旋转机械故障诊断
旋转机械的状态监测及故障诊断
同步振动:工作频率=激振频率。 强迫振动:对线性系统,在周期激振下的稳态响应 一般采用滚动轴承
2)系统分类——以临界转速分类
⑵ 柔性转子系统--工作转速在一阶临界转速以上的 系统
判别依据:一般工作频率>100Hz的机械系统属于柔性转 子系统。
1 旋转机械的状态特征参数与测试
4)旋转机械的转速检测
齿式轮盘测速 转速测量一般是在轴的测量圆周上设置多个凹槽
或凸键标己或者在轴上安装一个齿轮盘使每转产生多 个脉冲。
1 旋转机械的状态特征参数与测试
5)轴向位移检测
测量转子的轴 向位移时,测量面 应该与轴是一个整 体,这个测量面以 探头中心线为中心。
1 旋转机械的状态特征参数与测试
6)轴心轨迹测试
轴心轨迹非常直观地显示了转子在轴承中的旋转 和振动情况,是故障诊断中常用的非常重要的特征信 息。
1 旋转机械的状态特征参数与测试
正向进动(轴转向与轴心轨迹 转向一致)----例如:转子不 平衡、不对中、油膜失稳产生 的亚同步涡动、内摩擦激发的 涡动等均为正向进动。绝大多 数为正向进动。
振动特点:振动频率(自激振动)<工作频率,并与一阶 横向自振频率有关。
自激振动:振动过程中,由于系统内部不断有能量输入而 产生的共振现象,在设备诊断中又称为亚同步振动。
一般采用滑动轴承。
两种系统振动特点比较
激振原因
频率与工作 频率的关系
强迫振动(刚性系统)
由于外部激振力 或激振位移引起的
振动频率与工作频率同步
1 旋转机械的状态特征参数与测试
3)旋转机械振动相位检测
旋转机械故障诊断
旋转机械故障诊断
----机组振动的原因及分析
一、 旋转机械的分类
旋转机械是指主要功能是由旋转动作来完成的机械,尤其是指转速较高的机械。大致可分为以下几类:
1:动力机械
(1) 原动机 如蒸汽涡轮机、燃气涡轮机等,利用高压蒸汽或气体的压力能膨胀做功推动转子旋转。
(2) 流体输送机械 这类机械的转子被原动机拖动,通过转子的叶片将能量传递被输送的流体,他可分为以下两类:
7、 转子在运转时突然破裂等因素产生的不平衡。
不平衡因素有时只有一种,有时有几种同时存在。
三)、不平衡产生的振动有以下特点
1、 当转子的转速低于临界转速时,振幅随转速的上升而上升;当转子的转速高于临界转速时,随着转速的上升振幅趋于一个较小的定值。
2、 由于作用力方向随着转子的转动而转动,振动在频谱图上反映的是转子的工作频率。
四、 不平衡的诊断及对策
一)、转子的静平衡和动平衡
1、 转子的静平衡:使转子产生偏心距的称为静不平衡。静不平衡是质量的平衡,在水平轨道上既可以测量出不平衡质量的方位,通过加重或去重可以做到静平衡。
2、 转子的动平衡:多盘转子在转子的不同平面存在大小相等,方向相反的两个或多个不平衡质量,转子总的偏心距为零,作静平衡实验室转子可以随遇平衡,转子在旋转时产生两个大小相等、方向相反的离心力组成离心力矩,从而引起震动。
旋转机械故障诊断
旋转机械故障诊断
旋转机械故障诊断主要是通过观察和分析机械运行过程中
的异常现象来判断故障原因。
以下是一些常见的旋转机械
故障诊断方法:
1. 震动分析:通过测量机械运行时的振动幅值和频率,分
析振动的特点和变化趋势,判断故障位置和类型。
常见的
故障类型包括不平衡、轴承损坏和轴承松动等。
2. 温度监测:通过测量机械的各个部件的温度,判断是否
存在过热的情况。
过高的温度可能是由于摩擦、润滑不良
或散热不良等原因引起的故障。
3. 声音分析:通过对机械工作过程中产生的声音进行分析,判断是否存在异响或噪音。
噪音可以是由于轴承损坏、齿
轮磨损或螺栓松动等引起的。
4. 润滑油分析:通过对机械润滑油的化学成分和物理性质
进行分析,判断是否存在金属粉末、水分或杂质等异常。
这些异常可能是由于零件磨损或润滑油质量不佳引起的故障。
5. 可视检查:通过对机械各个部件的外观进行检查,观察
是否存在磨损、裂纹或松动等现象。
这可以帮助诊断轴承、齿轮和联接件等部件的故障。
以上是常见的旋转机械故障诊断方法,诊断时可以结合多
种方法综合分析,准确判断和定位故障原因,以便及时进
行修复或更换有问题的部件。
Chapter03旋转机械故障诊断mfd,故障诊断,电子科技大学ppt课件
