2016版高考物理复习 专题二十四 带电粒子在复合场中的运动专题演练(含两年高考一年模拟)
高考物理带电粒子在复合场中的运动技巧(很有用)及练习题含解析
一、带电粒子在复合场中的运动专项训练1.扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆.其简化模型如图:Ⅰ、Ⅱ两处的条形匀强磁场区边界竖直,相距为L ,磁场方向相反且垂直纸面.一质量为m ,电量为-q ,重力不计的粒子,从靠近平行板电容器MN 板处由静止释放,极板间电压为U ,粒子经电场加速后平行于纸面射入Ⅰ区,射入时速度与水平和方向夹角30θ=︒(1)当Ⅰ区宽度1L L =、磁感应强度大小10B B =时,粒子从Ⅰ区右边界射出时速度与水平方向夹角也为30︒,求B 0及粒子在Ⅰ区运动的时间t 0(2)若Ⅱ区宽度21L L L ==磁感应强度大小210B B B ==,求粒子在Ⅰ区的最高点与Ⅱ区的最低点之间的高度差h(3)若21L L L ==、10B B =,为使粒子能返回Ⅰ区,求B 2应满足的条件(4)若12B B ≠,12L L ≠,且已保证了粒子能从Ⅱ区右边界射出.为使粒子从Ⅱ区右边界射出的方向与从Ⅰ区左边界射出的方向总相同,求B 1、B 2、L 1、、L 2、之间应满足的关系式.【来源】2011年普通高等学校招生全国统一考试物理卷(山东) 【答案】(1)32lm t qU π=(2)2233h L ⎛⎫=- ⎪⎝⎭(3)232mU B L q >(或232mUB L q≥)(4)1122B L B L =【解析】图1(1)如图1所示,设粒子射入磁场Ⅰ区的速度为v ,在磁场Ⅰ区中做圆周运动的半径为1R ,由动能定理和牛顿第二定律得212qU mv =①211v qvB m R = ②由几何知识得12sin L R θ= ③联立①②③,带入数据得012mUB L q=④设粒子在磁场Ⅰ区中做圆周运动的周期为T ,运动的时间为t12R T v π= ⑤ 22t T θπ=⑥ 联立②④⑤⑥式,带入数据得32Lmt qUπ=⑦ (2)设粒子在磁场Ⅱ区做圆周运动的半径为2R ,有牛顿第二定律得222v qvB m R = ⑧由几何知识得()()121cos tan h R R L θθ=+-+ ⑨联立②③⑧⑨式,带入数据得2233h L ⎛⎫=- ⎪⎝⎭⑩图2(3)如图2所示,为时粒子能再次回到Ⅰ区,应满足()21sin R L θ+<[或()21sin R L θ+≤] ⑾联立①⑧⑾式,带入数据得232mU B L q >(或232mUB L q≥) ⑿图3图4(4)如图3(或图4)所示,设粒子射出磁场Ⅰ区时速度与水平方向得夹角为α,有几何知识得()11sin sin L R θα=+ ⒀ [或()11sin sin L R θα=-]()22sin sin L R θα=+ ⒁[或]()22sin sin L R θα=- 联立②⑧式得1122B R B R = ⒂联立⒀⒁⒂式得1122B L B L = ⒃【点睛】(1)加速电场中,由动能定理求出粒子获得的速度.画出轨迹,由几何知识求出半径,根据牛顿定律求出B 0.找出轨迹的圆心角,求出时间;(2)由几何知识求出高度差;(3)当粒子在区域Ⅱ中轨迹恰好与右侧边界相切时,粒子恰能返回Ⅰ区,由几何知识求出半径,由牛顿定律求出B 2满足的条件;(4)由几何知识分析L 1、L 2与半径的关系,再牛顿定律研究关系式.2.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。
专题复习-带电粒子在复合场中的运动
四﹑解题规律 带电微粒在组合场、 复合场中的运动问题是电磁 带电微粒在组合场 、 学与力学知识的综合应用, 学与力学知识的综合应用 , 分析方法与力学问题 分析方法基本相同, 分析方法基本相同 , 只是增加了电场力和洛伦兹 力,解决可从三个方面入手: 解决可从三个方面入手: 1. 力学观点:包括牛顿定律和运动学规律 力学观点: 2. 能量观点:包括动能定理和能量守恒定律 能量观点: 3. 动量观点:包括动量定理和动量守恒定律 动量观点:
解: (1)小球受力如图所示 小球受力平衡时速度最大 小球受力如图所示, 小球受力如图所示 小球受力平衡时速度最大, f FB N 1 = FE + FB = Eq + Bqv m N
1
mg = f = µN 1 = µ ( Eq + Bqv m )
FE mg
mg E 0.1 × 10−2 10 vm = − = − = 5(m/s ) −4 0.5 µBq B 0.2 × 0.5 × 4 × 10 f (2)电场反向后 小球受力如图所示 电场反向后, 电场反向后 小球受力如图所示: FE 开始时, 小球向下加速运动, 开始时,FB =0, 小球向下加速运动,
专题复习:带电粒子在复合场中的运动 例 专题复习:带电粒子在复合场中的运动-例4 如图所示, 例4. 如图所示,纸平面内一带电粒子以某一速度做 直线运动, 直线运动 , 一段时间后进入一垂直于纸面向里的圆 形匀强磁场区域(图中未画出磁场区域) 形匀强磁场区域 ( 图中未画出磁场区域 ) , 粒子飞 出磁场后从上板边缘平行于板面进入两面平行的金 属板间,两金属板带等量异种电荷, 属板间 , 两金属板带等量异种电荷 , 粒子在两板间 经偏转后恰从下板右边缘飞出。已知带电粒子的质 经偏转后恰从下板右边缘飞出。 量为m,电量为 电量为q,其重力不计, 量为 电量为 ,其重力不计,粒子进入磁场前的速 度方向与带电板成θ=600角。匀强磁场的磁感应强度 度方向与带电板成 带电板长为l, 板距为d, 为B, 带电板长为 板距为 板间电压为U。试解答: 板间电压为 。试解答: (1)上金属板带什么电 )上金属板带什么电? θ (2)粒子刚进入金属板时速度为多大 ) (3)圆形磁场区域的最小面积为多大 )圆形磁场区域的最小面积为多大?
高考物理带电粒子在复合场中的运动专项训练100(附答案)
一、带电粒子在复合场中的运动专项训练1.如图所示,在xOy 坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。
第Ⅳ象限内(含坐标轴)有垂直坐标平面向里的匀强磁场,第Ⅲ象限内有沿x 轴正向、电场强度大小为E 的匀强磁场。
一质量为m 、电荷量为q 的带正电粒子,从x 轴上的P 点以大小为v 0的速度垂直射入电场,不计粒子重力和空气阻力,P 、O两点间的距离为202mv qE。
(1)求粒子进入磁场时的速度大小v 以及进入磁场时到原点的距离x ;(2)若粒子由第Ⅳ象限的磁场直接回到第Ⅲ象限的电场中,求磁场磁感应强度的大小需要满足的条件。
【来源】2019年辽宁省辽阳市高考物理二模试题【答案】(102v ;20mv qE (2)0(21)EB v ≥【解析】 【详解】(1)由动能定理有:2220011222mv qE mv mv qE ⋅=- 解得:v 2v 0设此时粒子的速度方向与y 轴负方向夹角为θ,则有cosθ=02v v =解得:θ=45° 根据tan 21xyθ=⋅=,所以粒子进入磁场时位置到坐标原点的距离为PO 两点距离的两倍,故20mv x qE=(2)要使粒子由第Ⅳ象限的磁场直接回到第Ⅲ象限的电场中,其临界条件是粒子的轨迹与x 轴相切,如图所示,由几何关系有:s=R+R sinθ又:2v qvB mR=解得:(21)EBv+=故(21)EBv+≥2.如图所示,在直角坐标系0≤x≤L区域内有沿y轴正方向的匀强电场,在边长为2L的正方形abcd区域(包括边界)内有方向垂直纸面向外的匀强磁场.一电子从y轴上的A(0,32L)点以大小为v0的速度沿x轴正方向射入电场,已知电子的质量为m、电荷量为e,正方形abcd的中心坐标为(3L,0),且ab边与x轴平行,匀强电场的电场强度大小2mvEeL=.(1)求电子进入磁场时的位置坐标;(2)若要使电子在磁场中从ab边射出,求匀强磁场的磁感应强度大小B满足的条件.【来源】【全国市级联考】河北省邯郸市2018届高三第一次模拟考试理综物理试题【答案】(1)(2L,0)(20(21)mv+≤B0(21)mv+【解析】试题分析:电子在电场中做类平抛运动,分别列出竖直和水平方向的方程,即可求出电子进入磁场时的位置坐标;电子从ab边界射出,其运动轨迹的临界状态分别与ab相切和bc 相切,根据几何关系求出相应半径,由洛伦兹力提供向心力即可求出强磁场的磁感应强度大小B满足的条件.(1)电子在电场中做类平抛运动,轨迹如图所示:则有:竖直方向有:2112y at= 加速度为:eE a m=水平方方向为:10L t v = 竖直速度:v y =at 1 解得:y 1=2Lv y =v 0所以电子射出电场时的速度方向与x 轴成45°角,则电子在电场中沿x 轴正方向和沿y 轴负方向运动的距离分别为L 和2L,又因为A 点的坐标是(0,32L ),电子在无电场和磁场的区域内做匀速直线运动,则电子射入磁场区的位置坐标为(2L ,0)且射入磁场区的速度大小:v 2v 0,方向与x 轴成45°角.(2)分使电子从ab 边界射出,其运动轨迹的临界状态分别与ab 相切和bc 相切 当运动轨迹与ab 相切时,有r 1+r 1sin 45°=L电子在磁场中运动,由洛伦兹力提供向心力,有:211mv evB r =解得:01(21)mv B +=当运动轨迹与bc 相切时,有:r 2+r 2sin 45°=2L电子在磁场中运动,由洛伦兹力提供向心力,有:222mv evB r = 解得:0221)2mv B Le=匀强磁场的磁感应强度大小B 满足的条件:021)2mv Le ≤B <021)mv Le点睛:本题主要考查了带电粒子由电场进入磁场的情况,电子在电场中做类平抛运动,分别列出竖直和水平方向的方程列式分析求解;在磁场中,关键要画出轨迹图分析,根据几何关系求解.3.如图为近代物理实验室中研究带电粒子的一种装置.带正电的粒子从容器A 下方小孔S 不断飘入电势差为U 的加速电场.进过S 正下方小孔O 后,沿SO 方向垂直进入磁感应强度为B 的匀强磁场中,最后打在照相底片D 上并被吸收,D 与O 在同一水平面上,粒子在D 上的落点距O 为x ,已知粒子经过小孔S 时的速度可视为零,不考虑粒子重力.(1)求粒子的比荷q/m ;(2)由于粒子间存在相互作用,从O 进入磁场的粒子在纸面内将发生不同程度的微小偏转.其方向与竖直方向的最大夹角为α,若假设粒子速度大小相同,求粒子在D 上的落点与O 的距离范围;(3)加速电压在(U±△U )范围内的微小变化会导致进入磁场的粒子速度大小也有所不同.现从容器A 中飘入的粒子电荷最相同但质量分别为m 1、m 2(m 1>m 2),在纸面内经电场和磁场后都打在照相底片上.若要使两种离子的落点区域不重叠,则 UU应满足什么条件?(粒子进入磁场时的速度方向与竖直方向的最大夹角仍为α) 【来源】浙江诸暨市牌头中学2017-2018学年高二1月月考物理试题【答案】(1)228UB x(2)最大值x 最小值cos x α (3)212212cos cos m m U m m αα-∆<+ 212(cos )m m α>【解析】 【详解】(1)沿SO 方向垂直进入磁场的粒子,最后打在照相底片D 的粒子; 粒子经过加速电场:qU=12mv 2洛伦兹力提供向心力:qvB=m 2v R落点到O 的距离等于圆运动直径:x=2R所以粒子的比荷为:228 q Um B x =(2)粒子在磁场中圆运动半径22qmU xR == 由图象可知:粒子左偏θ角(轨迹圆心为O 1)或右偏θ角(轨迹圆心为O 2) 落点到O 的距离相等,均为L=2Rcosθ 故落点到O 的距离 最大:L max =2R=x 最小:L min =2Rcosα=xcosα(3)①考虑同种粒子的落点到O 的距离; 当加速电压为U+△U 、偏角θ=0时,距离最大, L max =2R max =22()qm U U Bq+∆ 当加速电压为U-△U 、偏角θ=α时,距离最小L min =2R min cosα=2 2()qm U U Bq-∆cosα②考虑质量不同但电荷量相同的两种粒子 由2qmU和 m 1>m 2,知:R 1>R 2 要使落点区域不重叠,则应满足:L 1min >L 2max122()qm U U Bq-∆cosα>222()qm U U Bq+∆解得:212212cos cos m m U m m αα-∆<+. (应有条件m 1cos 2α>m 2,否则粒子落点区域必然重叠)4.正、负电子从静止开始分别经过同一回旋加速器加速后,从回旋加速器D 型盒的边缘引出后注入到正负电子对撞机中.正、负电子对撞机置于真空中.在对撞机中正、负电子对撞后湮灭成为两个同频率的光子.回旋加速器D 型盒中的匀强磁场的磁感应强度为0B ,回旋加速器的半径为R ,加速电压为U ;D 型盒缝隙间的距离很小,带电粒子穿过的时间可以忽略不计.电子的质量为m 、电量为e ,重力不计.真空中的光速为c ,普朗克常量为h .(1)求正、负电子进入对撞机时分别具有的能量E 及正、负电子对撞湮灭后产生的光子频率v(2)求从开始经回旋加速器加速到获得最大能量的过程中,D 型盒间的电场对电子做功的平均功率P(3)图甲为正负电子对撞机的最后部分的简化示意图.位于水平面的粗实线所示的圆环真空管道是正、负电子做圆周运动的“容器”,正、负电子沿管道向相反的方向运动,在管道内控制它们转变的是一系列圆形电磁铁.即图中的A 1、A 2、A 4……A n 共有n 个,均匀分布在整个圆环上.每个电磁铁内的磁场都是匀强磁场,并且磁感应强度都相同,方向竖直向下.磁场区域的直径为d .改变电磁铁内电流大小,就可以改变磁场的磁感应强度,从而改变电子偏转的角度.经过精确调整,首先实现电子在环形管道中沿图甲中粗虚线所示的轨道运动,这时电子经过每个电磁铁时射入点和射出点都在电磁铁的同一直径的两端,如图乙所示.这就为进一步实现正、负电子的对撞做好了准备.求电磁铁内匀强磁场的磁感应强度B 大小【来源】2019年天津市滨海新区塘沽一中高三三模理综物理试卷【答案】(1) 222202e B R mc v mh h =+,22202e B R E m = ;(2) 20e B U mπ ;(3)02sin B R n dπ【解析】 【详解】解:(1)正、负电子在回旋加速器中磁场里则有:200mv evB R= 解得正、负电子离开回旋加速器时的速度为:00eB Rv m=正、负电子进入对撞机时分别具有的能量:222200122e B R E mv m==正、负电子对撞湮灭时动量守恒,能量守恒,则有:222E mc hv +=正、负电子对撞湮灭后产生的光子频率:222202e B R mc v mh h=+(2) 从开始经回旋加速器加速到获得最大能量的过程,设在电场中加速n 次,则有:2012neU mv =解得:2202eB Rn mU=正、负电子在磁场中运动的周期为:02mT eB π=正、负电子在磁场中运动的时间为:2022B R nt T Uπ==D 型盒间的电场对电子做功的平均功率:20e B UW E P t t mπ===(3)设电子在匀强磁场中做圆周运动的半径为r ,由几何关系可得sin2dr nπ=解得:2sind r nπ=根据洛伦磁力提供向心力可得:200mv ev B r=电磁铁内匀强磁场的磁感应强度B 大小:02sinB R n B dπ=5.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L,0)点,求匀强磁场的磁感应强度大小B;(3)求第(2)问中粒子从进入磁场到坐标(-L,0)点所用的时间.【来源】四川省2018届高三春季诊断性测试理综物理试题【答案】(1)2mvEqL=(2)04nmvBqL=n=1、2、3 (3)2Ltvπ=【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有:0L v t=,2122Lat=,qE ma=联立解得:2mvEqL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyvvθ==l速度大小02sinvv vθ==设x为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L,0 )点,应满足L=2nx,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R,圆弧对应的圆心角为2π.则有2R,此时满足L=2nx联立可得:22Rn=由牛顿第二定律,洛伦兹力提供向心力,则有:2vqvB mR=得:04nmvBqL=,n=1、2、3....轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有22x ,此时满足()221L n x =+联立可得:2R =由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==6.实验中经常利用电磁场来改变带电粒子运动的轨迹.