重庆理工大学大学物理波动练习题答案
大学物理波动练习题
大学物理波动练习题1、下列哪一种波属于机械波?A.电磁波B.声波C.地震波D.核辐射波2、在机械波的传播过程中,介质中的质点发生的是()A.随波逐流的相对运动B.周期性变化的相对运动C.振幅变化的相对运动D.垂直于波传播方向的相对运动3、下列哪一种说法正确地描述了波动现象的特征?A.波动现象是独立存在的,与振动源无关B.波动现象与振动源无关,只与传播介质有关C.波动现象是振动源和传播介质共同作用的结果D.波动现象只与传播介质有关,与振动源无关4、在波动现象中,下列说法正确的是()A.各质点的起振方向都与振源的起振方向相同B.各质点的振动周期都与振源的振动周期相同C.各质点的振动方向都与振源的振动方向相同D.各质点的振动步调都与振源的振动步调相同二、解答题5.什么是机械波的传播速度?它与介质有关吗?如果有关,是怎样的关系?6.在机械波的形成过程中,介质中的各质点是如何随波迁移的?为什么?1、在以下物理量中,哪个是矢量?A.路程B.速率C.速度D.时间答案:C.速度解释:矢量是具有大小和方向的物理量,而速度是既有大小又有方向的物理量,因此是矢量。
而路程、速率和时间都只有大小,没有方向,因此是标量。
2、下列哪个选项可以表示物体的惯性?A.速度B.质量C.加速度D.动量答案:B.质量解释:惯性是物体抵抗运动状态被改变的性质,是物体的固有属性。
质量是惯性的唯一量度,因此质量可以表示物体的惯性。
速度、加速度和动量都与物体的运动状态有关,但它们都不能直接表示物体的惯性。
3、在以下哪个条件下,物体的运动状态会发生改变?A.受到力的作用B.受到重力C.受到支持力D.受到摩擦力答案:A.受到力的作用解释:物体的运动状态会发生改变,即物体的速度会发生改变,这只有当物体受到力的作用时才会发生。
力是改变物体运动状态的原因。
重力、支持力和摩擦力都是具体的力,但它们并不能独自改变物体的运动状态。
二、填空题4、在物理学中,我们将物体相对于其他物体位置的变化称为______。
(完整版)大学物理波动光学的题目库及答案
一、选择题:(每题3分)1、在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为(A) 1.5 λ. (B) 1.5 λ/ n .(C) 1.5 n λ. (D) 3 λ. [ ]2、在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等.(B) 传播的路程相等,走过的光程不相等.(C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等. [ ]3、如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2.路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于(A) )()(111222t n r t n r +-+(B) ])1([])1([211222t n r t n r -+--+(C) )()(111222t n r t n r ---(D) 1122t n t n - [ ]4、真空中波长为λ的单色光,在折射率为n 的均匀透明媒质中,从A 点沿某一路径传播到B 点,路径的长度为l .A 、B 两点光振动相位差记为∆φ,则(A) l =3 λ / 2,∆φ=3π. (B) l =3 λ / (2n ),∆φ=3n π.(C) l =3 λ / (2n ),∆φ=3π. (D) l =3n λ / 2,∆φ=3n π. [ ]5、如图所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为e ,而且n 1>n 2>n 3,则两束反射光在相遇点的相位差为(A) 4πn 2 e / λ. (B) 2πn 2 e / λ.(C) (4πn 2 e / λ) +π. (D) (2πn 2 e / λ) -π. [ ]6、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2 .(C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2).[ ]7、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1< n 2>n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①与②示意)的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2.(C) 2n 2 e -λ . (D) 2n 2 e -λ / (2n 2). P S 1S 2 r 1 n 1 n 2 t 2 r 2 t 1n 13λn 3n 3[ ]8在双缝干涉实验中,两缝间距为d ,双缝与屏幕的距离为D (D>>d ),单色光波长为λ,屏幕上相邻明条纹之间的距离为(A) λ D/d . (B) λd /D .(C) λD /(2d ). (D) λd/(2D ). [ ]9、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源. [ ]10、在双缝干涉实验中,光的波长为600 nm (1 nm =10-9 m ),双缝间距为2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为(A) 0.45 mm . (B) 0.9 mm .(C) 1.2 mm (D) 3.1 mm . [ ]11、在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于图中O 处.现将光源S 向下移动到示意图中的S '位置,则 (A) 中央明条纹也向下移动,且条纹间距不变.(B) 中央明条纹向上移动,且条纹间距不变. (C) 中央明条纹向下移动,且条纹间距增大. (D) 中央明条纹向上移动,且条纹间距增大. [ ]12、在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹(A) 向下平移,且间距不变. (B) 向上平移,且间距不变.(C) 不移动,但间距改变. (D) 向上平移,且间距改变. [ ]13、在双缝干涉实验中,两缝间距离为d ,双缝与屏幕之间的距离为D (D >>d ).波长为λ的平行单色光垂直照射到双缝上.屏幕上干涉条纹中相邻暗纹之间的距离是(A) 2λD / d . (B) λ d / D .(C) dD / λ. (D) λD /d . [ ]14把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d ,双缝到屏的距离为D (D >>d ),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是(A) λD / (nd ) (B) n λD /d .(C) λd / (nD ). (D) λD / (2nd ). [ ]15、一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ). [ ]16、在牛顿环实验装置中,曲率半径为R 的平凸透镜与平玻璃扳在中心恰好接触,它S S '们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径r k 的表达式为(A) r k =R k λ. (B) r k =n R k /λ.(C) r k =R kn λ. (D) r k =()nR k /λ. [ ]17、在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n -1 ) d . (B) 2nd .(C) 2 ( n -1 ) d +λ / 2. (D) nd .(E) ( n -1 ) d . [ ]18、在迈克耳孙干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是(A) λ / 2. (B) λ / (2n ).(C) λ / n . (D) ()12-n λ. [ ]19、在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2 个. (B) 4 个.(C) 6 个. (D) 8 个. [ ]20、一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为(A) λ / 2. (B) λ. (C) 3λ / 2 . (D) 2λ . [ ]21、根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的(A) 振动振幅之和. (B) 光强之和.(C) 振动振幅之和的平方. (D) 振动的相干叠加. [ ]22、波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为θ=±π / 6,则缝宽的大小为(A) λ / 2. (B) λ.(C) 2λ. (D) 3 λ . [ ]23、在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小. (B) 对应的衍射角变大.(C) 对应的衍射角也不变. (D) 光强也不变. [ ]24、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为ϕ=30°的方位上.所用单色光波长为λ=500 nm ,则单缝宽度为(A) 2.5×10-5 m . (B) 1.0×10-5 m .(C) 1.0×10-6 m . (D) 2.5×10-7 . [ ]25、一单色平行光束垂直照射在宽度为1.0 mm 的单缝上,在缝后放一焦距为2.0 m 的会聚透镜.已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.0 mm ,则入射光波长约为 (1nm=10−9m) (A) 100 nm (B) 400 nm(C) 500 nm (D) 600 nm [ ]26、在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小.(B) 宽度变大.(C) 宽度不变,且中心强度也不变.(D) 宽度不变,但中心强度增大. [ ]27、在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹(A) 宽度变小;(B) 宽度变大;(C) 宽度不变,且中心强度也不变;(D) 宽度不变,但中心强度变小. [ ]28、在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成 3个半波带,则缝宽度a 等于(A) λ. (B) 1.5 λ.(C) 2 λ. (D) 3 λ. [ ]29、在如图所示的单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小.若使单缝宽度a 变为原来的23,同时使入射的单色光的波长λ变为原来的3 / 4,则屏幕C 上单缝衍射条纹中央明纹的宽度∆x 将变为原来的 (A) 3 / 4倍. (B) 2 / 3倍. (C) 9 / 8倍. (D) 1 / 2倍. (E) 2倍. [ ]30、测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉. (B) 牛顿环 . (C) 单缝衍射. (D) 光栅衍射. [ ]31、一束平行单色光垂直入射在光栅上,当光栅常数(a + b )为下列哪种情况时(a 代表每条缝的宽度),k =3、6、9 等级次的主极大均不出现?(A) a +b =2 a . (B) a +b =3 a .(C) a +b =4 a . (A) a +b =6 a . [ ]32、一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是(A) 紫光. (B) 绿光. (C) 黄光. (D) 红光. [ ]33、对某一定波长的垂直入射光,衍射光栅的屏幕上只能出现零级和一级主极大,欲O y x λL C fa使屏幕上出现更高级次的主极大,应该(A) 换一个光栅常数较小的光栅.(B) 换一个光栅常数较大的光栅.(C) 将光栅向靠近屏幕的方向移动.(D) 将光栅向远离屏幕的方向移动. [ ]34、若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 5.0×10-1 mm . (B) 1.0×10-1 mm .(C) 1.0×10-2 mm . (D) 1.0×10-3 mm . [ ]35、在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为(A) a=21b . (B) a=b . (C) a=2b . (D) a=3 b . [ ]36、在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹.若在两缝后放一个偏振片,则(A) 干涉条纹的间距不变,但明纹的亮度加强.(B) 干涉条纹的间距不变,但明纹的亮度减弱.(C) 干涉条纹的间距变窄,且明纹的亮度减弱.(D) 无干涉条纹. [ ]37、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8. (B) I 0 / 4.(C) 3 I 0 / 8. (D) 3 I 0 / 4. [ ]38、一束光强为I 0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I 为(A) 4/0I 2 . (B) I 0 / 4.(C) I 0 / 2. (D) 2I 0 / 2. [ ]39、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8. (B) I 0 / 4.(C) 3 I 0 / 8. (D) 3 I 0 / 4. [ ]40、自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A) 在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光. [ ]二、填空题:(每题4分)41、若一双缝装置的两个缝分别被折射率为n 1和n 2的两块厚度均为e 的透明介 质所遮盖,此时由双缝分别到屏上原中央极大所在处的两束光的光程差δ=_____________________________.42、波长为λ的单色光垂直照射如图所示的透明薄膜.膜厚度为e ,两束反射光的光程差δ = __________________________.43、用波长为λ的单色光垂直照射置于空气中的厚度为e 折射率为1.5的透明薄膜,两束反射光的光程差δ =________________________.44、波长为λ的平行单色光垂直照射到如图所示的透明薄膜上,膜厚为e ,折射率为n ,透明薄膜放在折射率为n 1的媒质中,n 1<n ,则上下两表面反射的两束反射光在相遇处的相 位差 ∆φ=__________________.45、单色平行光垂直入射到双缝上.观察屏上P 点到两缝的距离分别为r 1和r 2.设双缝和屏之间充满折射率为n 的媒质,则P 点处二相干光线的光程差为________________.46、在双缝干涉实验中,两缝分别被折射率为n 1和n 2的透明薄膜遮盖,二者的厚度均为e .波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差∆φ=_______________________.47、如图所示,波长为λ的平行单色光斜入射到距离为d 的双缝上,入射角为θ.在图中的屏中央O 处(O S O S 21=),两束相干光的相位差为________________.48、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1)________________________________________.(2) ________________________________________.49、一双缝干涉装置,在空气中观察时干涉条纹间距为1.0 mm .若整个装置放 在水中,干涉条纹的间距将为____________________mm .(设水的折射率为4/3)50、在双缝干涉实验中,所用单色光波长为λ=562.5 nm (1nm =10-9 m),双缝与观察n 11 λp d r 1 r 2 S 2 S 1 n屏的距离D =1.2 m ,若测得屏上相邻明条纹间距为∆x =1.5 mm ,则双缝的间距d =__________________________.51、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距 ___________;若使单色光波长减小,则干涉条纹间距_________________.52、把双缝干涉实验装置放在折射率为n 的媒质中,双缝到观察屏的距离为D ,两缝之间的距离为d (d <<D ),入射光在真空中的波长为λ,则屏上干涉条纹中相邻明纹的间距是_______________________.53、在双缝干涉实验中,双缝间距为d ,双缝到屏的距离为D (D >>d ),测得中央 零级明纹与第五级明之间的距离为x ,则入射光的波长为_________________.54、在双缝干涉实验中,若两缝的间距为所用光波波长的N 倍,观察屏到双缝 的距离为D ,则屏上相邻明纹的间距为_______________ .55、用λ=600 nm 的单色光垂直照射牛顿环装置时,从中央向外数第4个(不计中央暗斑)暗环对应的空气膜厚度为_______________________μm .(1 nm=10-9 m)56、在空气中有一劈形透明膜,其劈尖角θ=1.0×10-4rad ,在波长λ=700 nm 的单色光垂直照射下,测得两相邻干涉明条纹间距l =0.25 cm ,由此可知此透明材料的折射率n =______________________.(1 nm=10-9 m)57、用波长为λ的单色光垂直照射折射率为n 2的劈形膜(如图)图中各部分折射率的关系是n 1<n 2<n 3.观察反射光的干涉条纹,从劈形膜顶开始向右数第5条暗条纹中心所对应的厚度e =____________________.58、用波长为λ的单色光垂直照射如图所示的、折射率为n 2的劈形膜(n 1>n 2 ,n 3>n 2),观察反射光干涉.从劈形膜顶开始,第2条明条纹对应的膜厚度e =___________________.59、用波长为λ的单色光垂直照射折射率为n 的劈形膜形成等厚干涉条纹,若测得相邻明条纹的间距为l ,则劈尖角θ=_______________.60、用波长为λ的单色光垂直照射如图示的劈形膜(n 1>n 2>n 3),观察反射光干涉.从劈形膜尖顶开始算起,第2条明条纹中心所对应的膜厚度e =___________________________.61、已知在迈克耳孙干涉仪中使用波长为λ的单色光.在干涉仪的可动反射镜移 动距离d 的过程中,干涉条纹将移动________________条.n 1n 2n 3 n 1n 2n 3 n 1n 2n 362、在迈克耳孙干涉仪的一条光路中,插入一块折射率为n,厚度为d的透明薄片.插入这块薄片使这条光路的光程改变了_______________.63、在迈克耳孙干涉仪的可动反射镜移动了距离d的过程中,若观察到干涉条纹移动了N条,则所用光波的波长λ =______________.64、波长为600 nm的单色平行光,垂直入射到缝宽为a=0.60 mm的单缝上,缝后有一焦距f'=60 cm的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为__________,两个第三级暗纹之间的距离为____________.(1 nm=10﹣9 m)65、He-Ne激光器发出λ=632.8 nm (1nm=10-9 m)的平行光束,垂直照射到一单缝上,在距单缝3 m远的屏上观察夫琅禾费衍射图样,测得两个第二级暗纹间的距离是10 cm,则单缝的宽度a=________.66、在单缝的夫琅禾费衍射实验中,屏上第三级暗纹对应于单缝处波面可划分为_________________ 个半波带,若将缝宽缩小一半,原来第三级暗纹处将是______________________________纹.67、平行单色光垂直入射于单缝上,观察夫琅禾费衍射.