.2024.3.0330H2O2-induced Protective Effects of the Antioxidant Protease Hydrolysate of Highland Barley Brewer’s Spent Grains on HepG2 CellsCHEN Lihua1, CHEN Shaohua1, RONG Y uzhi1, FENG Shengbao2, ZHANG Y eting3, ZHONG Y anwei4, JIANG Jinjin4*(1.Shanghai Institute of Technology, School of Perfume, Aroma & Cosmetics, Shanghai 201418, China) (2.Qinghai Huzhu Barley Wine Co. Ltd., Haidong 810500, China) (3.Shanghai Chongming Rich Brewing Co. Ltd., Shanghai 202158, China) (4.College of Food Science and Gourmet Health, Guangzhou City Polytechnic, Guangzhou 510405, China)引文格式:陈丽花,陈少华,荣玉芝,等.具有抗氧化活性青稞酒糟蛋白酶解液对H2O2诱导HepG2细胞的保护作用[J] .现代食品科技,2024,40(3):28-38.CHEN Lihua, CHEN Shaohua, RONG Yuzhi, et al. H2O2-induced protective effects of the antioxidant protease hydrolysate of highland barley brewer’s spent grains on HepG2 cells [J] . Modern Food Science and Technology, 2024, 40(3): 28-38.收稿日期:2023-03-20基金项目:上海市崇明区科委农业科技攻关项目(CK2022-52);广州市名师工作室(2022MSGZS015);广州市大学生创新创业训练计划项目(2022CXCYJH013)作者简介:陈丽花(1971-),女,博士,副教授,研究方向:食品生物资源综合利用、食品发酵、风味分析及生物活性因子功能表征,E-mail:通讯作者:江津津(1977-),女,博士,教授,研究方向:食品科学与工程,E-mail:28Abstract: To illustrate the high-value utilization of highland barley brewer’s spent grains, the process used to prepare its protease hydrolysate was optimized based on protein extraction from highland barley brewer’s spent grains using the DPPH free radical scavenging rate and reducing power as indicators. Thereafter, the in vitro antioxidant activity and cytoprotective effects of the hydrolysates were examined. The soluble and white highland barley brewer’s spent grains were found to be rich in protein, with protein contents of 31.46 g/100 g and 18.47 g/100 g, respectively. Using the ultrasound/cellulase-assisted alkali extraction and acid precipitation method, the protein extraction rates from the soluble and white highland barley brewer’s spent grains were 76.10% (m/m) and 29.88%, respectively. Alkaline protease was found to be most suitable for enzymatic hydrolysis of the proteins of soluble highland barley brewer’s grains. The optimal enzymatic hydrolysis conditions were as follows: solid to liquid ratio, 1:60 (m/V); ultrasonic treatment time, 15 min; enzyme dosage, 3.7% (m/m); and enzymatic hydrolysis time, 3.5 h. Under these conditions, the DPPH free radical scavenging rate of the protease hydrolysate of soluble highland barley brewer’s spent grains reached 95.02%. Different concentrations of the protease hydrolysate of soluble highland barley brewer’s spent grains did not exhibit negative effects on HepG2 cell viability. In addition, as the concentration of the protease hydrolysate of soluble highland barley brewer’s spent grains increased, ROS in cells damaged by H2O2 gradually decreased. In fact, 5.0 mg/mL (m/V) of the protease hydrolysate reduced ROS in damaged cells by approximately 50%. In addition to serving as a reference, this study provides a theoretical basis for preparing the protease hydrolysate of soluble highland barley brewer’s spent grains and illustrates its high-value utilization in healthy food and cosmetics.Key words: highland barley brewer’s spent grains; protease hydrolysate; antioxidant activity; cell viability青稞是一种广泛种植于中国青藏高原地区的禾本科粮食作物[1] 。