如图所示,氕(11H )、氘(21H )、氚(31H )三种粒子同时沿直线在纸面内通过电场强度为E 、磁感应强度为B 的复合场区域.进入时氕与氘、氘与氚的间距均为d ,射出复合场后进入y 轴与MN 之间(其夹角为θ)垂直于纸面向外的匀强磁场区域Ⅰ,然后均垂直于边界MN 射出.虚线MN 与PQ 间为真空区域Ⅱ且PQ 与MN 平行.已知质子比荷为qm,不计重力. (1)求粒子做直线运动时的速度大小v ; (2)求区域Ⅰ内磁场的磁感应强度B 1;(3)若虚线PQ 右侧还存在一垂直于纸面的匀强磁场区域Ⅲ,经该磁场作用后三种粒子均能汇聚于MN 上的一点,求该磁场的最小面积S 和同时进入复合场的氕、氚运动到汇聚点的时间差Δt . [Failed to download image :http://192.168.0.10:8086/QBM/2019/6/13/2224672582623232/2224907340759040/STEM/dc3c33c ca5564bb396bf46dd7f953dfa.png]【来源】江苏省苏州市2019届高三上学期期末阳光指标调研考试物理试题【答案】(1) EB(2)mEqdB(3)(2)BdEπθ+【解析】【分析】(1)粒子在电磁复合场中做直线运动是匀速直线运动,根据电场力与洛伦兹力平衡,可求粒子的速度大小;(2)由粒子的轨迹与边界垂直,可求轨迹半径,由洛伦兹力提供向心力,可求磁感应强度的大小;(3)由氚粒子圆周运动直径可求磁场的最小面积.根据氕、氚得运动周期,结合几何关系,可求氕、氚到汇聚点的时间差.【详解】(1) 由电场力与洛伦兹力平衡,Bqv=Eq解得v=E/B.(2) 由洛伦兹力提供向心力,B1vq=m2vr由几何关系得r=d解得B1=mEqdB.(3) 分析可得氚粒子圆周运动直径为3r磁场最小面积S=12π22322r r⎡⎤⎛⎫⎛⎫-⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦解得S=πd2由题意得B2=2B1由T=2rvπ得T=2mqBπ由轨迹可知Δt1=(3T1-T1)2θπ,其中T1=12mqBπΔt2=12(3T2-T2),其中T2=22mqBπ)解得12(2)Bdt t t Eπθ+∆=∆∆=+7.如图所示,空间存在方向垂直于xOy 平面向里的匀强磁场,在0<y<d 的区域Ⅰ内的磁感应强度大小为B ,在y>d 的区域Ⅱ内的磁感应强度大小为2B .一个质量为m 、电荷量为-q 的粒子以速度qBdm从O 点沿y 轴正方向射入区域Ⅰ.不计粒子重力.(1) 求粒子在区域Ⅰ中运动的轨道半径: (2) 若粒子射入区域Ⅰ时的速度为2qBdv m= ,求粒子打在x 轴上的位置坐标,并求出此过程中带电粒子运动的时间;(3) 若此粒子射入区域Ⅰ的速度qBdv m>,求该粒子打在x 轴上位置坐标的最小值. 【来源】江苏省苏锡常镇四市2019届高三第二次模拟考试物理试题【答案】(1)R d =(2) ()43OP d =- 23mt qBπ=(3)min 3x d = 【解析】 【分析】 【详解】(1)带电粒子在磁场中运动,洛仑磁力提供向心力:2001v qv B m r =把0qBdv m=,代入上式,解得:R d = (2) 当粒子射入区域Ⅰ时的速度为02v v =时,如图所示在OA 段圆周运动的圆心在O 1,半径为12R d = 在AB 段圆周运动的圆心在O 2,半径为R d = 在BP 段圆周运动的圆心在O 3,半径为12R d =可以证明ABPO 3为矩形,则图中30θ=,由几何知识可得:132cos303OO d d ==所以:323OO d d =-所以粒子打在x 轴上的位置坐标()133243OP O O OO d =+=- 粒子在OA 段运动的时间为:13023606m mt qB qBππ==粒子在AB 段运动的时间为2120236023m mt q B qBππ==粒子在BP 段运动的时间为313023606m mt t qB qBππ===在此过程中粒子的运动时间:12223mt t t qBπ=+=(3)设粒子在区域Ⅰ中轨道半径为R ,轨迹由图可得粒子打在x 轴上位置坐标:()22222x R R d R d =--+-化简得:222340R Rx x d -++=把上式配方:222213033R x x d ⎛⎫--+= ⎪⎝⎭ 化简为:222213033R x x d ⎛⎫-=-≥ ⎪⎝⎭ 则当23R x =时,位置坐标x 取最小值:min 3x d =8.如图,平面直角坐标系xOy 内,x<0、y>0区域存在沿x 轴正方向的匀强电场E ,x>0区域存在垂直纸面向外的匀强磁场,磁感应强度B=0.2T 。
高中物理带电粒子在复合场中的运动题20套(带答案)
一、带电粒子在复合场中的运动专项训练1.小明受回旋加速器的启发,设计了如图1所示的“回旋变速装置”.两相距为d 的平行金属栅极板M 、N ,板M 位于x 轴上,板N 在它的正下方.两板间加上如图2所示的幅值为U 0的交变电压,周期02mT qBπ=.板M 上方和板N 下方有磁感应强度大小均为B 、方向相反的匀强磁场.粒子探测器位于y 轴处,仅能探测到垂直射入的带电粒子.有一沿x 轴可移动、粒子出射初动能可调节的粒子发射源,沿y 轴正方向射出质量为m 、电荷量为q (q >0)的粒子.t =0时刻,发射源在(x ,0)位置发射一带电粒子.忽略粒子的重力和其它阻力,粒子在电场中运动的时间不计.(1)若粒子只经磁场偏转并在y =y 0处被探测到,求发射源的位置和粒子的初动能; (2)若粒子两次进出电场区域后被探测到,求粒子发射源的位置x 与被探测到的位置y 之间的关系【来源】【省级联考】浙江省2019届高三上学期11月选考科目考试物理试题【答案】(1)00x y = ,()202qBy m(2)见解析【解析】 【详解】(1)发射源的位置00x y =, 粒子的初动能:()2002k qBy Em=;(2)分下面三种情况讨论: (i )如图1,002k E qU >由02101mv mv mvy R R Bq Bq Bq===、、,和221001122mv mv qU =-,222101122mv mv qU =-, 及()012x y R R =++, 得()()22002224x y yqB mqU yqB mqU qBqB=++++;(ii )如图2,0002k qU E qU <<由020mv mv y d R Bq Bq--==、, 和220201122mv mv qU =+, 及()032x y d R =--+,得()222023)2x y d y d q B mqU qB=-++++(;(iii )如图3,00k E qU <由020mv mv y d R Bq Bq--==、, 和220201122mv mv qU =-, 及()04x y d R =--+, 得()222042x y d y d q B mqU qB=--+-2.如图所示,在无限长的竖直边界NS 和MT 间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM 平面向外和向内的匀强磁场,磁感应强度大小分别为B 和2B ,KL 为上下磁场的水平分界线,在NS 和MT 边界上,距KL 高h 处分别有P 、Q 两点,NS 和MT 间距为1.8h ,质量为m ,带电荷量为+q 的粒子从P 点垂直于NS 边界射入该区域,在两边界之间做圆周运动,重力加速度为g.(1)求电场强度的大小和方向;(2)要使粒子不从NS边界飞出,求粒子入射速度的最小值;(3)若粒子能经过Q点从MT边界飞出,求粒子入射速度的所有可能值.【来源】【全国百强校】2017届浙江省温州中学高三3月高考模拟物理试卷(带解析)【答案】(1)mgqE=,方向竖直向上(2)min(962)qBhv-=(3)0.68qBhvm=;0.545qBhvm=;0.52qBhvm=【解析】【分析】(1)粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,电场力与重力合力为零;(2)作出粒子的运动轨迹,由牛顿第二定律与数学知识求出粒子的速度;(3)作出粒子运动轨迹,应用几何知识求出粒子的速度.【详解】(1)粒子在磁场中做匀速圆周运动,电场力与重力合力为零,即mg=qE,解得:mgqE=,电场力方向竖直向上,电场方向竖直向上;(2)粒子运动轨迹如图所示:设粒子不从NS边飞出的入射速度最小值为v min,对应的粒子在上、下区域的轨道半径分别为r 1、r 2, 圆心的连线与NS 的夹角为φ,粒子在磁场中做匀速圆周运动,由牛顿第二定律得:2v qvB m r=,解得,粒子轨道半径:v r qBπ=, min1v r qBπ=,2112r r =, 由几何知识得:(r 1+r 2)sin φ=r 2,r 1+r 1cos φ=h ,解得:min 962)qBhv m=(﹣; (3)粒子运动轨迹如图所示,设粒子入射速度为v ,粒子在上、下区域的轨道半径分别为r 1、r 2, 粒子第一次通过KL 时距离K 点为x , 由题意可知:3nx =1.8h (n =1、2、3…)3(962)2h x -≥()2211x r h r =-- 解得:120.361)2hr n =+(,n <3.5, 即:n =1时, 0.68qBhv m=,n=2时,0.545qBh vm=,n=3时,0.52qBhvm=;答:(1)电场强度的大小为mgqE=,电场方向竖直向上;(2)要使粒子不从NS边界飞出,粒子入射速度的最小值为min962)qBhvm=(﹣.(3)若粒子经过Q点从MT边界飞出,粒子入射速度的所有可能值为:0.68qBhvm=、或0.545qBhvm=、或0.52qBhvm=.【点睛】本题考查了粒子在磁场中的运动,分析清楚粒子运动过程、作出粒子运动轨迹是正确解题的前提与关键,应用平衡条件、牛顿第二定律即可正确解题,解题时注意数学知识的应用.3.如图所示,在平面直角坐标系xOy中的第一象限内存在磁感应强度大小为B、方向垂直于坐标平面向里的有界矩形匀强磁场区域(图中未画出);在第二象限内存在沿x轴负方向的匀强电场。
高二物理专题练习-带电粒子在复合场中的运动大题专题(详细解答)
专题二:带电粒子在复合场中的运动(1)姓名______________1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=5.0×10-3T的匀强磁场,方向分别垂直纸面向外和向里.质量为m=6.64×10-27㎏、电荷量为q=+3.2×10-19C的α粒子(不计α粒子重力),由静止开始经加速电压为U=1205V的电场(图中未画出)加速后,从坐标点M(-4,2)处平行于x轴向右运动,并先后通过两个匀强磁场区域.(1)请你求出α粒子在磁场中的运动半径;(2)你在图中画出α粒子从直线x=-4到直线x=4之间的运动轨迹,并在图中标明轨迹与直线x=4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间.专题二:带电粒子在复合场中的运动(4)姓名______________1.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E=10N/c ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T 一带电量0.2C q =+、质量0.4kg m =的小球由长0.4m l =的细线悬挂于P 点小球可视为质点,现将小球拉至水平位置A 无初速释放,小球运动到悬点P 正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O 点正下方的N 点.(g=10m /s 2),求: (1)小球运动到O 点时的速度大小;(2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离2.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求: (1)两极板间电压;(2)三角形区域内磁感应强度; (3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.专题二:带电粒子在复合场中的运动——参考答案(1)1、解析:由于此带电粒子是从静止开始释放的,要能经过M点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y轴上,受电场力作用而加速,以速度v进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x轴偏转.回转半周期过x轴重新进入电场,在电场中经减速、加速后仍以原速率从距O点2R处再次超过x轴,在磁场回转半周后又从距O点4R处飞越x轴如图所示(图中电场与磁场均未画出)故有L=2R,L=2×2R,L=3×2R即 R=L/2n,(n=1、2、3……)……………①设粒子静止于y轴正半轴上,和原点距离为h,由能量守恒得mv2/2=qEh……②对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R=mv/qB………③解①②③式得:h=B2qL2/8n2mE (n=l、2、3……)2、解析:粒子在电场中运行的时间t= l/v;加速度 a=qE/m;它作类平抛的运动.有tgθ=at/v=qEl/mv2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv2/r,所以r=mv/qB 又:sinθ=l/r=lqB/mv………②由①②两式得:B=Ecosθ/v 3、解析:(1)粒子在电场中被加速,由动能定理得221mvqU=α粒子在磁场中偏转,则牛顿第二定律得rvmqvB2=联立解得2102.312051064.62005.01211927=⨯⨯⨯⨯==--qmUBr(m)(2)由几何关系可得,α粒子恰好垂直穿过分界线,故正确图象为(3)带电粒子在磁场中的运动周期qBmvrTππ22==α粒子在两个磁场中分别偏转的弧度为4π,在磁场中的运动总时间631927105.6105102.321064.614.3241----⨯=⨯⨯⨯⨯⨯⨯===qBmTtπ(s)OM2-22-4 4 x/my/m-2vBB (4,2-)(4) 1、解:(1)小球从A 运到O 的过程中,根据动能定理:212mv mgl qEl =- ① 则得小球在O 点速度为:2/s v m == ② (2)小球运到O 点绳子断裂前瞬间,对小球应用牛顿第二定律:2v F T mg f m l=-==向洛 ③f Bvq =洛 ④由③、④得:28.2mv T mg Bvq N l=++= ⑤ (3)绳断后,小球水平方向加速度25/s x F Eq a m m===电 ⑥ 小球从O 点运动至N 点所用时间0.8t s aυ∆== ⑦ON 间距离21 3.2m 2h gt == ⑧2、 解:⑴垂直AB 边进入磁场,由几何知识得:粒子离开电场时偏转角为30°∵0.v lmd qu v y =0v v tg y=θ ∴qlmdv u 332= 由几何关系得:030cos dl AB =在磁场中运动半径d l r AB 23431==∴ 121r mv qv B = ︒=30cos 0v v∴qdmv B 3401= 方向垂直纸面向里⑶当粒子刚好与BC 边相切时,磁感应强度最小,由几何知识知粒子的运动半径r 2为:42d r = ………( 2分 ) 2202r mv qv B = ∴qd mv B 024=即:磁感应强度的最小值为qdmv 0422(12分)如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。
带电粒子在复合场中的运动(含知识目标、五套练习、详细解答)