若屏上P点处为第二级暗纹,则单缝处波面相应地可划分为___________ 个半波带.若将单缝宽度缩小一半,P点处将是______________级__________________纹.68、波长为λ的单色光垂直入射在缝宽a=4 λ的单缝上.对应于衍射角ϕ=30°,单缝处的波面可划分为______________个半波带.69、惠更斯引入__________________的概念提出了惠更斯原理,菲涅耳再用______________的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理.70、惠更斯-菲涅耳原理的基本内容是:波阵面上各面积元所发出的子波在观察点P的_________________,决定了P点的合振动及光强.71、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为30°的方位上,所用单色光波长λ=500 nm (1 nm = 10-9 m),则单缝宽度为_____________________m.72、在单缝夫琅禾费衍射实验中,如果缝宽等于单色入射光波长的2倍,则中央明条纹边缘对应的衍射角ϕ =______________________.73、在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射在宽度为a=2λ的单缝上,对应于衍射角为30︒方向,单缝处的波面可分成的半波带数目为________个.74、如图所示在单缝的夫琅禾费衍射中波长为λ的单色光垂直入射在单缝上.若对应于会聚在P 点的衍射光线在缝宽a 处的波阵面恰好分成3个半波带,图中DB CD AC ==,则光线 1和2在P 点的相位差为______________.75、在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度a =5 λ的单缝上.对应于衍射角ϕ 的方向上若单缝处波面恰好可分成 5个半波带,则衍射角ϕ =______________________________.76、在如图所示的单缝夫琅禾费衍射装置示意图中,用波长为λ的单色光垂直入射在单缝上,若P 点是衍射条纹中的中央明纹旁第二个暗条纹的中心,则由单缝边缘的A 、B 两点分别到 达P 点的衍射光线光程差是__________.77、测量未知单缝宽度a 的一种方法是:用已知波长λ的平行光垂直入射在单缝上,在距单缝的距离为D 处测出衍射花样的中央亮纹宽度为l (实验上应保证D ≈103a ,或D 为几米),则由单缝衍射的原理可标出a 与λ,D ,l 的关系为a =______________________.78、某单色光垂直入射到一个每毫米有800 条刻线的光栅上,如果第一级谱线的 衍射角为30°,则入射光的波长应为_________________.79、在光学各向异性晶体内部有一确定的方向,沿这一方向寻常光和非常光的 ____________相等,这一方向称为晶体的光轴.只具有一个光轴方向的晶体称为______________晶体.80、光的干涉和衍射现象反映了光的________性质.光的偏振现像说明光波是 __________波.三、计算题:(每题10分)81、在双缝干涉实验中,所用单色光的波长为600 nm ,双缝间距为1.2 mm 双缝与屏相距500 mm ,求相邻干涉明条纹的间距.82、在双缝干涉实验中,双缝与屏间的距离D =1.2 m ,双缝间距d =0.45 mm ,若测得屏上干涉条纹相邻明条纹间距为1.5 mm ,求光源发出的单色光的波长λ.83、用波长为500 nm (1 nm=10-9 m)的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上.在观察反射光的干涉现象中,距劈形膜棱边l = 1.56 cm 的A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈形膜的劈尖角θ;(2) 改用600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹还是暗条纹?(3) 在第(2)问的情形从棱边到A 处的范围内共有几条明纹?几条暗纹?aλλP84、图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是R =400 cm .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30 cm .(1) 求入射光的波长.(2) 设图中OA =1.00 cm ,求在半径为OA 的范围内可观察到的明环数目.85、用白光垂直照射置于空气中的厚度为0.50 μm 的玻璃片.玻璃片的折射率为1.50.在可见光范围内(400 nm ~ 760 nm)哪些波长的反射光有最大限度的增强?(1 nm=10-9 m)86、两块长度10 cm 的平玻璃片,一端互相接触,另一端用厚度为0.004 mm 的纸片隔开,形成空气劈形膜.以波长为500 nm 的平行光垂直照射,观察反射光的等厚干涉条纹,在全部10 cm 的长度内呈现多少条明纹?(1 nm=10-9 m)87、一平面衍射光栅宽2 cm ,共有8000条缝,用钠黄光(589.3 nm)垂直入射,试求出可能出现的各个主极大对应的衍射角.(1nm=109m)88、如图,P 1、P 2为偏振化方向相互平行的两个偏振片.光强为I 0的平行自然光垂直入射在P 1上.(1) 求通过P 2后的光强I .(2) 如果在P 1、P 2之间插入第三个偏振片P 3,(如图中虚线所示)并测得最后光强I =I 0 / 32,求:P 3的偏振化方向与P 1的偏振化方向之间的夹角α (设α为锐角).89、三个偏振片P 1、P 2、P 3顺序叠在一起,P 1、P 3的偏振化方向保持相互垂直,P 1与P 2的偏振化方向的夹角为α,P 2可以入射光线为轴转动.今以强度为I 0的单色自然光垂直入射在偏振片上.不考虑偏振片对可透射分量的反射和吸收.(1) 求穿过三个偏振片后的透射光强度I 与α角的函数关系式;(2) 试定性画出在P 2转动一周的过程中透射光强I 随α角变化的函数曲线.90、两个偏振片P 1、P 2叠在一起,一束单色线偏振光垂直入射到P 1上,其光矢量振动方向与P 1的偏振化方向之间的夹角固定为30°.当连续穿过P 1、P 2后的出射光强为最大出射光强的1 / 4时,P 1、P 2的偏振化方向夹角α是多大?91、将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为o 60,一束光强为I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角.(1) 求透过每个偏振片后的光束强度;(2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.92、将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45︒和90︒角.(1) 强度为I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.(2) 如果将第二个偏振片抽走,情况又如何?93、如图所示,媒质Ⅰ为空气(n 1=1.00),Ⅱ为玻璃(n 2=1.60),两个交界面相互平行.一束自然光由媒质Ⅰ中以i角入射.若使Ⅰ、Ⅱ交界面上的反射光为线偏振光, (1) 入射角i 是多大?(2) 图中玻璃上表面处折射角是多大? (3) 在图中玻璃板下表面处的反射光是否也是线偏振光?94、在水(折射率n 1=1.33)和一种玻璃(折射率n 2=1.56的交界面上,自然光从水中射向玻璃,求起偏角i 0.若自然光从玻璃中射向水,再求此时的起偏角0i .95、一束自然光由空气入射到某种不透明介质的表面上.今测得此不透明介质的起偏角为56°,求这种介质的折射率.若把此种介质片放入水(折射率为1.33)中,使自然光束自水中入射到该介质片表面上,求此时的起偏角.96、一束自然光以起偏角i 0=48.09°自某透明液体入射到玻璃表面上,若玻璃的折射率为1.56 ,求:(1) 该液体的折射率.(2) 折射角.97、一束自然光自空气入射到水(折射率为1.33)表面上,若反射光是线偏振光,(1) 此入射光的入射角为多大?(2) 折射角为多大?98、一束自然光自水(折射率为1.33)中入射到玻璃表面上(如图).当入射角为49.5°时,反射光为线偏振光,求玻璃的折射率.99、一束自然光自水中入射到空气界面上,若水的折射率为1.33,空气的折射率为1.00,求布儒斯特角.100、一束自然光自空气入射到水面上,若水相对空气的折射率为 1.33,求布儒斯特角.水玻璃大学物理------波动光学参考答案 一、选择题 01-05 ACBCA 06-10 ABABB 11-15 BBDAB 16-20 BADBB21-25 DCBCC 26-30 ABD D D 31-35 BD B DB 36-40 BABAC二、填空题41. e n n )(21- or e n n )(12-; 42. e 60.2; 43.3.0e +λ/2 or 3.0e -λ/2; 44. πλ)14(+e n or πλ)14(-e n; 45. )(12r r n -; 46. λπen n )(212-;47. λθπ/sin 2d ; 48. (1) 使两缝间距变小,(2)使屏与两缝间距变大; 49. 75.0; 50. mm 45.0; 51. 变小, 变小; 52.dn D λ; 53. D dx 5; 54. N D ; 55. m μ2.1; 56. 40.1; 57. 249n λ; 58. 243n λ; 59. rad nl2λ; 60. 22n λ; 61. λ/2d ; 62. d n )1(2-; 63. N d /2; 64. mm 2.1,mm 6.3;65. mm 21060.7-⨯; 66. 6,第一级明纹; 67. 4,第一, 暗; 68. 4;69. 子波, 子波相干叠加; 70. 相干叠加; 71. m 610-; 72. 030±; 73. 2; 74. π; 75. 030; 76. λ2; 77. l D /2λ; 78. nm 625;79. 传播速度, 单轴; 80. 波动, 横波。
大学物理第十章波动学习题答案
第十章 波动学习题10-1 有一平面简谐波0.02cos20030x y t π⎛⎫=- ⎪⎝⎭,x ,y 的单位为m ,t 的单位为s 。
(1)求其振幅、频率、波速和波长;(2)求x=0.1m 处质点的初相位。
解:(1)A=0.02m ,v=ω/2π=200π/2π=100s -1,u=30m/s ,λ=u/v=0.3m(2)02000.1200230303x πππφ⨯=-=-=- 10-2 一横波沿绳子传播时的波动方程为()0.05cos 104y t x ππ=-,x ,y 的单位为m ,t 的单位为s 。
(1)求其振幅、频率、波长和波速;(2)求绳子上各质点振动的最大速度和最大加速度;(3)求x=0.2m 处的质点在t=1s 时的相位,它是原点处质点在哪一时刻的相位?(4)分别画出t=1s ,1.25s ,1.5s 时的波形曲线。
解:(1)A=0.05m ,v=ω/2π=10π/2π=5s -1,λ=0.5m ,u=λv=2.5m/s(2)m A ω=v ,2m a A ω= (3)1041040.29.2t x φπππππ=-=-⨯= 10-3 一平面简谐波()x πt y π2-10sin 05.0=,x ,y 的单位为m ,t 的单位为s 。
(1)求其频率、周期、波长和波速;(2)说明x =0时方程的意义,并作图表示。
解:(1)v=ω/2π=10π/2π=5s -1,T=1/v=0.2s ,λ=1m ,u=λv=5m/s(2)0.05sin10y πt = 原点处质点的振动方程10-4 波源作简谐运动,振动方程为()m cos240100.43πt y -⨯=,它所形成的波形以30m·s -1的速度沿一直线传播。
(1)求波的周期及波长;(2)写出波动方程。
解:(1)T=2π/ω=2π/240π=1/120s ,λ=uT=30/120=0.25m(2)()34.010cos240m 30x y πt -⎛⎫=⨯- ⎪⎝⎭10-5 如图所示,一平面简谐波在介质中以速度u=20m/s 沿x 轴负方向传播,已知a 点的振动方程为y a =3cos4πt ,t 的单位为s ,y 的单位为m 。
振动、波动部分答案(新)
大学物理学——振动和波振 动班级 学号 姓名 成绩内容提要1、简谐振动的三个判据(1);(2);(3)2、描述简谐振动的特征量: A 、T 、γ;T1=γ,πγπω22==T3、简谐振动的描述:(1)公式法 ;(2)图像法;(3)旋转矢量法4、简谐振动的速度和加速度:)2cos()sin(v00πϕωϕωω++=+-==t v t A dt dx m ; a=)()(πϕωϕωω±+=+=0m 0222t a t cos -dtxd A 5、振动的相位随时间变化的关系:6、简谐振动实例弹簧振子:,单摆小角度振动:,复摆:0mgh dt d 22=+θθJ ,T=2mghJπ 7、简谐振动的能量:222m 21k 21A A Eω==系统的动能为:)(ϕωω+==t sin m 21mv 212222A E K ;系统的势能为:)ϕω+==t (cos k 21kx 21222A E P8、两个简谐振动的合成(1)两个同方向同频率的简谐振动的合成合振动方程为:)(ϕω+=t cos x A其中,其中;。
*(2) 两个同方向不同频率简谐振动的合成拍:当频率较大而频率之差很小的两个同方向简谐运动合成时,其合振动的振幅表现为时而加强时而减弱的现象,拍频:12-γγγ=*(3)两个相互垂直简谐振动的合成合振动方程:)(1221221222212-sin )(cos xy 2y x ϕϕϕϕ=--+A A A A ,为椭圆方程。
练习一一、 填空题1.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1。
若将此弹簧截去一半的长度,下端挂一质量为m/2的物体,则系统的周期T 2等于 。
2.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为:A = ;=ω ;=ϕ 。
3.如图,一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,做成一复摆。
已知细棒绕过其一端的轴的转动惯量J =3/2ml ,此摆作微小振动的周期为 。
大学物理课后习题及答案 波动
第十四章波动14-1 一横波再沿绳子传播时得波动方程为[]x m t s m y )()5.2(cos )20.0(11---=ππ。
(1)求波得振幅、波速、频率及波长;(2)求绳上质点振动时得最大速度;(3)分别画出t=1s 和t=2s 时得波形,并指出波峰和波谷。
画出x=1.0m 处质点得振动曲线并讨论其与波形图得不同。
14-1 ()[]x m t s m y )(5.2cos )20.0(11---=ππ分析(1)已知波动方程(又称波函数)求波动的特征量(波速u 、频率ν、振幅A 及彼长 等),通常采用比较法。
将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y μ书写,然后通过比较确定各特征量(式中前“-”、“+”的选取分别对应波沿x 轴正向和负向传播)。
比较法思路清晰、求解简便,是一种常用的解题方法。
(2)讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别。
例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即dt dy v =;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定。
介质不变,彼速保持恒定。
(3)将不同时刻的t 值代人已知波动方程,便可以得到不同时刻的波形方程)(x y y =,从而作出波形图。
而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程)(t y y =,从而作出振动图。
解(1)将已知波动方程表示为()()[]115.25.2cos )20.0(--⋅-=s m x t s m y π 与一般表达式()[]0cos ϕω+-=x t A y 比较,可得0,5.2,20.001=⋅==-ϕs m u m A则 m v u Hz v 0.2,25.12====λπω(2)绳上质点的振动速度()()()[]1115.25.2sin 5.0---⋅-⋅-==s m x t s s m dt dy v ππ 则1max 57.1-⋅=s m v(3) t=1s 和 t =2s 时的波形方程分别为()[]x m m y 115.2cos )20.0(--=ππ()[]x m m y 125cos )20.0(--=ππ 波形图如图14-1(a )所示。
《大学物理》波动练习题
《大学物理》波动练习题一、简答题1、什么是波动? 振动和波动有什么区别和联系?答:波动一般指振动在介质中的传播。
振动通常指一个质点在平衡位置附近往复地运动,波动是介质中的无数个质点振动的总体表现。
2、机械波的波长、频率、周期和波速四个量中,(1) 在同一介质中,哪些量是不变的? (2) 当波从一种介质进入另一种介质中,哪些量是不变的?答:(1) 频率、周期、波速、波长 (2)频率和周期3、波动方程⎪⎭⎫ ⎝⎛-=u x cos y t A ω中的u x 表示什么? 如果把它写成⎪⎭⎫ ⎝⎛-=u x cos y ωωt A ,u xω又表示什么? 答:u x 表示原点处的振动状态传播到x 处所需的时间。
ux ω表示x 处的质点比原点处的质点所落后的相位。
4、波形曲线与振动曲线有什么不同行? 试说明之. 答:波形曲线代表某一时间波的形状,它是质点的位移关于其空间位置的函数;振动曲线代表某一个质点的振动过程,它是质点的位移关于时间的函数。
5、波动的能量与哪些物理量有关? 比较波动的能量与简谐运动的能量.答:波的能量与振幅、角频率、介质密度以及所选择的波动区域的体积都有关系。
简谐运动中是振子的动能与势能相互转化,能量保持守恒的过程;而行波在传播过程中某一介质微元的总能量在随时间变化,从整体上看,介质中各个微元能量的变化体现了能量传播的过程。
6. 平面简谐波传播过程中的能量特点是什么?在什么位置能量为最大?答案:能量从波源向外传播,波传播时某一体元的能量不守桓,波的传播方向与能量的传播方向一致,量值按正弦或余弦函数形式变化,介质中某一体元的波动动能和势能相同,处于平衡位置处的质点,速度最大,其动能最大,在平衡位置附近介质发生的形变也最大,势能也为最大。
7. 驻波是如何形成的?驻波的相位特点什么?答案:驻波是两列振幅相同的相干波在同一直线上沿相反方向传播时叠加而成。
驻波的相位特点是:相邻波节之间各质点的相位相同,波节两边质点的振动有π的相位差。
大学物理(第四版)课后习题及答案波动
大学物理(第四版)课后习题及答案波动 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第十四章波动14-1 一横波再沿绳子传播时得波动方程为[]x m t s m y )()5.2(cos )20.0(11---=ππ。
(1)求波得振幅、波速、频率及波长;(2)求绳上质点振动时得最大速度;(3)分别画出t=1s 和t=2s 时得波形,并指出波峰和波谷。
画出x=1.0m 处质点得振动曲线并讨论其与波形图得不同。
14-1 ()[]x m t s m y )(5.2cos )20.0(11---=ππ分析(1)已知波动方程(又称波函数)求波动的特征量(波速u 、频率ν、振幅A 及彼长 等),通常采用比较法。
将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y 书写,然后通过比较确定各特征量(式中前“-”、“+”的选取分别对应波沿x 轴正向和负向传播)。
比较法思路清晰、求解简便,是一种常用的解题方法。
(2)讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别。