n0 .5 n cr 1
刚性转子
0 . 5 n n 0 . 7 n cr 1 cr 1
准刚性转子 柔性转子
n0 .7 n cr 1
机械电子工程学院
3.1.2.2 阻尼对临界转速下转子振动的影响
取坐标系Oxy,在x和y两坐标方向上列力的平衡式:
2 m x c x kx me cos t 2 m y c y ky me sin t
3.1.2.1 临界转速的动力特性
一般规定,转子在一阶临界转速以下运行时,工作转速n应低 n cr 0.75 于一阶临界转速 的 倍;工作转速高于一阶临界转速时, 1 要求在下列范围内(i为临界转速的阶数):
1 . 4 n n 0 . 7 n cri cr ( i 1 )
从动力学角度分析,转子系统分为刚性转子和柔性转子。 转动频率低于转子一阶横向固有频率的转子为刚性转子,如 电动机、中小型离心式风机等。转动频率高于转子一阶横向固 有频率的转子为柔性转子,如燃气轮机转子。
2 2
A
2 2 n
2
式中阻尼比为:
c 2mn
2 n arctan 2 1 n
机械电子工程学院
3.1.2.2 阻尼对临界转速下转子振动的影响
机械电子工程学院
3.1.2 临界转速对不平衡振动的影响
3.1.2.1 临界转速的动力特性
在工程上,把对应于转子一阶横向固有频率的转速称为临界 转速。 临界转速是指由不平衡离心力引起转子共振现象时的转速。
转子运动的力学模型
机械电子工程学院
3.1.2.1 临界转速的动力特性
第6章旋转机械故障诊断
▪ 半速涡动
➢ 因为油具有黏性,所 以轴颈表面的油流速 度与轴颈线速度相同, 均为rω,而轴瓦表面 的油流速度为0
➢ 假设油流速度呈直线 分布
➢ 轴颈某一直径扫过的 面积,即为油楔入口 与出口的流量差
rωl C e dt rωl C e dt 2rlΩedt dQ
2
2
1 1 dQ
(1)原始不平衡; (2)渐变不平衡; (3)突发不平衡。
转子不平衡的轴心轨迹
同步采集
转子不平衡故障谱图
转子不平衡与转速的关系
•当ω<ωn,即在临界转速下,振幅随着转速的增加而增 大; •当ω接近ωn时,发生共振,振幅具有最大峰值; •当ω>ωn,即在临界转速上,转速增加时振幅趋于一个 较小的稳定值; •当工作转速一定时,相位稳定.
第6章旋转机械故障诊断
2021年7月30日星期五
大型汽轮机外形及转子
多级汽轮机转子
转子是由合金钢锻件整体精加工,并且在装配上叶片后,进行全速转动试验和精确动平衡
6.1 动力学特征及信号特点
▪ 何谓旋转机械
➢ 主要运动由旋转运动来完成的机械
汽轮机、离心式压缩机、水泵、风机、电动机
➢ 核心:转轴组件
中
向振动较大。
频谱中2X较大,常常超过1X,这与联轴节
A
结构类型有关。 角不对中和平行不对中严重时,会产生较多
谐波的高次(4X~8X)振动。
联轴节两侧径向振动相位差180。
联角
轴不
器
Байду номын сангаас
对 中
不
典型的频谱
相位关系
对
定义:当转子轴线之间存在偏角位移。
2x值相对于1x幅值的高度常取决于联轴器的类 型和结构
旋转机械故障诊断技术及处理方法
推力盘
耸起,刮伤,裂纹
围带、拉筋 断裂,摩擦
靠背轮
连接不良,磨损,断裂
冷却风扇 弯曲,断裂,裂纹,摩擦,不合适间隙,腐蚀,积垢,共振
造成发电机产生热不平衡的原因是由于转子上某些零件产生不对称热变形和转子热弯 曲。产生不对称热变形的零件主要是端部零件,特别是端部线包,由于线包受热膨胀在径向 发生不对称位移,破坏了转子的质量平衡。热弯曲的原因主要是由制造和材质方面的缺陷所 引起,另一方面是运行方面的原因引起的。 b.汽轮机转子的热不平衡
(3) 大修时进行过可能破坏转子质量平衡的技术操作:如拆装或更换叶轮、叶片等。 1.2 靠背轮和转子找中心不正 a.靠背轮的影响
⑴ 靠背轮平面瓢偏,当拧紧靠背轮螺丝后,转子将产生静变形(即挠度),在轴颈上会 呈现较大的晃摆,在旋转状态处,静变形将产生旋转的强迫振动。