专题二:带电粒子在复合场中的运动一、复合场及其特点这里所说的复合场是指电场、磁场、重力场并存,或其中某两种场并存的场.带电粒子在这些复合场中运动时,必须同时考虑电场力、洛仑兹力和重力的作用或其中某两种力的作用,因此对粒子的运动形式的分析就显得极为重要.二、带电粒子在复合场电运动的基本分析1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.三、电场力和洛仑兹力的比较1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛仑兹力的作用.2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛仑兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关.3.电场力的方向与电场的方向或相同、或相反;而洛仑兹力的方向始终既和磁场垂直,又和速度方向垂直.4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛仑兹力只能改变电荷运动的速度方向,不能改变速度大小5.电场力可以对电荷做功,能改变电荷的动能;洛仑兹力不能对电荷做功,不能改变电荷的动能.6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛仑兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.四、对于重力的考虑重力考虑与否分三种情况.(1)对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.(2)在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.(3)对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误.五、复合场中的特殊物理模型1.粒子速度选择器如图所示,粒子经加速电场后得到一定的速度v0,进入正交的电场和磁场,受到的电场力与洛仑兹力方向相反,若使粒子沿直线从右边孔中出去,则有qv0B=qE,v0=E/B,若v= v0=E/B,粒子做直线运动,与粒子电量、电性、质量无关若v<E/B,电场力大,粒子向电场力方向偏,电场力做正功,动能增加.若v>E/B,洛仑兹力大,粒子向磁场力方向偏,电场力做负功,动能减少.2.磁流体发电机如图所示,由燃烧室O燃烧电离成的正、负离子(等离子体)以高速.喷入偏转磁场B中.在洛仑兹力作用下,正、负离子分别向上、下极板偏转、积累,从而在板间形成一个向下的电场.两板间形成一定的电势差.当qvB=qU/d时电势差稳定U=dvB,这就相当于一个可以对外供电的电源.3.电磁流量计.电磁流量计原理可解释为:如图所示,一圆形导管直径为d,用非磁性材料制成,其中有可以导电的液体向左流动.导电液体中的自由电荷(正负离子)在洛仑兹力作用下纵向偏转,a,b间出现电势差.当自由电荷所受电场力和洛仑兹力平衡时,a、b间的电势差就保持稳定.由Bqv=Eq=Uq/d,可得v=U/Bd.流量Q=Sv=πUd/4B4.质谱仪如图所示组成:离子源O,加速场U,速度选择器(E,B),偏转场B2,胶片.原理:加速场中qU=½mv2选择器中:v=E/B1偏转场中:d=2r,qvB2=mv2/r比荷:122q Em B B d=质量122B B dqmE=作用:主要用于测量粒子的质量、比荷、研究同位素.5.回旋加速器如图所示.组成:两个D形盒,大型电磁铁,高频振荡交变电压,两缝间可形成电压U作用:电场用来对粒子(质子、氛核,a粒子等)加速,磁场用来使粒子回旋从而能反复加速.高能粒子是研究微观物理的重要手段.要求:粒子在磁场中做圆周运动的周期等于交变电源的变化周期.关于回旋加速器的几个问题:(1)回旋加速器中的D形盒,它的作用是静电屏蔽,使带电粒子在圆周运动过程中只处在磁场中而不受电场的干扰,以保证粒子做匀速圆周运动.(2)回旋加速器中所加交变电压的频率f,与带电粒子做匀速圆周运动的频率相等:12qBfT mπ==(3)回旋加速器最后使粒子得到的能量,可由公式2222122Kq B RE mvm==来计算,在粒子电量,、质量m和磁感应强度B一定的情况下,回旋加速器的半径R越大,粒子的能量就越大.专题二:带电粒子在复合场中的运动(1)姓名______________1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M 点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.初速为零的离子经过电势差为U的电场加速后,从离子枪T中水平射出,经过一段路程后进入水平放置的两平行金属板MN和PQ之间.离子所经空间存在一磁感强度为B的匀强磁场,如图所示.(不考虑重力作用),离子荷质比q/m(q、m分别是离子的电量与质量)在什么范围内,离子才能打在金属板上?4.如图,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c 和d,外筒的半径为r0.在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B.在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场.一质量为m、带电量为+q 的粒子,从紧靠内筒且正对狭缝a的s点出发,初速为零.如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中).ac专题二:带电粒子在复合场中的运动(2)姓名______________1.如图所示,从正离子源发射的正离子经加速电压U加速后进入相互垂直的匀强电场E(方向竖直向上)和匀强磁场B(方向垂直于纸面向外)中,发现离子向上偏转,要使此离子沿直线穿过电场?A.增大电场强度E,减小磁感强度BB.减小加速电压U ,增大电场强度EC.适当地加大加速电压UD.适当地减小电场强度E2.汤姆生用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示,真空管内加速后,穿过A'中心的小孔沿中心轴010的方向进入到两块水平正对放置的平行极板P和P/,间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心0点处,形成了一个亮点;加上偏转电压U后,亮点偏离到0'点,(O'与0点的竖直间距为d,水平间距可忽略不计).此时,在P和P/间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B时,亮点重新回到0点.已知极板水平方向的长度为L1,极板间距为b,极板右端到荧光屏的距离为L2(如图所示).(1)求打在荧光屏0点的电子速度的大小.(2)推导出电子的比荷的表达式.3.如图所示,M、N为两块带等量异种电荷的平行金属板,S1、S2为板上正对的小孔,N板右侧有两个宽度均为d的匀强磁场区域,磁感应强度大小均为B,方向分别垂直于纸面向里和向外,磁场区域右侧有一个荧光屏,取屏上与S1、S2共线的O点为原点,向下为正方向建立x轴.板左侧电子枪发射出的热电子经小孔S1进入两板间,电子的质量为m,电荷量为e,初速度可以忽略.求:(1)当两板间电势差为U0时,求从小孔S2射出的电子的速度v0;(2)两金属板间电势差U在什么范围内,电子不能穿过磁场区域而打到荧光屏上;(3)电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系.专题二:带电粒子在复合场中的运动(3)姓名______________1.回旋加速器是用来加速带电粒子的装置,如图所示.它的核心部分是两个D 形金属盒,两盒相距很近,分别和高频交流电源相连接,两盒间的窄缝中形成匀强电场,使带电粒子每次通过窄缝都得到加速.两盒放在匀强磁场中,磁场方向垂直于盒底面,带电粒子在磁场中做圆周运动,通过两盒间的窄缝时反复被加速,直到达到最大圆周半径时通过特殊装置被引出.如果用同一回旋加速器分别加速氚核(H 31)和α粒子(e H 42)比较它们所加的高频交流电源的周期和获得的最大动能的大小,有( )A .加速氚核的交流电源的周期较大,氚核获得的最大动能也较大B .加速氚核的交流电源的周期较大,氚核获得的最大动能较小C .加速氚核的交流电源的周期较小,氚核获得的最大动能也较小D .加速氚核的交流电源的周期较小,氚核获得的最大动能较大2.如图所示为一种获得高能粒子的装置,环形区域内存在垂直纸面向外.大小可调节的均匀磁场,质量为m ,电量+q 的粒子在环中作半径为R 的圆周运动,A 、B 为两块中心开有小孔的极板,原来电势都为零,每当粒子飞经A 板时,A 板电势升高为U ,B 板电势仍保持为零,粒子在两板间电场中得到加速,每当粒子离开B 板时,A 板电势又降为零,粒子在电场一次次加速下动能不断增大,而绕行半径不变. (l )设t=0时粒子静止在A 板小孔处,在电场作用下加速,并绕行第一圈,求粒子绕行n 圈回到A 板时获得的总动能E n .(2)为使粒子始终保持在半径为R 的圆轨道上运动,磁场必须周期性递增,求粒子绕行第n 圈时的磁感应强度B n .(3)求粒子绕行n 圈所需的总时间t n (设极板间距远小于R ).(4)在(2)图中画出A 板电势U 与时间t 的关系(从t =0起画到粒子第四次离开B 板时即可). (5)在粒子绕行的整个过程中,A 板电势是否可始终保持为+U ?为什么?3.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=5.0×10-3T 的匀强磁场,方向分别垂直纸面向外和向里.质量为m =6.64×10-27㎏、电荷量为q =+3.2×10-19C 的α粒子(不计α粒子重力),由静止开始经加速电压为U =1205V 的电场(图中未画出)加速后,从坐标点M (-4,2)处平行于x 轴向右运动,并先后通过两个匀强磁场区域. (1)请你求出α粒子在磁场中的运动半径;(2)你在图中画出α粒子从直线x =-4到直线x =4之间的运动轨迹,并在图中标明轨迹与直线x =4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间.专题二:带电粒子在复合场中的运动(4)姓名______________1.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E=10N /c ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T 一带电量0.2C q =+、质量0.4kg m =的小球由长0.4m l =的细线悬挂于P 点小球可视为质点,现将小球拉至水平位置A 无初速释放,小球运动到悬点P 正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O 点正下方的N点.(g=10m /s 2),求:(1)小球运动到O 点时的速度大小; (2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离2.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求: (1)两极板间电压;(2)三角形区域内磁感应强度;(3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.3.如图甲所示,竖直挡板MN 左侧空间有方向竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,电场和磁场的范围足够大,电场强度E =40N/C ,磁感应强度B 随时间t 变化的关系图象如图乙所示,选定磁场垂直纸面向里为正方向.t =0时刻,一质量m =8×10-4kg 、电荷量q =+2×10-4C 的微粒在O 点具有竖直向下的速度v =0.12m/s ,O ´是挡板MN 上一点,直线OO´与挡板MN 垂直,取g =10m/s 2.求: (1)微粒再次经过直线OO´时与O 点的距离; (2)微粒在运动过程中离开直线OO ´的最大高度;(3)水平移动挡板,使微粒能垂直射到挡板上,挡板与O 点间的距离应满足的条件.图甲图乙-专题二:带电粒子在复合场中的运动(5)姓名______________1.如图所示,在倾角为30°的斜面OA的左侧有一竖直档板,其上有一小孔P,OP=0.5m.现有一质量m=4×10-20kg,带电量q=+2×10-14C的粒子,从小孔以速度v0=3×104m/s水平射向磁感应强度B=0.2T、方向垂直纸面向外的一圆形磁场区域.且在飞出磁场区域后能垂直打在OA面上,粒子重力不计.求:(1)粒子在磁场中做圆周运动的半径;(2)粒子在磁场中运动的时间;(3)圆形磁场区域的最小半径;(4)若磁场区域为正三角形且磁场方向垂直向里,粒子运动过程中始终不碰到挡板,其他条件不变,求:此正三角形磁场区域的最小边长.2.如图所示,在同时存在匀强电场和匀强磁场的空间中取正交坐标系Oxyz(x轴正方向水平向右,y 轴正方向竖直向上).匀强磁场方向与Oxy平面平行,且与x轴的夹角为︒45,重力加速度为g.(1)一质量为m、电荷量为q+的带电质点沿平行于z轴正方向以速度v0做匀速直线运动,求满足条件的电场强度的最小值minE及对应的磁感应强度B;(2)在满足(1)的条件下,当带电质点通过y轴上的点(0,,0)P h时,撤去匀强磁场,求带电质点落在Oxz平面内的位置;(3)当带电质点沿平行于z轴负方向以速度v0通过y轴上的点(0,,0)P h时,改变电场强度大小和方向,同时改变磁感应强度的大小,要使带点质点做匀速圆周运动且能够经过x轴,问电场强度E和磁感应强度B大小满足什么条件?zB专题二:带电粒子在复合场中的运动——参考答案(1) 1、解析:由于此带电粒子是从静止开始释放的,要能经过M 点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y 轴上,受电场力作用而加速,以速度v 进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x 轴偏转.回转半周期过x 轴重新进入电场,在电场中经减速、加速后仍以原速率从距O 点2R 处再次超过x 轴,在磁场回转半周后又从距O 点4R 处飞越x 轴如图所示(图中电场与磁场均未画出)故有L =2R ,L =2×2R ,L =3×2R 即 R =L /2n ,(n=1、2、3……)…………… ①设粒子静止于y 轴正半轴上,和原点距离为h ,由能量守恒得mv 2/2=qEh ……② 对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R =mv /qB ………③解①②③式得:h =B 2qL 2/8n 2mE (n =l 、2、3……)2、解析:粒子在电场中运行的时间t = l /v ;加速度 a =qE /m ;它作类平抛的运动.有tg θ=at/v=qEl/mv 2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv 2/r ,所以r=mv/qB 又:sin θ=l/r=lqB/mv ………② 由①②两式得:B=Ecos θ/v3、解析:离子在磁场中做匀速圆周运动,作出两条边界轨迹TP 和TQ ,分别作出离子在 T 、P 、Q 三点所受的洛仑兹力,分别延长之后相交于O 1、O 2点,如图所示,O 1和O 2分别是TP 和TQ 的圆心,设 R 1和 R 2分别为相应的半径.离子经电压U 加速,由动能定理得.qU =½mv 2………①由洛仑兹力充当向心力得qvB=mv 2/R ………② 由①②式得q/m=2U/B 2R 2由图直角三角形O 1CP 和O 2CQ 可得 R 12=d 2+(R 1一d/2)2,R 1=5d/4……④ R 22=(2d )2+(R 2一d/2)2,R 2=17d/4……⑤依题意R 1≤R ≤R 2 ……⑥ 由③④⑤⑥可解得2228932d B U ≤m q ≤222532d B U. 4、解析:如图所示,带电粒子从S 出发,在两筒之间的电场力作用下加速,沿径向穿出a 而进入磁场区,在洛仑兹力作用下做匀速圆周运动。
高考物理《带电粒子在叠加场中的运动》真题练习含答案