例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即dt dy v =;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定。
介质不变,彼速保持恒定。
(3)将不同时刻的t 值代人已知波动方程,便可以得到不同时刻的波形方程)(x y y =,从而作出波形图。
而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程)(t y y =,从而作出振动图。
解(1)将已知波动方程表示为()()[]115.25.2cos )20.0(--⋅-=s m x t s m y π与一般表达式()[]0cos ϕω+-=u x t A y 比较,可得0,5.2,20.001=⋅==-ϕs m u m A则 m v u Hz v 0.2,25.12====λπω(2)绳上质点的振动速度()()()[]1115.25.2sin 5.0---⋅-⋅-==s m x t s s m dt dy v ππ则1max 57.1-⋅=s m v(3) t=1s 和 t =2s 时的波形方程分别为()[]xm m y 115.2cos )20.0(--=ππ ()[]x m m y 125cos )20.0(--=ππ波形图如图14-1(a )所示。
(完整版)大学物理波动光学题库及答案
一、选择题:(每题3分)1、在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为(A) 1.5 λ. (B) 1.5 λ/ n .(C) 1.5 n λ. (D) 3 λ. [ ]2、在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等.(B) 传播的路程相等,走过的光程不相等.(C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等. [ ]3、如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2.路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于(A) )()(111222t n r t n r +-+(B) ])1([])1([211222t n r t n r -+--+(C) )()(111222t n r t n r ---(D) 1122t n t n - [ ]4、真空中波长为λ的单色光,在折射率为n 的均匀透明媒质中,从A 点沿某一路径传播到B 点,路径的长度为l .A 、B 两点光振动相位差记为∆φ,则(A) l =3 λ / 2,∆φ=3π. (B) l =3 λ / (2n ),∆φ=3n π.(C) l =3 λ / (2n ),∆φ=3π. (D) l =3n λ / 2,∆φ=3n π. [ ]5、如图所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为e ,而且n 1>n 2>n 3,则两束反射光在相遇点的相位差为(A) 4πn 2 e / λ. (B) 2πn 2 e / λ.(C) (4πn 2 e / λ) +π. (D) (2πn 2 e / λ) -π. [ ]6、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2 .(C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2).[ ]7、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1< n 2>n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①与②示意)的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2.(C) 2n 2 e -λ . (D) 2n 2 e -λ / (2n 2). P S 1S 2 r 1 n 1 n 2 t 2 r 2 t 1n 13λn 3n 3[ ]8在双缝干涉实验中,两缝间距为d ,双缝与屏幕的距离为D (D>>d ),单色光波长为λ,屏幕上相邻明条纹之间的距离为(A) λ D/d . (B) λd /D .(C) λD /(2d ). (D) λd/(2D ). [ ]9、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源. [ ]10、在双缝干涉实验中,光的波长为600 nm (1 nm =10-9 m ),双缝间距为2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为(A) 0.45 mm . (B) 0.9 mm .(C) 1.2 mm (D) 3.1 mm . [ ]11、在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于图中O 处.现将光源S 向下移动到示意图中的S '位置,则 (A) 中央明条纹也向下移动,且条纹间距不变.(B) 中央明条纹向上移动,且条纹间距不变. (C) 中央明条纹向下移动,且条纹间距增大. (D) 中央明条纹向上移动,且条纹间距增大. [ ]12、在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹(A) 向下平移,且间距不变. (B) 向上平移,且间距不变.(C) 不移动,但间距改变. (D) 向上平移,且间距改变. [ ]13、在双缝干涉实验中,两缝间距离为d ,双缝与屏幕之间的距离为D (D >>d ).波长为λ的平行单色光垂直照射到双缝上.屏幕上干涉条纹中相邻暗纹之间的距离是(A) 2λD / d . (B) λ d / D .(C) dD / λ. (D) λD /d . [ ]14把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d ,双缝到屏的距离为D (D >>d ),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是(A) λD / (nd ) (B) n λD /d .(C) λd / (nD ). (D) λD / (2nd ). [ ]15、一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ). [ ]16、在牛顿环实验装置中,曲率半径为R 的平凸透镜与平玻璃扳在中心恰好接触,它S S '们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径r k 的表达式为(A) r k =R k λ. (B) r k =n R k /λ.(C) r k =R kn λ. (D) r k =()nR k /λ. [ ]17、在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n -1 ) d . (B) 2nd .(C) 2 ( n -1 ) d +λ / 2. (D) nd .(E) ( n -1 ) d . [ ]18、在迈克耳孙干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是(A) λ / 2. (B) λ / (2n ).(C) λ / n . (D) ()12-n λ. [ ]19、在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2 个. (B) 4 个.(C) 6 个. (D) 8 个. [ ]20、一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为(A) λ / 2. (B) λ. (C) 3λ / 2 . (D) 2λ . [ ]21、根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的(A) 振动振幅之和. (B) 光强之和.(C) 振动振幅之和的平方. (D) 振动的相干叠加. [ ]22、波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为θ=±π / 6,则缝宽的大小为(A) λ / 2. (B) λ.(C) 2λ. (D) 3 λ . [ ]23、在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小. (B) 对应的衍射角变大.(C) 对应的衍射角也不变. (D) 光强也不变. [ ]24、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为ϕ=30°的方位上.所用单色光波长为λ=500 nm ,则单缝宽度为(A) 2.5×10-5 m . (B) 1.0×10-5 m .(C) 1.0×10-6 m . (D) 2.5×10-7 . [ ]25、一单色平行光束垂直照射在宽度为1.0 mm 的单缝上,在缝后放一焦距为2.0 m 的会聚透镜.已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.0 mm ,则入射光波长约为 (1nm=10−9m)(A) 100 nm (B) 400 nm(C) 500 nm (D) 600 nm [ ]26、在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小.(B) 宽度变大.(C) 宽度不变,且中心强度也不变.(D) 宽度不变,但中心强度增大. [ ]27、在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹(A) 宽度变小;(B) 宽度变大;(C) 宽度不变,且中心强度也不变;(D) 宽度不变,但中心强度变小. [ ]28、在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成 3个半波带,则缝宽度a 等于(A) λ. (B) 1.5 λ.(C) 2 λ. (D) 3 λ. [ ]29、在如图所示的单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小.若使单缝宽度a 变为原来的23,同时使入射的单色光的波长λ变为原来的3 / 4,则屏幕C 上单缝衍射条纹中央明纹的宽度∆x 将变为原来的 (A) 3 / 4倍. (B) 2 / 3倍. (C) 9 / 8倍. (D) 1 / 2倍. (E) 2倍. [ ]30、测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉. (B) 牛顿环 . (C) 单缝衍射. (D) 光栅衍射. [ ]31、一束平行单色光垂直入射在光栅上,当光栅常数(a + b )为下列哪种情况时(a 代表每条缝的宽度),k =3、6、9 等级次的主极大均不出现?(A) a +b =2 a . (B) a +b =3 a .(C) a +b =4 a . (A) a +b =6 a . [ ]32、一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是(A) 紫光. (B) 绿光. (C) 黄光. (D) 红光. [ ]33、对某一定波长的垂直入射光,衍射光栅的屏幕上只能出现零级和一级主极大,欲O y x λL C fa使屏幕上出现更高级次的主极大,应该(A) 换一个光栅常数较小的光栅.(B) 换一个光栅常数较大的光栅.(C) 将光栅向靠近屏幕的方向移动.(D) 将光栅向远离屏幕的方向移动. [ ]34、若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 5.0×10-1 mm . (B) 1.0×10-1 mm .(C) 1.0×10-2 mm . (D) 1.0×10-3 mm . [ ]35、在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为(A) a=21b . (B) a=b . (C) a=2b . (D) a=3 b . [ ]36、在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹.若在两缝后放一个偏振片,则(A) 干涉条纹的间距不变,但明纹的亮度加强.(B) 干涉条纹的间距不变,但明纹的亮度减弱.(C) 干涉条纹的间距变窄,且明纹的亮度减弱.(D) 无干涉条纹. [ ]37、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8. (B) I 0 / 4.(C) 3 I 0 / 8. (D) 3 I 0 / 4. [ ]38、一束光强为I 0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I 为(A) 4/0I 2 . (B) I 0 / 4.(C) I 0 / 2. (D) 2I 0 / 2. [ ]39、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8. (B) I 0 / 4.(C) 3 I 0 / 8. (D) 3 I 0 / 4. [ ]40、自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A) 在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光. [ ]二、填空题:(每题4分)41、若一双缝装置的两个缝分别被折射率为n 1和n 2的两块厚度均为e 的透明介 质所遮盖,此时由双缝分别到屏上原中央极大所在处的两束光的光程差δ=_____________________________.42、波长为λ的单色光垂直照射如图所示的透明薄膜.膜厚度为e ,两束反射光的光程差δ = __________________________.43、用波长为λ的单色光垂直照射置于空气中的厚度为e 折射率为1.5的透明薄膜,两束反射光的光程差δ =________________________.44、波长为λ的平行单色光垂直照射到如图所示的透明薄膜上,膜厚为e ,折射率为n ,透明薄膜放在折射率为n 1的媒质中,n 1<n ,则上下两表面反射的两束反射光在相遇处的相 位差 ∆φ=__________________.45、单色平行光垂直入射到双缝上.观察屏上P 点到两缝的距离分别为r 1和r 2.设双缝和屏之间充满折射率为n 的媒质,则P 点处二相干光线的光程差为________________.46、在双缝干涉实验中,两缝分别被折射率为n 1和n 2的透明薄膜遮盖,二者的厚度均为e .波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差∆φ=_______________________.47、如图所示,波长为λ的平行单色光斜入射到距离为d 的双缝上,入射角为θ.在图中的屏中央O 处(O S O S 21=),两束相干光的相位差为________________.48、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1)________________________________________.(2) ________________________________________.49、一双缝干涉装置,在空气中观察时干涉条纹间距为1.0 mm .若整个装置放 在水中,干涉条纹的间距将为____________________mm .(设水的折射率为4/3)50、在双缝干涉实验中,所用单色光波长为λ=562.5 nm (1nm =10-9 m),双缝与观察n 11 λp d r 1 r 2 S 2 S 1 n屏的距离D =1.2 m ,若测得屏上相邻明条纹间距为∆x =1.5 mm ,则双缝的间距d =__________________________.51、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距___________;若使单色光波长减小,则干涉条纹间距_________________.52、把双缝干涉实验装置放在折射率为n 的媒质中,双缝到观察屏的距离为D ,两缝之间的距离为d (d <<D ),入射光在真空中的波长为λ,则屏上干涉条纹中相邻明纹的间距是_______________________.53、在双缝干涉实验中,双缝间距为d ,双缝到屏的距离为D (D >>d ),测得中央 零级明纹与第五级明之间的距离为x ,则入射光的波长为_________________.54、在双缝干涉实验中,若两缝的间距为所用光波波长的N 倍,观察屏到双缝 的距离为D ,则屏上相邻明纹的间距为_______________ .55、用λ=600 nm 的单色光垂直照射牛顿环装置时,从中央向外数第4个(不计中央暗斑)暗环对应的空气膜厚度为_______________________μm .(1 nm=10-9 m)56、在空气中有一劈形透明膜,其劈尖角θ=1.0×10-4rad ,在波长λ=700 nm 的单色光垂直照射下,测得两相邻干涉明条纹间距l =0.25 cm ,由此可知此透明材料的折射率n =______________________.(1 nm=10-9 m)57、用波长为λ的单色光垂直照射折射率为n 2的劈形膜(如图)图中各部分折射率的关系是n 1<n 2<n 3.观察反射光的干涉条纹,从劈形膜顶开始向右数第5条暗条纹中心所对应的厚度e =____________________.58、用波长为λ的单色光垂直照射如图所示的、折射率为n 2的劈形膜(n 1>n 2 ,n 3>n 2),观察反射光干涉.从劈形膜顶开始,第2条明条纹对应的膜厚度e =___________________.59、用波长为λ的单色光垂直照射折射率为n 的劈形膜形成等厚干涉条纹,若测得相邻明条纹的间距为l ,则劈尖角θ=_______________.60、用波长为λ的单色光垂直照射如图示的劈形膜(n 1>n 2>n 3),观察反射光干涉.从劈形膜尖顶开始算起,第2条明条纹中心所对应的膜厚度e =___________________________.61、已知在迈克耳孙干涉仪中使用波长为λ的单色光.在干涉仪的可动反射镜移 动距离d 的过程中,干涉条纹将移动________________条.n 1n 2n 3 n 1n 2n 3 n 1n 2n 362、在迈克耳孙干涉仪的一条光路中,插入一块折射率为n,厚度为d的透明薄片.插入这块薄片使这条光路的光程改变了_______________.63、在迈克耳孙干涉仪的可动反射镜移动了距离d的过程中,若观察到干涉条纹移动了N条,则所用光波的波长λ =______________.64、波长为600 nm的单色平行光,垂直入射到缝宽为a=0.60 mm的单缝上,缝后有一焦距f'=60 cm的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为__________,两个第三级暗纹之间的距离为____________.(1 nm=10﹣9 m)65、He-Ne激光器发出λ=632.8 nm (1nm=10-9 m)的平行光束,垂直照射到一单缝上,在距单缝3 m远的屏上观察夫琅禾费衍射图样,测得两个第二级暗纹间的距离是10 cm,则单缝的宽度a=________.66、在单缝的夫琅禾费衍射实验中,屏上第三级暗纹对应于单缝处波面可划分为_________________ 个半波带,若将缝宽缩小一半,原来第三级暗纹处将是______________________________纹.67、平行单色光垂直入射于单缝上,观察夫琅禾费衍射.若屏上P点处为第二级暗纹,则单缝处波面相应地可划分为___________ 个半波带.若将单缝宽度缩小一半,P点处将是______________级__________________纹.68、波长为λ的单色光垂直入射在缝宽a=4 λ的单缝上.