工业级别蛋白酶 k

工业级别蛋白酶 k

工业级别蛋白酶 k简介蛋白酶是一类能够催化蛋白质降解的酶,能够将蛋白质分解为更小的肽段或氨基酸。

工业级别蛋白酶 k 是一种高效、稳定且具有广泛应用价值的蛋白酶。

本文将对工业级别蛋白酶 k 进行全面详细、完整深入的介绍。

蛋白酶 k 的特点•高效性:工业级别蛋白酶 k 具有高催化活性和特异性,能够有效降解各种类型的蛋白质。

•稳定性:工业级别蛋白酶 k 在广泛的温度和 pH 范围内都能保持其活性,适应不同工业生产条件。

•广泛应用:工业级别蛋白酶 k 在食品、制药、纺织、皮革等多个领域具有重要的应用价值。

工业级别蛋白酶 k 的应用领域食品行业•食品加工:工业级别蛋白酶 k 可以在食品加工过程中被用于催化蛋白质的降解,提高食品的口感和营养价值。

•乳制品:工业级别蛋白酶 k 可以用于乳制品的加工过程中,帮助分解乳蛋白,改善产品质地和稳定性。

•肉制品:工业级别蛋白酶 k 能够帮助催化肉蛋白的降解,提高肉制品的嫩度和口感。

制药行业•生物药物生产:工业级别蛋白酶 k 可以用于生物药物的生产过程中,帮助去除杂质和提高纯度。

•药物研发:工业级别蛋白酶 k 可以在药物研发过程中被用于辅助合成和修饰特定的蛋白质。

纺织行业•染整过程:工业级别蛋白酶 k 可以在纺织染整过程中被用于去除棉纤维表面的杂质和染料残留物,提高纺织品的质量和色彩效果。

皮革行业•鞣制过程:工业级别蛋白酶 k 可以在皮革鞣制过程中被用于去除动物皮革中的蛋白质和其他杂质,改善皮革的柔软度和质感。

工业级别蛋白酶 k 的生产与提取方法工业级别蛋白酶 k 的生产与提取方法主要包括以下步骤:1.菌株筛选:从自然环境或实验室中筛选出具有高效蛋白酶 k 产生能力的菌株。

2.发酵培养:将选定的菌株进行大规模发酵培养,以产生大量的蛋白酶 k。

3.提取纯化:通过离心、超滤、层析等技术手段将蛋白酶 k 从发酵液中提取出来,并进行纯化处理,去除杂质。

4.活性测定:对提取得到的蛋白酶 k 进行活性测定,确保其具有较高的催化活性。

基于碳点内滤效应快速检测鲜牛奶中碱性磷酸酶活性的荧光分析方法的构建

基于碳点内滤效应快速检测鲜牛奶中碱性磷酸酶活性的荧光分析方法的构建

贾宝珠,何镇熹,黄心洳,等. 基于碳点内滤效应快速检测鲜牛奶中碱性磷酸酶活性的荧光分析方法的构建[J]. 食品工业科技,2023,44(17):334−341. doi: 10.13386/j.issn1002-0306.2022110075JIA Baozhu, HE Zhenxi, HUANG Xinru, et al. Development of a Fluorescence Assay for Rapid Detection of Alkaline Phosphatase Activity in Fresh Milk Based on Inner Filter Effect of Carbon Dots[J]. Science and Technology of Food Industry, 2023, 44(17):334−341. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110075· 分析检测 ·基于碳点内滤效应快速检测鲜牛奶中碱性磷酸酶活性的荧光分析方法的构建贾宝珠1,何镇熹2,黄心洳1,邱芷靖1,郭琳苑1,袁钰佩1,王碧蔓2,罗 林2,*(1.广东第二师范学院生物与食品工程学院,广东广州 510303;2.广东省食品质量安全重点实验室,华南农业大学食品学院,广东广州 510642)摘 要:研究建立一种以氮掺杂碳点(Nitrogen-carbon dots ,N-CDs )为荧光探针,可快速、准确、灵敏检测鲜牛奶中碱性磷酸酶(Alkaline phosphatase ,ALP )的荧光分析方法。

采用水热法,用乙二胺为氮源和邻苯二酚为碳源制备一种绿色荧光N-CDs ,并采用透射电子显微镜(TEM )、紫外可见吸收光谱(UV-vis )、X 射线电子能谱(XPS )和傅里叶红外光谱(FT-IR ),对所合成的材料表面形貌、表面基团及光吸收特性进行表征,并通过对照试验对利用N-CDs 构建检测ALP 荧光分析方法的可行性进行验证。