高考物理《带电粒子在叠加场中的运动》真题练习含答案1.(多选)如图所示,空间存在着垂直向里的匀强磁场B 和竖直向上的匀强电场E ,两个质量不同电量均为q 的带电小球a 和b 从同一位置先后以相同的速度v 从场区左边水平进入磁场,其中a 小球刚好做匀速圆周运动,b 小球刚好沿直线向右运动.不计两小球之间库仑力的影响,重力加速度为g ,则( )A .a 小球一定带正电,b 小球可能带负电B .a 小球的质量等于qEgC .b 小球的质量等于qE -q v BgD .a 小球圆周运动的半径为EVBg答案:BD解析:a 小球刚好做匀速圆周运动,重力和电场力平衡,洛伦兹力提供向心力,所以Eq =m a g ,电场力方向竖直向上,则a 小球一定带正电,b 小球刚好沿直线向右运动,如果b 小球带负电,电场力洛伦兹力均向下,重力也向下,不能平衡,无法做直线运动,所以b 小球带正电,q v B +Eq =m b g ,A 错误;根据A 选项分析可知,a 小球的质量等于m a =qEg ,B 正确;根据A 选项分析可知,b 小球的质量等于m b =qE +q v Bg,C 错误;a 小球圆周运动的半径为Bq v =m a v 2r ,解得r =m a v Bq =E vBq,D 正确.2.(多选)如图所示,在竖直平面内的虚线下方分布着互相垂直的匀强电场和匀强磁场,电场的电场强度大小为10 N/C ,方向水平向左;磁场的磁感应强度大小为2 T ,方向垂直纸面向里.现将一质量为0.2 kg 、电荷量为+0.5 C 的小球,从该区域上方的某点A 以某一初速度水平抛出,小球进入虚线下方后恰好做直线运动.已知重力加速度为g =10 m/s 2.下列说法正确的是( )A.小球平抛的初速度大小为5 m/sB.小球平抛的初速度大小为2 m/sC.A点距该区域上边界的高度为1.25 mD.A点距该区域上边界的高度为2.5 m答案:BC解析:小球受竖直向下的重力与水平向左的电场力作用,小球进入电磁场区域做直线运动,小球受力如图所示小球做直线运动,则由平衡条件得q v B cos θ=mg,小球的速度v cos θ=v0,代入数据解得v0=2 m/s,A错误,B正确;小球从A点抛出到进入复合场过程,由动能定理得mgh=12m v2-12m v2,根据在复合场中的受力情况可知(mg)2+(qE)2=(q v B)2,解得h=E22gB2,代入数据解得h=1.25 m,C正确,D错误.3.如图所示,一带电液滴在相互垂直的匀强电场和匀强磁场中刚好做匀速圆周运动,其轨迹半径为R.已知电场的电场强度大小为E,方向竖直向下;磁场的磁感应强度大小为B,方向垂直于纸面向里.不计空气阻力,重力加速度为g,则下列说法中正确的是() A.液滴带正电B.液滴的比荷qm=g EC.液滴的速度大小v=gRBED.液滴沿逆时针方向运动答案:B解析:带电液滴刚好做匀速圆周运动,应满足mg=qE,电场力向上,与场强方向相反,液滴带负电,可得比荷为qm=gE,A错误,B正确;由左手定则可判断,只有液滴沿顺时针方向运动,受到的洛伦兹力才指向圆心,D错误;由向心力公式可得q v B=m v2R,联立可得液滴的速度大小为v=gBRE,C错误.4.(多选)空间内存在电场强度大小E=100 V/m、方向水平向左的匀强电场和磁感应强度大小B1=100 T、方向垂直纸面向里的匀强磁场(图中均未画出).一质量m=0.1 kg、带电荷量q=+0.01 C的小球从O点由静止释放,小球在竖直面内的运动轨迹如图中实线所示,轨迹上的A点离OB最远且与OB的距离为l,重力加速度g取10 m/s2.下列说法正确的是()A.在运动过程中,小球的机械能守恒B.小球经过A点时的速度最大C.小球经过B点时的速度为0D.l=25m答案:BCD解析:由于电场力做功,故小球的机械能不守恒,A项错误;重力和电场力的合力大小为(qE)2+(mg)2=2N,方向与竖直方向的夹角为45°斜向左下方,小球由O点到A点,重力和电场力的合力做的功最多,在A点时的动能最大,速度最大,B项正确;小球做周期性运动,在B点时的速度为0,C项正确;对小球由O点到A点的过程,由动能定理得2mgl=12m v2,沿OB方向建立x轴,垂直OB方向建立y轴,在x方向上由动量定理得q v y B1Δt=mΔv,累积求和,则有qB1l=m v,解得l=25m,D项正确.5.(多选)如图所示,平面直角坐标系的第二象限内(称为区域Ⅰ)存在水平向左的匀强电场和垂直纸面向里的匀强磁场B1,一质量为m、带电荷量为+q的小球从A点以速度v0沿直线AO运动,AO与x轴负方向成37°角.在y轴与MN之间的区域Ⅱ内加一电场强度最小的匀强电场后,可使小球继续做直线运动到MN上的C点,MN与PQ之间区域Ⅲ内存在宽度为d的竖直向上匀强电场和垂直纸面向里的匀强磁场B2,小球在区域Ⅲ内做匀速圆周运动并恰好不能从右边界飞出,已知小球在C点的速度大小为2v0,重力加速度为g,sin 37°=0.6,cos 37°=0.8,则下列结论正确的是()A .区域Ⅲ内匀强电场的场强大小E 3=mgqB .区域Ⅲ内匀强磁场的磁感应强度大小B 2=m v 0qdC.小球从A 到O 的过程中做匀速直线运动,从O 到C 的过程中做匀加速直线运动 D .区域Ⅱ内匀强电场的最小场强大小为E 2=4mg5q ,方向与x 轴正方向成53°角向上答案:ACD解析:小球在区域Ⅲ内做匀速圆周运动,有mg =qE 3,解得E 3=mgq ,A 项正确;因为小球恰好不从右边界穿出,小球运动轨迹如图所示,由几何关系得d =r +r sin 37°=85 r ,由洛伦兹力提供向心力得B 2q ×2v 0=m (2v 0)2r,解得B 2=16m v 05qd ,B 项错误;带电小球在第二象限内受重力、电场力和洛伦兹力做直线运动,三力满足如图所示关系所以小球从A 到O 的过程只能做匀速直线运动.区域Ⅱ中从O 到C 的过程,小球做直线运动电场强度最小,受力如图所示(电场力方向与速度方向垂直)所以小球做匀加速直线运动,由图知cos 37°=qE 2mg ,解得E 2=4mg5q ,方向与x 轴正方向成53°角向上,C 、D 两项正确.6.如图所示,一质量为m 、电荷量为q 的带正电小球(视为质点)套在长度为L 、倾角为θ的固定绝缘光滑直杆OP 上,P 端下方存在正交的匀强电场和匀强磁场,电场方向沿PO 方向,磁场方向垂直纸面水平向里.现将小球从O 端由静止释放,小球滑离直杆后沿直线运动,到达Q 点时立即撤去磁场,最终小球垂直打到水平地面上,重力加速度大小为g ,不计空气阻力.求:(1)电场的电场强度大小E 以及磁场的磁感应强度大小B ; (2)Q 点距离地面的高度h .答案:(1)mg sin θq ,mg cos θq 2gL sin θ(2)(sin θ+1sin θ)L 解析:(1)小球滑离直杆后进入叠加场,在叠加场内的受力情况如图所示,小球做匀速直线运动,根据几何关系有sin θ=Eqmg ,cos θ=q v B mg小球在直杆上时有L =v 22g sin θ解得E =mg sin θq ,B =mg cos θq 2gL sin θ(2)根据题意可知,当磁场撤去后,小球受重力和电场力作用,且合力的方向与速度方向垂直,小球做类平抛运动,水平方向有Eq cos θ=ma xv x =v cos θ-a x t竖直方向有mg -Eq sin θ=ma y h =v sin θ·t +12a y t 2当小球落到地面时,v x =0, 即v x =v cos θ-a x t =0 解得t =m vEqh =(sin θ+1sin θ)L7.[2024·湖北省鄂东南教育教学改革联盟联考]如图所示,在竖直平面内的直角坐标系xOy 中,y 轴竖直,第一象限内有竖直向上的匀强电场E 1、垂直于xOy 平面向里的匀强磁场B 1=4 T ;第二象限内有平行于xOy 平面且方向可以调节的匀强电场E 2;第三、四象限内有垂直于纸面向外的匀强磁场B 2=1063 T .x 、y 轴上有A 、B 两点,OA =(2+3 ) m ,OB=1 m .现有一质量m =4×10-3 kg ,电荷量q =10-3 C 的带正电小球,从A 点以速度v 0垂直x 轴进入第一象限,做匀速圆周运动且从B 点离开第一象限.小球进入第二象限后沿直线运动到C 点,然后由C 点进入第三象限.已知重力加速度为g =10 m/s 2,不计空气阻力.求:(1)第一象限内电场的电场强度E 1与小球初速度v 0的大小;(2)第二象限内电场强度E 2的最小值和E 2取最小值时小球运动到C 点的速度v C ; (3)在第(2)问的情况下,小球在离开第三象限前的最大速度v m . 答案:(1)40 N/C 2 m/s (2)20 N/C 26 m/s (3)46 m/s ,方向水平向左解析:(1)小球由A 点进入第一象限后,所受电场力与重力平衡 E 1q =mg 解得E 1=40 N/C 由几何关系得r +r 2-OB 2 =OA解得r =2 m小球做匀速圆周运动,洛伦兹力提供向心力,则有q v 0B 1=m v 20r解得v 0=2 m/s(2)由几何关系得:BC 与竖直方向夹角为θ=30°小球由B 到C 做直线运动,则电场力与重力的合力与v B 均沿BC 方向,当电场力与BC 垂直时,电场力有最小值qE 2min =mg sin θ解得E 2min =20 N/C 对小球有mg cos θ=ma 根据几何关系x BC =OB cos θ =233 m 根据速度位移关系式v 2C -v 20 =2ax BC代入数据得a =53 m/s 2 v C =26 m/s(3)小球进入第三象限后,在重力、洛伦兹力作用下做变加速曲线运动,把初速度v C 分解为v 1和v 2,其中v 1满足Bq v 1=mg解得v 1=mgB 2q =26 m/s方向水平向左 则v 2=26 m/s方向与x 轴正方向夹角为60°小球的实际运动可以分解为运动一:速度为v1=26m/s,水平向左,合力为B2q v1-mg=0的匀速直线运动.运动二:速度为v2=26m/s,顺时针旋转,合力为F洛=B2q v2的匀速圆周运动.当v1和v2的方向相同时合运动的速度最大,最大速度v m=v1+v2=46m/s 方向水平向左.。
带电粒子在复合场中的运动-高中物理专题(含解析)
带电粒子在复合场中的运动目标:1. 掌握带电粒子在电场、磁场中运动的特点2. 理解复合场、组合场对带电粒子受力的分析。
重难点:重点: 带电粒子在电场、磁场中运动的特点;带电粒子在复合场中受力分析 难点: 带电粒子在复合场中运动受力与运动结合。
知识:知识点1 带电粒子在复合场中的运动 1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存. (2)组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现. 2.带电粒子在复合场中的运动形式(1)静止或匀速直线运动:当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.(2)匀速圆周运动:当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.(3)较复杂的曲线运动:当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线. 易错判断(1)带电粒子在复合场中不可能处于静止状态.(×) (2)带电粒子在复合场中可能做匀速圆周运动.(√) (3)带电粒子在复合场中一定能做匀变速直线运动.(×) 知识点2 带电粒子在复合场中的运动实例 1.质谱仪(1)构造:如图所示,由粒子源、加速电场、偏转磁场和照相底片等构成.(2)原理:粒子由静止被加速电场加速,qU =12mv 2.粒子在磁场中做匀速圆周运动,有qvB =m v 2r .由以上两式可得r =1B2mUq , m =qr 2B 22U , q m =2UB 2r 2.2.回旋加速器(1)构造:如图所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处接交流电源,D 形盒处于匀强磁场中.(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子经电场加速,经磁场回旋,由qvB =mv 2r ,得E km =q 2B 2r 22m ,可见粒子获得的最大动能由磁感应强度B 和D 形盒半径r 决定,与加速电压无关.3.速度选择器(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器(如图所示).(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =qvB ,即v =E/B. 4.磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定则,图中的B 是发电机正极. (3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,则由qE =qU/L =qvB 得两极板间能达到的最大电势差U =BLv . 易错判断(1)电荷在速度选择器中做匀速直线运动的速度与电荷的电性有关.(×) (2)不同比荷的粒子在质谱仪磁场中做匀速圆周运动的半径不同.(√)(3)粒子在回旋加速器中做圆周运动的半径、周期都随粒子速度的增大而增大.(×)题型分类:题型一 带电粒子在组合场中的运动题型分析:1.带电粒子在匀强电场、匀强磁场中可能的运动性质在电场强度为E 的匀强电场中 在磁感应强度为B 的匀强磁场中 初速度为零 做初速度为零的匀加速直线运动 保持静止 初速度垂直场线 做匀变速曲线运动(类平抛运动) 做匀速圆周运动 初速度平行场线 做匀变速直线运动 做匀速直线运动特点 受恒力作用,做匀变速运动洛伦兹力不做功,动能不变2.“电偏转”和“磁偏转”的比较垂直进入匀强磁场(磁偏转)垂直进入匀强电场(电偏转)情景图受力F B =qv 0B ,大小不变,方向总指向圆心,方向变化,F B 为变力F E =qE ,F E 大小、方向不变,为恒力 运动规律匀速圆周运动r =mv 0Bq ,T =2πmBq类平抛运动v x =v 0,v y =Eqm t x =v 0t ,y =Eq2m t 2运动时间 t =θ2πT =θmBqt =Lv 0,具有等时性动能不变变化3.常见模型(1)从电场进入磁场(2)从磁场进入电场考向1 先电场后磁场【例1】.(2018·哈尔滨模拟)如图所示,将某正粒子放射源置于原点O ,其向各个方向射出的粒子速度大小均为v 0,质量均为m 、电荷量均为q ;在0≤y ≤d 的一、二象限范围内分布着一个匀强电场,方向与y 轴正向相同,在d <y ≤2d 的一、二象限范围内分布着一个匀强磁场,方向垂直于xOy 平面向里.粒子第一次离开电场上边缘y =d 时,能够到达的位置x 轴坐标范围为-1.5d ≤x ≤1.5d, 而且最终恰好没有粒子从y =2d 的边界离开磁场.已知sin 37°=0.6,cos 37°=0.8,不计粒子重力以及粒子间的相互作用,求: (1)电场强度E ; (2)磁感应强度B ;(3)粒子在磁场中运动的最长时间.(只考虑粒子第一次在磁场中的运动时间) [解析](1)沿x 轴正方向发射的粒子有:由类平抛运动基本规律得1.5d =v 0t, d =12at 2a =qE m ,联立可得:E =8mv 209qd .(2)沿x 轴正方向发射的粒子射入磁场时有:d =v y 2t,联立可得:v y =43v 0,电场中:加速直线运动⇓磁场中:匀速圆周运动 电场中:类平抛运动⇓磁场中:匀速圆周运动磁场中:匀速圆周运动 ⇓v 与E 同向或反向 电场中:匀变速直线运动磁场中:匀速圆周运动⇓v 与E 垂直 电场中:类平抛运动v =v 2x+v 2y=53v 0 方向与水平成53°,斜向右上方,据题意知该粒子轨迹恰与上边缘相切,则其余粒子均达不到y =2d 边界,由几何关系可知:d =R +35R根据牛顿第二定律得:Bqv =m v 2R 联立可得:B =8mv 03qd .(3)粒子运动的最长时间对应最大的圆心角,经过(1.5d ,d)恰与上边界相切的粒子轨迹对应的圆心角最大,由几何关系可知圆心角为:θ=254°粒子运动周期为:T =2πR v =3πd4v 0则时间为:t =θ360°T =127πd240v 0.考向2 先磁场后电场 【例2】.(2018·潍坊模拟)在如图所示的坐标系中,第一和第二象限(包括y 轴的正半轴)内存在磁感应强度大小为B 、方向垂直xOy 平面向里的匀强磁场;第三和第四象限内存在平行于y 轴正方向、大小未知的匀强电场.p 点为y 轴正半轴上的一点,坐标为(0,l );n 点为y 轴负半轴上的一点,坐标未知.现有一带正电的粒子由p 点沿y 轴正方向以一定的速度射入匀强磁场,该粒子经磁场偏转后以与x 轴正半轴成45°角的方向进入匀强电场,在电场中运动一段时间后,该粒子恰好垂直于y 轴经过n 点.粒子的重力忽略不计.求: (1)粒子在p 点的速度大小;(2)第三和第四象限内的电场强度的大小;(3)带电粒子从由p 点进入磁场到第三次通过x 轴的总时间.[解析] 粒子在复合场中的运动轨迹如图所示(1)由几何关系可知rsin 45°=l 解得r =2l 又因为qv 0B =m v 20r ,可解得v 0=2Bql m .(2)粒子进入电场在第三象限内的运动可视为平抛运动的逆过程,设粒子射入电场坐标为(-x 1,0),从粒子射入电场到粒子经过n 点的时间为t 2,由几何关系知x 1=(2+1)l ,在n 点有v 2=22v 1=22v 0由类平抛运动规律有(2+1)l =22v 0t 2;22v 0=at 2=Eqm t 2 联立以上方程解得t 2=2+1m qB ,E =2-1qlB 2m. (3)粒子在磁场中的运动周期为T =2πmqB粒子第一次在磁场中运动的时间为t 1=58T =5πm4qB 粒子在电场中运动的时间为2t 2=22+1mqB粒子第二次在磁场中运动的时间为t 3=34T =3πm2qB故粒子从开始到第三次通过x 轴所用时间为t =t 1+2t 2+t 3=(11π4+22+2)mqB .[反思总结] 规律运用及思路①带电粒子经过电场区域时利用动能定理或类平抛的知识分析; ②带电粒子经过磁场区域时利用圆周运动规律结合几何关系来处理; ③注意带电粒子从一种场进入另一种场时的衔接速度.