电机学考前PPT重点整理
电机学基础知识专业知识讲座46页PPT
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
电机学基础知识专业知识讲座
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是Байду номын сангаас过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
电机学基础知识PPT精选文档
2020/5/25
weipeiyu制作
8
2020/5/25
Siemens 和他的自激式发电机 weipeiyu制作
9
1885 年,费那里斯发现了两相电流能产生旋转 磁场。
1886 年,特斯拉研制出两相异步电动机。
2020/5/25
weipeiyu制作
12
电机与电力拖动的发展概况
2.电力拖动的发展概况
最初电动机拖动代替了蒸汽或水力的拖动;
当时电动机拖动生产机械的方式是通过天轴来实
现的,称为“成组拖动”。
即由一台电动机拖动一组生产机械,从电动机到
各种生产机械的能量传送以及在各生产机械之间的能
量分配完全用机械的方式,靠天轴及机械传动来实现。
电动机与生产机械在结构上密切配合,从而进一步
简化机构容易实现生产机械运动的全部自动化。
用一台电动机拖动具有多个工作机构的生产机械,
则机械内部仍保留着复杂的机械传动机构;
从上世纪三十年代起,广泛采用了“多电机拖动系
统”,即每一个工作机构用单独电机带动,这样生产
机械结构大大简化;
例对铣床来说共有3台电机即主轴电机、进给电机 和冷却电机。
2020/5/25
法拉第与最早的发电机 —— 法拉第盘 weipeiyu制作
5
电机与电力拖动的发展概况
1832年皮克斯在电磁感应理论的指导下,制造了 第一台发电机;
1833年楞次建立了确定 感应电流方向的原则;
其后他致力于电机理论的研 究并阐明了电机的可逆性原 理。
1834年雅比克制造出世界 第一台电动机,从而证明了 实际应用电能的可能性。
电机学复习重点整理
第一章变压器1.变压器基本工作原理,基本结构、主要额定值变压器是利用电磁感应原理将一种电压等级的交流电能变换为另一种同频率且不同电压等级的交流电能的静止电气设备,它在电力系统,变电所以及工厂供配电中得到了广泛的应用,以满足电能的传输,分配和使用。
变压器的原理是基于电磁感应定律,因此磁场是变压器的工作媒介变压器基本结构组成:猜测可能出填空题或选择题三相变压器按照磁路可分为三相组式变压器和三相芯式变压器两类变压器的型号和额定值~考法:例如解释S9-1250/10的各项数值的含义2.变压器空载和负载运行时的电磁状况;空载电流的组成、作用、性质。
变压器一次侧接到额定频率和额定电压的交流电源上,其二次侧开路,这种运行状态称为变压器的空载运行。
变压器空载运行原理图、变压器一次绕组接交流电源,二次绕组接负载的运行方式, 称为变压器的负载运行方式。
变压器负载运行原理图实际运行的电力变压器的磁路总是工作在饱和状态下。
通过磁化曲线推得的电流波形可以发现: 空载电流(即励磁电流)呈尖顶波,除了基波外, 还有较强的三次谐波和其他高次谐波。
;产生主磁通所需要的电流称为励磁电流,用m i 表示; 同理产生主磁通的磁动势称为励磁磁动势,用 m F 表示。
变压器铁芯上仅有一次绕组空载电流0i 所形成的磁动势0F ,即空载电流0i 建立主磁通,所以空载电流0i 就是励磁电流m i ,即m 0i i = 同理,空载磁动势0F 就是励磁磁动势,即m 0F F =或m 101i N i N = 因为空载时,变压器一次绕组实际上是一个铁芯线圈, 空载电流的大小主要决定于铁芯线圈的电抗和铁芯损耗。
铁芯线圈的电抗正比于线圈匝数的平方和磁路的磁导。
2121N N E E =因此,空载电流的大小与铁芯的磁化性能,饱和程度有密切的关系。
3. }4. 变压器变比的定义;磁动式平衡关系的物理含义,用此平衡关系分析变压器的能量传递;变压器折算概念和变压器折算方法,变压器基本方程组、等效电路和相量图 在变压器中,一次绕组的感应电动势1E 与二次绕组的感应电动势2E 之比称为变比,用k 表示,即k =变压器负载运行时,作用于变压器磁路上111N I F •=和222N I F •=两个磁动势。