⑵ 靠背轮连接螺栓有紧力差别,其产生的后果将会像瓢偏一样。 ⑶ 两个靠背轮止口或连接螺栓节圆不同心,当拧紧靠背螺丝后,两个转子会产生偏心, 这种偏心在旋转状态下直接产生激振力,而且以力偶形式作用在两个相邻的轴承上。 靠背轮本身及连接缺陷所造成振动的特点是:振动的主要分量与转速相符,但包含有一 定的非基波分量,因此在激起普通强迫振动的同时,可能还会激起高次谐波和分谐波共振。 b.转子找中心的影响 通常所指的转子找中心,实际上是找轴承中心,即通过调整轴承座的标高和左右位置, 使冷态下两靠背轮圆周和平面的偏差力求最小,使轴系在给定的支撑数目下,能连成一条连 续的自然垂弧曲线。对于刚性或半绕度性靠背轮,由于它有对中的止口配合部分或配合螺栓 部分,所以即使中心略有不正,即轴承座定位略有不当,当拧紧螺丝后,转子将会自动同心, 因而它并不直接产生振动的激振力,但由于轴承座相对位置的变动将会引起下列后果: ⑴ 使轴瓦载荷分配不合理,载荷过大者会使轴瓦温度升高,过小者易使转子失稳,发 生轴瓦自激振动。 ⑵ 破坏了已经调整好的动静间隙,可能会引起静摩擦或汽流激振。
机械故障诊断—第四章 旋转机械故障诊断
2
制造原因
1制造误差大 2材质不均匀 3动平衡精度低 1转子上零部件安装错误 2零件漏装
3
安装维修
1转子有较大预负荷
4
操作运行
1介质带液,造成腐蚀 2介质脏,造成结垢
1超速、超负荷运行 2入口阻力大,导致部件损坏,进人 流道松动
1转子回转体结垢 2转子腐蚀
图4.1 转子力学模型
由于有偏心质量m和偏心距e的存在,当转子转动 时将产生离心力、离心力矩或两者兼而有之。离心 力的大小与偏心质量m、偏心距e及旋转角速度ω有 F me 2 。众所周知,交变的力(方向、大小 关,即 均周期性变化)会引起振动,这就是不平衡引起振动 的原因。转子转动一周,离心力方向改变一次,因 此不平衡振动的频率与转速相一致。
例2:某52万吨/年尿素装置CO2压缩机组低压缸转子,大修后开车振动值 正常,但在线监测系统发现其振动值有逐步增大的趋势。其时域波形为 正弦波,分析其频谱,以1×频为主,分析其矢量域图,相位有一个缓慢 的变化。如图4.7所示。
(a)时域波形
(b)幅值谱
(c)振动趋势
(d)矢量域图
图4.7 CO2压缩机渐变不平衡振动特征
3.非定常强迫振动 非定常强迫振动是由外来扰动力而引起的一种强迫振动。其特点是 与扰动力具有相同的频率;振动本身反过来会影响扰动力的大小与相 位;振动的幅值和相位都是变化的。比如转子轴上某一部位出现不均 匀的热变形,就相当于给转子增加了不平衡质量,它将会使振动的幅 值和相位都发生变化。反过来,振动幅值和相位的变化又影响不均匀 热变形的大小与部位,从而使强迫振动连续不断地发生变化。 二、旋转机械常见故障及其特点 1.不平衡 转子不平衡是旋转机械的常见故障之一。在制造与维修过程中,虽 都要对转子作仔细平衡,使不平衡量小于限定值。但经过一段时间的 运行,不平衡量会逐渐增大。由于转子处于高速运行状态,偏心量的 少许增加,都会使惯性离心力剧增,使机器的功能下降,甚至无法继 续运行。 转子不平衡引起的振动有以下特点: 1. 振幅随转速的上升而增加; 2. 振动的频率与转子的旋转频率相同; 3. 振动方向以径向为主; 4. 振动相位常保持一定角度。 当不平衡重量只存在于一个平面内时,这种不平衡称为静不平衡;而当 在多个平面内有不平衡情况时,就是动不平衡。
设备状态监测与故障诊断技术第5讲义章-旋转机械故障诊断技术
➢ 不对中的总体振动特征:
✓ 转子径向振动出现二倍频,以一倍频和二倍频分量为主,不对 中越严重,二倍频所占比例越大;
✓ 相邻两轴承的油膜压力反方向变化,一个油膜压力变大,另一 个则变小;
✓ 典型的轴心轨迹为香蕉形,正进动;
✓ 联轴器不对中时轴向振动较大,振动幅值和相位稳定; ✓ 轴承不对中时径向振动较大,有可能出现高次谐波,振动不稳定; ✓ 振动对负荷变化敏感。当负荷改变时,由联轴器传递的扭矩立即发
频振动幅值大。同时会出现较小
的高次谐波,使整个频谱呈所谓
的“纵树形”,如下图所示:
ω
图5.1 转子不平衡故障谱图
2021/4/22
7
实例一:转子不平衡故障的诊断
TO
TI
透平 齿轮箱 风机
图5.00 风机传动示意图
波形为简谐波,少毛刺。 轴心轨迹为椭圆。 1X频率为主。 轴向振不大。 振幅随转速升高而增大。 过临界转速有共振峰。