【巩固】如图所示,在第Ⅱ象限内有水平向右的匀强电场,电场强度为E ,在第Ⅰ、Ⅳ象限内分别存在如图所示的匀强磁场,磁感应强度大小相等.有一个带电粒子以垂直于x 轴的初速度v 0从x 轴上的P 点进入匀强电场中,并且恰好与y 轴的正方向成45°角进入磁场,又恰好垂直于x 轴进入第Ⅳ象限的磁场.已知OP 之间的距离为d ,则带电粒子在磁场中第二次经过x 轴时,在电场和磁场中运动的总时间为( ) A.7πd 2v 0B.dv 0(2+5π) C.d v 0⎝ ⎛⎭⎪⎫2+3π2D.d v 0⎝ ⎛⎭⎪⎫2+7π2D [带电粒子的运动轨迹如图所示.由题意知,带电粒子到达y 轴时的速度v =2v 0,这一过程的时间t 1=d v 02=2dv 0.又由题意知,带电粒子在磁场中的偏转轨道半径r =22d.故知带电粒子在第Ⅰ象限中的运动时间为:t 2=38×2πr v =32πd 2v =3πd2v 0带电粒子在第Ⅳ象限中运动的时间为:t 3=12×2πr v =22πd v =2πd v 0故t 总=d v 0⎝ ⎛⎭⎪⎫2+7π2.故D 正确.] 题型二 带电粒子在叠加场中的运动考向1 电场、磁场叠加【例3】(多选)(2018·临川模拟)向下的匀强电场和水平方向的匀强磁场正交的区域里, 一带电粒子从a 点由静止开始沿曲线abc 运动到c 点时速度变为零, b 点是运动中能够到达的最高点, 如图所示,若不计重力,下列说法中正确的是( ) A .粒子肯定带负电, 磁场方向垂直于纸面向里 B .a 、c 点处于同一水平线上 C .粒子通过b 点时速率最大D. 粒子达到c 点后将沿原路径返回到a 点ABC [粒子开始受到电场力作用而向上运动,受到向右的洛伦兹力作用,则知电场力方向向上,故粒子带负电;根据左手定则判断磁场方向垂直于纸面向里,故A 正确.将粒子在c 点的状态与a 点进行比较,c 点的速率为零,动能为零,根据能量守恒可知,粒子在c 与a 两点的电势能相等,电势相等,则a 、c 两点应在同一条水平线上;由于在a 、c 两点粒子的状态(速度为零,电势能相等)相同,粒子将在c 点右侧重现前面的曲线运动,因此,粒子是不可能沿原曲线返回a 点的,故B 正确,D 错误.根据动能定理得,粒子从a 运动到b 点的过程电场力做功最大,则b 点速度最大,故C 正确.考向2 电场、磁场、重力场的叠加【例4】(2017·全国Ⅰ卷)如图所示,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里.三个带正电的微粒a 、b 、c 电荷量相等,质量分别为m a 、m b 、m c .已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动.下列选项正确的是( ) A .m a >m b >m c B .m b >m a >m c C .m c >m a >m b D .m c >m b >m aB [设三个微粒的电荷量均为q ,a 在纸面内做匀速圆周运动,说明洛伦兹力提供向心力,重力与电场力平衡,即 m a g =qE ①b 在纸面内向右做匀速直线运动,三力平衡,则m b g =qE +qvB ②c 在纸面内向左做匀速直线运动,三力平衡,则m c g +qvB =qE ③ 比较①②③式得:m b >m a >m c ,选项B 正确.]考向3 复合场中的动量、能量综合问题【例5】(2018·南昌模拟)如图所示,带负电的金属小球A 质量为m A =0.2 kg ,电量为q =0.1 C ,小球B 是绝缘体不带电,质量为m B =2 kg ,静止在水平放置的绝缘桌子边缘,桌面离地面的高h =0.05 m ,桌子置于电、磁场同时存在的空间中,匀强磁场的磁感应强度B =2.5 T ,方向沿水平方向且垂直纸面向里,匀强电场电场强度E =10 N/C ,方向沿水平方向向左且与磁场方向垂直,小球A 与桌面间的动摩擦因数为μ=0.4,A 以某一速度沿桌面做匀速直线运动,并与B 球发生正碰,设碰撞时间极短,B 碰后落地的水平位移为0.03 m ,g 取10 m/s 2,求: (1)碰前A 球的速度? (2)碰后A 球的速度?(3)若碰后电场方向反向(桌面足够长),小球A 在碰撞结束后,到刚离开桌面运动的整个过程中,合力对A 球所做的功.[答案](1)2 m/s (2)1 m/s ,方向与原速度方向相反 (3)6.3 J 【例5-2】 (1)上题中,A 与B 的碰撞是弹性碰撞吗?为什么?(2)在第(3)问中,根据现有知识和条件,能否求出电场力对A 球做的功?提示:A 、B 碰前,只有A 有动能E kA =12m A v 2A1=12×0.2×22 J =0.4 JA 、B 碰后,E kA ′=12m A v 2A2=12×0.2×12 J =0.1 JE kB =12m B v 2B =12×2×0.32=0.09 J 因E kA >E kA ′+E kB故A 、B 间的碰撞不是弹性碰撞.提示:不能.因无法求出A 球的位移.【巩固1】(多选)(2017·济南模拟)如图所示,在正交坐标系O xyz 中,分布着电场和磁场(图中未画出).在Oyz 平面的左方空间内存在沿y 轴负方向、磁感应强度大小为B 的匀强磁场;在Oyz 平面右方、Oxz 平面上方的空间内分布着沿z 轴负方向、磁感应强度大小也为B 的匀强磁场;在Oyz 平面右方、Oxz 平面下方分布着沿y 轴正方向的匀强电场,电场强度大小为aqB 24m .在t =0时刻,一个质量为m 、电荷量为+q 的微粒从P 点静止释放,已知P 点的坐标为(5a ,-2a,0),不计微粒的重力.则( )A .微粒第一次到达x 轴的速度大小为aqb mB .微粒第一次到达x 轴的时刻为4mqBC .微粒第一次到达y 轴的位置为y =2aD .微粒第一次到达y 轴的时刻为⎝ ⎛⎭⎪⎫40+5π2mqBBD [微粒从P 点由静止释放至第一次到达y 轴的运动轨迹如图所示.释放后,微粒在电场中做匀加速直线运动,由E =aqB 24m ,根据动能定理有Eq ·2a =12mv 2,解得微粒第一次到达x 轴的速度v =aqB m ,又Eq m t 1=v ,解得微粒第一次到达x 轴的时刻t 1=4mqB ,故选项A 错误,B 正确;微粒进入磁场后开始做匀速圆周运动,假设运动的轨道半径为R ,则有qvB =m v 2R ,可得:R =a ,所以微粒到达y 轴的位置为y =a ,选项C 错误;微粒在磁场中运动的周期T =2πR v =2πm qB ,则运动到达y 轴的时刻:t 2=5t 1+54T ,代入得:t 2=⎝ ⎛⎭⎪⎫40+5π2m qB ,选项D 正确.]【巩固2】 (多选)(2018·兰州模拟)如图所示,空间中存在一水平方向的匀强电场和一水平方向的匀强磁场,磁感应强度大小为B ,电场强度大小为E =3mgq ,且电场方向和磁场方向相互垂直,在正交的电磁场空间中有一足够长的固定粗糙绝缘杆,与电场正方向成60°夹角且处于竖直平面内,一质量为m ,带电量为q (q >0)的小球套在绝缘杆上,若小球沿杆向下的初速度为v 0时,小球恰好做匀速直线运动,已知重力加速度大小为g ,小球电荷量保持不变,则以下说法正确的是( )A .小球的初速度v 0=mg2qBB .若小球沿杆向下的初速度v =mgqB ,小球将沿杆做加速度不断增大的减速运动,最后停止C .若小球沿杆向下的初速度v =3mgqB ,小球将沿杆做加速度不断减小的减速运动,最后停止D. 若小球沿杆向下的初速度v =4mgqB ,则从开始运动到稳定过程中,小球克服摩擦力做功为6m 3g 2q 2B 2BD题型三 带电粒子在复合场中运动的常见实例考向1 回旋加速器的工作原理【例6】(多选)(2018·成都模拟)粒子回旋加速器的工作原理如图所示,置于真空中的D 形金属盒的半径为R ,两金属盒间的狭缝很小,磁感应强度为B 的匀强磁场与金属盒盒面垂直,高频率交流电的频率为f ,加速器的电压为U ,若中心粒子源处产生的质子质量为m ,电荷量为+e ,在加速器中被加速.不考虑相对论效应,则下列说法正确是( )A .质子被加速后的最大速度不能超过2πRfB .加速的质子获得的最大动能随加速器的电压U 增大而增大C .质子第二次和第一次经过D 形盒间狭缝后轨道半径之比为2∶1 D .不改变磁感应强度B 和交流电的频率f ,该加速器也可加速其它粒子AC [质子出回旋加速器时速度最大,此时的半径为R ,最大速度为:v =2πRT =2πRf ,故A 正确; 根据qvB =m v 2R 得,v =qBR m ,则粒子的最大动能E km =12mv 2=q 2B 2R 22m ,与加速器的电压无关,故B 错误;粒子在加速电场中做匀加速运动,在磁场中做匀速圆周运动,根据qU =12mv 2,得v =2qU m ,质子第二次和第一次经过D 形盒狭缝的速度比为2∶1,根据r =mvqB ,则半径比为2∶1,故C 正确;带电粒子在磁场中运动的周期与加速电场的周期相等,根据T =2πmqB 知,换用其它粒子,粒子的比荷变化,周期变化,回旋加速器需改变交流电的频率才能加速其它粒子,故D 错误.故选AC.]考向2 速度选择器的工作原理【例7】在如图所示的平行板器件中,电场强度E 和磁感应强度B 相互垂直.一带电粒子(重力不计)从左端以速度v 沿虚线射入后做直线运动,则该粒子( ) A .一定带正电B .速度v =EBC .若速度v >EB ,粒子一定不能从板间射出D .若此粒子从右端沿虚线方向进入,仍做直线运动B考向3 质谱仪的工作原理【例7】质谱仪是测量带电粒子的质量和分析同位素的重要工具.如图所示为质谱仪的原理示意图,现利用质谱仪对氢元素进行测量.让氢元素三种同位素的离子流从容器A 下方的小孔S 无初速度飘入电势差为U 的加速电场.加速后垂直进入磁感应强度为B 的匀强磁场中.氢的三种同位素最后打在照相底片D 上,形成a 、b 、c 三条“质谱线”.则下列判断正确的是( ) A .进入磁场时速度从大到小排列的顺序是氕、氘、氚 B .进入磁场时动能从大到小排列的顺序是氕、氘、氚 C .在磁场中运动时间由大到小排列的顺序是氕、氘、氚 D .a 、b 、c 三条“质谱线”依次排列的顺序是氕、氘、氚A [离子通过加速电场的过程,有qU =12mv 2,因为氕、氘、氚三种离子的电量相同、质量依次增大,故进入磁场时动能相同,速度依次减小,故A 项正确,B 项错误;由T =2πmqB 可知,氕、氘、氚三种离子在磁场中运动的周期依次增大,又三种离子在磁场中运动的时间均为半个周期,故在磁场中运动时间由大到小排列依次为氚、氘、氕,C 项错误;由qvB =m v 2R 及qU =12mv 2,可得R =1B 2mUq ,故氕、氘、氚三种离子在磁场中的轨道半径依次增大,所以a 、b 、c 三条“质谱线”依次对应氚、氘、氕,D 项错误.]【巩固3】(多选)如图所示,含有11H 、21H 、42He 的带电粒子束从小孔O 1处射入速度选择器,沿直线O 1O 2运动的粒子在小孔O 2处射出后垂直进入偏转磁场,最终打在P 1、P 2两点.则( ) A .打在P 1点的粒子是42HeB .打在P 2点的粒子是21H 和42He C .O 2P 2的长度是O 2P 1长度的2倍D .粒子在偏转磁场中运动的时间都相等BC [通过同一速度选择器的粒子具有相同的速度,故11H 、21H 、42He 的速度相等,由牛顿第二定律得qvB 2=m v 2R ,解得R =mv qB 2,由此可知,设质子的质量为m ,质子带电量为q ,11H 的半径R 1=mvqB 2,21H的半径R 2=2mv qB 2,42He 的半径R 3=2mvqB 2,故打在P 1点的粒子是11H ,打在P 2点的粒子是21H 和42He ,选项A 错误,B 正确;O 2P 1=2R 1=2mv qB 2,O 2P 2=2R 2=4mvqB 2,故O 2P 2=2O 2P 1,选项C 正确;粒子在磁场中运动的时间t =T 2=πmqB ,11H 运动的时间与21H 和42He 运动的时间不同,选项D 错误.故选B 、C.]基础练习:考查点:速度选择器1.如图所示,一束质量、速度和电荷不全相等的离子,经过由正交的匀强电场和匀强磁场组成的速度选择器后,进入另一个匀强磁场中并分裂为A 、B 两束,下列说法中正确的是( ) A .组成A 束和B 束的离子都带负电 B .组成A 束和B 束的离子质量一定不同 C .A 束离子的比荷大于B 束离子的比荷D .速度选择器中的磁场方向垂直于纸面向外[答案] C考查点:磁流体发电机2.(多选)磁流体发电机是利用洛伦兹力的磁偏转作用发电的.A 、B 是两块处在磁场中互相平行的金属板,一束在高温下形成的等离子束(气体在高温下发生电离,产生大量的带等量异种电荷的粒子)射入磁场.下列说法正确的是( ) A .B 板是电源的正极 B .A 板是电源的正极C .电流从上往下流过电流表D .电流从下往上流过电流表[答案] AD考查点:电磁流量计3.如图所示,电磁流量计的主要部分是柱状非磁性管.该管横截面是边长为d 的正方形,管内有导电液体水平向左流动.在垂直于液体流动方向上加一个水平指向纸里的匀强磁场,磁感应强度为B .现测得液体上下表面a 、b 两点间的电势差为U .则管内导电液体的流量Q (流量是指流过该管的液体体积与所用时间的比值)为( )A.UdB B.Ud 2B C.U BdD.d BU[答案] A考查点:质谱仪4. A 、B 是两种同位素的原子核,它们具有相同的电荷、不同的质量.为测定它们的质量比,使它们从质谱仪的同一加速电场由静止开始加速,然后沿着与磁场垂直的方向进入同一匀强磁场,打到照相底片上.如果从底片上获知A 、B 在磁场中运动轨迹的直径之比是d 1∶d 2,则A 、B 的质量之比为( )A .d 21∶d 22B .d 1∶d 2C .d 22∶d 21D .d 2∶d 1 [答案] A分类巩固:带电粒子在组合场中的运动1.如图所示,某种带电粒子由静止开始经电压为U 1的电场加速后,射入水平放置、电势差为U 2的两导体板间的匀强电场中,带电粒子沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子射入磁场和射出磁场的M 、N 两点间的距离d 随着U 1和U 2的变化情况为(不计重力,不考虑边缘效应)( )A .d 随U 1变化,d 与U 2无关B .d 与U 1无关,d 随U 2变化C .d 随U 1变化,d 随U 2变化D .d 与U 1无关,d 与U 2无关A [带电粒子在电场中做类平抛运动,可将射出电场的粒子速度v 分解成初速度方向与加速度方向,设出射速度与水平夹角为θ,则有:v 0v =cos θ 而在磁场中做匀速圆周运动,设运动轨迹对应的半径为R ,由几何关系得,半径与直线MN 夹角正好等于θ,则有:d2R =cos θ,所以d =2Rv 0v ,又因为半径公式R =mv Bq ,则有d =2mv 0Bq =2B 2mU 1q .故d 随U 1变化,d 与U 2无关,故A 正确,B 、C 、D 错误.]2.(多选)(2017·烟台模拟)如图所示,在x 轴上方有沿y 轴负方向的匀强电场,电场强度为E ,在x 轴下方的等腰直角三角形CDM 区域内有垂直于xOy 平面向外的匀强磁场,磁感应强度为B ,其中C 、D 在x 轴上,它们到原点O 的距离均为a .现将质量为m 、电荷量为+q 的粒子从y 轴上的P 点由静止释放,设P 点到O 点的距离为h ,不计重力作用与空气阻力的影响.下列说法正确的是( )A .若粒子垂直于CM 射出磁场,则h =B 2a 2q2mEB .若粒子垂直于CM 射出磁场,则h =B 2a 2q8mEC .若粒子平行于x 轴射出磁场,则h =B 2a 2q2mED .若粒子平行于x 轴射出磁场,则h =B 2a 2q8mEAD [粒子在电场中加速,有qEh =12mv 20.在磁场中做圆周运动,若粒子垂直于CM 射出磁场,则轨迹所对的圆心角θ=45°,半径R =a ,由洛伦兹力提供向心力,有qv 0B =mv 20R ,得R =mv 0qB ,联立以上各式得h =B 2a 2q2mE ,A 正确;若粒子平行于x 轴射出磁场,则轨迹所对的圆心有θ=90°,半径R =a 2,同理可得h =B 2a 2q8mE ,D 正确.]3.(2018·银川模拟)如图所示,AB 、CD 间的区域有竖直向上的匀强电场,在CD 的右侧有一与CD 相切于M 点的圆形有界匀强磁场,磁场方向垂直于纸面.一带正电粒子自O 点以水平初速度v 0正对P 点进入该电场后,从M 点飞离CD 边界,再经磁场偏转后又从N 点垂直于CD 边界回到电场区域,并恰能返回O 点.已知OP 间距离为d ,粒子质量为m ,电荷量为q ,电场强度大小E =3mv 20qd ,不计粒子重力.试求: (1)M 、N 两点间的距离;(2)磁感应强度的大小和圆形匀强磁场的半径;(3)粒子自O 点出发到回到O 点所用的时间.