罗米司亭及艾曲波帕药品说明书

罗米司亭及艾曲波帕药品说明书

根据病人的病情选择:1.确定什么原因引起的血小板减少,至少要找到疾病的诱因。

免疫系统?骨髓造血系统?分泌〔激素〕?2.假设不能找到诱因,一定要使用该两种药品,先用6周,看看效果,查血小板计数,是否继续使用,再做评估。

罗米司亭【商品名】Nplate 【药品名称】罗米司亭/ romiplostim【适应症】治疗脾切除和脾未切除慢性免疫性血小板减少性紫癜〔ITP〕成人患者的血小板生成药。

【用法用量】(1)初始剂量1μg/kg每周1次皮下注射。

(2)因为需要减低出血的风险,通过增量1μg/kg调整每周剂量以到达和维持血小板计数50 ×109/L.(3)最大剂量不要超过每周10μg/kg。

如血小板计数达>400×109/L不要给药。

(4)如在最大剂量4周后血小板计数不增加中断Nplate。

(5)在配制期间不要震荡;避光保护配制好的Nplate;24小时给配制好的Nplate。

(6)注射容积可能非常小。

使用刻度0.01 mL的注射器。

(7)遗弃单次使用小瓶中未使用部份。

【本卷须知】〔1〕Nplate增加骨髓网硬蛋白(reticulin)沉积的风险;临床研究未除外网硬蛋白和其它纤维沉积导致有血细胞减少的骨髓纤维化的可能性。

监查外周血骨髓纤维化征象。

〔2〕中止Nplate可能导致血小板减少比Nplate治疗前更坏。

Nplate中止后监查全血细胞计数(CBCs),包括血小板计数至少2周。

〔3〕过量Nplate可能增加血小板计数至产生血栓形成/栓塞并发症的水平。

〔4〕如随Nplate初期反响后血小板计数严重减低评估患者中和抗体的形成。

〔5〕Nplate可能增加血液学恶性病的风险,尤其是有骨髓增生异常综合征患者。

〔6〕每周监查CBCs,包括血小板计数和外周血涂片,直至到达稳定的Nplate剂量。

其后,至少每月监查CBCs,包括血小板计数和外周血涂片。

〔7〕只能通过受限制的分配方案,称为Nplate NEXUS(了解和支持Nplate专家和患者网络)方案,才能获得Nplate。

酪蛋白源降胆固醇肽的酶解制备工艺优化

酪蛋白源降胆固醇肽的酶解制备工艺优化

梁小慧,王孝治,赵佳园,等. 酪蛋白源降胆固醇肽的酶解制备工艺优化[J]. 食品工业科技,2022,43(19):280−287. doi:10.13386/j.issn1002-0306.2022010165LIANG Xiaohui, WANG Xiaozhi, ZHAO Jiayuan, et al. Optimization of Preparation of Casein-derived Cholesterol-lowering Peptide by Enzymatic Hydrolysis[J]. Science and Technology of Food Industry, 2022, 43(19): 280−287. (in Chinese with English abstract). doi:10.13386/j.issn1002-0306.2022010165· 工艺技术 ·酪蛋白源降胆固醇肽的酶解制备工艺优化梁小慧1,王孝治1,赵佳园1,金庭飞2,黎 旭2,罗梦帆1,谭东虎1,刘明真1,罗海波1,郭宇星1,*(1.南京师范大学食品与制药工程学院,江苏南京 210000;2.广东益可维生物技术有限公司,广东广州 510000)摘 要:以酪蛋白为原料,采用中性蛋白酶、碱性蛋白酶以及胰蛋白酶对酪蛋白进行水解,确定制备降胆固醇肽的最佳蛋白酶;通过单因素实验和响应面试验,研究水解pH 、水解温度、酶与底物比、底物浓度和水解时间对酪蛋白水解度和胆固醇胶束溶解度抑制率的影响,确定最佳水解条件;而后通过超滤和凝胶过滤层析确定降胆固醇肽的初步分离工艺。

结果表明:制备酪蛋白源降胆固醇肽的最佳水解工具酶是中性蛋白酶,其最佳酶解条件为反应温度51.3 ℃,酶与底物浓度比6.47%,pH6.34,底物浓度5 g/100 mL ,反应时间3.5 h ,胆固醇抑制率为58.25%±0.59%;Sephadex G-10分离酪蛋白降胆固醇肽条件为上样浓度80 mg/mL ,上样体积2.5 mL ,洗脱速度3.5 mL/min ;经酶解、超滤及层析后制备的酪蛋白源降胆固醇肽峰1和峰2样品在100 μg/mL 的胆固醇溶解度抑制率为24.2%±0.24%和4.3%±0.16%。