《电动机培训资料》课件
停车时先降低负载,然后断开电源开关,以确保安全停车。停车后应检查电动机是否有异常声音或 振动,并做好记录。
电动机的运行参数与监控
电流
运行时应监测电动机的电流,确 保电流不超过额定值。电流过大 或过小都可能影响电动机的正常
运行。
电压
运行时应监测电动机的电压,确保 电压在规定范围内。电压过高或过 低都可能损坏电动机。
详细描述
定子由硅钢片叠压而成,中心有励磁 绕组,通入直流电流后产生恒定的磁 场。定子的外壳通常为铸铁或铝合金 ,用以固定和支撑整个电动机。
电动机的转子
总结词
转子是电动机内部旋转的部件,装载在轴承上,在定子产生的磁场中旋转。
详细描述
转子由导磁性能良好的材料制成,通常为铸铝或铜条,上面装有导电条。当电流 通过转子时,产生磁场,与定子产生的磁场相互作用,从而使转子旋转。
温度
运行时应监测电动机的温度,确保 温度不超过允许值。温度过高可能 烧毁电动机,温度过低可能影响电 动机的性能。
电动机的日常维护与保养
01
02
03
清洁
定期清洁电动机的外壳和 散热片,以保持良好的散 热效果。
检查
定期检查电动机的接线、 轴承、润滑等情况,确保 电动机的正常运行。
更换
定期更换电动机的润滑油 和轴承,以延长使用寿命 。
电动机的故障诊断与排除
故障诊断
根据电动机的异常声音、振动、 温度等表现,结合运行参数的监 测结果,判断故障原因。
排除故障
根据故障原因采取相应的措施进 行排除,如更换损坏的零件、调 整接线等。
04
电动机的常见问题与解决方案
电动机过热问题
总结词
过热是电动机常见的问题之一,可能导致设备损坏和性能下降。
电机学重点内容
《电机学》要求掌握的重点内容一、基本概念和基本原理1 . 单相变压器空载时的电流与主磁通不同相位,存在一个相位角度差αFe,因为存在铁耗电流。
空载电流是尖顶波形,因为其中有较大的三次谐波。
2 . 直流电机电枢绕组中流动的也是交流电流。
但其励磁绕组中流的是直流电流。
直流电动机的励磁方式有他励、并励、串励、复励等。
3 . 直流电机的反电势表达式为E =C E Φ n;而电磁转矩表达式则为T em =C T ΦI。
4 . 直流电机的并联支路数总是成对的。
而交流绕组的并联支路数则不一定。
5 . 在直流电机中,单叠绕组的元件是以一个叠在另外一个之上的方式,串联而成的。
无论是单波绕组、还是单叠绕组,换向片将所有元件串联在一起、构成了一个单一的闭合回路。
6 . 异步电机又称感应电机,因为异步电机的转子电流是通过电磁感应而产生的。
7 . 异步电动机降压起动时,起动转矩减小,起动转矩和绕组的起动电流的平方成正比地减小。
8 . 一次侧电压的幅值、频率不变时,变压器的铁心的饱和程度是基本不变的,励磁电抗也基本不变。
9 . 同步发电机的短路特性是一条直线,三相对称短路时磁路是不饱和的;三相对称稳态短路时,短路电路为纯去磁的直轴分量。
10 . 同步电机励磁绕组中的电流是直流电流,励磁方式主要有励磁发电机励磁、静止整流器励磁、旋转整流器励磁等。
11 . 三相合成磁动势中没有偶次谐波;对称三相绕组通对称三相电流,其合成磁动势中没有3的倍数磁谐波。
12 . 三相变压器一般都希望有某一侧是三角形连接或者有某一侧中点接地。
因为三相变压器的绕组联结都希望有三次谐波电流的通路。
13 . 对称三相绕组通对称三相电流时,其合成磁动势中的5次谐波是反转的;7次谐波是正转的。
14 . 串励直流电动机的机械特性比较软。
他励直流电动机的机械特性比较硬。
15 . 变压器短路试验可以测量变压器绕组的漏阻抗;而空载试验则可以测量绕组的励磁阻抗参数。
16 . 变压器的变比等于一次侧绕组与二次侧绕组的匝数比。
电机学课件PPT重点整理
1.绪论’磁场B:T ,磁场强度,磁通密度H:A/m ,磁导率μ:H/m ;μ0=4π×10-7 H/m ;磁化曲线:又称B-H 曲线,,与B 轴交点为剩磁,与H 轴交点为矫顽磁力;铁耗:磁滞损耗和涡流损耗;磁场能量密度1/2w BH =⨯,主要存储在气隙中;2/L I N ψ==Λ;感应电流阻止磁通变化;变压器电势:交流电产生,运动电势:动生,线圈相对磁场运动。