[解析](1)据题意,作出带电粒子的运动轨迹,如图所示:粒子从O 到M 的时间:t 1=d v 0;粒子在电场中加速度:a =qE m =3v 2d故PM 间的距离为:PM =12at 21=32d粒子在M 点时竖直方向的速度:v y =at 1=3v 0粒子在M 点时的速度:v =v 20+v 2y =2v 0速度偏转角正切:tan θ=v yv 0= 3 ,故θ=60°粒子从N 到O 点时间:t 2=d 2v 0,粒子从N 到O 点过程的竖直方向位移:y =12at 22故P 、N 两点间的距离为:PN =y =38d.所以MN =PN +PM =538 d.(2)由几何关系得:Rcos 60°+R =MN =538d,可得半径:R =5312d由qvB =m v 2R 解得:B =83mv 05qd ;由几何关系确定区域半径为:R ′=2Rcos 30°,即R ′=54d.(3)O 到M 的时间:t 1=d v 0;N 到O 的时间:t 2=d2v 0在磁场中运动的时间:t 3=4π3R 2v 0=53πd18v 0无场区运动的时间:t 4=Rcos 30°2v 0=5d 16v 0;t =t 1+t 2+t 3+t 4=29d 16v 0+53πd18v 0. 带电物体在叠加场中的运动4.如图所示,界面MN 与水平地面之间有足够大且正交的匀强磁场B 和匀强电场E ,磁感线和电场线都处在水平方向且互相垂直.在MN 上方有一个带正电的小球由静止开始下落,经电场和磁场到达水平地面.若不计空气阻力,小球在通过电场和磁场的过程中,下列说法中正确的是( )A .小球做匀变速曲线运动B .小球的电势能保持不变C .洛伦兹力对小球做正功D .小球的动能增量等于其电势能和重力势能减少量的总和D [带电小球在刚进入复合场时受力如图所示,则带电小球进入复合场后做曲线运动,因为速度会发生变化,洛伦兹力就会跟着变化,所以不可能是匀变速曲线运动,选项A 错误;根据电势能公式E p =q φ,知只有带电小球竖直向下做直线运动时,电势能保持不变,选项B 错误;根据洛伦兹力的方向确定方法知,洛伦兹力方向始终和速度方向垂直,所以洛伦兹力不做功,选项C 错误;从能量守恒角度知道选项D 正确.]5. (2017·桂林模拟)如图所示,空间存在互相垂直的匀强电场和匀强磁场,图中虚线为匀强电场的等势线,一不计重力的带电粒子在M 点以某一初速度垂直等势线进入正交电磁场中,运动轨迹如图所示(粒子在N 点的速度比在M 点的速度大).则下列说法正确的是( )A .粒子一定带正电B .粒子的运动轨迹一定是抛物线C .电场线方向一定垂直等势面向左D .粒子从M 点运动到N 点的过程中电势能增大C [根据粒子在电、磁场中的运动轨迹和左手定则可知,粒子一定带负电,选项A 错误;由于洛伦兹力方向始终与速度方向垂直,故粒子受到的合力是变力,而物体只有在恒力作用下做曲线运动时,轨迹才是抛物线,选项B 错误;由于空间只存在电场和磁场,粒子的速度增大,说明在此过程中电场力对带电粒子做正功,则电场线方向一定垂直等势面向左,选项C 正确;电场力做正功,电势能减小,选项D 错误.]6.如图所示,空间存在水平向左的匀强电场和垂直纸面向里的匀强磁场,电场和磁场相互垂直.在电磁场区域中,有一个光滑绝缘圆环,环上套有一个带正电的小球.O 点为圆环的圆心,a 、b 、c 为圆环上的三个点,a 点为最高点,c 点为最低点, bd 沿水平方向.已知小球所受电场力与重力大小相等.现将小球从环的顶端a 点由静止释放,下列判断正确的是( )A .当小球运动到c 点时,洛伦兹力最大B .小球恰好运动一周后回到a 点C .小球从a 点运动到b 点,重力势能减小,电势能减小D .小球从b 点运动到c 点,电势能增大,动能增大C [电场力与重力大小相等,则二者的合力指向左下方45°,由于合力是恒力,故类似于新的重力,所以ad 弧的中点相当于平时竖直平面圆环的“最高点”.关于圆心对称的位置(即bc 弧的中点)就是“最低点”,速度最大,此时洛伦兹力最大;由于a 、d 两点关于新的最高点对称,若从a 点静止释放,最高运动到d 点,故A 、B 错误.从a 到b ,重力和电场力都做正功,重力势能和电势能都减少,故C 正确.小球从b 点运动到c 点,电场力做负功,电势能增大,但由于bc 弧的中点速度最大,所以动能先增大后减小,故D 错误.所以C 正确,A 、B 、D 错误.]7.(多选)(2018·哈尔滨模拟)如图所示,空间同时存在竖直向上的匀强磁场和匀强电场,磁感应强度为B ,电场强度为E .一质量为m ,电量为q 的带正电小球恰好处于静止状态,现在将磁场方向顺时针旋转30°,同时给小球一个垂直磁场方向斜向下的速度v ,则关于小球的运动,下列说法正确的是( )A .小球做匀速圆周运动B .小球运动过程中机械能守恒C .小球运动到最低点时电势能增加了mgv 2BqD .小球第一次运动到最低点历时πm2qB。
高考物理带电粒子在复合场中的运动专题训练答案
一、带电粒子在复合场中的运动专项训练1.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d ,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m 、带电量q +、重力不计的带电粒子,以初速度1v 垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功1W (2)粒子第n 次经过电场时电场强度的大小n E (3)粒子第n 次经过电场所用的时间n t(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题【答案】(1)21132mv W =(2)21(21)2n n mv E qd +=(3)12(21)n d t n v =+ (4)如图;【解析】 (1)根据mv r qB =,因为212r r =,所以212v v =,所以221211122W mv mv =-, (2)=,,所以.(3),,所以.(4)2.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【来源】带电粒子在磁场中的运动 【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得sin cos gRv θθ=⑨3.如图所示,待测区域中存在匀强电场和匀强磁场,根据带电粒子射入时的受力情况可推测其电场和磁场. 图中装置由加速器和平移器组成,平移器由两对水平放置、相距为l 的相同平行金属板构成,极板长度为l 、间距为d,两对极板间偏转电压大小相等、电场方向相反. 质量为m 、电荷量为+q 的粒子经加速电压U0 加速后,水平射入偏转电压为U1 的平移器,最终从A 点水平射入待测区域. 不考虑粒子受到的重力.(1)求粒子射出平移器时的速度大小v1;(2)当加速电压变为4U0 时,欲使粒子仍从A 点射入待测区域,求此时的偏转电压U; (3)已知粒子以不同速度水平向右射入待测区域,刚进入时的受力大小均为F. 现取水平向右为x 轴正方向,建立如图所示的直角坐标系Oxyz. 保持加速电压为U0 不变,移动装置使粒子沿不同的坐标轴方向射入待测区域,粒子刚射入时的受力大小如下表所示.请推测该区域中电场强度和磁感应强度的大小及可能的方向. 【来源】2012年普通高等学校招生全国统一考试理综物理(江苏卷)【答案】(1)012qU v m=(2)1U?4U = (3)E 与Oxy 平面平行且与x 轴方向的夹角为30°或150°,若B 沿-x 轴方向,E 与Oxy 平面平行且与x 轴方向的夹角为-30°或-150°. 【解析】(1)设粒子射出加速器的速度为0v 动能定理20012qU mv =由题意得10v v =,即012qU v m=(2)在第一个偏转电场中,设粒子的运动时间为t 加速度的大小1qU a md=在离开时,竖直分速度yv at = 竖直位移2112y at =水平位移1l v t = 粒子在两偏转电场间做匀速直线运动,经历时间也为t 竖直位移2y y v t =由题意知,粒子竖直总位移12y?2y y =+ 解得210U l y U d=则当加速电压为04U 时,1U?4U =(3)(a)由沿x 轴方向射入时的受力情况可知:B 平行于x 轴. 且FE q= (b)由沿y +-轴方向射入时的受力情况可知:E 与Oxy 平面平行.222F f (5F)+=,则f?2F =且1f?qv B =解得02F mB BqU =(c)设电场方向与x 轴方向夹角为.若B 沿x 轴方向,由沿z 轴方向射入时的受力情况得222sin )(cos )(7)f F F F αα++=( 解得=30°,或=150°即E 与Oxy 平面平行且与x 轴方向的夹角为30°或150°. 同理,若B 沿-x 轴方向E 与Oxy 平面平行且与x 轴方向的夹角为-30°或-150°.4.利用电场和磁场,可以将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用.如图所示的矩形区域ACDG(AC 边足够长)中存在垂直于纸面的匀强磁场,A 处有一狭缝.离子源产生的离子,经静电场加速后穿过狭缝沿垂直于GA 边且垂直于磁场的方向射入磁场,运动到GA 边,被相应的收集器收集.整个装置内部为真空.已知被加速的两种正离子的质量分别是m 1和m 2(m 1>m 2),电荷量均为q .加速电场的电势差为U ,离子进入电场时的初速度可以忽略.不计重力,也不考虑离子间的相互作用.(1)求质量为m 1的离子进入磁场时的速率v 1;(2)当磁感应强度的大小为B 时,求两种离子在GA 边落点的间距s ;(3)在前面的讨论中忽略了狭缝宽度的影响,实际装置中狭缝具有一定宽度.若狭缝过宽,可能使两束离子在GA 边上的落点区域交叠,导致两种离子无法完全分离.设磁感应强度大小可调,GA 边长为定值L ,狭缝宽度为d ,狭缝右边缘在A 处.离子可以从狭缝各处射入磁场,入射方向仍垂直于GA 边且垂直于磁场.为保证上述两种离子能落在GA 边上并被完全分离,求狭缝的最大宽度.【来源】2011年普通高等学校招生全国统一考试物理卷(北京)【答案】(112qU m 21228Um m qB (3)d m 12122m m m m --L【解析】(1)动能定理 Uq =12m 1v 12 得:v 1=12qUm …① (2)由牛顿第二定律和轨道半径有:qvB =2mv R,R = mv qB 利用①式得离子在磁场中的轨道半径为别为(如图一所示):R 1=122mU qB ,R 2=222 m U qB …② 两种离子在GA 上落点的间距s =2(R 1−R 2)=1228()Um m qB- …③ (3)质量为m 1的离子,在GA 边上的落点都在其入射点左侧2R 1处,由于狭缝的宽度为d ,因此落点区域的宽度也是d (如图二中的粗线所示).同理,质量为m 2的离子在GA 边上落点区域的宽度也是d (如图二中的细线所示).为保证两种离子能完全分离,两个区域应无交叠,条件为2(R 1-R 2)>d…④ 利用②式,代入④式得:2R 1(1−21m m >d R 1的最大值满足:2R 1m =L-d 得:(L −d )(1−21m m >d 求得最大值:d m 12122m m m m --L5.如图所示,在平面直角坐标系xOy 中的第一象限内存在磁感应强度大小为B 、方向垂直于坐标平面向里的有界矩形匀强磁场区域(图中未画出);在第二象限内存在沿x 轴负方向的匀强电场。
高考物理带电粒子在复合场中的运动专项训练及答案含解析
一、带电粒子在复合场中的运动专项训练1.两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向)。
在t=0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力),若电场强度E0、磁感应强度B0、粒子的比荷qm均已知,且2mtqBπ=,两板间距2210mEhqBπ=。
(1)求粒子在0~t0时间内的位移大小与极板间距h的比值。
(2)求粒子在板板间做圆周运动的最大半径(用h表示)。
(3)若板间电场强度E随时间的变化仍如图1所示,磁场的变化改为如图3所示,试画出粒子在板间运动的轨迹图(不必写计算过程)。
【来源】带电粒子的偏转【答案】(1)粒子在0~t0时间内的位移大小与极板间距h的比值115sh=(2)粒子在极板间做圆周运动的最大半径225hRπ=(3)粒子在板间运动的轨迹如图:【解析】【分析】【详解】(1)设粒子在0~t0时间内运动的位移大小为s121012s at =① 0qEa m=②又已知200200102,mE m t h qB qB ππ== 联立解得:115s h = (2)解法一粒子在t 0~2t 0时间内只受洛伦兹力作用,且速度与磁场方向垂直,所以粒子做匀速圆周运动。
设运动速度大小为v 1,轨道半径为R 1,周期为T ,则10v at =21101mv qv B R =联立解得:15h R π= 又002mT t qB π== 即粒子在t 0~2t 0时间内恰好完成一个周期的圆周运动。
在2t 0~3t 0时间内,粒子做初速度为v 1的匀加速直线运动,设位移大小为s 22210012s v t at =+解得:235s h =由于s 1+s 2<h ,所以粒子在3t 0~4t 0时间内继续做匀速圆周运动,设速度大小为v 2,半径为R 2,有:210v v at =+22202mv qv B R =解得225h R π=由于s 1+s 2+R 2<h ,粒子恰好又完成一个周期的圆周运动。
带电粒子在复合场中的运动例题
带电粒子在复合场中的运动例题引言本文将围绕带电粒子在复合场中的运动进行详细的探讨和解析。
我们将通过一个具体的运动例题,展示带电粒子在电磁场和重力场共同作用下的运动规律,帮助读者更好地理解这一过程。
问题描述考虑一个带电质量为m的粒子,在匀强电场和重力作用下,其运动方程如下:$$F=qE+m g$$其中,F表示粒子所受的合外力,q表示粒子的电荷量,E表示电场强度,g表示重力加速度。
在给定初速度v0的情况下,我们的目标是确定带电粒子在复合场中的运动轨迹。
解析为了解决这个问题,我们将采取以下步骤:步骤一:分析受力情况带电粒子所受的合外力由电场力和重力构成,因此可以将合外力表示为:$$F=qE+m g$$步骤二:列出运动方程根据牛顿第二定律,粒子的加速度与合外力成正比,因此可以得到运动方程为:$$a=\f ra c{F}{m}=\f ra c{qE}{m}+g$$将加速度与速度的关系带入上式,得到:$$\f ra c{dv}{dt}=\f ra c{qE}{m}+g$$步骤三:解微分方程对上式进行积分,可以得到粒子的速度与时间的关系:$$v=\f ra c{qE}{m}t+gt+v_0$$其中,v0为初始速度。
步骤四:求解轨迹方程将速度与时间的关系带入运动方程中,即可得到带电粒子在复合场中的运动轨迹:$$x=\f ra c{1}{2}\l e ft(\fr ac{q E}{m}t^2+g t^2+v_0t\ri g ht)+x _0$$其中,x0为初始位置。
结论通过以上的推导和计算,我们得到了带电粒子在复合场中的运动轨迹方程。
这个运动方程将帮助我们更好地理解带电粒子在电场和重力场中的相互作用情况,并能够准确地描述其运动过程。
希望读者通过本文的学习,能够加深对带电粒子在复合场中运动的理解,并能够应用相关原理解决类似的问题。
*注意:本文所使用的公式和推导过程纯属示例,实际问题中需要根据具体情况进行适当的调整。
高考物理带电粒子在复合场中的运动题20套(带答案)及解析
一、带电粒子在复合场中的运动专项训练1.如图所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径。
两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d 的两平行金属极板间有一匀强电场,上极板开有一小孔.一质量为m 、电量为+q 的粒子由小孔下方2d处静止释放,加速后粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆内侧射入磁场。
不计粒子的重力。