表5-3 圆盘反应器电机测试数据
电机转速
电机
特征频率 主轴转速
Rpm
μm mm/s
Hz
Rpm
1035 163.35 13.567 17.25
4.8
1069.2 280
22
17.82
4.95
1080.6 208.09 16.416 18.01
5
主轴转速调至4.95rpm时,振动值非常大;但调至5rpm时,振 动值复又下降。这说明,4.95rpm时的特征频率17.82Hz为机台 一共振频率。
2021/4/22
3
第一节 旋转机械典型故障的机理和特征
1.转子质量不平衡
力不平衡:不平衡产生的振动幅值在转子第一临界转速以下随转 速的平方增大。例如,转速升高1倍,则振动幅值增大3倍。在转 子重心平面内只用一个平衡修正重量便可修正之。 力偶不平衡:至少需在两个修正平面内放置平衡重量才能修正。 动不平衡:动不平衡是不平衡的最普遍的类型,它是力不平衡和 力偶不平衡两者的组合。 悬臂转子不平衡:悬臂转子不平衡包含力不平衡和力偶不平衡两 者。总是必需要在两个修正面内加以修正重量。
旋转机械的故障诊断
旋转机械的故障诊断1.不平衡不平衡是各种旋转机械中最普遍存在的故障。
引起转子不平衡的原因是多方面的,如转子的结构设计不合理、机械加工质量偏差、装配误差、材质不均匀、动平衡精度差;运行中联轴器相对位置的改变;转子部件缺损,如:运行中由于腐蚀、磨损、介质不均匀结垢、脱落;转子受疲劳应力作用造成转子的零部件(如叶轮、叶片、围带、拉筋等)局部损坏、脱落,产生碎块飞出等。
2.不对xx转子不对中通常是指相邻两转子的轴心线与轴承中心线的倾斜或偏移程度。
转子不对中可分为联轴器不对中和轴承不对中。
联轴器不对中又可分为平行不对中、偏角不对中和平行偏角不对中三种情况。
平行不对中时振动频率为转子工频的两倍。
偏角不对中使联轴器附加一个弯矩,以力图减小两个轴中心线的偏角。
轴每旋转一周,弯矩作用方向就交变一次,因此,偏角不对中增加了转子的轴向力,使转子在轴向产生工频振动。
平行偏角不对中是以上两种情况的综合,使转子发生径向和轴向振动。
轴承不对中实际上反映的是轴承座标高和轴中心位置的偏差。
轴承不对中使轴系的载荷重新分配。
负荷较大的轴承可能会出现高次谐波振动,负荷较轻的轴承容易失稳,同时还使轴系的临界转速发生改变。
3.轴弯曲和热弯曲轴弯曲是指转子的中心线处于不直状态。
转子弯曲分为永久性弯曲和临时性弯曲两种类型。
转子永久性弯曲是指转子的轴呈永久性的弓形,它是由于转子结构不合理、制造误差大、材质不均匀、转子长期存放不当而发生永久性的弯曲变形,或是热态停车时未及时盘车或盘车不当、转子的热稳定性差、长期运行后轴的自然弯曲加大等原因所造成。
转子临时性弯曲是指转子上有较大预负荷、开机运行时的暖机操作不当、升速过快、转轴热变形不均匀等原因造成。
转子永久性弯曲与临时性弯曲是两种不同的故障,但其故障的机理是相同的。
转子不论发生永久性弯曲还是临时性弯曲,都会产生与质量偏心情况相类似的旋转矢量激振力。
4.油膜涡动和油膜振荡油膜涡动和油膜振荡是滑动轴承中由于油膜的动力学特性而引起的一种自激振动。
旋转机械故障诊断
电气绕组
铜线分布不均
转子不平衡故障
不平衡的原因
铸造缺陷
热膨胀
由于每个部件热膨胀 率不同影响转子平衡
轴孔太大
转子不平衡故障机理与诊断
不平衡的种类
按发生不平衡的过程可分为:
• 原始不平衡 • 渐发性不平衡 • 突发性不平衡
按机理可分为:
• 静不平衡 • 偶不平衡 • 动不平衡
= 静不平衡 + 偶不平衡
转子转动一周,离心力方向改变一次。因此,不平衡振动的 频率与转频相一致。
转子不平衡故障机理与诊断
旋转机械故障诊断 转子不平衡
无阻尼时,O、O’、G三点成一直线
实际转子总存在阻尼
工作介质、轴承油膜的黏性阻尼,滑动面之间的摩擦阻尼, 轴材料不完全弹性的内摩擦阻尼,转子轴承系统因变形能耗 产生的结构阻尼
k m
由上式中解出x和y,并求得振幅r。
转子的临界转速
影响临界转速的因素
支承刚度
• 只有在支承完全不变形的条件下,支点才会在转子运动过 程中保持不动。考虑支承的弹性变形时,就相当于弹簧与 弹性转轴相串联。
• 支承与弹性转轴串联后,总的弹性刚度要低于转轴本身的 弹性刚度,使转子的临界转速降低。