2.变压器’油浸式:铁芯和绕组泡在油中,干式;导磁材料:0.35mm 硅钢片,减少涡流,提高磁导系数;铁芯式,铁壳式(低压大电流);电压↑→,套管级数上;S N 为三相和,U N 为线电压;空载电流产生主磁通Φ 和漏磁通Φ1σ;E 1,2=4.44fN 1,2Φm ,Φm 为 每极磁通最大值,E1,2为原副边电动势有效值;励磁电流的大小和波形受磁路饱和、磁滞及涡流的影响;磁路饱和→i m 为尖顶波;铁耗→i m 为不对称尖顶波;等效正弦波与之有相同的有效值,与尖顶波的基波分量有相同频率且同相位;I m =Iμ+I Fe = I μ+I h (磁滞)+I e (涡流);,;漏感为常数;传递功率靠互感;无论有无负载,主磁路上全部磁势之和产生主磁通;归算变比K=N1/N2;电流归算:磁动势不变、电压-电磁功率、电阻-二次铜耗、漏抗-二次无功损耗;空载特性U 0=f (I 0),短路特性U k =f (I k ),U kN =Z k*Z k*小的变压器先满载;电压变化率定义在二次侧带负载电压变化与空载电压比值,ΔU%= (1-U 2*)*100%;;负载系数β=I 2/I 2N ;容性中间是减号;;可变损耗等于不变损耗时,效率最大;通过电势平衡和磁势平衡实现能量传递;铁耗角tg -1r m /x m ;磁路饱和增加→励磁电抗减小;3.磁化电流原是尖顶波,由于Y 形连接的三相变压器组不能通过三次谐波→主磁通平顶波→感应出三次谐波电流→走主磁路产生三次谐波电势(很大)→过电压危害绝缘;三相铁芯式变压器由于三次谐波电流同相只能走漏磁路,所以三次谐波电流很小(会发热,容量限制1800kVA );并联条件:①次级电压相等同相②电流与容量成比例,为同时满载③每台变压器所分担的负载电流均为最小;不同连接组不能并联,变比类似,防止形成环流;短路电压小的先满载;负载电流同相位:短路电阻与短路电抗的比值相等,有功无功相等;S 1:S 1=S N1/U K1:S N2/U K24.YNd 零序阻抗很小,易发热;YNy 无零序电流,但感应零序相电势,零序阻抗较大,造成电压不对称;三相独立:零序磁导大,零序励磁阻抗大;三相关联:漏磁路,抗小;YNy 测量零序励磁阻抗:次级线圈三相首尾连接,加单相电源,初级线圈开路;5.特种变压器’自耦变压器变比K=(E 1+E 2)/E 2;电磁二重耦合;电磁感应和直接传导功率;绕组额定容量是铭牌标称额定容量的(1-1/Ka)倍,直接传导容量为1/Ka 额定容量;通过电磁传导的功率越小,尺寸和损耗越小,短路电流越大;较小的电压变化率和较大的短路电流(需要保护);应用于电压等级相差不大的输电线路的连接;第三绕组消除谐波;电压互感器,次级100V ,电流互感器次级5A 或1A ;电压互感器二次侧仪表并联,严禁短路,互感器铁芯和次级线圈一端应该接地;电流互感器:N 1<N 2;若开路:励磁电流过大,铁芯过饱和,发热严重,且二次侧感应高电压;6.绕组与电动势’槽距角α=360p /Z ;极距τ=Z/2p ;单层绕组:10kW 以下小型异步电机,p=1234;单层绕组中属于同一相共有p 个线圈组,每个线圈由q 个线圈组成;常用等元件绕组、链式绕组、交叉绕组和同心式绕组;双层绕组中属于同一相共有2p 个线圈组;短距时产生大大电势差,上下应加强绝缘;每极磁通φm =(2/π)B m l τ;60f=pn ;线圈感应电动势,节距因数Kp=cos (β/2),因一个线圈两边而产生;分布因数Kd=(Sin q α)/( q Sin α),由线圈间叠加时的电动势差引起,每个线圈电动势*q 再*Kd ;最后根据是单层还是双层绕组决定乘以q 还是2q ,再除以a ;每相串联匝数定义为N=2pqNc/s ,这样每相电动势有效值可以用E=4.44fNK φm ,N 为每相物理串联匝数,Kn 为绕组因数;v 次电势谐波:极对数p v =vp ,极距τv =τ/v ,f v =vf 1;v 次电势谐波的绕组绕组因数只要把α、β换成v α、v β;谐波主要影响电动势波形、增加损耗(热量)、高频干扰、自身电感电容自激产生过电压、异步机产生有害的附加转矩和附加损耗;削弱方法:①磁场:使气隙磁势接近正弦,采用极靴等②短距、分布③星形连接消除3x 次谐波;短距削弱谐波公式:y=(1-1/v)*τ;交流绕组的组成原则:获得较大的基波电势,尽量减少谐波电势,且保持三相电势对称,节约铜线。