(1)求极板间电场强度的大小;(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小; (3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为2mv qD 、4mvqD,粒子运动一段时间后再次经过H 点,求这段时间粒子运动的路程.【来源】2015年全国普通高等学校招生统一考试物理(山东卷带解析)【答案】(1)2mv qd(2)4mv qD 或43mv qD (3)5.5πD【解析】 【分析】 【详解】(1)粒子在电场中,根据动能定理2122d Eq mv ⋅=,解得2mv E qd =(2)若粒子的运动轨迹与小圆相切,则当内切时,半径为/2E R 由211v qvB m r =,解得4mv B qD = 则当外切时,半径为e R由212v qvB m r =,解得43mv B qD =(2)若Ⅰ区域的磁感应强度为220932qB L m U =,则粒子运动的半径为0010016819U U U ≤≤;Ⅱ区域的磁感应强度为2012qU mv =,则粒子运动的半径为2v qvB m r=;设粒子在Ⅰ区和Ⅱ区做圆周运动的周期分别为T 1、T 2,由运动公式可得:1112R T v π=;034r L =据题意分析,粒子两次与大圆相切的时间间隔内,运动轨迹如图所示,根据对称性可知,Ⅰ区两段圆弧所对的圆心角相同,设为1θ,Ⅱ区内圆弧所对圆心角为2θ,圆弧和大圆的两个切点与圆心O 连线间的夹角设为α,由几何关系可得:1120θ=;2180θ=;60α=粒子重复上述交替运动回到H 点,轨迹如图所示,设粒子在Ⅰ区和Ⅱ区做圆周运动的时间分别为t 1、t 2,可得:r U ∝;1056U LU L=设粒子运动的路程为s ,由运动公式可知:s=v(t 1+t 2) 联立上述各式可得:s=5.5πD2.如图甲所示,空间存在一范围足够大的垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .让质量为m ,电荷量为q (q >0)的粒子从坐标原点O 沿xOy 平面以不同的初速度大小和方向入射到磁场中.不计重力和粒子间的影响.(1)若粒子以初速度v 1沿y 轴正向入射,恰好能经过x 轴上的A (a ,0)点,求v 1的大小;(2)已知一粒子的初速度大小为v (v >v 1),为使该粒子能经过A (a ,0)点,其入射角θ(粒子初速度与x 轴正向的夹角)有几个?并求出对应的sin θ值;(3)如图乙,若在此空间再加入沿y 轴正向、大小为E 的匀强电场,一粒子从O 点以初速度v 0沿y 轴正向发射.研究表明:粒子在xOy 平面内做周期性运动,且在任一时刻,粒子速度的x 分量v x 与其所在位置的y 坐标成正比,比例系数与场强大小E 无关.求该粒子运动过程中的最大速度值v m .【来源】2013年全国普通高等学校招生统一考试理科综合能力测试物理(福建卷带解析) 【答案】⑴;⑵两个 sin θ=;⑶+.【解析】试题分析:(1)当粒子沿y 轴正向入射,转过半个圆周至A 点,半径R 1=a/2由运动定律有2111v Bqv m R =解得12Bqav m=(2)如右图所示,O 、A 两点处于同一圆周上,且圆心在x =2a的直线上,半径为R ,当给定一个初速率v 时, 有2个入射角,分别在第1、2象限.即 sinθ′=sinθ=2a R另有2v Bqv m R=解得 sinθ′=sinθ=2aqBmv(3)粒子在运动过程中仅电场力做功,因而在轨道的最高点处速率最大,用y m 表示其y 坐标,由动能定理有 qEy m =12mv 2m -12mv 20 由题知 v m =ky m若E =0时,粒子以初速度v 0沿y 轴正向入射,有 qv 0B =m 20v R在最高处有 v 0=kR 0联立解得22()m E E v v B B=++考点:带电粒子在符合场中的运动;动能定理.3.如图,绝缘粗糙的竖直平面MN 左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E ,磁场方向垂直纸面向外,磁感应强度大小为B .一质量为m 、电荷量为q 的带正电的小滑块从A 点由静止开始沿MN 下滑,到达C 点时离开MN 做曲线运动.A 、C 两点间距离为h ,重力加速度为g .(1)求小滑块运动到C 点时的速度大小v c ;(2)求小滑块从A 点运动到C 点过程中克服摩擦力做的功W f ;(3)若D 点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D 点时撤去磁场,此后小滑块继续运动到水平地面上的P 点.已知小滑块在D 点时的速度大小为v D ,从D 点运动到P 点的时间为t ,求小滑块运动到P 点时速度的大小v p .【来源】2015年全国普通高等学校招生统一考试物理(福建卷带解析) 【答案】(1)E/B (2)(3)【解析】 【分析】 【详解】小滑块到达C 点时离开MN ,此时与MN 间的作用力为零,对小滑块受力分析计算此时的速度的大小;由动能定理直接计算摩擦力做的功W f ;撤去磁场后小滑块将做类平抛运动,根据分运动计算最后的合速度的大小;(1)由题意知,根据左手定则可判断,滑块在下滑的过程中受水平向左的洛伦兹力,当洛伦兹力等于电场力qE 时滑块离开MN 开始做曲线运动,即Bqv qE = 解得:E v B=(2)从A 到C 根据动能定理:2102f mgh W mv -=- 解得:2212f E W mgh m B=-(3)设重力与电场力的合力为F ,由图意知,在D 点速度v D 的方向与F 地方向垂直,从D 到P 做类平抛运动,在F 方向做匀加速运动a=F /m ,t 时间内在F 方向的位移为212x at = 从D 到P ,根据动能定理:150a a +=,其中2114mv 联立解得:()22222()P Dmg qE v t v m +=+ 【点睛】解决本题的关键是分析清楚小滑块的运动过程,在与MN 分离时,小滑块与MN 间的作用力为零,在撤去磁场后小滑块将做类平抛运动,根据滑块的不同的运动过程逐步求解即可.4.对铀235的进一步研究在核能的开发和利用中具有重要意义.如图所示,质量为m 、电荷量为q 的铀235离子,从容器A 下方的小孔S 1不断飘入加速电场,其初速度可视为零,然后经过小孔S 2垂直于磁场方向进入磁感应强度为B 的匀强磁场中,做半径为R 的匀速圆周运动.离子行进半个圆周后离开磁场并被收集,离开磁场时离子束的等效电流为I .不考虑离子重力及离子间的相互作用.(1)求加速电场的电压U ;(2)求出在离子被收集的过程中任意时间t 内收集到离子的质量M ;(3)实际上加速电压的大小会在U+ΔU 范围内微小变化.若容器A 中有电荷量相同的铀235和铀238两种离子,如前述情况它们经电场加速后进入磁场中会发生分离,为使这两种离子在磁场中运动的轨迹不发生交叠,应小于多少?(结果用百分数表示,保留两位有效数字)【来源】2012年普通高等学校招生全国统一考试理综物理(天津卷)【答案】(1)(2)(3)0.63%【解析】解:(1)设离子经电场加速后进入磁场时的速度为v,由动能定理得:qU =mv2离子在磁场中做匀速圆周运动,由牛顿第二定律得:qvB=解得:U =(2)设在t时间内收集到的离子个数为N,总电荷量Q = ItQ = NqM =" Nm" =(3)由以上分析可得:R =设m/为铀238离子质量,由于电压在U±ΔU之间有微小变化,铀235离子在磁场中最大半径为:R max=铀238离子在磁场中最小半径为:R min=这两种离子在磁场中运动的轨迹不发生交叠的条件为:R max<R min即:<得:<<其中铀235离子的质量m = 235u(u为原子质量单位),铀238离子的质量m,= 238u 则:<解得:<0.63%5.如图所示,在xOy 平面直角坐标系中,直角三角形ACD 内存在垂直平面向里磁感应强度为B 的匀强磁场,线段CO=OD=L ,CD 边在x 轴上,∠ADC=30°。
带电粒子在复合场中运动专题训练 附参考答案汇编.doc
带电粒子在复合场中运动专题训练附参考答案汇编带电粒子在复合场中运动专题训练 1.如图所示,两导体板水平放置,两板间电势差为 U , 带电粒子以某一初速度 v 0 沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场,则粒子射入磁场和射出磁场的 M 、 N 两点间的距离 d 随着 U 和 v 0 的变化情况为() A、 d 随 v 0 增大而增大, d 与 U 无关 B、 d 随 v 0 增大而增大, d 随 U 增大而增大 C、 d 随 U 增大而增大, d 与 v 0 无关 D、 d 随v 0 增大而增大, d 随 U 增大而减小 2.在如图所示的直角坐标系中,在 y0 的区域内有一垂直于 xOy 平面的匀强磁场,在第四象限内有一平行于 x 轴方向的匀强电场。
现使一个质量为 m 的带电粒子,从坐标原点 O 以速度 V 沿 y 轴正方向射入匀强磁场,带电粒子从点 P(a,0)射出磁场,最后再从 Q 点射出匀强电场,射出电场时粒子速度跟 y 轴的夹角为 120 0 。
(粒子重力不计)求:(1)带电粒子从 O 点射入磁场,到达 P 点经历的时间。
(2)匀强电场的场强与匀强磁场的磁感应强度大小的比值 3.在如图所示的空间区域里, y 轴左方有一匀强电场,场强方向跟 y 轴负方向成 30角,大小为E = 4.0105 N/C, y 轴右方有一垂直纸面的匀强磁场,有一质子以速度 0 = 2.0106 m/s 由x 轴上 A 点( OA = 10cm)第一次沿轴正方向射入磁场,第二次沿 x 轴负方向射入磁场,回旋后都垂直射入电场,最后又进入磁场,已知质子质量 m 为 1.610-27 kg,求:(1)匀强磁场的磁感应强度;(2)质子两次在磁场中运动的时间之比;(3)质子两次在电场中运动的时间各为多少. 4.如图所示,在直角坐标系的第一、二象限内有垂直于纸面的匀强磁场,第三象限有沿 y 轴负方向的匀强电场;第四象限无电场和磁场。
物理带电粒子在复合场中的运动题20套(带答案)及解析
一、带电粒子在复合场中的运动专项训练1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。
极板间存在方向向上的匀强电场,两极板间电压为U 。
质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。
两虚线之间的区域无电场和磁场存在,离子可匀速穿过。
忽略相对论效应和离子所受的重力。
求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。
【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUm B =,2(1,2,3,,1)n k =-L (3)2222(1)t qum k -磁,22(1)=k m t h qU-电 【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。
【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。
设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-L ;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。
高考物理带电粒子在复合场中的运动专题训练答案及解析
一、带电粒子在复合场中的运动专项训练1.离子推进器是太空飞行器常用的动力系统,某种推进器设计的简化原理如图所示,截面半径为R 的圆柱腔分为两个工作区.I 为电离区,将氙气电离获得1价正离子;II 为加速区,长度为L ,两端加有电压,形成轴向的匀强电场.I 区产生的正离子以接近0的初速度进入II 区,被加速后以速度v M 从右侧喷出.I 区内有轴向的匀强磁场,磁感应强度大小为B ,在离轴线R /2处的C 点持续射出一定速度范围的电子.假设射出的电子仅在垂直于轴线的截面上运动,截面如图所示(从左向右看).电子的初速度方向与中心O 点和C 点的连线成α角(0<α<90◦).推进器工作时,向I 区注入稀薄的氙气.电子使氙气电离的最小速度为v 0,电子在I 区内不与器壁相碰且能到达的区域越大,电离效果越好.......................已知离子质量为M ;电子质量为m ,电量为e .(电子碰到器壁即被吸收,不考虑电子间的碰撞).(1)求II 区的加速电压及离子的加速度大小;(2)为取得好的电离效果,请判断I 区中的磁场方向(按图2说明是“垂直纸面向里”或“垂直纸面向外”);(3)α为90°时,要取得好的电离效果,求射出的电子速率v 的范围; (4)要取得好的电离效果,求射出的电子最大速率v max 与α角的关系.【来源】2014年全国普通高等学校招生统一考试理科综合能力测试物理(浙江卷带解析)【答案】(1)22Mv L(2)垂直于纸面向外(3)043mv B eR >(4)()max 342sin eRB v m α=-【解析】 【分析】 【详解】(1)离子在电场中加速,由动能定理得:212M eU Mv =,得:22M Mv U e =.离子做匀加速直线运动,由运动学关系得:22Mv aL =,得:22Mv a L=.(2)要取得较好的电离效果,电子须在出射方向左边做匀速圆周运动,即为按逆时针方向旋转,根据左手定则可知,此刻Ⅰ区磁场应该是垂直纸面向外.(3)当90α=︒时,最大速度对应的轨迹圆如图一所示,与Ⅰ区相切,此时圆周运动的半径为34r R =洛伦兹力提供向心力,有2maxmaxv Bev m r= 得34max BeRv m=即速度小于等于34BeRm 此刻必须保证043mv B BR>. (4)当电子以α角入射时,最大速度对应轨迹如图二所示,轨迹圆与圆柱腔相切,此时有:90OCO α∠'=︒﹣2ROC =,OC r '=,OO R r '=﹣ 由余弦定理有222(29022R R R r r r cos α⎛⎫=+⨯⨯︒ ⎪⎝⎭﹣)﹣(﹣),90cos sin αα︒-=() 联立解得:()342Rr sin α=⨯-再由:maxmv r Be=,得 ()342max eBRv m sin α=-.考点:带电粒子在匀强磁场中的运动、带电粒子在匀强电场中的运动 【名师点睛】该题的文字叙述较长,要求要快速的从中找出物理信息,创设物理情境;平时要注意读图能力的培养,以及几何知识在物理学中的应用,解答此类问题要有画草图的习惯,以便有助于对问题的分析和理解;再者就是要熟练的掌握带电粒子在磁场中做匀速圆周运动的周期和半径公式的应用.2.如图,绝缘粗糙的竖直平面MN 左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E ,磁场方向垂直纸面向外,磁感应强度大小为B .一质量为m 、电荷量为q 的带正电的小滑块从A 点由静止开始沿MN 下滑,到达C 点时离开MN 做曲线运动.A 、C 两点间距离为h ,重力加速度为g .(1)求小滑块运动到C 点时的速度大小v c ;(2)求小滑块从A 点运动到C 点过程中克服摩擦力做的功W f ;(3)若D 点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D 点时撤去磁场,此后小滑块继续运动到水平地面上的P 点.已知小滑块在D 点时的速度大小为v D ,从D 点运动到P 点的时间为t ,求小滑块运动到P 点时速度的大小v p .【来源】2015年全国普通高等学校招生统一考试物理(福建卷带解析) 【答案】(1)E/B (2)(3)【解析】 【分析】 【详解】小滑块到达C 点时离开MN ,此时与MN 间的作用力为零,对小滑块受力分析计算此时的速度的大小;由动能定理直接计算摩擦力做的功W f ;撤去磁场后小滑块将做类平抛运动,根据分运动计算最后的合速度的大小;(1)由题意知,根据左手定则可判断,滑块在下滑的过程中受水平向左的洛伦兹力,当洛伦兹力等于电场力qE 时滑块离开MN 开始做曲线运动,即Bqv qE = 解得:E v B=(2)从A 到C 根据动能定理:2102f mgh W mv -=- 解得:2212f E W mgh m B=-(3)设重力与电场力的合力为F ,由图意知,在D 点速度v D 的方向与F 地方向垂直,从D 到P 做类平抛运动,在F 方向做匀加速运动a=F /m ,t 时间内在F 方向的位移为212x at =从D 到P ,根据动能定理:150a a +=,其中2114mv 联立解得:()22222()P Dmg qE v t v m+=+ 【点睛】解决本题的关键是分析清楚小滑块的运动过程,在与MN 分离时,小滑块与MN 间的作用力为零,在撤去磁场后小滑块将做类平抛运动,根据滑块的不同的运动过程逐步求解即可.3.如图所示,在xOy 平面直角坐标系中,直角三角形ACD 内存在垂直平面向里磁感应强度为B 的匀强磁场,线段CO=OD=L ,CD 边在x 轴上,∠ADC=30°。
高三复习带电粒子在复合场中的运动专题
2020/4/25
几种常见的应用
1、速度选择器
(1)一个正交的匀强磁场和匀强电场组成速度选择器。 (2)带电粒子必须以唯一确定的速度(包括大小、方向)才 能匀速(或者说沿直线)通过速度选择器。否则将发生偏转。 即有确定的入口和出口。 (3)这个结论与粒子带何种电荷、电荷多少都无关。
+++++++
2020/4/25
例6、 如图所示为一电磁流量计的示意图,截面为 正方形的非磁性管,其边长为d,内有导电液体流 动,在垂直液体流动方向加一指向纸里的匀强磁场, 磁感应强度为B.现测得液体a、b两点间的电势差 为U,求管内导电液体的流量Q为多少?