旋转机械故障诊断 转子不平衡
静不平衡
偶不平衡
转子不平衡故障机理与诊断
旋转机械故障诊断 转子不平衡
故障机理
如下图所示单盘转子系统,由于质心与旋转中心不重合而产 生不平衡
F(t)
Fsint
e
t c
M
y( t)
k
c
(a) 转子系统
(b) 振动模型
交变的力(方向、大小周期性变化)会引起振动
旋转机械故障诊断
旋转机械故障诊断旋转机械故障指的是各种旋转设备在使用中出现的故障,例如电机、风扇、泵等。
为了确保机械设备的正常运转,需要及时检修旋转机械故障。
本文介绍了旋转机械故障的基本知识和常见故障处理方法。
旋转机械故障的基本知识旋转机械故障包括机械故障和电气故障两种。
机械故障主要指机械部分的损坏,例如轴承损坏、磨损、过热等;电气故障主要指电路部分的故障,例如电机烧毁、线路短路等。
为了保障机械设备的安全运行,需要及时检查机械设备中存在的故障并进行有效的处理。
常见的旋转机械故障1. 轴承故障轴承故障是旋转机械故障中最常见的一种故障。
轴承损坏的原因有很多,例如使用时间过长、润滑脂不足、使用温度过高等。
轴承受到过大的负荷或不正确的安装方式也会导致轴承故障。
轴承故障通常会导致机械设备的振动、噪音和温度升高等现象。
轴承故障的处理方法一般包括更换轴承、加强润滑等。
在更换轴承时,需要选择与原轴承参数相同的新轴承,并且必须正确安装、调整轴承预紧力和润滑方式。
2. 汽蚀汽蚀是液体在高速旋转设备内形成的气蚀现象。
汽蚀会导致机械设备的泵体、叶轮、轴承等部件受到损坏。
汽蚀的主要原因是设计不合理、液位过低、磨损等。
汽蚀的处理方法一般包括更换设备、改善设计、加大进口直管长度等。
在更换设备时,需要选择与原设备相同参数的新设备,并且必须正确安装。
3. 电气故障电气故障主要包括电机烧蚀、电路短路、线路老化等。
电气故障通常会造成设备的停止运转,需要及时检查机械设备中电气部分的故障。
电气故障的处理方法一般包括更换电机、修复电路等。
在更换电机时,需要选择与原电机参数相同的新电机,并且必须正确安装并接好电源。
检修旋转机械设备的步骤1. 确定故障部位在进行旋转机械设备的检修时,需要先确定故障部位。
通过观察、听到故障声音和故障所引起的振动等现象,可以初步判断故障部位。
2. 检查机械设备检查机械设备包括拆卸、清洁机械部件和更换损坏部件等。
在拆卸时,需要根据机械设备的结构图和工作原理,按照规范的步骤拆卸。
机械故障诊断技术6_旋转机械故障诊断
(1)油膜涡动与油膜振荡的发生条件
① 只发生在使用压力油润滑的滑动轴承上。在半润滑轴 承上不发生。 ② 油膜振荡只发生在转速高于临界转速的设备上。
(2)油膜涡动与油膜振荡的信号特征
① 油膜涡动的振动频率随转速变化,与转频保持 f =(0.43~0.48)f 。 n ② 油膜振荡的振动频率在临界转速所对应的固有频率附 近,不随转速变化。 ③ 两者的振动随油温变化明显。
(3)油膜涡动与油膜振荡的振动特点
① 油膜涡动的轴心轨迹是由基频与半速涡动频率叠加成的双 椭圆,较稳定。 ② 油膜振荡是自激振荡,维持振动的能量是转轴在旋转中供 应的,具有惯性效应。由于有失稳趋势,导致摩擦与碰撞,因 此轴心轨迹不规则,波形幅度不稳定,相位突变。
(4)消除措施
① ② ③ ④ ⑤ ⑥ ⑦ 设计时使转子避开油膜共振区; 增大轴承比压,减小承压面; 减小轴承间隙; 控制轴瓦预负荷,降低供油压力; 选用抗振性好的轴承结构; 适当调整润滑油温; 从多方面分析并消除产生的因素。
转轴弯曲故障的振动信号特征:
(轴弯曲故障的振动信号与不平衡基本相同。) ① 时域波形为近似的等幅正弦波; ② 轴心轨迹为一个比较稳定的圆威偏心率较小的椭圆, 由于轴弯曲常陪伴某种程度的轴瓦摩擦,故轨迹有时 会有摩擦的特征; ③ 频谱成份以转频为主,伴有高次谐波成份。与不平衡 故障的区别在于:弯曲在轴向方面产生较大的振动。
临界转速的变动