醋酸杆菌AS1_41产乙酸发酵条件的优化

醋酸杆菌AS1_41产乙酸发酵条件的优化

第28卷第1期2009年1月大连工业大学学报Journal of Dalian Polytechnic U niversityVol.28No.1Jan.2009文章编号:167421404(2009)0120023203醋酸杆菌AS1.41产乙酸发酵条件的优化祁月魁, 安家彦, 陈 莉(大连工业大学生物与食品工程学院,辽宁大连 116034)摘要:应用正交试验设计法研究了醋酸杆菌AS1.41产乙酸的发酵条件并对其进行了优化,同时应用极差分析法确定了醋酸杆菌AS1.41产乙酸的最优发酵条件。

结果表明,菌的种龄为24h ,接菌量为20%,底物米曲汁的体积分数为10%,底物的酒精体积分数为5%,在此条件下乙酸最终浓度达到35.26g/L 。

关键词:醋酸杆菌;优化;产酸量中图分类号:Q939.118;TS261.13文献标志码:AOptimization of Acetobacter pasteuria nus AS1.41producing acetic acidQI Y ue 2kui , AN Jia 2yan , CHE N Li(School of Biological &Food Engineering ,Dalian Polytechnic University ,Dalian 116034,China )Abstract :The fermentation conditions of A cetobacter p asteuri anus AS1.41are optimized by orhtogo 2nal experiment.The optimum conditions is t hat t he age of acetic acid bacteria is 24hours ,t he inocula 2ted bacteria is 20%,t he density of acetobacter is 10%,t he concent ration of alcohol is 5%.The con 2cent ration of acetic acid can reach 35.26g/L in t he case of optimum conditions.K ey w ords :A cetobacter p asteuri anus ;optimization ;acid outp ut收稿日期:2008205226.作者简介:祁月魁(19782),男,硕士研究生;通信作者:安家彦(19582),男,副教授.0 引 言食醋在人们日常饮食调味中具有相当重要的作用,据不完全统计,目前我国食醋的年产量约为250万吨[1]。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Optimization of Alkaline Protease Production from Bacillus sp.by Response Surface MethodologySumant Puri,Qasim Khalil Beg,Rani GuptaDepartment of Microbiology,University of Delhi South Campus,Benito Juarez Marg,New Delhi 110021,India Received:19July 2001/Accepted:15August 2001Abstract.High yields (1939U/ml)of an alkaline protease were obtained in batch fermentation of a Bacillus ing a response surface methodology.The interaction of four variables,viz.,starch,peptone,incubation time,and inoculum density,suggested inoculum density to be an insignificant variable.However,incubation time had a profound effect on protease yields at all the concentrations of carbon and nitrogen used.The response surface raised and flattened with increase in time of incubation,and maximum protease production up to 1939U/ml was obtained after 96h of incubation.The model equation obtained was validated experimentally at maximum starch (15mg/ml)and peptone (7.5mg/ml)concentration with increased incubation time up to 144h in the presence of minimum inoculum density (1%).An overall 2.6-fold increase in protease production was obtained as compared with mean observed response (750U/ml)at zero level of all variables.The ‘one-at-a-time-approach’is the most frequently used operation in biotechnology to obtain maximum cell den-sity,high yields of the desired metabolic product,or enzyme levels in a microbial system.This approach is not only time consuming,but ignores the combined interactions among various physicochemical parameters [4].On the contrary,the response surface methodology (RSM),which includes factorial design and regression analysis,helps in evaluating the effective factors and building models to study interaction and select optimum conditions of variables for a desirable response [3,4].Recently,a number of statistical experimental designs with response surface methodology (RSM)have been employed for optimizing enzyme production from mi-croorganisms [1,3,17].It is a well-known fact that extracellular protease production in microorganisms is greatly influenced by media components,especially carbon and nitrogen sources [6–10],metal ions [17],and physical factors such as pH,temperature,inoculum density [13],dis-solved oxygen [5,12],and incubation time [13,14,16].We have earlier reported the effectiveness of an SDS-stable alkaline protease from a newly isolated Bacillus sp.RGR-14for use in detergent formulations [14].Here,we report optimization of this protease from Bacillus sp.as a result of the interaction between four variables with response surface methodology.Materials and MethodsChemicals.Casein for protease assay was from Sigma (St.Louis,MO,USA).All