电机学重点总结
知识点第一章:(以填空题、判断题、简答题为主)p13,p17,p30电机的定义(广义、侠义)电机的任务基本电磁定律(全电流定律、电磁感应定律、电磁力定律)铁磁材料特点,磁滞损耗、涡流损耗的产生机理、影响因素,产生条件磁路基本定律(磁路欧姆定律、磁路基尔霍夫第一/第二定律),定性分析交流磁路特点,磁化曲线分析(磁通与励磁电流的波形)变压器电动势产生原因与磁通之间的相位关系铁磁材料磁导率特点,磁饱和特性闭合磁路磁饱和时主磁通和励磁电流间的波形关系软硬磁材料区别,磁滞回线剩磁矫顽力磁导率铁耗,涡流损耗和磁滞损耗,产生原因及应对措施第二章:(以填空题、判断题、简答题为主)直流电机电枢绕组线圈感应电动势的交变性,直流电动势产生机理;直流电机电枢绕组虚槽数、换向片数、元件数、线圈数关系;第一节距、第二节距、合成节距、换向器节距含义;单叠绕组、单波绕组线圈绕制原则、支路数;电枢反应;感应电动势、电磁转矩的定义及计算;直流发电机、直流电动机的功率流;各种直流电机的特性曲线分析;直流电力拖动机组稳定运行条件;直流电动机的启动、调速与制动;直流电机转子线圈感应电动势的交变性及直流电动势产生机理空载磁场的产生原因及方向并励直流发电机自励条件及临界点电阻随转速的变化关系并励直流发电机,并励直流电动机等效电路及电磁功率计算直流电力传动系统稳定运行条件直流电机电枢反应定义,分类,产生条件及影响并励直流发电机和他励直流发电机外特性比较,拐弯现象解释第三章:(以填空题、判断题、简答题、计算大题为主)变压器的额定值定义;变压器的变比定义;变压器空载电流与励磁电流的关系;变压器的绕组折算方法、条件、折算前后物理量的对应关系;变压器等效电路图及各参数的含义;变压器参数测定(空载实验、短路实验);标幺值的含义、各物理量的基值、标幺值的计算及相关物理量标幺值的等值关系;负载系数的含义;变压器电压变化率的计算;变压器效率的计算及其取最大值的条件;三相变压器的连接组判断;绕组连接法及磁路系统对空载电动势波形的影响;变压器并联运行的条件,并联时的容量计算;自偶变压器的容量;电压互感器、电流互感器的作用及其使用注意事项;变压器二次测额定电压定义变比计算变压器绕组折算后一二次侧感应电动势大小关系主磁通漏磁通区别和等效电路空载或短路实验测得损耗对应关系及参数求取并联运行理想条件和实际条件电压互感器电流互感器单项变压器外加电压与励磁电流波形关系连接组别判断3.49电压变化率,最大效率求解3.46并联变压器容量分配,最打输出容量计算3.52第四章:(以填空题、判断题、简答题为主)交流绕组感应电动势与励磁磁动势间时空变化规律;交流绕组槽距角、槽距电角、相带、极距、极相组的概念;单层绕组、双层绕组每相最大并联支路数;导体电动势、匝电动势、线圈电动势、线圈组电动势、相电动势的概念及计算;消弱谐波电动势的方法(短距绕组);单相绕组磁动势、三相绕组基波合成磁动势性质;谐波磁动势的次数、转速;单相绕组通单相交流电,三相绕组通三相对称交流电产生的磁动势三相绕组基波磁动势转向与电流向序关系对称绕组消除3n次谐波短路绕组消除或削弱谐波时第一节距选择第五章:(以填空题、判断题、简答题、计算大题为主)异步电机的转子结构;同步转速、转差率的计算;异步电机的三种运行状态;异步电机额定值;异步电机工作原理;定子磁场和转子磁场相对静止关系;异步电机的绕组折算;转子绕组中感应电动势及电流的频率计算;异步电机的频率折算及其含义;异步电机的等效电路;异步电机的参数测定(空载实验、短路实现);异步电机的功率流及相关功率之间的关系;异步电机的电磁功率计算(最大转矩、起动转矩);异步电机电磁转矩的三种表达式;异步电机特性曲线分析;异步电机的启动特点;异步电机启动方法及相关计算;异步电机的制动及调速;异步电机定子磁场和转子磁场同步,转子和磁场异步