2020/4/25
例7、一种测量血管中血流速度的仪器原理如图所示, 在动脉血管的左右两侧加有匀强磁场,上下两侧安装电 极并连接电压表。设血管的直径是d,磁场的磁感强度 为B,电压表测出的电压为U,则血流速度大小为多少? 流量为多少?
由Eq=Bqv得: E=BV U=Ed=BVd 得:V=U/Bd
流量:Q=SV=πdU/4B
2020/4/25
练习1、 在两平行金属板间有正交的匀强电场和匀强 磁场,一个带电粒子垂直于电场和磁场方向射入场中, 射出时粒子的动能减少了,为了使粒子射出时动能增 加,在不计重力的情况下,可采取的办法是:( B C ) A.增大粒子射入时的速度 B.减小磁场的磁感应强度 C.增大电场的电场强度 D.改变粒子的带电性质
②在I点和K点的加速度大小相等,方向不同
③在J点微粒受到的电场力小于洛伦兹力
④在J点微粒受到的电场力等于洛伦兹力
其中正确的是( A )
A. ①③
B. ②④
C. ②③
D. ①④
2020/4/25
练习3、如图所示,两平行金属板竖直放置,左极板接地, 中间有小孔。右极板电势随时间变化的规律如图所示。电子 原来静止在左极板小孔处(不计重力作用)。下面对粒子的
高考物理试卷分类汇编物理带电粒子在复合场中的运动(及答案)含解析
一、带电粒子在复合场中的运动专项训练1.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d ,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m 、带电量q +、重力不计的带电粒子,以初速度1v 垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功1W (2)粒子第n 次经过电场时电场强度的大小n E (3)粒子第n 次经过电场所用的时间n t(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题【答案】(1)21132mv W =(2)21(21)2n n mv E qd +=(3)12(21)n d t n v =+ (4)如图;【解析】 (1)根据mv r qB =,因为212r r =,所以212v v =,所以221211122W mv mv =-, (2)=,,所以.(3),,所以.(4)2.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【来源】带电粒子在磁场中的运动 【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得sin cos gRv θθ=⑨3.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P (x =0,y =h )点以一定的速度平行于x 轴正向入射.这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点.不计重力.求: (1)粒子到达x =R 0平面时速度方向与x 轴的夹角以及粒子到x 轴的距离; (2)M 点的横坐标x M .【来源】磁场 【答案】(1)20122R H h at h =+=+;(2)22000724M x R R R h h =++- 【解析】 【详解】(1)做直线运动有,根据平衡条件有:0qE qB =v ①做圆周运动有:2000qB m R =v v ②只有电场时,粒子做类平抛,有:qE ma =③00R t =v ④ y v at =⑤解得:0y v v =⑥ 粒子速度大小为:22002y v v v v =+=⑦速度方向与x 轴夹角为:π4θ=⑧ 粒子与x 轴的距离为:20122R H h at h =+=+⑨(2)撤电场加上磁场后,有:2v qBv m R=⑩解得:02R R =⑾. 粒子运动轨迹如图所示圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y 轴的夹角均为4π,有几何关系得C 点坐标为:02C x R =⑿02C R y H R h =-=-⒀ 过C 作x 轴的垂线,在ΔCDM 中:02CM R R ==⒁2C R CD y h ==-⒂)解得:22220074DM CM CD R R h h =-=+-⒃ M 点横坐标为:22000724M x R R R h h =++-⒄4.在场强为B 的水平匀强磁场中,一质量为m 、带正电q 的小球在O 静止释放,小球的运动曲线如图所示.已知此曲线在最低点的曲率半径为该点到z 轴距离的2倍,重力加速度为g .求:(1)小球运动到任意位置P (x ,y)的速率v ; (2)小球在运动过程中第一次下降的最大距离y m ; (3)当在上述磁场中加一竖直向上场强为E (mgE q>)的匀强电场时,小球从O 静止释放后获得的最大速率m v 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点24 带电粒子在复合场中的运动两年高考真题演练1.(2015·福建理综,22)如图,绝缘粗糙的竖直平面MN左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E,磁场方向垂直纸面向外,磁感应强度大小为B。
一质量为m、电荷量为q的带正电的小滑块从A点由静止开始沿MN下滑,到达C点时离开MN做曲线运动。
A、C两点间距离为h,重力加速度为g。
(1)求小滑块运动到C点时的速度大小v C;(2)求小滑块从A点运动到C点过程中克服摩擦力做的功W f;(3)若D点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D点时撤去磁场,此后小滑块继续运动到水平地面上的P点。
已知小滑块在D 点时的速度大小为v D,从D点运动到P点的时间为t,求小滑块运动到P点时速度的大小v P。
2.(2015·重庆理综,9)如图为某种离子加速器的设计方案。
两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场。
其中MN和M′N′是间距为h的两平行极板,其上分别有正对的两个小孔O和O′,O′N′=ON=d,P为靶点,O′P=kd(k为大于1的整数)。
极板间存在方向向上的匀强电场,两极板间电压为U。
质量为m、带电量为q的正离子从O点由静止开始加速,经O′进入磁场区域。
当离子打到极板上O′N′区域(含N′点)或外壳上时将会被吸收。
两虚线之间的区域无电场和磁场存在,离子可匀速穿过,忽略相对论效应和离子所受的重力。
求:(1)离子经过电场仅加速一次后能打到P点所需的磁感应强度大小;(2)能使离子打到P点的磁感应强度的所有可能值;(3)打到P点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。
3.(2015·江苏单科,15)一台质谱仪的工作原理如图所示,电荷量均为+q 、质量不同的离子飘入电压为U 0的加速电场,其初速度几乎为零。
这些离子经加速后通过狭缝O 沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场,最后打在底片上。
已知放置底片的区域MN =L ,且OM =L 。
某次测量发现MN 中左侧23区域MQ 损坏,检测不到离子,但右侧13区域QN仍能正常检测到离子。
在适当调节加速电压后,原本打在MQ 的离子即可在QN 检测到。
(1)求原本打在MN 中点P 的离子质量m ;(2)为使原本打在P 的离子能打在QN 区域,求加速电压U 的调节范围; (3)为了在QN 区域将原本打在MQ 区域的所有离子检测完整,求需要调节U 的最少次数。
(取lg 2=0.301,lg 3=0.477,lg 5=0.699)考点24 带电粒子在复合场中的运动一年模拟试题精练1.(2015·株洲质检)如图所示,一铜片长为a 、宽为b 、厚为c ,放在磁感应强度为B 的匀强磁场中,磁场方向与铜片表面垂直。
已知铜片内单位体积自由电子的个数为n ,电子的电荷量为e ,当铜片中通有图示方向的恒定电流I 时,在垂直于电流和磁场方向的铜片两侧AA ′间的电势差为( )A.IB nea B.IB neb C.IB nec D.IBc neab2.(2015·日照三校联考)(多选)如图所示,匀强磁场垂直于纸面向里,匀强电场平行于斜面向下,斜面是粗糙的。
一带正电物块以某一初速度沿斜面向上滑动,经a点后到b点时速度减为零,接着又滑了下来。
设物块带电荷量保持不变,则从a到b和从b回到a两过程相比较( ) A.加速度大小相等B.摩擦产生热量不相同C.电势能变化量的绝对值相同D.动能变化量的绝对值相同3.(2015·成都一诊)(多选)如图甲所示,绝缘轻质细绳一端固定在方向相互垂直的匀强电场和匀强磁场中的O点,另一端连接带正电的小球,小球电荷量q=6×10-7C,在图示坐标中,电场方向沿竖直方向,坐标原点O的电势为零。
当小球以2 m/s的速率绕O点在竖直平面内做匀速圆周运动时,细绳上的拉力刚好为零。
在小球从最低点运动到最高点的过程中,轨迹上每点的电势φ随纵坐标y的变化关系如图乙所示,重力加速度g=10 m/s2。
则下列判断正确的是( )A.匀强电场的场强大小为3.2×106 V/mB.小球重力势能增加最多的过程中,电势能减少了2.4 JC.小球做顺时针方向的匀速圆周运动D.小球所受的洛伦兹力的大小为3 N4.(2015·河北名校联盟监测)如图所示,有3块水平放置的长薄金属板a、b和c,a、b之间相距为L。
紧贴b板下表面竖直放置半径为R的半圆形塑料细管,两管口正好位于小孔M、N处。
板a与b、b与c之间接有电压可调的直流电源,板b与c间还存在方向垂直纸面向外的匀强磁场。
当体积为V0、密度为ρ、电荷量为q的带负电油滴,等间隔地以速率v0从a板上的小孔竖直向下射入,调节板间电压U ba和U bc,当U ba=U1、U bc=U2时,油滴穿过b板M孔进入细管,恰能与细管无接触地从N孔射出。
忽略小孔和细管对电场的影响,不计空气阻力,重力加速度为g。
求:(1)油滴进入M孔时的速度v1;(2)b、c两板间的电场强度E和磁感应强度B的值;(3)当油滴从细管的N孔射出瞬间,将U ba和B立即调整到U ba′和B′,使油滴恰好不碰到a板,且沿原路与细管无接触地返回穿过M孔,请给出U ba′和B′的结果。
5.(2015·山西四校联考)如图所示,在xOy 平面坐标系中,直线MN 与y 轴成30°角,M 点的坐标为(0,a ),在y 轴与直线MN 之间的区域内,存在垂直xOy 平面向里、磁感应强度为B 的匀强磁场。
电子束以相同速度v 0从y 轴上-23a ≤y ≤0的区间垂直于y 轴和磁场射入磁场。
已知从O 点射入磁场的电子在磁场中的运动轨迹恰好与直线MN 相切,忽略电子间的相互作用和电子的重力。
(1)求电子的比荷;(2)若在xOy 坐标系的第Ⅰ象限y >0区域内加上沿y 轴正方向大小为E =Bv 0的匀强电场,在x 0=43a 处垂直于x 轴放置一荧光屏,计算说明荧光屏上发光区的形状和范围。
参考答案考点24 带电粒子在复合场中的运动两年高考真题演练1.解析 (1)小滑块沿MN 运动过程,水平方向受力满足qvB +N =qE ①小滑块在C 点离开MN 时N =0②解得v C =E B③ (2)由动能定理mgh -W f =12mv 2C -0④ 解得W f =mgh -mE 22B2⑤(3)如图,小滑块速度最大时,速度方向与电场力、重力的合力方向垂直。
撤去磁场后小滑块将做类平抛运动,等效加速度为g ′g ′=(qE m)2+g 2⑥且v 2P =v 2D +g ′2t 2⑦解得v P =v 2D +⎣⎢⎡⎦⎥⎤(qE m )2+g 2t 2⑧ 答案 (1)E B (2)mgh -mE 22B2(3)v 2D +⎣⎢⎡⎦⎥⎤(qE m )2+g 2t 2 2.解析 (1)粒子经电场加速一次后的速度为v 1,由动能定理得qU =12mv 21①粒子能打到P 点,则在磁场中的轨道半径r 1=kd2②对粒子在磁场中由牛顿第二定律得qv 1B 1=mv 21r 1③联立①②③式解得B 1=22Uqmqkd④(2)若粒子在电场中加速n 次后能打到P 点,同理可得nqU =12mv 2(n =1,2,3,…)⑤ r n =kd 2⑥qvB =mv 2r n⑦联立⑤⑥⑦式解得B =22nqUmqkd⑧由题意可得当n =1时,2r 1′>d ⑨ 解得n <k 2⑩故⑧式中n 的取值为n =1,2,3,…,k 2-1(3)当n =k 2-1时,打在P 点的粒子能量最大 粒子在磁场中运动周期T =2πmqB⑪粒子在磁场中运动时间t B =(n -12)T ⑫联立⑧⑪⑫式解得t B =(2k 2-3)πmkd22Uqm (k 2-1)⑬ 对粒子在电场中由动量定理得qUh·t E =mv ⑭ 联立⑤⑭式解得在电场中运动时间t E =h 2(k 2-1)mUq⑮答案 (1)22Uqm qkd(2)22nUqm qkd(n =1,2,3,…,k 2-1)(3)(2k 2-3)πkmd22Uqm (k 2-1)h 2(k 2-1)mUq3.解析 (1)离子在电场中加速: qU 0=12mv 2在磁场中做匀速圆周运动:qvB =m v 2r解得r =1B 2mU 0q打在MN 中点P 的离子半径为r 0=34L ,代入解得m =9qB 2L 232U 0(2)由(1)知,U =16U 0r 29L 2离子打在Q 点时r =56L ,U =100U 081离子打在N 点时r =L ,U =16U 09,则电压的范围 100U 081≤U ≤16U 09 (3)由(1)可知,r ∝U由题意知,第1次调节电压到U 1,使原本Q 点的离子打在N 点L56L =U 1U 0此时,原本半径为r 1的打在Q 1的离子打在Q 上56L r 1=U 1U 0解得r 1=⎝ ⎛⎭⎪⎫562L第2次调节电压到U 2,原本打在Q 1的离子打在N 点,原本半径为r 2的打在Q 2的离子打在Q 上,则:L r 1=U 2U 0,56Lr 2=U 2U 0解得r 2=⎝ ⎛⎭⎪⎫563L同理,第n 次调节电压,有r n =⎝ ⎛⎭⎪⎫56n +1L检测完整,有r n ≤L2解得n ≥lg 2lg (65)-1≈2.8最少次数为3次答案 (1)9qB 2L 232U 0 (2)100U 081≤U ≤16U 09 (3)3次一年模拟试题精练1.C [最终电子在电场力和洛伦兹力作用下处于平衡,eU /b =evB ,I =neSv =necbv ,得U =IBnec,所以C 正确。
] 2.BC3.BD [根据小球从最低点运动到最高点的过程中,轨迹上每点的电势φ随纵坐标y 的变化关系可得,匀强电场的电场强度大小E =2×1060.4 V/m =5×106V/m ,故A 选项错误;由于带电小球在运动过程中,只有重力和电场力做功,则只有重力势能和电势能的相互转化,又由于带电小球在复合场(重力场、匀强电场和匀强磁场)中做匀速圆周运动,且细绳上的拉力刚好为零,则有小球受到的竖直向下的重力与其受到的电场力等大、反向,即qE =mg ,因此当带电小球从最低点运动到最高点的过程中,即小球重力势能增加最多的过程中,电势能减少量为qE ·2L =2.4 J ,故B 选项正确;由于带电小球所受的洛伦兹力提供小球做匀速圆周运动的向心力,根据左手定则可知,小球沿逆时针方向运动,故C 选项错误;根据牛顿第二定律可得f B =mv 2L,又qE =mg ,解得f B =3 N ,即小球所受的洛伦兹力的大小为3 N ,故D 选项正确。