other analytical reagents and media components used were of highest purity grade available commercially in India.Microorganism and inoculum preparation.Bacillus sp.RGR-14,which produces an SDS-stable alkaline protease [14],was used in the present study.It was identified to be closely related to Bacillus sp.TSG437strain on the basis of 16S rRNA homology by MIDILABS Inc.,(Newark,DE,USA).The 6-h-old seed culture [prepared in nutri-ent broth (pH 7)at 37°C under shaking (200rpm)]was used to inoculate production flasks.Selection of best carbon and nitrogen source.For selection of the best source of carbon and nitrogen for protease production,various simple and complex carbon (glucose,starch,pectin,wheat bran,car-boxy methyl cellulose,xylan,chitin)and inorganic and complex nitro-gen sources (ammonium chloride,soybean meal,casamino acids,ca-sein,peptone,yeast extract,cornsteap solids,cornsteap liquor,corn glutan meal,skim milk)were supplemented individually in the previ-ously reported medium [14]for protease production from Bacillus sp.All these sources were supplemented in the production medium at a final concentration of 1%wt/vol and 0.5%wt/vol for carbon and nitrogen,respectively,and protease yield was determined after 48h of incubation at 37°C under shaking (200rpm).Experimental design and protease production.The next stage in medium formulation was to determine the optimal levels of four variables,viz.starch (A),peptone (B),inoculum density (C),andCorrespondence to:R.Gupta;email :microzyme@C URRENT M ICROBIOLOGY Vol.44(2002),pp.286–290DOI:10.1007/s00284-001-0006-8CurrentMicrobiologyAn International Journal©Springer-Verlag New York Inc.2002incubation time(D)on protease production.For this purpose,the response surface approach by using a set of experimental design (FCCCD:Face Centered Central Composite design)was adopted for improving total protease production.The statistical software package ‘Design-Expert௡6.0.1’,StatEase,Inc.,(Minneapolis,MN,USA)was used to analyze the experimental design.Each factor in the design was studied at three different levels(Ϫ1, 0,ϩ1).For a24FCCCD with four factors,including six center points, a set of30experiments was carried out.All the variables were taken at a central coded value considered as zero.The minimum and maximum ranges of variables investigated and the full experimental plan with respect to their values in actual and coded form are listed in Table1. Upon completion of experiments,the average maximum protease yield was taken as the dependent variable or response(Y).A second-order polynomial equation was thenfitted to the data by the multiple regres-sion procedure.This resulted in an empirical model that related the response measured to the independent variables of the experiment.For a four-factor system,the model equation is:Yϭ␤0ϩ␤1Aϩ␤2Bϩ␤3Cϩ␤4Dϩ␤11A2ϩ␤22B2ϩ␤33C2ϩ␤44D2ϩ␤12ABϩ␤13ACϩ␤14ADϩ␤23BCϩ␤24BDϩ␤34CDwith Y,predicted response;␤0,intercept;␤1,␤2,␤3,␤4,linear coef-ficients;␤11,␤22,␤33,␤44,squared coefficients;␤12,␤13,␤14,␤23,␤24,␤34,interaction coefficients.Design Expert Software,using the above model to obtain the optimum concentration of the medium components,was then used to generate response surface graphs.Thefinal basal minimal medium(pH7)used for protease pro-duction contained(g/L):starch(variable),peptone(variable);KH2PO4,1;K2HPO4,3.The production medium(50ml in a250-ml Erlenmeyerflask)was inoculated with the inoculum density(A550nmХ0.250–0.300)designated for each set and incubated at37°C under shaking (200rpm)in a New Brunswick Scientific Shaker(Edison,NJ,USA). After proper incubation time designated for each set,the cell-free supernatant was obtained by centrifugation at14,000rpm for30min at 4°C in a cold centrifuge(Sorvall௡RC5C Plus),and the protease production was determined in the cell-free supernatant.Protease assay.The protease was assayed at60°C in glycine NaOH buffer(0.05M,pH10.0)by using casein as