对应于衍射角ϕ=30°,单缝处的波面可划分为______________个半波带.69、惠更斯引入__________________的概念提出了惠更斯原理,菲涅耳再用______________的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理.70、惠更斯-菲涅耳原理的基本内容是:波阵面上各面积元所发出的子波在观察点P的_________________,决定了P点的合振动及光强.71、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为30°的方位上,所用单色光波长λ=500 nm (1 nm = 10-9 m),则单缝宽度为_____________________m.72、在单缝夫琅禾费衍射实验中,如果缝宽等于单色入射光波长的2倍,则中央明条纹边缘对应的衍射角ϕ =______________________.73、在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射在宽度为a=2λ的单缝上,对应于衍射角为30︒方向,单缝处的波面可分成的半波带数目为________个.74、如图所示在单缝的夫琅禾费衍射中波长为λ的单色光垂直入射在单缝上.若对应于会聚在P 点的衍射光线在缝宽a 处的波阵面恰好分成3个半波带,图中DB CD AC ==,则光线 1和2在P 点的相位差为______________.75、在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度a =5 λ的单缝上.对应于衍射角ϕ 的方向上若单缝处波面恰好可分成 5个半波带,则衍射角ϕ =______________________________.76、在如图所示的单缝夫琅禾费衍射装置示意图中,用波长为λ的单色光垂直入射在单缝上,若P 点是衍射条纹中的中央明纹旁第二个暗条纹的中心,则由单缝边缘的A 、B 两点分别到 达P 点的衍射光线光程差是__________.77、测量未知单缝宽度a 的一种方法是:用已知波长λ的平行光垂直入射在单缝上,在距单缝的距离为D 处测出衍射花样的中央亮纹宽度为l (实验上应保证D ≈103a ,或D 为几米),则由单缝衍射的原理可标出a 与λ,D ,l 的关系为a =______________________.78、某单色光垂直入射到一个每毫米有800 条刻线的光栅上,如果第一级谱线的 衍射角为30°,则入射光的波长应为_________________.79、在光学各向异性晶体内部有一确定的方向,沿这一方向寻常光和非常光的 ____________相等,这一方向称为晶体的光轴.只具有一个光轴方向的晶体称为______________晶体.80、光的干涉和衍射现象反映了光的________性质.光的偏振现像说明光波是 __________波.三、计算题:(每题10分)81、在双缝干涉实验中,所用单色光的波长为600 nm ,双缝间距为1.2 mm 双缝与屏相距500 mm ,求相邻干涉明条纹的间距.82、在双缝干涉实验中,双缝与屏间的距离D =1.2 m ,双缝间距d =0.45 mm ,若测得屏上干涉条纹相邻明条纹间距为1.5 mm ,求光源发出的单色光的波长λ.83、用波长为500 nm (1 nm=10-9 m)的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上.在观察反射光的干涉现象中,距劈形膜棱边l = 1.56 cm 的A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈形膜的劈尖角θ;(2) 改用600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹还是暗条纹?(3) 在第(2)问的情形从棱边到A 处的范围内共有几条明纹?几条暗纹?aλλP84、图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是R =400 cm .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30 cm .(1) 求入射光的波长.(2) 设图中OA =1.00 cm ,求在半径为OA 的范围内可观察到的明环数目.85、用白光垂直照射置于空气中的厚度为0.50 μm 的玻璃片.玻璃片的折射率为1.50.在可见光范围内(400 nm ~ 760 nm)哪些波长的反射光有最大限度的增强?(1 nm=10-9 m)86、两块长度10 cm 的平玻璃片,一端互相接触,另一端用厚度为0.004 mm 的纸片隔开,形成空气劈形膜.以波长为500 nm 的平行光垂直照射,观察反射光的等厚干涉条纹,在全部10 cm 的长度内呈现多少条明纹?(1 nm=10-9 m)87、一平面衍射光栅宽2 cm ,共有8000条缝,用钠黄光(589.3 nm)垂直入射,试求出可能出现的各个主极大对应的衍射角.(1nm=109m)88、如图,P 1、P 2为偏振化方向相互平行的两个偏振片.光强为I 0的平行自然光垂直入射在P 1上.(1) 求通过P 2后的光强I .(2) 如果在P 1、P 2之间插入第三个偏振片P 3,(如图中虚线所示)并测得最后光强I =I 0 / 32,求:P 3的偏振化方向与P 1的偏振化方向之间的夹角α (设α为锐角).89、三个偏振片P 1、P 2、P 3顺序叠在一起,P 1、P 3的偏振化方向保持相互垂直,P 1与P 2的偏振化方向的夹角为α,P 2可以入射光线为轴转动.今以强度为I 0的单色自然光垂直入射在偏振片上.不考虑偏振片对可透射分量的反射和吸收.(1) 求穿过三个偏振片后的透射光强度I 与α角的函数关系式;(2) 试定性画出在P 2转动一周的过程中透射光强I 随α角变化的函数曲线.90、两个偏振片P 1、P 2叠在一起,一束单色线偏振光垂直入射到P 1上,其光矢量振动方向与P 1的偏振化方向之间的夹角固定为30°.当连续穿过P 1、P 2后的出射光强为最大出射光强的1 / 4时,P 1、P 2的偏振化方向夹角α是多大?91、将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为o 60,一束光强为I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角.(1) 求透过每个偏振片后的光束强度;(2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.92、将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45︒和90︒角.(1) 强度为I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.(2) 如果将第二个偏振片抽走,情况又如何?93、如图所示,媒质Ⅰ为空气(n 1=1.00),Ⅱ为玻璃(n 2=1.60),两个交界面相互平行.一束自然光由媒质Ⅰ中以i角入射.若使Ⅰ、Ⅱ交界面上的反射光为线偏振光, (1) 入射角i 是多大?(2) 图中玻璃上表面处折射角是多大? (3) 在图中玻璃板下表面处的反射光是否也是线偏振光?94、在水(折射率n 1=1.33)和一种玻璃(折射率n 2=1.56的交界面上,自然光从水中射向玻璃,求起偏角i 0.若自然光从玻璃中射向水,再求此时的起偏角0i .95、一束自然光由空气入射到某种不透明介质的表面上.今测得此不透明介质的起偏角为56°,求这种介质的折射率.若把此种介质片放入水(折射率为1.33)中,使自然光束自水中入射到该介质片表面上,求此时的起偏角.96、一束自然光以起偏角i 0=48.09°自某透明液体入射到玻璃表面上,若玻璃的折射率为1.56 ,求:(1) 该液体的折射率.(2) 折射角.97、一束自然光自空气入射到水(折射率为1.33)表面上,若反射光是线偏振光,(1) 此入射光的入射角为多大?(2) 折射角为多大?98、一束自然光自水(折射率为1.33)中入射到玻璃表面上(如图).当入射角为49.5°时,反射光为线偏振光,求玻璃的折射率.99、一束自然光自水中入射到空气界面上,若水的折射率为1.33,空气的折射率为1.00,求布儒斯特角.100、一束自然光自空气入射到水面上,若水相对空气的折射率为 1.33,求布儒斯特角.水玻璃大学物理------波动光学参考答案一、选择题01-05 ACBCA 06-10 ABABB 11-15 BBDAB 16-20 BADBB21-25 DCBCC 26-30 ABD D D 31-35 BD B DB 36-40 BABAC二、填空题41. e n n )(21- or e n n )(12-; 42. e 60.2; 43.3.0e +λ/2 or 3.0e -λ/2; 44. πλ)14(+e n or πλ)14(-e n; 45. )(12r r n -; 46. λπen n )(212-;47. λθπ/sin 2d ; 48. (1) 使两缝间距变小,(2)使屏与两缝间距变大; 49. 75.0; 50. mm 45.0; 51. 变小, 变小; 52.dn D λ; 53. D dx 5; 54. N D ; 55. m μ2.1; 56. 40.1; 57. 249n λ; 58. 243n λ; 59. rad nl2λ; 60. 22n λ; 61. λ/2d ; 62. d n )1(2-; 63. N d /2; 64. mm 2.1,mm 6.3;65. mm 21060.7-⨯; 66. 6,第一级明纹; 67. 4,第一, 暗; 68. 4;69. 子波, 子波相干叠加; 70. 相干叠加; 71. m 610-; 72. 030±; 73. 2; 74. π; 75. 030; 76. λ2; 77. l D /2λ; 78. nm 625;79. 传播速度, 单轴; 80. 波动, 横波。
(完整版)大学物理波动光学的题目库及答案.docx
实用标准文案一、选择题:(每题3 分)1、在真空中波长为的单色光,在折射率为n 的透明介质中从 A 沿某路径传播到B,若A、 B 两点相位差为 3,则此路径 AB 的光程为(A) 1.5.(B) 1.5n.(C) 1.5 n.(D) 3.[]2、在相同的时间内,一束波长为的单色光在空气中和在玻璃中(A)传播的路程相等,走过的光程相等.(B)传播的路程相等,走过的光程不相等.(C)传播的路程不相等,走过的光程相等.(D)传播的路程不相等,走过的光程不相等.3、如图, S1、S2是两个相干光源,它们到P 点的距离分别为 r 12111和 r.路径 S P 垂直穿过一块厚度为t ,折射率为 n的介质板,路径S2P 垂直穿过厚度为 t2,折射率为n2的另一介质板,其余部分可看作真空,这两条路径的光程差等于(A)(r2n2t 2 ) (r1 n1t1 )S1S2[]t1r1t2Pn1r2n2(B)[ r2( n21)t2 ][ r1 (n1 1)t2 ](C)(r2n2t 2 )(r1n1 t1 )(D)n2 t2n1t1[]4、真空中波长为的单色光,在折射率为n 的均匀透明媒质中,从 A 点沿某一路径传播到 B 点,路径的长度为l. A、 B 两点光振动相位差记为,则(A) l = 3 / 2,=3.(B) l= 3 / (2n),=3n.(C) l = 3 / (2 n),=3.(D) l= 3n / 2,=3n.5、如图所示,波长为的平行单色光垂直入射在折射率为n2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为 e,而且 n1> n2> n3,则两束反射光在相遇点的相位差为(A) 4n e /.(B) 2n e /.22(C) (4n2 e /.(D) (2n2 e /.[]6、如图所示,折射率为n 、厚度为 e 的透明介质薄膜2的上方和下方的透明介质的折射率分别为n1和 n3,已知 n1<n2< n3.若用波长为的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是(A) 2 n2 e.(B) 2 n2 e-/ 2 .(C) 2 n2 e-.(D) 2 n2 e-/ (2n2).7、如图所示,折射率为n 、厚度为 e 的透明介质薄膜的2上方和下方的透明介质的折射率分别为n1和 n3,已知 n1< n2>n .若用波长为的单色平行光垂直入射到该薄膜上,则从薄膜3上、下两表面反射的光束(用①与②示意 )的光程差是(A) 2 n e.(B) 2 n e- / 2.22[]n1n2e n3① ②n1n2en3[]① ②n1n2e实用标准文案[]8 在双缝干涉实验中,两缝间距为d,双缝与屏幕的距离为 D (D>>d ) ,单色光波长为,屏幕上相邻明条纹之间的距离为(A) D/d .(B)d/D .(C) D/(2 d).(D) d/(2D ).[]9、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A)使屏靠近双缝.(B)使两缝的间距变小.(C)把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.[]10、在双缝干涉实验中,光的波长为600 nm ( 1 nm= 10-9 m) ,双缝间距为 2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为(A) 0.45 mm .(B) 0.9 mm .(C) 1.2 mm(D) 3.1 mm .[]11、在双缝干涉实验中,12距离相等,若单色光源 S 到两缝 S、S则观察屏上中央明条纹位于图中O 处.现将光源 S 向下移动到示意S1图中的S 位置,则S O(A)中央明条纹也向下移动,且条纹间距不变.S S2(B)中央明条纹向上移动,且条纹间距不变.(C) 中央明条纹向下移动,且条纹间距增大.(D)中央明条纹向上移动,且条纹间距增大.[]12、在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹(A)向下平移,且间距不变.(B) 向上平移,且间距不变.(C) 不移动,但间距改变.(D)向上平移,且间距改变.[]13、在双缝干涉实验中,两缝间距离为d,双缝与屏幕之间的距离为 D (D >> d).波长为的平行单色光垂直照射到双缝上.屏幕上干涉条纹中相邻暗纹之间的距离是(A) 2 D / d.(B) d / D.(C) dD /.(D) D /d.[]14 把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d,双缝到屏的距离为D (D >> d) ,所用单色光在真空中的波长为,则屏上干涉条纹中相邻的明纹之间的距离是(A) D / (nd)(B) n D /d.(C) d / (nD ).(D) D / (2 nd).[]15、一束波长为的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A).(B)/ (4 n).(C).(D) / (2n) .[]实用标准文案们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为,则反射光形成的干涉条纹中暗环半径r k的表达式为(A) r k =k R .(B) r k =k R / n .(C) r k =kn R .(D) r k =k / nR .[]17、在迈克耳孙干涉仪的一条光路中,放入一折射率为n,厚度为 d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n- 1 ) d.(B) 2 nd.(C) 2 ( n- 1 ) d+ / 2 .(D) nd.(E) ( n- 1 ) d.[]18、在迈克耳孙干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长,则薄膜的厚度是(A) / 2.(B)/ (2 n).(C) / n.(D).[]2 n119、在单缝夫琅禾费衍射实验中,波长为的单色光垂直入射在宽度为a= 4的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2个.(B) 4个.(C) 6 个.(D) 8个.20、一束波长为的平行单色光垂直入射到一单缝 AB 上,装置如图.在屏幕 D 上形成衍射图样,如果 P 是中央亮纹一侧第一个暗纹所在的位置,则[]L DAPBC 的长度为(A).(B).(C) 3 / 2 .(D) 2.[]BCf屏21、根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S,则 S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的(A)振动振幅之和.(B)光强之和.(C) 振动振幅之和的平方.(D)振动的相干叠加.[]22、波长为的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为 =± / 6,则缝宽的大小为(A).(B).(C) 2 .(D) 3.[]23、在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A)对应的衍射角变小.(B)对应的衍射角变大.(C)对应的衍射角也不变.(D)光强也不变.[]24、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为30°的方位上.所用单色光波长为=500 nm ,则单缝宽度为(A) 2.5 × 10-m.(B) 1.0 × 10m.实用标准文案25、一单色平行光束垂直照射在宽度为 1.0 mm 的单缝上, 在缝后放一焦距为 2.0 m 的会聚透镜. 已知位于透镜焦平面处的屏幕上的中央明条纹宽度为 2.0 mm ,则入射光波长约 为 (1nm=10 - 9m)(A) 100 nm (B) 400 nm(C) 500 nm(D) 600 nm[ ]26、在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小. (B) 宽度变大.(C) 宽度不变,且中心强度也不变. (D) 宽度不变,但中心强度增大.[ ]27、在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹(A) 宽度变小; (B) 宽度变大;(C) 宽度不变,且中心强度也不变;(D) 宽度不变,但中心强度变小.[ ]28、在单缝夫琅禾费衍射实验中波长为 的单色光垂直入射到单缝上.对应于衍射角为 30°的方向上,若单缝处波面可分成 3 个半波带,则缝宽度 a 等于(A) .(B) 1.5 .(C) 2 .(D) 3 .[ ]29、在如图所示的单缝夫琅禾费衍射装置中,设LC中央明纹的衍射角范围很小.若使单缝宽度a 变为原来的 3,同时使入射的单色光的波长变为原来的 3 /a24,则屏幕 C 上单缝衍射条纹中央明纹的宽度x 将变为原来的f(A) 3 / 4 倍.(B) 2 / 3 倍. y(C) 9 / 8 倍. (D) 1 / 2 倍.Ox(E) 2 倍.[]30、测量单色光的波长时,下列方法中哪一种方法最为准确? (A) 双缝干涉.(B) 牛顿环 .(C) 单缝衍射.(D) 光栅衍射.[]31、一束平行单色光垂直入射在光栅上,当光栅常数(a + b)为下列哪种情况时(a 代表每条缝的宽度 ), k=3、 6、 9 等级次的主极大均不出现?(A) a + b=2 a .(C) a + b=4 a .(B) a +b=3 a . (A) a + b=6 a .[]32、一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是(A) 紫光.(B) 绿光.(C) 黄光.(D) 红光.[]实用标准文案使屏幕上出现更高级次的主极大,应该(A)换一个光栅常数较小的光栅.(B)换一个光栅常数较大的光栅.(C)将光栅向靠近屏幕的方向移动.(D) 将光栅向远离屏幕的方向移动.[]34、若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 5.0 × 10- 1 mm.(B) 1.0 × 10- 1 mm.(C) 1.0 × 10- 2 mm.(D) 1.0 × 10-3mm .[]35、在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度 a 和相邻两缝间不透光部分宽度 b 的关系为1(B) a=b .(A) a= b.2(C) a= 2b.(D) a= 3 b.[]36、在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹.若在两缝后放一个偏振片,则(A)干涉条纹的间距不变,但明纹的亮度加强.(B)干涉条纹的间距不变,但明纹的亮度减弱.(C)干涉条纹的间距变窄,且明纹的亮度减弱.(D) 无干涉条纹.[]37、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为 I 0的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8.(B) I 0/ 4.(C) 3 I0 / 8.(D) 3I 0 / 4 .[]38、一束光强为I 0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I为(A) I0/ 4 2.(B)I0 / 4.(C) I 0 / 2.(D) 2 I0/ 2.[]39、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为 I 0的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8.(B) I 0 / 4.(C) 3 I 0 / 8.(D) 3 I 0/ 4.[]40、自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A)在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光.[]二、填空题:(每题 4 分)实用标准文案41、若一双缝装置的两个缝分别被折射率为n 1和 n2的两块厚度均为 e 的透明介质所遮盖,此时由双缝分别到屏上原中央极大所在处的两束光的光程差=_____________________________ .42、波长为的单色光垂直照射如图所示的透明薄膜.膜厚度为 e,两束反射光的光程差=n1= 1.00__________________________ .n2= 1.30en3= 1.5043、用波长为的单色光垂直照射置于空气中的厚度为 e 折射率为 1.5的透明薄膜,两束反射光的光程差= ________________________ .44、波长为的平行单色光垂直照射到如图所示的透明薄膜上,膜厚为 e,折射率为 n,透明薄膜放在折射率为n1的媒质中, n1< n,则上下两表面反射的两束反射光在相遇处的相位差= __________________ .45、单色平行光垂直入射到双缝上.观察屏上 P 点到两缝的距离分别为 r1和 r 2.设双缝和屏之间充满折射率为n 的媒质,则 P 点处二相干光线的光程差为________________ .n1ne n1S1r1pdr 2S246、在双缝干涉实验中,两缝分别被折射率为12的透明nn和 n薄膜遮盖,二者的厚度均为e.波长为的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差= _______________________ .47、如图所示,波长为的平行单色光斜入射到S1距离为 d 的双缝上,入射角为.在图中的屏中央 O 处( S1O S2 O ),两束相干光的相位差为dO ________________ .S248、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1)________________________________________.(2) ________________________________________.49 、一双缝干涉装置,在空气中观察时干涉条纹间距为 1.0 mm .若整个装置放在水中,干涉条纹的间距将为____________________ mm. ( 设水的折射率为4/3 )实用标准文案屏的距离 D =1.2 m,若测得屏上相邻明条纹间距为x= 1.5 mm ,则双缝的间距 d= __________________________ .51、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距___________ ;若使单色光波长减小,则干涉条纹间距_________________ .52、把双缝干涉实验装置放在折射率为n 的媒质中,双缝到观察屏的距离为D,两缝之间的距离为 d (d<<D ),入射光在真空中的波长为,则屏上干涉条纹中相邻明纹的间距是 _______________________ .53、在双缝干涉实验中,双缝间距为d,双缝到屏的距离为 D (D >>d),测得中央零级明纹与第五级明之间的距离为x,则入射光的波长为_________________ .54 、在双缝干涉实验中,若两缝的间距为所用光波波长的N 倍,观察屏到双缝的距离为 D ,则屏上相邻明纹的间距为 _______________.55、用= 600 nm 的单色光垂直照射牛顿环装置时,从中央向外数第4个(不计中央暗斑 )暗环对应的空气膜厚度为_______________________ m. (1 nm=10 -9 m)56、在空气中有一劈形透明膜,其劈尖角= 1.0×10- 4nm 的单色rad,在波长= 700光垂直照射下,测得两相邻干涉明条纹间距l = 0.25cm,由此可知此透明材料的折射率n =______________________ . (1 nm=10 -9 m)57、用波长为的单色光垂直照射折射率为n2的劈形膜 (如图 )图中各部分折射率的关系是n1< n2< n3.观察反射光的干涉条纹,n1n2从劈形膜顶开始向右数第 5 条暗条纹中心所对n3应的厚度 e= ____________________ .58、用波长为的单色光垂直照射如图所示的、折射率为n的n12劈形膜 (n1> n2, n3> n2 ),观察反射光干涉.从劈形膜顶n2n3开始,第 2 条明条纹对应的膜厚度e= ___________________ .59、用波长为的单色光垂直照射折射率为n 的劈形膜形成等厚干涉条纹,若测得相邻明条纹的间距为l,则劈尖角= _______________ .60、用波长为的单色光垂直照射如图示的劈形膜(n > n > n),观n1123察反射光干涉.从劈形膜尖顶开始算起,第 2 条明条纹中心所对应的膜n2厚度 e= ___________________________ .n361 、已知在迈克耳孙干涉仪中使用波长为的单色光.在干涉仪的可动反射镜移动距离 d 的过程中,干涉条纹将移动________________ 条.实用标准文案62、在迈克耳孙干涉仪的一条光路中,插入一块折射率为n,厚度为 d 的透明薄片.插入这块薄片使这条光路的光程改变了_______________ .63 、在迈克耳孙干涉仪的可动反射镜移动了距离 d 的过程中,若观察到干涉条纹移动了 N 条,则所用光波的波长=______________ .64、波长为 600 nm 的单色平行光,垂直入射到缝宽为a= 0.60 mm 的单缝上,缝后有一焦距 f = 60 cm的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为 __________ ,两个第三级暗纹之间的距离为____________ . (1 nm= 10﹣9m)65、 He -Ne 激光器发出=632.8 nm (1nm=10 -9m)的平行光束,垂直照射到一单缝上,在距单缝 3 m 远的屏上观察夫琅禾费衍射图样,测得两个第二级暗纹间的距离是 10 cm,则单缝的宽度 a=________ .66、在单缝的夫琅禾费衍射实验中,屏上第三级暗纹对应于单缝处波面可划分为_________________ 个半波带,若将缝宽缩小一半,原来第三级暗纹处将是______________________________ 纹.67、平行单色光垂直入射于单缝上,观察夫琅禾费衍射.若屏上P 点处为第二级暗纹,则单缝处波面相应地可划分为___________ 个半波带.若将单缝宽度缩小一半, P 点处将是 ______________ 级 __________________ 纹.68、波长为的单色光垂直入射在缝宽a=4 的单缝上.对应于衍射角=30 °,单缝处的波面可划分为 ______________ 个半波带.69、惠更斯引入__________________ 的概念提出了惠更斯原理,菲涅耳再用______________ 的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理.70、惠更斯-菲涅耳原理的基本内容是:波阵面上各面积元所发出的子波在观察点P 的 _________________ ,决定了 P 点的合振动及光强.71、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为30°的方位上,所用单色光波长500 nm (1 nm = 10 9 m),则单缝宽度为 _____________________m .72、在单缝夫琅禾费衍射实验中,如果缝宽等于单色入射光波长的 2 倍,则中央明条纹边缘对应的衍射角=______________________ .73、在单缝夫琅禾费衍射实验中波长为的单色光垂直入射在宽度为a=2 的单缝上,对应于衍射角为 30方向,单缝处的波面可分成的半波带数目为________ 个.实用标准文案74、如图所示在单缝的夫琅禾费衍射中波1.5长为 的单色光垂直入射在单缝上.若对应于 A会聚在 P 点的衍射光线在缝宽 a 处的波阵面恰1C 好分成 3 个半波带,图中 AC CD DB ,a2D 则光线 1 和 2 在 P 点的B3 4P相位差为 ______________ .75、在单缝夫琅禾费衍射实验中, 波长为 的单色光垂直入射在宽度 a=5 的单缝上.对应于衍射角 的方向上若单缝处波面恰好可分成 5 个半波带,则衍射角 =______________________________ .76、在如图所示的单缝夫琅禾费衍射装置示意图LC中,用波长为 的单色光垂直入射在单缝上,若P 点是衍射条纹中的中央明纹旁第二个暗条纹的中心,则 A由单缝边缘的 A 、 B 两点分别到Pa达 P 点的衍射光线光程差是__________ .Bf77、测量未知单缝宽度 a 的一种方法是:用已知波长 的平行光垂直入射在单缝上,在距单缝的距离为D 处测出衍射花样的中央亮纹宽度为 l ( 实验上应保证 D ≈ 103a ,或 D 为几米 ),则由单缝衍射的原理可标出 a 与 ,D ,l 的关系为a =______________________ .78、某单色光垂直入射到一个每毫米有 800 条刻线的光栅上,如果第一级谱线的 衍射角为 30°,则入射光的波长应为 _________________ .79、在光学各向异性晶体内部有一确定的方向,沿这一方向寻常光和非常光的____________ 相等,这一方向称为晶体的光轴.只具有一个光轴方向的晶体称 为 ______________ 晶体.80、光的干涉和衍射现象反映了光的________性质.光的偏振现像说明光波是__________ 波.三、计算题: (每题 10 分)81、在双缝干涉实验中,所用单色光的波长为600 nm ,双缝间距为 1.2 mm 双缝与屏相距 500 mm ,求相邻干涉明条纹的间距.82、在双缝干涉实验中,双缝与屏间的距离 D = 1.2 m ,双缝间距 d = 0.45 mm ,若测得屏上干涉条纹相邻明条纹间距为 1.5 mm ,求光源发出的单色光的波长 .83、用波长为 500 nm (1 nm=10 - 9 m) 的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上.在观察反射光的干涉现象中,距劈形膜棱边 l = 1.56 cm 的 A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈形膜的劈尖角 ;(2) 改用 600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹还是暗条纹?实用标准文案84、图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是R= 400 cm.用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第 5 个明环的半径是 0.30 cm .A(1)求入射光的波长.O(2)设图中 OA= 1.00 cm ,求在半径为 OA 的范围内可观察到的明环数目.85、用白光垂直照射置于空气中的厚度为0.50 m 的玻璃片.玻璃片的折射率为 1.50.在可见光范围内(400 nm ~ 760 nm) 哪些波长的反射光有最大限度的增强?(1 nm=10 -9 m)86、两块长度 10cm 的平玻璃片,一端互相接触,另一端用厚度为0.004 mm 的纸片隔开,形成空气劈形膜.以波长为500 nm 的平行光垂直照射,观察反射光的等厚干涉条纹,在全部10 cm 的长度内呈现多少条明纹?(1 nm=10 -9 m)87、一平面衍射光栅宽 2 cm,共有 8000条缝,用钠黄光 (589.3 nm) 垂直入射,试求出可能出现的各个主极大对应的衍射角.(1nm=10 -9m)88、如图,P1、P2为偏振化方向相互平行的两个偏振片.光I强为 I 0的平行自然光垂直入射在P1上.I2P 1 P3 P 2(1) 求通过 P 后的光强 I .(2) 如果在 P1、P2之间插入第三个偏振片P3,(如图中虚线所示)并测得最后光强I= I 03的偏振化方向与1的偏振化方向之间的夹角(设为锐角 )./ 32 ,求: P P89、三个偏振片123顺序叠在一起,13的偏振化方向保持相互垂直,P1P、 P 、 P P 、 P与 P2的偏振化方向的夹角为,P2可以入射光线为轴转动.今以强度为I0的单色自然光垂直入射在偏振片上.不考虑偏振片对可透射分量的反射和吸收.(1)求穿过三个偏振片后的透射光强度I与角的函数关系式;(2)试定性画出在P2转动一周的过程中透射光强I 随角变化的函数曲线.90、两个偏振片P1、 P2叠在一起,一束单色线偏振光垂直入射到P1上,其光矢量振动方向与 P1的偏振化方向之间的夹角固定为30°.当连续穿过 P1、 P2后的出射光强为最大出射光强的 1 / 4 时, P1、P2的偏振化方向夹角是多大?91、将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为60 o,一束光强为 I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成 30°角.(1)求透过每个偏振片后的光束强度;(2)若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.92、将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成 45 和 90 角.(1)强度为 I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.(2)如果将第二个偏振片抽走,情况又如何?实用标准文案93、如图所示,媒质Ⅰ为空气(n1= 1.00) ,Ⅱ为玻璃 (n2= 1.60),两个交界面相互平行.一束自然光由媒质Ⅰ中以ii角入射.若使Ⅰ、Ⅱ交界面上的反射光为线偏振光,Ⅰ(1)入射角 i 是多大?r(2)图中玻璃上表面处折射角是多大?Ⅱ(3)在图中玻璃板下表面处的反射光是否也是线偏振I光?94、在水 (折射率 n1= 1.33) 和一种玻璃 ( 折射率 n2= 1.56 的交界面上,自然光从水中射向玻璃,求起偏角 i 0.若自然光从玻璃中射向水,再求此时的起偏角i0.95、一束自然光由空气入射到某种不透明介质的表面上.今测得此不透明介质的起偏角为 56°,求这种介质的折射率.若把此种介质片放入水 (折射率为 1.33)中,使自然光束自水中入射到该介质片表面上,求此时的起偏角.96、一束自然光以起偏角 i0= 48.09°自某透明液体入射到玻璃表面上,若玻璃的折射率为 1.56 ,求:(1)该液体的折射率.(2)折射角.97、一束自然光自空气入射到水(折射率为 1.33)表面上,若反射光是线偏振光,(1)此入射光的入射角为多大?(2)折射角为多大?98、一束自然光自水(折射率为 1.33) 中入射到玻璃表面上(如图 ).水当入射角为 49.5°时,反射光为线偏振光,求玻璃的折射率.玻璃99、一束自然光自水中入射到空气界面上,若水的折射率为1.33,空气的折射率为 1.00,求布儒斯特角.100、一束自然光自空气入射到水面上,若水相对空气的折射率为 1.33 ,求布儒斯特角.实用标准文案大学物理------波动光学参考答案一、选择题01-05 ACBCA06-10 ABABB11-15 BBDAB16-20 BADBB 21-25 DCBCC26-30 ABD DD31-35 BDBDB36-40 BABAC二、填空题41.( n1n2 )e or(n2n1 )e ;42. 2.60e ;43. 3.0e+λ/2or 3.0e-λ/2;44.( 4ne1)or(4ne1); 45. n( r2r1 ) ;46. 2 (n2n1 )e;47. 2 d sin/;48. (1)使两缝间距变小,(2)使屏与两缝间距变大;49.0.75 ; 50.0.45mm;51.变小,变小; 52.D; 53.dx; 54. D ;dn5D N55. 1.2 m ;56. 1.40 ;57.9; 58.3;59.rad ;60.;4n24n22nl2n2 61.2d /; 62. 2(n1)d ;63.2d / N ; 64. 1.2mm , 3.6mm;65.7.6010 2 mm ;66.6,第一级明纹;67.4,第一,暗;68. 4 ;69.子波,子波相干叠加;70.相干叠加;71.106 m ;72.30 0;73.2 ;74.;75.300;76. 2 ; 77. 2 D / l ;78.625nm;79.传播速度,单轴; 80. 波动,横波。
大学物理—波动习题答案
L2 P2 x
P1 O
2.(3294) ( ) 在截面积为S的圆管中,有一列平面简谐波在传播, 在截面积为 的圆管中,有一列平面简谐波在传播,其波的表达 的圆管中
ω 管中波的平均能量密度是w, 式为y = Acos[ t − 2π( x / λ )],管中波的平均能量密度是 ,则 ωλ 通过截面积S的平均能流 的平均能流____________________. 通过截面积 的平均能流 . Sw 2π
波动习题
1.(3067) ( ) 时的波形曲线如图所示, 一平面简谐波的表达式为 (SI) ,t = 0时的波形曲线如图所示, 时的波形曲线如图所示 则 y (m) (A) O点的振幅为 点的振幅为-0.1 m. 点的振幅为 . u 0.1 (B) 波长为 m. 波长为3 . (C) a、b两点间相位差为 . 、 两点间相位差为 O a b x (m) C ] (D) 波速为 m/s . 波速为9 [ -0.1
7. 解:入射波在 x = 0 处引起的振动方程为 y10 = A cosωt ,由于反射端为固定 端,∴反射波在 x = 0 处的振动方程为 ∴ y20 = A cos(ωt + π) 或 y20 = A cos(ωt − π) 2分 ∴反射波为 或 驻波表达式为
x y2 = A cos(ωt + π − 2π )
(SI)
(SI)
6.解:(1) 与波动的标准表达式 y = A cos 2 π(ν t − x / λ ) 解 得: ν = 4 Hz, λ = 1.50 m, , , u = λν = 6.00 m/s 波速 (2) 节点位置
1 4 πx / 3 = ± ( nπ + π ) 2
1 x = ± 3( n + ) m , 2
重庆理工大学振动、波动部分答案(新)
大学物理学——振动和波振 动班级 学号 姓名 成绩内容提要1、简谐振动的三个判据(1);(2);(3)2、描述简谐振动的特征量: A 、T 、γ;T1=γ,πγπω22==T3、简谐振动的描述:(1)公式法 ;(2)图像法;(3)旋转矢量法4、简谐振动的速度和加速度:)2cos()sin(v00πϕωϕωω++=+-==t v t A dt dx m ; a=)()(πϕωϕωω±+=+=0m 0222t a t cos -dtxd A 5、振动的相位随时间变化的关系:6、简谐振动实例弹簧振子:,单摆小角度振动:,复摆:0mgh dt d 22=+θθJ ,T=2mghJπ 7、简谐振动的能量:222m 21k 21A A Eω==系统的动能为:)(ϕωω+==t sin m 21mv 212222A E K ;系统的势能为:)ϕω+==t (cos k 21kx 21222A E P8、两个简谐振动的合成(1)两个同方向同频率的简谐振动的合成合振动方程为:)(ϕω+=t cos x A 其中,其中;。