为了保证大机组能够安全平稳的运转,轴系转速应处于该轴系各 临界转速的一定范围之外,一般要求: 刚性转子 n<0.75 nc1 柔性转子 1.4 nc1 < n <0.7 nc2 式中,nc1、nc2分别为轴系的一阶、二阶临界转速。 机组的临界转速可由产品样本查到或在起停车过程中由振动测试 获取。需提出的是,样本提供的临界转速和机组实际的临界转速可能 不同,因为系统的固有频率受到种种因素影响会发生改变。设备故障 诊断人员应该了解影响临界转速改变的可能原因。一般地说,一台给 定的设备,除非受到损坏,其结构不会有太大的变化,因而其质量分 布、轴系刚度系数都是固定的,其固有频率也应是一定的。但实际上 ,现场设备结构变动的情况还是很多的,最常遇到的是换瓦,有时是 更换转子,不可避免的是设备维修安装后未能准确复位等等,都会影 响到临界转速的改变。
旋转机械系统动力学及故障诊断
旋转机械系统动力学及故障诊断引言旋转机械在现代工业生产中扮演着重要的角色,涵盖了许多领域,包括能源、交通、制造等。
然而,由于长期运行和频繁的工作条件,旋转机械系统可能会面临动力学问题和潜在的故障。
因此,理解旋转机械系统的动力学行为以及如何进行故障诊断变得至关重要。
旋转机械系统动力学旋转机械系统的动力学研究是理解其运行行为的基础。
动力学主要研究系统在给定载荷和运行条件下的运动和行为。
旋转机械系统的动力学包括自由振动和受迫振动两种类型。
自由振动是指旋转机械系统在没有外部激励的情况下的振动行为。
自由振动的频率和振幅由系统的质量、刚度和阻尼特性决定。
在自由振动中,系统会以特定的固有频率进行振动,这可以通过数学模型进行预测和计算。
受迫振动则是指旋转机械系统受到外部激励而发生的振动。
外部激励可以来自多个方面,包括不平衡质量、轴向力、径向力等。
受迫振动的频率由外部激励频率决定,并且可能会引起系统共振,导致严重的机械故障。
旋转机械系统的故障诊断故障诊断是指通过对旋转机械系统动力学行为的分析和监测,来判断是否存在故障并识别其类型和位置。
故障诊断可以通过多种方法来实现,包括振动分析、声音分析、温度监测等。
振动分析是最常用的故障诊断方法之一。
通过对旋转机械系统振动信号的采集和分析,可以识别出许多常见的故障类型,如不平衡、轴承故障、齿轮故障等。
振动分析可以通过频谱分析、包络分析等技术来获得故障特征,并与预先建立的故障数据库进行比对,从而确定故障位置和类型。
声音分析是另一种有效的故障诊断方法。
通过对旋转机械系统产生的声音信号进行采集和分析,可以判断是否存在异常噪音,并确定其来源。
例如,轴承故障通常会伴随着明显的噪音变化,这可以通过声音分析来检测和诊断。
除了振动和声音分析外,温度监测也是一种常用的故障诊断方法。
旋转机械系统在工作时会产生热量,因此监测系统不同部位的温度变化可以帮助发现故障。
例如,轴承过热可能是轴承故障的指示,而传动系统异常温度升高可能与齿轮故障有关。
旋转机械故障诊断
旋转机械故障诊断旋转机械故障诊断旋转机械是指依靠转⼦旋转运动进⾏⼯作的机器,在结构上必须具备最基本的转⼦、轴承等零部件。
典型的旋转机械:各类离⼼泵、轴流泵、离⼼式和轴流式风机、汽轮机、涡轮发动机、电动机、离⼼机等。
⽤途:1、在⼤型化⼯、⽯化、压缩电⼒和钢铁等部门,某些⼤型旋转机械属于⽣产中的关键设备2、炼油⼚催化⼯段的三机组或四机组3、⼤化肥装置中的四⼤机组或五⼤机组4、⼄烯装置中的三⼤机组5、电⼒⾏业的汽轮发电机、泵和⽔轮机组6、钢铁部门的⾼炉风机和轧钢机组旋转机械可能出现的故障类型:1、转⼦不平衡故障2、转⼦不对中故障3、转轴弯曲故障4、转轴横向裂纹的故障5、连接松动故障6、碰摩故障7、喘振转⼦的不平衡振动机理及特性:旋转机械的转⼦由于受材料的质量分布、加⼯误差、装配因素以及运动中的冲蚀和沉积等因素的影响,致使其质量中⼼与旋转中⼼存在⼀定程度的偏⼼距。
偏⼼距较⼤时,静态下,所产⽣的偏⼼⼒矩⼤于摩擦阻⼒距,表现为某⼀点始终恢复到⽔平放置的转⼦下部,其偏⼼⼒矩⼩于摩擦阻⼒距的区域内,称之为静不平衡。
偏⼼距较⼩时,不能表现出静不平衡的特征,但是在转⼦旋转时,表现为⼀个与转动频率同步的离⼼⼒⽮量,离⼼⼒F=Mew2,从⽽激发转⼦的振动。
这种现象称之为动不平衡。
静不平衡的转⼦,由于偏⼼距e较⼤,表现出更为强烈的动不平衡振动。
虽然做不到质量中⼼与旋转中⼼绝对重合,但为了设备的安全运⾏,必须将偏⼼所激发的振动幅度控制在许可范围内。
1、不平衡故障的信号特征1)时域波形为近似的等福正弦波。