substrate,as described previously[14].One unit of protease was equivalent to the amount of enzyme required to release1␮g of tyrosine/ml/min under standard assay conditions.Results and DiscussionEffect of various carbon and nitrogen sources on protease production.Among the various carbon sources studied,the Bacillus sp.produced maximum protease in starch(390U/ml),followed by pectin(325U/ml)and wheat bran(284U/ml)(Table2).Glucose drastically inhibited protease production.Among nitrogen sources, peptone(687U/ml)favored maximum protease produc-tion,followed by casein(481U/ml),skim milk(451 U/ml),and yeast extract(449U/ml).Thus,starch and peptone were selected as the source of carbon and nitro-gen,respectively,for design of response surface meth-odology.Optimization by response surface methodology.The results of FCCCD experiments for studying the effects of four independent variables,viz.,starch,peptone,incuba-tion time,and inoculum density,on protease production are presented in Table3along with the mean predicted and observed response.The regression equation obtained after the analysis of variance(ANOVA)indicated the R2 value of0.79(a value of R2Ͼ0.75indicates the aptness of the model),which ensured a satisfactory adjustment of the quadratic model to the experimental data and indi-Table1.Experimental range and levels of the four independent variables used in RSM in terms of actual and coded factorsVariablesRange of levelsActual Coded Actual Coded Actual CodedStarch(mg/ml)5Ϫ110015ϩ1 Peptone(mg/ml) 2.5Ϫ1507.5ϩ1 Incubation time(h)24Ϫ148072ϩ1 Inoculum(%)1Ϫ1203ϩ1Table2.Effect of various carbon and nitrogen sources on proteaseproduction by Bacillus sp.after48h at37°C under shaking(200rpm).Nutrient source Protease yield(U/ml)Carbon source(1%):Starch390Ϯ27Pectin325Ϯ31Wheat bran284Ϯ14Carboxymethyl cellulose169Ϯ19Chitin157Ϯ12Glucose24Ϯ4Nitrogen source(0.5%):Peptone687Ϯ38Casein481Ϯ42Soybean meal451Ϯ49Yeast extract449Ϯ33Casamino acids390Ϯ27Cornsteep solids365Ϯ42Corngluten meal356Ϯ28Skim milk342Ϯ20Cornsteep liquor249Ϯ14Ammonium chloride24Ϯ4S.Puri et al.:Alkaline Protease Production from Bacillus sp.287cated that79%of the variability in the response could be explained by the model.An adequate precision of9.263 indicates an adequate signal as it measures the signal-to-noise ratio.The coefficients of the regression equation were calculated using Design Expert,and the following regression equation was obtained.Yϭ610.32ϩ183.44*Aϩ120.94*Bϩ154.86*C Ϫ38.55*DϪ32.57*A2Ϫ120.90*B2Ϫ118.37*C2ϩ162.68*D2ϩ116.14*ABϩ205.31*ACϪ51.13*ADϩ95.15*BCϪ35.06*BDϪ79.61*CDwith Y,protease production(response);A,starch;B, peptone;C,incubation time;and D,inoculum density.The three-dimensional response surface curves were then plotted to understand the interaction of the medium components and the optimum concentration of each component required for maximum protease production. Analysis of variance(ANOVA)showed that the factor D (inoculum density)was insignificant.It was,therefore, taken as minimum(1%)for further interpretation of the response surfaces.The response surfaces shown in Figs. 1–3show the relative effect of the two variables(starch and peptone),with varying incubation time at constant inoculum density(1%).The coordinates of the central point within the highest contour levels in each of these figures corresponded to the optimum concentrations of the respective components.Figure1shows the response for the interactive fac-tors,starch(A)and peptone(B),when the incubation time(C)was kept at the minimum(24h).Maximum enzyme yield in these conditions was predicted to be520 U/ml,corresponding to maximum levels(ϩ1)of both starch(15mg/ml)and peptone(7.5mg/ml).However, the curve also suggested that the response did not vary much as a function of peptone concentration.Table3.Experimental designs used in RSM studies by using four independent variables with six center points showing observed and predicted values of protease productionRun orderA(Starch)B(Peptone)C(Inoculumdensity)D(Incubationtime)MeanobservedresponsePredictedresponse1.