异步电机三种运行状态及各种状态下功率流程异步电机铁耗的主要产生原因频率折算和绕组折算共同条件鼠笼型异步电机转子相数降压启动特点变频调速时保证磁通不变的方法异步电机功率流程,转子转速,转差率,转子频率,电磁转矩,效率,定子电流,Y三角形启动转矩或启动电流计算第六章:(以填空题、判断题、简答题、计算大题为主)同步电机的特点;同步转速的计算;同步电机的额定值;同步电机的运行原理;同步电机的电枢反应;隐极机、凸极机在磁路不饱和、饱和状态下的电磁关系(方程式、向量图)及相关计算;同步发电机的运行特性(空载特性、短路特性、零功率因数特性、外特性、调整特性)分析;保梯电抗、短路比的概念及对电机性能的影响;同步发电机的并联运行条件及方法;同步电机功率和转矩平衡方程;同步电机电磁功率的计算及含义;同步电机交轴电枢反应对机电能量转换的意义;同步电机静态稳定的条件;同步电机无功功率的调节和V形曲线分析;同步电动机无功调节及V性曲线;同步电动机的起动和调速;调相机的作用、机理和运行状态;步进电动机工作原理及步距角计算。
《电机学》复习要点
第 1 页/共 6 页一、主要内容磁场、磁感应强度,磁场强度、磁导率,全电流定律,磁性材料的B-H 曲线,铁心损耗与磁场储能,电感,电磁感应定律,电磁力与电磁转矩。
二、基本要求结实控制以上概念对本课程学习是必须的。
三、注重点1、欧姆定律:作用于磁路上的磁动势等于磁阻乘以磁通m F Φ=Λ,1m m S R lμΛ== 2、2222m SfN SN l X L N l μμωωπω==Λ==3、随着铁心磁路饱和的增强,铁心磁导率µFe 减小,相应的磁导、电抗也要减小。
一、主要内容额定值,感应电动势、电压变比,励磁电流,电路方程、等效电路、相量图,绕组归算,标幺值,空载实验、短路实验及参数计算,电压变化率与效率。
三相变压器的联接组判别。
三相变压器绕组的联接法和磁路系统对相电势波形的影响。
二、基本要求熟练控制变压器的基本电磁关系,变压器的各种平衡关系。
三种分析手段:基本方程式、等效电路和相量图。
正方向决定,基本方程式、相量图和等效电路间的一致性。
理解变压器绕组的归算原理与计算。
熟练控制标幺值的计算及数量关系。
认识变压器参数的测量主意,运行特性分析主意与计算。
控制三相变压器的联接组表示与决定。
三、注重点1、变压器的额定值对三相变压器来说电压、电流均为线值,功率是三相视在功率,计算时一定要注重。
三相变压器参数计算时,必须换成单相数值,最后结果再换成三相值。
2、励磁阻抗的物理意义,与频率和铁心饱和度的关系。
3、变压器的电势平衡、磁势平衡和功率平衡(功率流程图)。
4、变压器参数计算(空载实验普通在低压侧做,短路实验普通在高压侧做。
在哪侧做实验,测出来的就是哪侧的数值,注重折算!)5、变压器的电压调节率和效率的计算(负载因数1I β*=)。
6、单相变压器中励磁电流、主磁通和感应电势的波形关系,三相变压器的铁心结构和电势波形。
7、联接组别的判别。
8、变压器负载与二次侧接线方式要一致,若不一致,必须将负载∆-Y 变换。
电机学复习重点整理
第一章变压器1.变压器基本工作原理,基本结构、主要额定值变压器是利用电磁感应原理将一种电压等级的交流电能变换为另一种同频率且不同电压等级的交流电能的静止电气设备,它在电力系统,变电所以及工厂供配电中得到了广泛的应用,以满足电能的传输,分配和使用。
变压器的原理是基于电磁感应定律,因此磁场是变压器的工作媒介变压器基本结构组成:猜测可能出填空题或选择题三相变压器按照磁路可分为三相组式变压器和三相芯式变压器两类变压器的型号和额定值考法:例如解释S9-1250/10的各项数值的含义2.变压器空载和负载运行时的电磁状况;空载电流的组成、作用、性质。
变压器一次侧接到额定频率和额定电压的交流电源上,其二次侧开路,这种运行状态称为变压器的空载运行。
变压器空载运行原理图变压器一次绕组接交流电源,二次绕组接负载的运行方式,称为变压器的负载运行方式。
变压器负载运行原理图实际运行的电力变压器的磁路总是工作在饱和状态下。
通过磁化曲线推得的电流波形可以发现:空载电流(即励磁电流)呈尖顶波,除了基波外,还有较强的三次谐波和其他高次谐波。