*(2) 两个同方向不同频率简谐振动的合成拍:当频率较大而频率之差很小的两个同方向简谐运动合成时,其合振动的振幅表现为时而加强时而减弱的现象,拍频:12-γγγ=*(3)两个相互垂直简谐振动的合成合振动方程:)(1221221222212-sin )(cos xy 2y x ϕϕϕϕ=--+A A A A ,为椭圆方程。
练习一一、 填空题1.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1。
若将此弹簧截去一半的长度,下端挂一质量为m/2的物体,则系统的周期T 2等于 。
2.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为:A = ;=ω ;=ϕ 。
3.如图,一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,做成一复摆。
已知细棒绕过其一端的轴的转动惯量J =3/2ml ,此摆作微小振动的周期为 。
大学物理波动练习题
波动(一)波长、波速、简谐波波函数专业 班级 学号 姓名 一、选择题1、一平面简谐波的表达式为 )3cos(1.0π+π-π=x t y (SI) ,t = 0时的波形曲线如图所示,则(A) O 点的振幅为-0.1 m .(B) 波长为3 m .(C) a 、b 两点间相位差为π21. (D) 波速为9 m/s . [ ]2、一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形图是 [ ]3、图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形.若波的表达式以余弦函数表示,则O 点处质点振动的初相为(A) 0. (B) π21.(C) π. (D) π23. [ ]4、频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为π31,则此两点相距 (A) 2.86 m . (B) 2.19 m .(C) 0.5 m . (D) 0.25 m . [ ]二、填空题一平面简谐波(机械波)沿x 轴正方向传播,波动表达式为)21cos(2.0x t y π-π= (SI),则x = -3 m 处媒质质点的振动加速度a 的表达式为_______________________.-xyOu三、计算题1、一简谐波,振动周期21=T s ,波长λ = 10 m ,振幅A = 0.1 m .当 t = 0时,波源振动的位移恰好为正方向的最大值.若坐标原点和波源重合,且波沿Ox 轴正方向传播,求: (1) 此波的表达式; (2) t 1 = T /4时刻,x 1 = λ /4处质点的位移; (3) t 2 = T /2时刻,x 1 = λ /4处质点的振动速度.2、一振幅为 10 cm ,波长为200 cm 的一维余弦波.沿x 轴正向传播,波速为 100 cm/s ,在t = 0时原点处质点在平衡位置向正位移方向运动.求(1) 原点处质点的振动方程.(2) 在x = 150 cm 处质点的振动方程.答案: 一、 CBDC 二、)23cos(2.02x t a π+ππ-= (SI)三、解:(1) )1024cos(1.0x t y π-π=)201(4cos 1.0x t -π= (SI) (2)t 1 = T /4 = (1 /8) s ,x 1 = λ /4 = (10 /4) m 处质点的位移)80/4/(4cos 1.01λ-π=T ym 1.0)818/1(4cos 1.0=-π=(3) 振速 )20/(4sin 4.0x t ty-ππ-=∂∂=v . )4/1(212==T t s ,在 x 1 = λ /4 = (10 /4) m 处质点的振速 26.1)21sin(4.02-=π-ππ-=v m/s解:(1) 振动方程: )cos(0φω+=t A y A = 10 cm , ω = 2πν = π s -1,ν = u / λ = 0.5 Hz 初始条件: y (0, 0) = 00)0,0(>y得 π-=210φ 故得原点振动方程: )21cos(10.0π-π=t y (SI) (2)x = 150 cm 处相位比原点落后π23, 所以 )2321cos(10.0π-π-π=t y )2cos(10.0π-π=t (SI)也可写成 t y π=cos 10.0 (SI)波动(二)波函数、波的能量专业 班级 学号 姓名 一、选择题1、一沿x 轴负方向传播的平面简谐波在t = 2 s 时的波形曲线如图所示,则原点O 的振动方程为(A) )21(cos 50.0ππ+=t y , (SI). (B) )2121(cos 50.0ππ-=t y , (SI).(C) )2121(cos 50.0ππ+=t y , (SI).(D) )2141(cos 50.0ππ+=t y , (SI). [ ]2、如图所示为一平面简谐波在t = 0 时刻的波形图,该波的波速u = 200 m/s ,则P 处质点的振动曲线为[ ]3、一平面简谐波沿x 轴正方向传播,t = 0 时刻的波形图如图所示,则P 处质点的振动在t = 0时刻的旋转矢量图是[ ]4、图示一简谐波在t = 0时刻的波形图,波速 u = 200 m/s ,则图中O 点的振动加速度的表达式为 [ ](A) )21cos(4.02π-ππ=t a (SI). (B) )23cos(4.02π-ππ=t a (SI).(C) )2cos(4.02π-ππ-=t a (SI).(D) )212cos(4.02π+ππ-=t a (SI)5、一平面简谐波在弹性媒质中传播时,某一时刻媒质中某质元在负的最大位移处,则它的能量是y(m)ωS A O ′ωS AO′ωAO ′ωS A O′(A)(B)(C)(D) S(m)(A) 动能为零,势能最大. (B) 动能为零,势能为零.(C) 动能最大,势能最大. (D) 动能最大,势能为零. [ ]6、在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是 (A) A 1 / A 2 = 16. (B) A 1 / A 2 = 4.(C) A 1 / A 2 = 2. (D) A 1 / A 2 = 1 /4. [ ]二、填空题1、如图所示,一平面简谐波沿Ox 轴负方向传播,波长为λ ,若P 处质点的振动方程是)212cos(π+π=t A y P ν,则该波的表达式是_______________________________;P 处质点____________________________时刻的振动状态与O 处质点t 1时刻的振动状态相同.2、图示一平面简谐波在t = 2 s 时刻的波形图,波的振幅为0.2m ,周期为 4 s ,则图中P 点处质点的振动方程为___________________________.三、计算题已知一平面简谐波的表达式为 )37.0125cos(25.0x t y -= (SI) (1) 分别求x 1 = 10 m ,x 2 = 25 m 两点处质点的振动方程; (2) 求x 1,x 2两点间的振动相位差; (3) 求x 1点在t = 4 s 时的振动位移.答案: 一、CCADBCxy LOP二、]2)(2cos[π+++π=λνLx t A y 3分 νλνkLt ++1, k = 0,±1,±2, … [只写 )/(1λνL t + 也可以] 2分)2121c o s (2.0π-π=t y P 3分三、解:(1) x 1 = 10 m 的振动方程为)7.3125cos(25.010-==t y x (SI)x 2 = 25 m 的振动方程为)25.9125cos(25.025-==t y x (SI)(2) x 2与x 1两点间相位差 ∆φ = φ2 - φ1 = -5.55 rad(3) x 1点在t = 4 s 时的振动位移y = 0.25cos(125×4-3.7) m= 0.249 m波动(三)波的衍射、干涉、驻波专业 班级 学号 姓名 一、选择题1、如图所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk r r =-12.(B) π=-k 212φφ.(C)π=-π+-k r r 2/)(21212λφφ.(D) π=-π+-k r r 2/)(22112λφφ. [ ]2、两相干波源S 1和S 2相距λ /4,(λ 为波长),S 1的相位比S 2的相位超前π21,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐振动的相位差是:(A) 0. (B)π21. (C) π. (D) π23. [ ]3、在驻波中,两个相邻波节间各质点的振动SS 1S 2Pλ/4(A) 振幅相同,相位相同. (B) 振幅不同,相位相同.(C) 振幅相同,相位不同. (D) 振幅不同,相位不同. [ ]4、在波长为λ 的驻波中,两个相邻波腹之间的距离为 (A) λ /4. (B) λ /2.(C) 3λ /4. (D) λ . [ ]5、沿着相反方向传播的两列相干波,其表达式为)/(2c o s 1λνx t A y -π= 和 )/(2c o s 2λνx t A y +π=. 在叠加后形成的驻波中,各处简谐振动的振幅是 (A) A . (B) 2A .(C) )/2cos(2λx A π. (D) |)/2cos(2|λx A π. [ ]二、选择择1、两列波在一根很长的弦线上传播,其表达式为y 1 = 6.0×10-2cos π(x - 40t ) /2 (SI)y 2 = 6.0×10-2cos π(x + 40t ) /2 (SI)则合成波的表达式为__________________________________________________;在x = 0至x = 10.0 m 内波节的位置是_______________________________________________________________________;波腹的位置是________________________________________________________.三、计算题1、两列余弦波沿Ox 轴传播,波动表达式分别为)]0.802.0(21cos[06.01t x y -π= (SI) 与 )]0.802.0(21cos[06.02t x y +π= (SI),试确定Ox 轴上合振幅为0.06 m 的那些点的位置.2、图中A 、B 是两个相干的点波源,它们的振动相位差为π(反相).A 、B 相距 30 cm ,观察点P 和B 点相距 40 cm ,且AB PB ⊥.若发自A 、B 的两波在P 点处最大限度地互相削弱,求波长最长能是多少.答案: 一、 DCBBD 二、t x y ππ⨯=-20cos )21cos(100.122 (SI) 2分)12(+=n x m , 即 x = 1 m ,3 m ,5 m ,7 m ,9 m 2分 n x 2= m ,即 x = 0 m ,2 m ,4 m ,6 m ,8 m ,10 m 1分三、解:把两波写成 )]0.802.0(21cos[11t x A y -π=)]02.00.8(21cos[1x t A -π= )]02.00.8(21cos[22x t A y +π=并令 A 1 = A 2 = A = 0.06 m ,则对于所求的点有φ∆++=cos 22122212A A A A A可得 21cos -=∆φ由 x π=∆02.0φ可得 )3/22(02.0π+π±=πk x 或 )3/22(02.0π-π±=πk x 故 )3/22(50+±=k x m或 )3/22(50-±=k x m ( k = 0,1,2,…)解:在P 最大限度地减弱,即二振动反相.现二波源是反相的相干波源,故要 求因传播路径不同而引起的相位差等于 ± 2k π(k = 1,2,…). 由图 =AP 50 cm . ∴ 2π (50-40) /λ = 2k π, ∴ λ = 10/k cm ,当k = 1时,λmax = 10 cm。
大学物理学振动与波动习题答案
大学物理学(上)第四,第五章习题答案第4章振动P174.4.1 一物体沿x轴做简谐振动,振幅A = 0.12m,周期T = 2s.当t = 0时,物体的位移x= 0.06m,且向x轴正向运动.求:(1)此简谐振动的表达式;(2)t = T/4时物体的位置、速度和加速度;(3)物体从x = -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间.[解答](1)设物体的简谐振动方程为x = A cos(ωt + φ),其中A = 0.12m,角频率ω = 2π/T= π.当t = 0时,x = 0.06m,所以cosφ = 0.5,因此φ= ±π/3.物体的速度为v = d x/d t = -ωA sin(ωt + φ).当t = 0时,v = -ωA sinφ,由于v > 0,所以sinφ < 0,因此φ = -π/3.简谐振动的表达式为x= 0.12cos(πt –π/3).(2)当t = T/4时物体的位置为x= 0.12cos(π/2–π/3)= 0.12cosπ/6 = 0.104(m).速度为v = -πA sin(π/2–π/3)= -0.12πsinπ/6 = -0.188(m·s-1).加速度为a = d v/d t = -ω2A cos(ωt + φ)= -π2A cos(πt - π/3)= -0.12π2cosπ/6 = -1.03(m·s-2).(3)方法一:求时间差.当x= -0.06m 时,可得cos(πt1 - π/3) = -0.5,因此πt1 - π/3 = ±2π/3.由于物体向x轴负方向运动,即v < 0,所以sin(πt1 - π/3) > 0,因此πt1 - π/3 = 2π/3,得t1 = 1s.当物体从x = -0.06m处第一次回到平衡位置时,x = 0,v > 0,因此cos(πt2 - π/3) = 0,可得πt2 - π/3 = -π/2或3π/2等.由于t2 > 0,所以πt2 - π/3 = 3π/2,可得t2 = 11/6 = 1.83(s).所需要的时间为Δt = t2 - t1 = 0.83(s).方法二:反向运动.物体从x= -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间就是它从x = 0.06m,即从起点向x 轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此cos(πt - π/3) = 0,可得πt - π/3 = π/2,解得t = 5/6 = 0.83(s).[注意]根据振动方程x = A cos(ωt + φ),当t = 0时,可得φ= ±arccos(x0/A),(-π < φ≦π),初位相的取值由速度决定.由于v = d x/d t = -ωA sin(ωt + φ),当t = 0时,v = -ωA sinφ,当v > 0时,sinφ < 0,因此φ = -arccos(x0/A);当v < 0时,sinφ > 0,因此φ = arccos(x0/A).可见:当速度大于零时,初位相取负值;当速度小于零时,初位相取正值.如果速度等于零,当初位置x0 = A时,φ= 0;当初位置x0 = -A时,φ= π.4.2 已知一简谐振子的振动曲线如图所示,试由图求:(1)a,b,c,d,e各点的位相,及到达这些状态的时刻t各是多少?已知周期为T;(2)振动表达式;(3)画出旋转矢量图.[解答]方法一:由位相求时间.(1)设曲线方程为x = A cosΦ,其中A表示振幅,Φ = ωt + φ表示相位.由于x a = A,所以cosΦa = 1,因此Φa = 0.由于x b = A/2,所以cosΦb = 0.5,因此Φb = ±π/3;由于位相Φ随时间t增加,b点位相就应该大于a点的位相,因此Φb = π/3.由于x c = 0,所以cosΦc = 0,又由于c点位相大于b位相,因此Φc = π/2.同理可得其他两点位相为Φd = 2π/3,Φe = π.c点和a点的相位之差为π/2,时间之差为T/4,而b点和a点的相位之差为π/3,时间之差应该为T/6.因为b点的位移值与O时刻的位移值相同,所以到达a点的时刻为t a = T/6.到达b点的时刻为t b = 2t a = T/3.到达c点的时刻为t c = t a + T/4 = 5T/12.到达d点的时刻为t d = t c + T/12 = T/2.到达e点的时刻为t e = t a + T/2 = 2T/3.(2)设振动表达式为x = A cos(ωt + φ),当t = 0时,x = A/2时,所以cosφ = 0.5,因此φ =±π/3;由于零时刻的位相小于a点的位相,所以φ = -π/3,因此振动表达式为cos(2)3tx ATπ=π-.另外,在O时刻的曲线上作一切线,由于速度是位置对时间的变化率,所以切线代表速度的方向;由于其斜率大于零,所以速度大于零,因此初位相取负值,从而可得运动方程.(3)如图旋转矢量图所示.方法二:由时间求位相.将曲线反方向延长与t轴相交于f点,由于x f = 0,根据运动方程,可得cos(2)03tTππ-=所以232ftTπππ-=±.图6.2显然f 点的速度大于零,所以取负值,解得t f = -T /12.从f 点到达a 点经过的时间为T /4,所以到达a 点的时刻为t a = T /4 + t f = T /6,其位相为203a a t T Φπ=π-=.由图可以确定其他点的时刻,同理可得各点的位相.4.3如图所示,质量为10g 的子弹以速度v = 103m·s -1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k= 8×103N·m -1,木块的质量为4.99kg ,不计桌面摩擦,试求:(1)振动的振幅; (2)振动方程.[解答](1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即mv = (m + M )v 0.解得子弹射入后的速度为v 0 = mv/(m + M ) = 2(m·s -1),这也是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得(m + M ) v 02/2 = kA 2/2,所以振幅为A v =-2(m). (2)振动的圆频率为ω=-1).取木块静止的位置为原点、向右的方向为位移x 的正方向,振动方程可设为x = A cos(ωt + φ).当t = 0时,x = 0,可得φ = ±π/2;由于速度为正,所以取负的初位相,因此振动方程为x = 5×10-2cos(40t - π/2)(m). 4.4 如图所示,在倔强系数为k 的弹簧下,挂一质量为M 的托盘.质量为m 的物体由距盘底高h 处自由下落与盘发生完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t = 0时刻,求振动方程.[解答]物体落下后、碰撞前的速度为v =物体与托盘做完全非弹簧碰撞后,根据动量守恒定律可得它们的共同速度为0m v v m M ==+这也是它们振动的初速度. 设振动方程为x = A cos(ωt + φ),其中圆频率为ω=物体没有落下之前,托盘平衡时弹簧伸长为x 1,则x 1 = Mg/k .物体与托盘碰撞之后,在新的平衡位置,弹簧伸长为x 2,则x 2 = (M + m )g/k .取新的平衡位置为原点,取向下的方向为正,则它们振动的初位移为x 0 = x 1 - x 2 = -mg/k . 因此振幅为A ==图4.3图4.4=初位相为arctanvxϕω-==4.5重量为P的物体用两根弹簧竖直悬挂,如图所示,各弹簧的倔强系数标明在图上.试求在图示两种情况下,系统沿竖直方向振动的固有频率.[解答](1)可以证明:当两根弹簧串联时,总倔强系数为k=k1k2/(k1 + k2),因此固有频率为2πων===.(2)因为当两根弹簧并联时,总倔强系数等于两个弹簧的倔强系数之和,因此固有频率为2πων===4.6 一匀质细圆环质量为m,半径为R,绕通过环上一点而与环平面垂直的水平光滑轴在铅垂面内作小幅度摆动,求摆动的周期.[解答]方法一:用转动定理.通过质心垂直环面有一个轴,环绕此轴的转动惯量为I c = mR2.根据平行轴定理,环绕过O点的平行轴的转动惯量为I = I c + mR2 = 2mR2.当环偏离平衡位置时,重力的力矩为M = -mgR sinθ,方向与角度θ增加的方向相反.根据转动定理得Iβ = M,即22dsin0dI mgRtθθ+=,由于环做小幅度摆动,所以sinθ≈θ,可得微分方程22ddmgRt Iθθ+=.摆动的圆频率为ω=周期为2πTω=22==方法二:用机械能守恒定律.取环的质心在最底点为重力势能零点,当环心转过角度θ时,重力势能为E p = mg(R - R cosθ),绕O点的转动动能为212kE I=ω,总机械能为21(cos)2E I mg R R=+-ωθ.环在转动时机械能守恒,即E为常量,将上式对时间求导,利用ω= dθ/d t,β=dω/d t,得0 = Iωβ + mgR(sinθ)ω,由于ω ≠ 0,当θ很小有sinθ≈θ,可得振动的微分方程22ddmgRt Iθθ+=,从而可求角频率和周期.[注意]角速度和圆频率使用同一字母ω,不要将两者混淆.(b)图4.54.7 横截面均匀的光滑的U 型管中有适量液体如图所示,液体的总长度为L ,求液面上下微小起伏的自由振动的频率。