Ϫ1Ϫ1Ϫ1Ϫ1271.60331.282.Ϫ1Ϫ1Ϫ1ϩ1391.60585.783.Ϫ1Ϫ1ϩ1Ϫ1410.60199.294.Ϫ1Ϫ1ϩ1ϩ1316.30135.345.Ϫ1ϩ1Ϫ1Ϫ1318.30220.716.Ϫ1ϩ1Ϫ1ϩ1467.40334.967.Ϫ1ϩ1ϩ1Ϫ1368.80469.328.Ϫ1ϩ1ϩ1ϩ1198.40265.129.ϩ1Ϫ1Ϫ1Ϫ1296.60157.5210.ϩ1Ϫ1Ϫ1ϩ1301.10207.5211.ϩ1Ϫ1ϩ1Ϫ1705.40846.7812.ϩ1Ϫ1ϩ1ϩ1552.60578.3313.ϩ1ϩ1Ϫ1Ϫ1321.60511.5014.ϩ1ϩ1Ϫ1ϩ1282.30429.2515.ϩ1ϩ1ϩ1Ϫ11847.901581.3616.ϩ1ϩ1ϩ1ϩ11223.401172.6617.Ϫ1000194.60394.3118.ϩ1000707.20761.2019.0Ϫ100164.52368.4920.0ϩ100560.62610.3621.00Ϫ10456.60337.1022.00ϩ10273.60646.8123.000Ϫ1750.97610.3224.000ϩ1702.20734.4525.0000750.01610.3226.0000750.30610.3227.0000748.70610.3228.0000756.30610.3229.0000747.77610.3230.0000747.77610.32 288C URRENT M ICROBIOLOGY Vol.44(2002)With an increase in incubation time,the enzyme production further increased to 1165U/ml after 48h (Fig.2)and 1581U/ml after 72h (Fig.3).However,the response curves did not show curvature;rather,they were flattened with more and more points moving to-wards higher enzyme units (Figs.2and 3).Thus,the surface plots suggested demand for higher concentra-tions of both starch and peptone along with longer time of incubation to obtain maximum protease production.This con firms earlier reports on protease production,where it has been observed that these complex carbonand nitrogen sources are better substrates for protease production than simpler sugars,such as glucose,which cause catabolite repression [6,8,9].Validation of the model.The model indicated that the selected concentrations of starch and peptone were lim-iting and thus did not result in the appropriate curved surface in the response surface graph.Therefore,further increase in their concentrations,along with increase in time interval,should be worked out for validation.But,owing to experimental limitations (increased starch con-centrations lead to high viscosity of the medium),the model was validated only with increased time interval.The validation experiments showed that there was an increase in enzyme production (1939U/ml)after 96h (Table 4),which was closer to the predicted response (1758U/ml)(Fig.4).However,the major decline in enzyme production was obtained after 144h,and pro-tease production after 120and 144h was 1710U/ml and 1450U/ml,respectively (Fig.4;Table 4).This could be because of expected carbon and nitrogen limitation.Dur-ing a batch culture,the consumption of substratesorFig.1.Response surface curve of protease production from Bacillus sp.showing interaction between starch and peptone after 24h of incuba-tion.Fig.2.Response surface curve of protease production from Bacillus sp.showing interaction between starch and peptone after 48h of incuba-tion.Fig.3.Response surface curve of protease production from Bacillus sp.showing interaction between starch and peptone after 72h of incuba-tion.Table 4.Validation of the response surface model.Incubation time (h)Predicted response(U/ml)Mean observed response (U/ml)72(ϩ1level of the model)1581184896(validation)175********(validation)17181710144(validation)14251450S.Puri et al.:Alkaline Protease Production from Bacillus sp.289depletion of nutrients has profound effects on protease production.Several factors,such as autodigestion of proteases and proteolytic attack by other proteases,have also been suggested to be involved in cessation of en-zyme synthesis [2,15].An overall 2.6-fold (1939U/ml)increase in protease production was achieved compared with the mean observed response (750U/ml)in the basal medium (with all factors at their central levels)after optimization by using response surface methodology.Such high enzyme yields for protease over a longer time of 96h have not been reported earlier in bacterial batch fermentations.However,controlled fed-batch fermenta-tions and chemostat cultures [8,11,12]have so far been used successfully for improving