2121N N E E =产生主磁通所需要的电流称为励磁电流,用m i 表示; 同理产生主磁通的磁动势称为励磁磁动势,用 m F 表示。
变压器铁芯上仅有一次绕组空载电流0i 所形成的磁动势0F ,即空载电流0i 建立主磁通,所以空载电流0i 就是励磁电流m i ,即m 0i i = 同理,空载磁动势0F 就是励磁磁动势,即m 0F F =或m 101i N i N = 因为空载时,变压器一次绕组实际上是一个铁芯线圈, 空载电流的大小主要决定于铁芯线圈的电抗和铁芯损耗。
铁芯线圈的电抗正比于线圈匝数的平方和磁路的磁导。
因此,空载电流的大小与铁芯的磁化性能,饱和程度有密切的关系。
3. 变压器变比的定义;磁动式平衡关系的物理含义,用此平衡关系分析变压器的能量传递;变压器折算概念和变压器折算方法,变压器基本方程组、等效电路和相量图在变压器中,一次绕组的感应电动势1E 与二次绕组的感应电动势2E 之比称为变比,用k 表示,即k =变压器负载运行时,作用于变压器磁路上111N I F •=和222N I F •=两个磁动势。
专升本电机学同步电机部分ppt课件
(3)外特性
(4)调整特性
❖ 例题
❖ 1.同步发电机电枢反应性质取决( Ψ ), 当( Ψ=0° )时电枢反应为交轴电枢反应, 此时发电机的转速( 下降 ),频率 ( 下降 ),为了保持频率不变,应(增大 输入转矩 )。
❖ 2.同步发电机的铁心饱和程度越大,同步电 抗越( 小 );电枢绕组匝数越多,同 步电抗越( 大 );励磁绕组匝数越多, 则同步电抗( 不变 )。
额定值关系: PN 3U N I N cos N
❖ 例题
❖ 1.我国大型汽轮发电机的极数为(2),转子 转速为(3000)r/min。
❖ 2.同步发电机的转速n与频率f会严格的满足 ( 正比 )关系
❖ 3.一台QFS-300-2的汽轮发电机,额定运行 时会发出多少( 300000 )kw的功率。
凸极电机:
Xd Xad X Xq Xaq X
直轴同步电抗 交轴同步电抗
Xd Xq
(四)隐极同步发电机的平衡方程和相量图
平衡方程:
E0 U jIa X t
相量图:
:
U 与 Ia 夹角,(外)功率因数角 E 0
: E 0 与 Ia 夹角,内功率因数角
: E 0 与 U 夹角,功率角(功角)
(五)静态稳定
静态稳定的判据:比整步功率(kW/rad)
Psyn
dPem
d
0
对汽轮发电机,比整步功率为
Psyn
dPem
d
m
E0U xt
cos
(六)过载能力
最大电磁功率与额定功率的比值称为过载能力。
m E0U
汽轮发电机的过载能力
kM
Pe m max PN
xt
m
E0U xt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.绪论’磁场B:T ,磁场强度,磁通密度H:A/m ,磁导率μ:H/m ;μ0=4π×10-7 H/m ;磁化曲线:又称B-H 曲线,,与B 轴交点为剩磁,与H 轴交点为矫顽磁力;铁耗:磁滞损耗和涡流损耗;磁场能量密度1/2w BH =⨯,主要存储在气隙中;2/L I N ψ==Λ;感应电流阻止磁通变化;变压器电势:交流电产生,运动电势:动生,线圈相对磁场运动。
2.变压器’油浸式:铁芯和绕组泡在油中,干式;导磁材料:0.35mm 硅钢片,减少涡流,提高磁导系数;铁芯式,铁壳式(低压大电流);电压↑→,套管级数上;S N 为三相和,U N 为线电压;空载电流产生主磁通Φ 和漏磁通Φ1σ;E 1,2=4.44fN 1,2Φm ,Φm 为 每极磁通最大值,E1,2为原副边电动势有效值;励磁电流的大小和波形受磁路饱和、磁滞及涡流的影响;磁路饱和→i m 为尖顶波;铁耗→i m 为不对称尖顶波;等效正弦波与之有相同的有效值,与尖顶波的基波分量有相同频率且同相位;I m =I μ+I Fe = I μ+I h (磁滞)+I e (涡
流);,;漏感为常数;传递功率靠互感;无论有无负载,主磁路上全部磁势之和产生主磁通;归算变比K=N1/N2;电流归算:磁动势不变、电压-