大学物理16波动答案
波动一、单选题:1、(3058A10)C2、(3066A05)B3、(3067A15)C4、(3068A15)D5、(3147B25)B6、(3151B25)B7、(3407A20)D8、(3411A15)C9、(3413A15)A 10、(3479A15)A 11、(3483B35)C 12、(3841A10)B 13、(3842A10)A 14、(3847A20)D 15、(5193A15)B 16、(5204B25)D 17、(5317A10)C 18、(5513A10)C 19、(3069C45)C 20、(3070B30)D 21、(3071C45)D 22、(3072B30)A 23、(3073B35)C 24、(3145B30)C 25、(3149B30)A 26、(3150B25)A 27、(3152C45)C 28、(3338B30)D 29、(3339B30)D 30、(3340B25)A 31、(3341B30)A 32、(3408B30)B 33、(3409B40)D 34、(3412B30)A 35、(3415B30)D 36、(3573B25)C 37、(3574A20)B 38、(3575B25)A 39、(3603A15)A 40、(5203B25)D 41、(3087B30)A 42、(3088B30)A 43、(3089B35)D 44、(3090B35)C 45、(3286A10)C 46、(3287B30)D 47、(3288B25)C 48、(3289B35)B 49、(5320B30)B 50、(3295B25)D 51、(3433A15)D 52、(3434B25)C 53、(5321B30)D 54、(3101B30)B 55、(3308A10)B 56、(3309A10)C 57、(3310B25)C 58、(3311B25)D 59、(3312B25)C 60、(3591A20)D 61、(3592A20)D 62、(3593A20)C 63、(5194A10)C 64、(3457A05)B 65、(3458A15)C 66、(3459A15)C 67、(3598A05)C 68、(5523B25)A 69、(3112A15)B 70、(3113B25)C 71、(3321A10)A 72、(3322A10)B 参考解 21、(3071C45) 解:由图 b 2=λ, bu u2==λν令波的表达式为 ])(2c o s [φλν+-π=x t a y 在 t = t ', ])(2c o s [φλν+-'π=xt a y由图,这时x = 0处 初相 22π-=+'πφνt可得 t 'π-π-=νφ22故x = 0处 ]2c o s [φν+π=t a y ]2)(c o s [π-'-π=t t bu a二、填空题:1、(3059A10) 向下 ; 向上 ; 向上2、(3061A15) 503 m/s3、(3062A15) π4、(3063A15) 0.8 m ; 0.2 m ; 125 Hz5、(3065A10) 0.233 m6、(3074A15) 波从坐标原点传至x 处所需时间 ;x 处质点比原点处质点滞后的振动相位;t 时刻x 处质点的振动位移7、(3075A10) 125 rad/s ; 338 m/s ; 17.0 m 8、(3153B35) φλ+π-/2L ; λk L ± ( k = 1,2,3,…) ;λ)12(21+±k L ( k = 0, 1,2,…)9、(3342A10) )23c o s (2.02x t a π+ππ-= (SI)10、(3417A05) 17 m 到1.7³10-2 m 11、(3418A05) 2π /5 12、(3420A20) 0 13、(3421A15) aE 14、(3423B30) )2121200c o s (1023π-π-π⨯=-x t y (SI)15、(3425A10) 2.4 m ; 6.0 m/s 16、(3426A10) 5.0 ³104 Hz ; 2.86³10-2 m ; 1.43³103 m/s17、(3441B25) ]42c o s [λλωLxt A π-π+18、(3442B25) )]22()(2cos[λφλL xTt A π-π+++π或)]22()(2cos[λφλLxTt A π-π-++π19、(3445B30) )2(2c o s λλνL xt A +-π 20、(3446B35) )22c o s (π±-π+λωxL t A21、(3571A10) u x x /)(12-ω 注:(x 1和x 2写反了扣1分) 22、(3572A10) )24c o s (1.0x t π-π 23、(3576A10) a /b 24、(3578A15) π /3 25、(3580A10) b / 2π ; 2π / d 26、(3850A15) 0.1cos(4πt - π) (SI) ; -1.26 m/s 27、(3852A10) 2 cm ; 2.5 cm ; 100Hz ; 250 cm/s 28、(3853A10) 0.6 m ; 0.25 m 29、(3862A10) 30 ; 30 30、(3863A15) 2π /C ; B /C ; Cd31、(5318B25) 答案见右图32、(5514A05) 0.533、(5515A10) 3 ; 300 34、(3076B30) ])330/(165cos[10.0π--π=x t y (SI) 35、(3077B25) }]/)1([cos{φω+++=u x t A y (SI)36、(3132A20) ]4/)/(c o s [11π+-=u L t A y ω; uL L )(21+ω图(1)图(2)37、(3133B25) ])(2c o s [212φλν++-π=L L t A y ; λk L x +-=1 ( k = ± 1,± 2,…)38、(3134B35) ]2)(2c o s [π+++π=λνLx t A y;νλνkLt ++1,k = 0,±1,±2, … [注:只写 )/(1λνL t + 也可以]39、(3135B30) ]2)2(2c o s [π-+-π=u xt u A y λ; ]2)2(2c o s [π+-π=t uA y P λ40、(3136B30) ]/2c o s [1φ+π=T t A y ; ])//(2c o s [2φλ++π=x T t A y41、(3330C45) )2121c o s (2.0π-π=t y P42、(3337B25) 答案见右图43、(3343B30))22c o s (1π-π=t T A y x或 )/2sin(1T t A y x π=44、(3344B30) )c o s (04.02π+π=t y P (SI) 45、(3424B40) ]21)(2c o s [0π+-π=t t A y ν46、(3607B40) 3T /4 47、(3608B40) π2348、(3609B40)λ21 49、(3610B40) 3λ/ 450、(3856A15) )4521s i n (06.0π-π=t y51、(5195C55))/2c o s (λωx t A y π-π+=;)/2/4cos(λλωx L t A y π+π-'='52、(5205C45) 答案见图 注:根据波动的相位传播规律,考虑下列三个相位的传播:1)x = 0点t = 0时刻的相位,在t = T 时刻传到x = λ处.2)x = 0点在t = T / 4时刻的相位,在t = T 时刻传到x = (3 /4)λ 点.3)x = 0点在t = (3 /4)T 时刻的相位,在t = T 时刻传到x = λ /4点. 53、(5524B35) 答案见右图54、(3091A15) 2122/R R55、(3092B25) 答案见图(子波源、波阵面、波线各1分)56、(3291A15) 5 J 57、(3292A10) 4 58、(3293A20) I S cos θ 59、(3294B25)Swπ2ωλ60、(3431A20) DC 为 t + τ 时刻波在介质2中的波前61、(3859A10) 0.08 W/m 2参考解:∵ P r S =π⋅24∴ 08.04/2=π=r P S W/m 262、(5196A10) 7.96³10-2 W/m 2 63、(3093B25) 相同 ; 2π/3 64、(3094B25) S 1的相位比S 2的相位超前π/2 65、(3301B25))22c o s (2212221λπrL A A A A -++66、(3587A15) 2A 67、(3588A10) 0 68、(3589A10) 0 69、(3857A15) 1.7³103 Hz参考解:两路声波干涉减弱条件是: λδ)12(21+=-=k EBA ECA ①当C 管移动x = 10 cm = 0.1 m 时,再次出现减弱,波程差为 λδδ]1)1(2[212++=+='k x ②②-①得 x 2=λ 故 ===)2/(/x u u λν 1.7³103 Hz 70、(5517B30) 2k π + π /2,k = 0,±1,±2,… ;2k π +3 π /2,k = 0,±1,±2,… 71、(3105B35) tx y ππ⨯=-20cos )21cos(100.122 (SI) ;)12(+=n x m , 即 x = 1 m ,3 m ,5 m ,7 m ,9 m ; n x 2= m ,即 x = 0 m ,2 m ,4 m ,6 m ,8 m ,10 m 72、(3106C45) ])/(2c o s [π++πλνx t A ; )212cos()21/2cos(2π+ππ+πt x A νλ73、(3107C45) )(2c o s λx T t A -π; A74、(3154A20) t A y ωc o s 21-= 或 )c o s (21π±=t A y ω ; t A ωs i n 2=v75、(3156C50) 答案见右图 76、(3314B30) )212c o s (]212c o s [2π+ππ-π=t xA y νλ或)212cos(]212cos[2π-ππ+π=t xA y νλ或 )2cos(]212cos[2t x A y νλππ+π=77、(3315A20) )21100c o s ()21c o s (30.0π+ππ=t x y(SI)78、(3316A15) λ21)21(+=k x ,k = 0,1,2,3,… 79、(3317A15) λ21)21(-=k x ,k = 1,2,3,…80、(3317A15) 2 m ; 45 Hz 81、(3318A20) 100 m/s 82、(3487B25) π 83、(3488B25) 0 84、(3594A10) π 85、(3595A10) λ21 86、(3597A10)λ2187、(5198B25) 答案见右图88、(2196A10) 三者相互垂直, 成右手关系,即H E⨯的方向为波传播的方向. 89、(2197A10) 紫外 ; X 射线 ; γ 射线. 90、(2748A10) 2.00³108 m/s 91、(3125A10) 垂直 ; 相同 92、(3126A15) )6/2c o s (39.2π+π=t H y ν A/m 93、(3127A15) )3/2c o s (796.0π+π-=t H y ν A/m ;如图 94、(3456A05) 介电常数ε 和磁导率μ 95、(3460A05) 4.69³102 m 96、(3461A05) ν = 108 Hz 97、(3462A10) 3 m 98、(3463A15) )312c o s (452π+πt ν(SI)99、(3464A15) )/(2c o s 59.1c x t H z -π=ν (SI) 100、(3465A15) )/(2cos 12.2c x t H z +π-=ν (SI)101、(3466A15) ])/(c o s [754π+--=c z t E y ω (SI) 102、(3467A15) )/(2c o s 565λνz t +π (SI)103、(3468A20) 1.91³10-7 W ²m -2zyxcx EyHO104、(3469A15) 4.0³1026 J105、(3470A15) 1.59³10-5 W ²m -2 106、(3600A05) 3.00³108 107、(5197A05) 6 ; 4 108、(3115A10) 637.5 Hz ; 566.7 Hz 109、(3116B25) 1065 Hz ; 935 Hz 110、(5877A20) S Ruu νv -111、(5878A20) S Su uνv -三、计算题:1、(3083B30) 解:由题 λ = 24 cm, u = λν = 24³25 cm/s =600 cm/s 2分 A = 3.0 cm , ω = 2πν = 50 π/s 2分y 0 = A cos φ = 0, 0s i n 0>-=φωA yπ-=21φ2分]21)6/(50cos[100.32π--π⨯=-x t y(SI) 2分2、(3085C45)解:反射波在x 点引起的振动相位为 π+π--+π-=+21)55(4x t t φωπ-π+π+=10214x t 3分反射波表达式为)10214cos(01.0π-π+π+=x t y(SI) 2分或 )214c o s (01.0π+π+=x t y (SI)3、(3086C65)解:设平面简谐波的波长为λ,坐标原点处质点振动初相为φ,则该列平面简谐波的表达式可写成)/27cos(1.0φλ+π-π=x t y (SI) 2分t = 1 s 时 0])/1.0(27c o s [1.0=+π-π=φλy 因此时a 质点向y 轴负方向运动,故π=+π-π21)/1.0(27φλ ① 2分而此时,b 质点正通过y = 0.05 m 处向y 轴正方向运动,应有 05.0])/2.0(27cos[1.0=+π-π=φλy且 π-=+π-π31)/2.0(27φλ ② 2分)由①、②两式联立得 λ = 0.24 m 1分3/17π-=φ 1分∴ 该平面简谐波的表达式为]31712.07cos[1.0π-π-π=x t y(SI) 2分或 ]3112.07cos[1.0π+π-π=x t y (SI)4、(3335B25)解:(1) )1024cos(1.0x t y π-π=)201(4cos 1.0x t -π=(SI) 3分(2) t 1 = T /4 = (1 /8) s ,x 1 = λ /4 = (10 /4) m 处质点的位移)80/4/(4cos 1.01λ-π=T ym 1.0)818/1(4c o s 1.0=-π= 2分(3) 振速 )20/(4sin 4.0x t ty -ππ-=∂∂=v .)4/1(212==T ts ,在 x 1 = λ /4 = (10 /4) m 处质点的振速26.1)21sin(4.02-=π-ππ-=v m/s 3分5、(3410A20)解:(1) 已知波的表达式为)2100cos(05.0x t y π-π= 与标准形式)/22c o s (λνx t A y π-π= 比较得A = 0.05 m , ν = 50 Hz , λ = 1.0 m 各1分 u = λν = 50 m/s 1分 (2) 7.152)/(max max =π=∂∂=A t y νv m /s 2分322m a x 22m a x 1093.44)/(⨯=π=∂∂=A t y a ν m/s 2 2分(3) π=-π=∆λφ/)(212x x ,二振动反相 2分6、(3860A15)解: 5.0/==λνu Hz νωπ=2= π s -1 1分x = 0处的初相 π=210φ,角波数 π=π=λ/2k m -1 ,波动表达式为 2分(A = 0.1 m) )21c o s (1.0π+π-π=x t y 1分)s i n (),(0φωω+--=∂∂=kx t A ty t x v速度最大值为: v max = 0.314 m/s 1分7、(3861A15)解:(1) 振动方程: )c o s (0φω+=t A y A = 10 cm , ω = 2πν = π s -1,ν = u / λ = 0.5 Hz 初始条件: y (0, 0) = 00)0,0(>y得 π-=210φ故得原点振动方程: )21c o s (10.0π-π=t y (SI) 2分(2) x = 150 cm 处相位比原点落后π23, 所以)2321c o s (10.0π-π-π=t y )2c o s (10.0π-π=t(SI) 3分也可写成ty π=c o s 10.0 (SI)8、(3864A15)解: A = 0.01 m ,λ = u /ν = 1 m ,T = 1 s 1分x = 0处, φ 0 = 0 2分波表达式为 )//(2c o s 01.0λx T t y +π=)(2c o s 01.0x t +π= (SI) 2分 9、(5199B30)解:该波波长 λ = u /ν = 0.8 m (1) x 2点与x 1点的相位差为λφφ/)(2)(1212x x -π=--λφφ/)(21212x x -π-=- 3分 当=-12x x 0.12 m 时 π-=-3.012φφ rad 1分 (2) 同一点x ,时间差12t t -,相应的相位差T t t /)(21212-π='-'φφ)(212t t -π=ν 3分 当 31210-=-t t s 时, π='-'12φφ rad 1分 10、(5319B40)解:这是一个向x 轴负方向传播的波.(1) 由波数 k = 2π / λ 得波长 λ = 2π / k = 1 m 1分 由 ω = 2πν 得频率 ν = ω / 2π = 2 Hz 1分 波速 u = νλ = 2 m/s 1分 (2) 波峰的位置,即y = A 的位置. 由 1)24(c o s =+πx t有 π=+πk x t 2)24( ( k = 0,±1,±2,…)解上式,有 t k x 2-=.当 t = 4.2 s 时, )4.8(-=k x m . 2分所谓离坐标原点最近,即| x |最小的波峰.在上式中取k = 8,可得 x = -0.4 的波峰离坐标原点最近. 