protease production for a long time of incubation from a number of microorgan-isms.In a similar report,the production of an alkaline protease from Rhizopus oryzae was enhanced up to 2.5-fold after optimizing concentrations of Tween-80and metal ions in the medium by using a multifactorial ap-proach [1].Thus,a multifactorial statistical approach that con-siders the interaction of independent variables provides a basis for the model to search for the nonlinear nature of the response in a short-term experiment.ACKNOWLEDGMENTSThe authors thank CSIR (Govt.of India)for financial assistance.Technical assistance provided by Mrs.M.Singh,Mr.M.Hussain,l,and Mr.Satish is acknowledged.Literature Cited1.Banerjee R,Bhattacharyya (1992)Optimization of multiple induc-ers effect on protease biosynthesis by Rhizopus oryzae .Bioprocess Eng 7:225–2282.Chu IM,Lee C,Li TS (1992)Production and degradation of alkaline protease in batch cultures of Bacillus subtilis ATCC 14416.Enzyme Microb Technol 14:755–7613.De Coninck J,Bouquelet S,Dumortier V,Duyme F,Denantes VI (2000)Industrial media and fermentation process for improved growth and protease production by Tetrahymena thermophila BIII.J Ind Microbiol Biotechnol 24:285–2904.Haaland PD (1989)Statistical problem solving.In:Haaland PD,ed.,Experimental design in biotechnology .New York:Marcel Dekker,Inc,pp,1–185.Hameed A,Keshavarz T,Evans CS (1999)Effect of dissolved oxygen tension and pH on the production of extracellular protease from a new isolate of Bacillus subtilis K2,for use in leather processing.J Chem Technol Biotechnol 74:5–86.Hanlon GW,Hodges NA,Russel AD (1982)The in fluence of glucose,ammonium and magnesium availability on the production of protease and bacitracin by Bacillus licheniformis .J Gen Micro-biol 128:845–8517.Kaur S,Vohra RM,Kapoor M,Beg QK,Hoondal GS (2001)Enhanced production and characterization of a highly thermostable alkaline protease from Bacillus sp.P-2.World J Microbiol Bio-technol 17:125–1298.Kole MM,Draper I,Gerson DF (1988a)Production of protease by Bacillus subtilis using simultaneous control of glucose and ammo-nium concentrations.J Chem Technol Biotechnol 41:197–2069.Kole MM,Draper I,Gerson DF (1988b)Protease production by Bacillus subtilis in oxygen-controlled,glucose fed-batch fermen-tations.Appl Microbiol Biotechnol 28:404–40810.McKeller RC,Cholette H (1984)Synthesis of extracellular proteinaseby Pseudomonas fluorescens under conditions of limiting carbon,nitrogen and phosphate.Appl Environ Microbiol 47:1224–122711.Moon SH,Parulekar SJ (1991)A parametric study of proteaseproduction in batch and fed-batch cultures of Bacillus firmus .Biotechnol Bioeng 37:467–48312.Moon SH,Parulekar SJ (1993)Some observations on proteaseproduction in continuous suspension cultures of Bacillus firmus .Biotechnol Bioeng 41:43–5413.Nehete PN,Shah VD,Kothari RM (1985)Pro files of alkalineprotease production as a function of composition of the slant,age,transfer and isolate number and physiological state of culture.Biotechnol Lett 7:413–41814.Oberoi R,Beg QK,Puri S,Saxena RK,Gupta R (2001)Charac-terization and wash performance analysis of a SDS-stable alkaline protease from Bacillus sp.World J Microbiol Biotechnol 17:493–49715.Priest FG (1977)Extracellular enzyme synthesis in the genusBacillus .Bacteriol Rev 41:711–75316.Razak NA,Samad MYA,Basri M,Yunus WMZW,Ampon K,Salleh AB (1994)Thermostable extracellular protease of Bacillus stearothermophilus :factors affecting its production.World J Mi-crobiol Biotechnol 10:260–26317.Varela H,Ferrari MD,Belobradjic L,Weyrauch R,Loperena ML(1996)Effect of medium composition on the production by a new Bacillus subtilis isolate of protease with promising unhairing ac-tivity.World J Microbiol Biotechnol 12:643–645Fig.4.Contour plot of protease production from Bacillus sp.as a function of starch concentration and incubation time290C URRENT M ICROBIOLOGY Vol.44(2002)。

相关文档
最新文档