2)轴⼼轨迹为⽐较稳定的圆或椭圆,这是因为轴承座及基础的⽔平刚度与垂直刚度不同所造成。
3)频谱图上转⼦转动频率处的振幅。
4)在三维全息图中,转动频率的振幅椭圆较⼤,其他成分较⼩。
2、敏感参数特征1)振幅随转速变化明显,这是因为,激振⼒与⾓速度w是指数关系。
2)当转⼦上得部件破损时,振幅突然变⼤。
例如,某烧结⼚抽风机转⼦焊接的合⾦耐磨层突然脱落,造成振幅突然增⼤。
旋转机械故障诊断设计
齿轮故障表现为齿面磨损、断齿和齿合不良等。诊断方法包括声音检测、振动分析和润滑油检查等, 以确定齿轮的损伤程度和类型。
案例三:转子不平衡故障诊断
总结词
转子不平衡是旋转机械中常见的故障之 一,可能导致设备振动增大和轴承损伤 。
VS
详细描述
转子不平衡表现为设备振动增大,特别是 在低速时。诊断方法包括振动分析和频谱 分析等,以确定转子的不平衡程度和位置 。
旋转机械故障诊断设计
汇报人: 日期:
目录
• 旋转机械故障诊断概述 • 旋转机械故障诊断方法 • 旋转机械故障诊断系统设计 • 旋转机械故障诊断案例分析 • 旋转机械故障预防与维护策略 • 未来展望与研究方向
01
旋转机械故障诊断概述
旋转机械的定义与重要性
旋转机械定义
旋转机械是指通过旋转运动来完 成工作任务的机械设备,如电机 、泵、风机、压缩机等。
详细描述
逻辑分析诊断法是利用人工智能和专家系统等技术,建立旋转机械的故障诊断模型。该 模型可以根据机器的历史数据、运行状态以及专家经验等信息,进行逻辑推理和判断, 以确定故障的原因和位置。逻辑分析诊断法具有较高的智能化程度和准确性,是未来旋
转机械故障诊断的重要发展方向之一。
03
旋转机械故障诊断系统设计
数据记录与分析
记录设备的运行数据和故障信息, 对数据进行深入分析,找出故障原 因和规律,为预防性维护提供依据 。
快速响应与处理
建立快速响应机制,一旦发生故障 ,立即组织人员进行检查和维修, 缩短停机时间,减少损失。
06
未来展望与研究方向
人工智能与机器学习在旋转机械故障诊断中的应用
深度学习
利用深度学习算法对大量数据进行学习,自动提取故障特征,提 高故障诊断准确率。
机械故障诊断技术4_旋转机械故障诊断
机械故障诊断技术4_旋转机械故障诊断随着机械制造业的不断发展,机械故障的诊断技术也越来越重要。
特别是对于旋转机械故障的诊断技术,更是需要不断探索和研究,因为这种机械往往出现的故障比较复杂。
在这篇文章中,我们将介绍旋转机械故障诊断的方法和技术,希望能够为读者们的工作提供一些参考。
旋转机械故障的分类和诊断旋转机械故障的种类有很多,比如传动轴承故障、机械紧固件松动、机械部件磨损等。
因此,我们需要对这些故障进行分类,以便更好地进行诊断。
传动轴承故障传动轴承故障是旋转机械故障中比较普遍的一种,主要表现为轴承过热、振动和噪声等,可能导致轴承损坏或者整个机械系统瘫痪。
传动轴承故障的诊断方法主要有以下几种:1.直接观察:通过观察轴承在运转时发生的异常行为,如温度升高、振动、噪音等,来判断轴承是否正常。
2.聆听声音:通过听轴承的声音,来判断轴承是否存在异常。
如果轴承发出一些不寻常的声音,比如咔嚓声或者咬合声,那么很有可能是轴承出现了问题。
3.振动分析:通过采用振动分析仪等设备,对轴承的振动进行监测和分析,找出轴承可能存在的问题。
机械紧固件松动机械紧固件松动是旋转机械故障中比较常见的一种,主要表现为噪声、振动和杂乱的机器运转。
如果机械紧固件发生松动,可能会导致机器的其他部分出现问题,同时也增加了机器的能耗。
对于机械紧固件松动故障的诊断方法可以采用以下几种:1.直接观察:通过观察机械紧固件的紧固情况,来判断是否松动或者脱落。
2.震动分析:通过震动分析仪等设备,对机械运转时的振动进行监测和分析,找到可能存在松动的机械紧固件。
机械部件磨损机械部件磨损是旋转机械故障中比较常见的一种,主要表现为噪声和振动等,可能导致机械部件寿命减少。
对于机械部件磨损故障的诊断方法可以采用以下几种:1.直接观察:通过观察机械部件的磨损情况,如磨损程度和磨损位置,来判断机械部件是否需要更换。
2.震动分析:通过震动分析仪等设备,对机械运转时的振动进行监测和分析,找到可能存在磨损的机械部件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旋转机械故障诊断