电磁功率、电阻-二次铜耗、漏抗-二次无功损耗;空载特性U 0=f (I 0),短路特性U k =f (I k ),U kN =Z k*,并联时Z k*小的变压器先满载;电压变化率定义在二次侧带
负载电压变化与空载电压比值,ΔU%= (1-U 2*)*100%;;负载系数β=I 2/I 2N ;容性中间是减号;
;可变损耗等于不变损耗时,效率最大;通过电势平衡和磁势平衡实现能量传递;铁耗角tg -1r m /x m ;磁路饱和增加→励
磁电抗减小;
3.磁化电流原是尖顶波,由于Y 形连接的三相变压器组不能通过三次谐波→主磁通平顶波→感应出三次谐波电流→走主磁路产生三次谐波电势(很大)→过电压危害绝缘;三相铁芯式变压器由于三次谐波电流同相只能走漏磁路,所以三次谐波电流很小(会发热,容量限制1800kVA );并联条件:①次级电压相等同相②电流与容量成比例,为同时满载③每台变压器所分担的负载电流均为最小;不同连接组不能并联,变比类似,防止形成环流;短路电压小的先满载;负载电流同相位:短路电阻与短路电抗的比值相等,有功无功相等;S 1:S 1=S N1/U K1:S N2/U K2
4.YNd 零序阻抗很小,易发热;YNy 无零序电流,但感应零序相电势,零序阻抗较大,造成电压不对称;三相独立:零序磁导大,零序励磁阻抗大;三相关联:漏磁路,抗小;YNy 测量零序励磁阻抗:次级线圈三相首尾连接,加单相电源,初级线圈开路;
5.特种变压器’自耦变压器变比K=(E 1+E 2)/E 2;电磁二重耦合;电磁感应和直接传导功率;绕组额定容量是铭牌标称额定容量的(1-1/Ka)倍,直接传导容量为1/Ka 额定容量;通过电磁传导的功率越小,尺寸和损耗越小,短路电流越大;较小的电压变化率和较大的短路电流(需要保护);应用于电压等级相差不大的输电线路的连接;第三绕组消除谐波;电压互感器,次级100V ,电流互感器次级5A 或1A ;电压互感器二次侧仪表并联,严禁短路,互感器铁芯和次级线圈一端应该接地;电流互感器:N 1<N 2;若开路:励磁电流过大,铁芯过饱和,发热严重,且二次侧感应高电压;
6.绕组与电动势’槽距角α=360p /Z ;极距τ=Z/2p ;单层绕组:10kW 以下小型异步电机,p=1234;单层绕组中属于同一相共有p 个线圈组,每个线圈由q 个线圈组成;常用等元件绕组、链式绕组、交叉绕组和同心式绕组;双层绕组中属于同一相共有2p 个线圈组;短距时产生大大电势差,上下应加强绝缘;每极磁通φm =(2/π)B m l τ;60f=pn ;线圈感应电动势,
节距因数Kp=cos (β/2),因一个线圈两边而产生;分布因数Kd=(Sin q α)/( q Sin α),由线圈间叠加时的电动势差引起,每个线圈电动势*q 再*Kd ;最后根据是单
层还是双层绕组决定乘以q 还是2q ,再除以a ;每相串联匝数定义为N=2pqNc/s ,这样每相电动势有效值可以用E=4.44fNK φm ,N 为每相物理串联匝数,Kn 为
绕组因数;v 次电势谐波:极对数p v =vp ,极距τv =τ/v ,f v =vf 1;v 次电势谐波的绕组绕组因数只要把α、β换成v α、v β;谐波主要影响电动势波形、增加损耗(热量)、高频干扰、自身电感电容自激产生过电压、异步机产生有害的附加转矩和附加损耗;削弱方法:①磁场:使气隙磁势接近正弦,采用极靴等②短距、分布③星形连接消除3x 次谐波;短距削弱谐波公式:y=(1-1/v)*τ;交流绕组的组成原则:获得较大的基波电势,尽量减少谐波电势,且保持三相电势对称,节约铜线。
分析绕组的基本方法:槽导体电势星形图;
7.交流电机磁动势’假设气隙磁场正弦,铁芯不饱和;磁势(全部)降落在两个气隙中;结构对称,每极下磁密波对磁极中心线对称,偶次谐波对中心线非对称,故不存在;基波磁动势分量:正弦分布的正弦脉振磁势;单层绕组线圈组基波磁动势振幅:F q1=qF c K d1=0.9qN c K d1I c ;v 次谐波磁动势:F q1=qF cv K d1=(0.9/v)qN c K dv I c ;双
层绕组:常采用短距,F q1=qF c K d1=0.9*2qN c K N1I c ;引入每相串联匝数N=Spq/a ,则每相及波磁动势振幅为F q1=(0.9*NK n1I c )/p ,瞬时值应该*sin Wt*sin x ;