旋转机械是指依靠转子旋转运动进行工作的机器,在结构上必须具备最基本的转子、轴承等零部件。
典型的旋转机械:各类离心泵、轴流泵、离心式和轴流式风机、汽轮机、涡轮发动机、电动机、离心机等。
钢铁部门的高炉风机和轧钢机组旋转机械可能出现的故障类型:
1、转子不平衡故障
2、转子不对中故障
3、转轴弯曲故障
4、转轴横向裂纹的故障
5、连接松动故障
6、碰摩故障
7、喘振
在这些故障中我们着重了解一下转子不平衡和转子不对中故障的诊断。
了解一下他们的机理特性和信号特征。
转子的不平衡振动机理及特性:
旋转机械的转子由于受材料的质量分布、加工误差、装配因素以及运动中的冲蚀和沉积等因素的影响,致使其质量中心与旋转中心存在一定程度的偏心距。
偏心距较大时,静态下,所产生的偏心力矩大于摩擦阻力距,表现为某一点始终恢复到水平放置的转子下部,其偏心力矩小于摩擦阻力距的区域内,称之为静不平衡。
偏心距较小时,不能表现出静不平衡的特征,但是在转子旋转时,表现为一个与转动频率同步的离心力矢量,离心力F=Mew2,从而激发转子的振动。
这种现象称之为动不平衡。
静不平衡的转子,由于偏心距e较大,表现出更为强烈的动不平衡振动。
虽然做不到质量中心与旋转中心绝对重合,但为了设备的安全运行,必须将偏心所激发的振动幅度控制在许可范围内。
1、不平衡故障的信号特征
1)时域波形为近似的等福正弦波。
2)轴心轨迹为比较稳定的圆或椭圆,这是因为轴承座及基础的水平刚度与垂直刚度不同所造成。
3)频谱图上转子转动频率处的振幅。
4)在三维全息图中,转动频率的振幅椭圆较大,其他成分较小。
2、敏感参数特征
1)振幅随转速变化明显,这是因为,激振力与角速度w是指数关系。
2)当转子上得部件破损时,振幅突然变大。
例如,某烧结厂抽风机转子焊接的合金耐磨层突然脱落,造成振幅突然增大。
转子与联轴器的不对中振动机理:转子不对中包括轴承不对中和轴系不对中。
轴承不对中本身不引起振动,它影响轴承的载荷分布、油膜形态等运行状况。
一般情况下,转子不对中都是指轴系不对中,故障原因在联轴器处。
1、引起轴系不对中的原因
1)安装施工中超差。
2)冷态对中时没有正确估计各个转子中心线的热态升高量,工作时出现主动转子与从动转子之间产生动态对中不良。
3)轴承座热膨胀不均匀。
4)机壳变形或移位。
5)地基不均匀下沉。
6)转子弯曲,同时产生不平衡和不对中故障。
轴系不对中可分为三种情况:
1)轴线不平行不对中。
2)轴线交叉不对中。
3)轴线综合不对中。
在实际情况中,都存在着综合不对中。
只是其中轴线平行不对中和轴线交叉不对中所占的比例不同而已。
由于两半联轴器存在不对中,因而产生了附加的弯曲力。
随着转动,这个附加弯曲力的方向和作用点也被迫发生改变,从而激发出转动频率的2倍频、4倍频等偶数倍频的振动。
其主要激振量以2倍频为主,某些情况下4倍频的激振量也占有较高的分量。
更高倍频的成分因所占比例很少,通常显示不出来。
2、轴系不对中故障特征
1)时域波形在基频正弦波上附加了2倍频的谐波。
2)轴心轨迹图呈香蕉形或8字形。
3)频谱特征主要表现为径向2倍频、4倍频的振动成分,有角度不对中时,还伴随着以回转频率的轴向振动。
4)在全息图中2倍频、4倍频轴心轨迹的椭圆曲线较扁,并且两者的长轴近似垂直。
故障甄别:
1)不对中的谱特征和裂纹的谱特征类似,均以2倍频为主,两者的区分主要是振幅的稳定性,不对中振动比较稳定。
用全息图谱技术则容易区分,不对中为单向约束力,2倍频椭圆较扁。
轴横向裂纹则是旋转矢量,2倍频全息谱比较圆。
2)带滚动轴承和齿轮箱的机组,不对中故障可能引发出轴承转动频率或啮合频率的高频振动,这些高频成分的出现可能掩盖真正的振源。
如高频振动在轴向上占优势,而联轴器相连的部位轴向转动频率的振幅亦相应较大,则齿轮振动可能只是不对中故障所产生的过大的轴向力的响应。
3)轴向转动频率的振动原因有可能是角度不对中,也有可能是两端轴承不对中。
一般情况,角度不对中,轴向的转动频率的振幅比径向的大,而两端轴承不对中正好相反,因为后者是由不平衡引起,它只是对不平衡力的一种响应。