磁动势是空间矢量,不能合并;脉振磁势可分解为两个反向旋转的磁势,幅值为1/2脉振磁势;对称电流流过的三相对称绕组,磁动势如右,
分解后消去再叠加,幅值为3/2脉振幅值;由电流超前相转向滞后相;零序电流不产生旋转磁场;v 次谐波磁场转速n v =n 1/v ;谐波磁势影响:产生谐波感应电势(增加损耗,降低pf ),产生附加力矩;改善方法:短距、分布。
9.异步电机’ 气隙很小,0.2~2.0mm ;若气隙大→磁阻大→励磁电流大→pf 低且漏抗引起附加损耗小,改善启动性能;转差率s=(n s -n)/n s ;发电s<0、电动
0<S<1、电磁制动s>1;感应电流频率f 2=sf 1,感应电流旋转磁场相对转子转速n=sn 1;漏磁通包含三个部分:槽漏磁通、端部漏磁通和谐波漏磁通;谐波在
定子绕组上的感应电势f 1v =f 1;转子转动后,二次侧感应电动势E 2s =sE 2 ,x 2s =sx 2;频率归算:用一等效的转子电路替代实际转动的转子
电路,使转子频率与定子电路有相同频率。
原则:保持频率归算后的转子电流的大小和相位不变(磁势平衡),保持定子电流的大小和
相位不变(损耗不变)。
负载功率因数角θ=tg -1x2/(rx/s);附加电阻(模拟电阻)意义:等效转轴上机械功率m 2I 22r 2(1-s)/s ;额定负载时
s=5%,附加电阻为15r 2’,转子回路接近电阻性,pf 较高(0.8~0.85)滞后;空载试验: x m =U 1/I 0,r m =P 0/mI 02(千万记得P 0是m 相总空载
功率); 短路试验时忽略r m ,损耗全部为r1+r2’上损耗;感应到转子绕组上的功率称为电磁功率,包含转子铁耗、机械损耗和机械功率
输出。
;电磁转矩等于机械转矩,有P i /Ω=P M /
Ω1;
负载较小时时,T 受到I 影响,负载较大时,T 与I2和功率因素均有关。
临界转差率:,,
Figure 1启动转矩
①T m与U12成正比②T m与转子电阻无关③s k与转子电阻成正比④电源频率增大,Tm和Sk都减小。
T m~1/f2,s k~1/f;过载能力:K m=T m/T N;稳定运行条件:dT/ds>dTl/ds →dT/dn<dTl/dn;
运行特性:①转速随输出增加略有下降②负载转矩近似与输出功率成正比③定子电流随负载增加④效率和功率因数随负载有不同的变化;
I启动时pf很低,II轻载时转速很高,效率和pf都很低III转速略下降,效率和pf都升高;转速特性:转矩平衡式;负载转矩特性:T2=P2/Ω2;效率特性:先空载损耗,再增加铜耗(可变),当可变=不变,效率最大。
载加大负载,铜耗急剧增加效率反而降低。
设计在0.7~1.0最大效率。
10.异步电机启动与调速’要求有较大的启动转矩和较小的起动电流;启动时S=1,C1=1;高次谐波产生原因:绕组分布非正弦(绕组谐波磁
动势)、定、转子齿槽存在引起磁导齿谐波;高次谐波产生附加转矩,分同步和异步;异步转矩是由定子旋转磁场与由该磁场感应的转子电
流所产生的转子磁场相互作用所产生的转矩;此两磁场在任何转子转速下都保持同步旋转而相对静止,其中只有极对数相同的磁场才会产生异步转矩Sv=1-+v(1-s);同步附加转矩只在特定转速下产生;减小谐波:绕组采用适当的分布和短距、斜槽、槽配合、减少气隙磁导的变化、增大气隙(增加励磁电流,功率因数下降);启动:全电压,降压;自耦变压器启动:变比Ka,电压降低到1/ka倍,启动电流也减小到1/Ka倍,启动转矩为1/Ka2,电网供给起动电流小到1/Ka2;三角形连接启动电流大=SQRT(3)*U/Z,星形连接启动电流为前者1/3,启动电流和转矩均减小为1/3/;集肤效应使槽导体电阻增加,使槽漏磁通有所减少,导致转子漏抗也有所减少,二者均促使起动转矩增大;调速:n=n0(1-s);变频调速:无级调速分恒转矩、恒功率;变极对数;电压下降为额定值的x倍时,s增加至原来的1/x2倍,调速范围很小,恒转矩不适合降压;转子回路串启动电阻、串附加电动势;串电阻机械特性变软,(1,0)坐标左移上移;。