2分 (3) 设该波峰由原点传播到x = -0.4 m 处所需的时间为∆t ,则 ∆t = | ∆x | /u = | ∆x | / (ν λ ) = 0.2 s 1分 ∴ 该波峰经过原点的时刻 t = 4 s 2分 11、(3078B40)解:(1) 设x = 0 处质点的振动方程为 )2c o s (φν+π=t A y由图可知,t = t '时 0)2c o s (=+'π=φνt A y 1分 0)2s i n (2d /d <+'ππ-=φννt A t y 1分所以 2/2π=+'πφνt , t 'π-π=νφ2212分x = 0处的振动方程为 ]21)(2c o s [π+'-π=t t A y ν 1分(2) 该波的表达式为 ]21)/(2c o s [π+-'-π=u x t t A y ν3分12、(3079B30)解:(1) 原点O 处质元的振动方程为)2121c o s (1022π-π⨯=-t y , (SI) 2分波的表达式为 )21)5/(21c o s (1022π--π⨯=-x t y ,(SI) 2分x = 25 m 处质元的振动方程为)321c o s (1022π-π⨯=-t y , (SI)振动曲线见图 (a) 2分 (2) t = 3 s 时的波形曲线方程)10/cos(1022x y π-π⨯=-, (SI) 2分 波形曲线见图 2分13、(3080A15)解:(1) x 1 = 10 m 的振动方程为)7.3125cos(25.010-==t y x (SI) 1分x 2 = 25 m 的振动方程为)25.9125cos(25.025-==t y x (SI) 1分 (2) x 2与x 1两点间相位差∆φ = φ2 - φ1 = -5.55 rad 1分 (3) x 1点在t = 4 s 时的振动位移y = 0.25cos(125³4-3.7) m= 0.249 m 2分 14、(3081A15) 解: λxu t A y -π=2c o s = -0.01 m 1分1.0,2d d ===t x ty v 0)2s i n (2=-ππ-=λλxut uA 2分22d d ty a =)2c o s ()2(2λλxut uA -ππ-== 6.17³103 m/s 2 2分15、(3082B35)解:(1) 坐标为x 点的振动相位为)]/([4u x t t +π=+φω)]/([4u x t +π=)]20/([4x t +π= 2分t (s)O -2³10-21y (m )234(a)2³波的表达式为 )]20/([4cos 1032x t y +π⨯=- (SI) 2分 (2) 以B 点为坐标原点,则坐标为x 点的振动相位为]205[4-+π='+x t t φω(SI) 2分 波的表达式为 ])20(4cos[1032π-+π⨯=-xt y(SI) 2分16、(3084B30)解:(1) 以O 点为坐标原点.由图可知,该点振动初始条件为 0c o s 0==φA y , 0s i n 0<-=φωA v 所以 π=21φ波的表达式为 ]21)/(c o s [π+-=u x t A y ωω4分(2) 8/λ=x 处振动方程为]21)8/2(c o s [π+π-=λλωt A y )4/c o s (π+=t A ω 1分8/3λ=x 的振动方程为]218/32c o s [π+-=λλπωt A y )4/c o s (π-=t A ω 1分(3) )21/2s i n (/d d π+π--=λωωx t A t yt = 0,8/λ=x 处质点振动速度]21)8/2s i n [(/d d π+π--=λλωA t y 2/2ωA -= 1分t = 0,8/3λ=x 处质点振动速度]21)8/32sin[(/d d π+⨯π--=λλωA t y 2/2ωA =1分17、(3137A20)解:(1) 振动方程 }]/)([2c o s {φλν+--π=L t A y P])/(2c o s [φλν++π=L t A 2分 (2) 速度表达式 ])/(2sin[2φλνπν++π-=L t A P v 2分加速度表达式 ])/(2c o s [422φλνν++ππ-=L t A a P 1分 18、(3138B35) 解:(1) 振动方程 )22c o s (06.00π+π=ty )c o s (06.0π+π=t(SI) 3分(2) 波动表达式])/(c o s [06.0π+-π=u x t y3分])21(c o s [06.0π+-π=x t(SI)(3) 波长 4==uT λ m 2分19、(3139B30)解:(1) O 处质点的振动方程为 ])(c o s [0φω++=u L t A y2分(2) 波动表达式为 ])(c o s [φω+++=uL x t A y 2分(3) x = -L ± k ωuπ2 ( k = 1,2,3,…) 1分20、(3140B30)解:(1) O 处质点振动方程 ])(c o s [0φω++=uL t A y 2分(2) 波动表达式 ])(cos[φω+--=uL x t A y2分(3) ωukL x L x π±=±=2 (k = 0,1,2,3,…) 1分21、(3141B30)解:(1) O 处质点,t = 0 时 0c o s 0==φA y , 0sin 0>-=φωA v所以 π-=21φ2分又 ==u T /λ (0.40/ 0.08) s= 5 s 2分 故波动表达式为 ]2)4.05(2c o s [04.0π--π=x ty(SI) 4分(2) P 处质点的振动方程为]2)4.02.05(2c o s [04.0π--π=ty P )234.0c o s (04.0π-π=t(SI) 2分22、(3142B35) 解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时刻,O 处质点 φc o s 0A =, φωs i n00A -=<v , 故 π-=21φ2分又t = 2 s ,O 处质点位移为 )214c o s (2/π-π=νA A所以 π-π=π-21441ν,ν = 1/16 Hz 2分振动方程为 )218/c o s (0π-π=t A y (SI) 1分(2) 波速 u = 20 /2 m/s = 10 m/s波长 λ = u /ν = 160 m 2分波动表达式 ]21)16016(2c o s [π-+π=xt A y (SI) 3分23、(3143B35)解:(1) 由P 点的运动方向,可判定该波向左传播.原点O 处质点,t = 0 时φc o s2/2A A =, 0sin 0<-=φωA v 所以 4/π=φO 处振动方程为 )41500cos(0π+π=t A y(SI) 3分由图可判定波长λ = 200 m ,故波动表达式为]41)200250(2cos[π++π=x t A y(SI) 2分(2) 距O 点100 m 处质点的振动方程是)45500cos(1π+π=t A y 1分振动速度表达式是 )45500cos(500π+ππ-=t A v(SI) 2分24、(3144B35)解:(1) 由振动曲线可知,P 处质点振动方程为])4/2c o s [(π+π=t A y P )21c o s (π+π=t A (SI) 3分(2) 波动表达式为 ])4(2c o s [π+-+π=λdx t A y (SI) 3分(3) O 处质点的振动方程 )21c o s (0t A y π= 2分25、(3146C50)解:(1)波的周期T = λ / u =( 40/20) s= 2 s . 2分P 处Q 处质点振动周期与波的周期相等,故P 处质点的振动曲线如图(a) 振动方程为: 2分)21c o s (20.0π-π=t y P (SI) 2分(2) Q 处质点的振动曲线如图(b),振动方程为)cos(20.0π+π=t y Q (SI) 2分 或 )cos(20.0π-π=t y Q (SI) 2分 26、(3331C50)解:用旋转矢量解此题,如图可得A为代表P 点振动的旋转矢量. 210)cos sin 3(21-⨯-=t t y P ωω210)]cos()21cos(3(21-⨯π++π-=t t ωω)3/4c o s (1012π+⨯=-t ω (SI). 3分 波的表达式为:]2/234c o s [1012λλω-π-π+⨯=-x t y)312c o s (1012π+π-⨯=-λωxt (SI) 2分27、(3332B30) 解:(1) 2m )250/500(/===νλu m波的表达式]/2)1(21500cos[03.0),(λπ--π-π=x t t x y]2/2)1(21500cos[03.0π--π-π=x t))21500cos(03.0x t π-π+π= (SI) 3分(2) t = 0时刻的波形曲线x x x y π=π-π=s i n 03.0)21cos(03.0)0,( (SI) 2分28、(3333B35) 解:(1) )3121cos(10220π+π⨯=-t y (SI)3分(2)]31)4141(2cos[1022π+-π⨯=-x t y(SI)2分(3) t = 1 s 时,波形表达式: )6521c o s (1022π-π⨯=-x y(SI)故有如图的曲线. 3分29、(5200B30) 解:(1) 如图A ,取波线上任一点P ,其坐标设为x ,由波的传播特性,P 点的振动落后于λ /4处质点的振动. 2分该波的表达式为 )]4(22cos[x utA y -π-π=λλλ)222c o s (x u t A λλπ+π-π= (SI) 3分(2) t = T 时的波形和 t = 0时波形一样. t = 0时)22c o s (x A y λπ+π-=)22c o s (π-π=x A λ 2分按上述方程画的波形图见图B . 3分30、(5201C50) 解:该波波速u = 20 m/s ,角频率 ω = 4π s -1则 k = 2π /λ = ω / u = π /5 m -1. (1) 任取一点P (图A ),可得波的表达式为 )4c o s (3.0kx t y +π-π= )5/4c o s (3.0x t y π+π-π= (SI) 3分 以x D = -9 m 代入上式有 )5/94c o s (3.0π-π-π=t y )5/144cos(3.0π-π=t (SI) 1分 (2) 任取一点P (图B ),可得波的表达式为 ]5/)(4c o s [3.0l x t y -π-π-π=以l = 5 m 代入, 有 )5/4c o s (3.0x t y π-π= 3分 以x D = 14 m 代入上式, 有 )5/144cos(3.0π-π=t y D (SI) 1分 此式与(1) 结果相同. 31、(5206C50)-2- x P x λ/4u图A解:由图,λ = 2 m , 又 ∵u = 0.5 m/s ,∴ ν = 1 /4 Hz , 3分 T = 4 s .题图中t = 2 s =T 21.t = 0时,波形比题图中的波形倒退λ21,见图. 2分此时O 点位移y 0 = 0(过平衡位置)且朝y 轴负方向运动,∴ π=21φ 2分∴ )2121c o s (5.0π+π=t y(SI) 3分32、(5516B30)解:设x = 0处质点振动的表达式为 )c o s (0φω+=t A y , 已知 t = 0 时,y 0 = 0,且 v 0 > 0 ∴π-=21φ∴ )2c o s (0φν+π=t A y )21100c o s (1022π-π⨯=-t(SI) 2分由波的传播概念,可得该平面简谐波的表达式为)/22c o s (0u x t A y νφνπ-+π=)2121100cos(1022x t π-π-π⨯=- (SI) 2分x = 4 m 处的质点在t 时刻的位移)21100c o s (1022π-π⨯=-t y(SI) 1分该质点在t = 2 s 时的振动速度为 )21200s i n (1001022π-π⨯⨯-=-πv2分= 6.28 m/s 1分33、(3428A20)解:(1) ==t W P / 2.70³10-3 J/s 1分(2) ==S P I /9.00³10-2 J /(s ²m 2) 2分(3) u w I ⋅===u I w / 2.65³10-4 J/m 3 2分34、(0347B35)解:据题意作下图,S 和OP 分别表示船和悬崖,S ′为船上天线.考虑由S ′发出的S ´P 波①与经海平面反射的S ´MP ②两列波在P 点的干涉.当发生相消干涉时接收站收不到讯号,注意到反射波②在反射时有相位突变π ,整个情况和光学的洛埃镜类似.当不计相移π 时,两波的波程差 20001502522sin 2⨯⨯=≈≈SOOP aa θ∆ m= 3.75 m 5分计入相移π ,则当 ∆ = k λ时,接收信号最弱。
普通物理学波动课后习题答案
第十一章 机械波一. 选择题 [C] 1.(基础训练1)图14-10为一平面简谐波在t = 2 s 时刻的波形图,则平衡位置在P 点的质点的振动方程是(A) ]31)2(cos[01.0π+-π=t y P (SI). (B) ]31)2(cos[01.0π++π=t y P (SI).(C) ]31)2(2cos[01.0π+-π=t y P (SI).(D) ]31)2(2cos[01.0π--π=t y P (SI).由t=2s 波形,及波向X 轴负向传播,波动方程}])2[(cos{0ϕω+-+-=ux x t A y ,ϕ为P 点初相。
以0x x =代入。
[D] 2.(基础训练2)一平面简谐波,沿x 轴负方向传播.角频率为ω ,波速为u .设 t = T /4 时刻的波形如图14-11所示,则该波的表达式为:(A) )(cos xu t A y -=ω.(B) ]21)/(cos[π+-=u x t A y ω.(C) )]/(cos[u x t A y +=ω.(D) ])/(cos[π++=u x t A y ω. 同1。
}])4[(cos{ϕω++-=uxT t A y 。
ϕ为0=x 处初相。
[B] 3.(基础训练5)在驻波中,两个相邻波节间各质点的振动(A) 振幅相同,相位相同. (B) 振幅不同,相位相同.(C) 振幅相同,相位不同. (D) 振幅不同,相位不同. 驻波特点[D] 4.(基础训练7) 如图14-14所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk r r =-12. (B)π=-k 212φφ. (C) π=-π+-k r r 2/)(21212λφφ.(D)π=-π+-k r r 2/)(22112λφφ.y (m)x (m)0.0050.01u =200 m/sPO100图14-10xuA y -AO图14-11S 1S 2r 1r 2P图14-14S 1 S 2 P干涉极大条件 21212()2r r k πϕϕϕπλ-∆=--=[D] 5.(自测提高5)当一平面简谐机械波在弹性媒质中传播时,下述各结论哪个是正确的? (A) 媒质质元的振动动能增大时,其弹性势能减小,总机械能守恒.(B) 媒质质元的振动动能和弹性势能都作周期性变化,但二者的相位不相同. (C) 媒质质元的振动动能和弹性势能的相位在任一时刻都相同,但二者的数值不相等.(D) 媒质质元在其平衡位置处弹性势能最大. 波的能量特点。
重庆理工大学物理2B光学习题答案(已更正)
光的干涉练习一一、填空题1. _分波振面__, ____分振幅_____2. __下移____ ____不变____3. __光疏______ ___光密____ ___反射___ ____半个波长__ π4.(1) 0 (2)()1nr-水(3)()1nl-玻璃5.122n e λ+λθ。
6. 密7. 539.1 埃 二、 计算题1. 解:根据公式 x = k λ D / d相邻条纹间距 ∆x =D λ / d则 λ=d ∆x / D=562.5 nm .2.解:(1) ∆x =20 D λ / a=0.11 m (2) 覆盖云玻璃后,零级明纹应满足(n -1)e +r 1=r 2 设不盖玻璃片时,此点为第k 级明纹,则应有r 2-r 1=k λ 所以 (n -1)e = k λ k =(n -1) e / λ=6.96≈7 零级明纹移到原第7级明纹处3.解: 由反射干涉相长公式有λλk ne =+22 ),2,1(⋅⋅⋅=k得 122021612380033.14124-=-⨯⨯=-=k k k ne λ 2=k , 67392=λoA (红色)3=k , 40433=λ oA (紫色)所以肥皂膜正面呈现紫红色.由透射干涉相长公式 λk ne =2),2,1(⋅⋅⋅=k 所以 kk ne 101082==λ 当2=k 时, λ =5054o A (绿色) 故背面呈现绿色.4.解:尽量少反射的条件为2/)12(2λ+=k ne ( k = 0, 1, 2, …)令 k = 0 得 d min = λ / 4n = 114.6 nm5.解:上下表面反射都有相位突变π,计算光程差时不必考虑附加的半波长. 设膜厚为e , B 处为暗纹,2ne =21( 2k +1 )λ, (k =0,1,2,…) A 处为明纹,B 处第8个暗纹对应上式k =7 ()nk e 412λ+==1.5×10-3 mm6.解:41.178102d L m nbλ-==⨯2d λ∆=7.解: (1)由牛顿环暗环公式λkR r k =据题意有 21)1(λλR k kR r +==∴212λλλ-=k ,代入上式得2121λλλλ-=R r10101010210450010600010450010600010190-----⨯-⨯⨯⨯⨯⨯⨯=31085.1-⨯=m(2)用A 50001 =λ照射,51=k 级明环与2λ的62=k 级明环重合,则有 2)12(2)12(2211λλR k R k r -=-=∴ 4091500016215212121212=⨯-⨯-⨯=--=λλk k o A 8.解: 设插入玻璃片厚度为d ,则相应光程差变化为λN d n ∆=-)1(2∴ )1632.1(2105000150)1(210-⨯⨯=-∆=-n N d λ5109.5-⨯=m 2109.5-⨯=m m大学物理学——波动光学光的衍射练习二一、填空题:1. 6 1级明纹中心2. _______变大________ ____变大_______3. 25mm 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波 动
一、 选择题:
1、C
2、B
3、B
4、c
二、 填空题:
1、17~1.7m 2
10-⨯ 2、2.4m ;s m /0.6 3、ϕλ
π+-
L
2; )3,2,1(=±K K L λ; L 2
)
12(λ
+±K
4、)(1096.710
410042
22
20--⋅⨯=⨯==m w r I I ππ 5、2π
6、波长:λ=2d=0.1m 速度:s m u /100==λγ
三、计算题:
1、解:
(1)设考察点为x 轴上任意一点,坐标为x 。
从x 0 到x 的波程为x- x 0,按相位落后的关系,x 处质点的振动相位比x 0质点落后
,故x 轴上任意一点的振动方程,即波动方程为
(1)
(2)把x=0带入(1)式,即得原点处质点的振动方程
(3)原点处质点的速度为
加速度为
2、解(1)由波形曲线图可看出,波的振幅A=0.02m ,波长λ=2.0,故波的频率为
,角频率为。
从图中还可以看出,t=0时原点处
质点的位移为零,速度为正值,可知原点振动的初相为-π/2,故原点的振动方程为
(2)设x 轴上任意一点的坐标为x ,从该点到原点的波程为x ,按相位落后与距离的关系,x 处质点振动的时间比原点处质点超前,故x 轴上任意一点的振动方程,即波动方程
为
(3)经过3T /4后的波形曲线应比图中的波形曲线向左平移3λ/4,也相当于向右平移λ/4,(图略)
3、解因波强,所
以
4、解:(1)在x<0区间,如图所示,两个波源S 1和S 2发出的反行波相互干涉形成反行波,
设考察点P 的坐标为任意x ,S 1和S 2到P 点的波程差为与x 无关。
按干涉极值公
式,在P 点干涉的相位差是
与P 点的位置无关。
则该区间的合振幅应为极小值,即两列波振幅之差。
由于两列波的振幅相等,故和振幅 A=0,即在x<0区间,两列波因干涉而完全抵消。
(2)在x>5区间,如图所示,两波源发出的正行波干涉形成正行波,设考察点Q 的坐标为任
意的x ,S 1和S 2到Q 点的波程差
,干涉的相位差
按干涉极值公式,该区间的合振幅为极大,即两列波振幅之和 A=2a 5、解:(1)A 、B 相遇以前,二车相向运动,B 中乘客听到汽笛的频率为
)(55550020
34015
340HZ v v u u u v s s s =⨯-+=-+=
(2)A 、B 相遇之后,二车相背运动,B 中乘客听到A 汽笛的频率为
)(451500)
20(340)
15(340HZ v v u u u s s r r
=⨯---+=-+=
'ν
振动和波动自测题
一、 选择题:
1、D
2、B
3、C
4、B
5、E ;
6、C
7、C
8、A
9、C 10、D
二、填空题
1、π - π /2 π/3.
2、)2
14cos(04.0π-πt
3、b ,f ; a ,e
4、3/4 ; g l /2∆π
5、波从坐标原点传至x 处所需时间; x 处质点比原点处质点滞后的振动相位 ; t 时刻x 处质点的振动位移
6、有π的相跃变,半波损失。
7、)]22()(
2cos[λφλL x T t A πππ-+++ 或)]22()(2cos[λ
φλL x T t A π-π-++π
8、DC 为 t + τ 时刻波在介质2中的波前
9、2
12
2/R R
10、接收器接收到的频率有赖于波源或观察者运动的现象
三、计算题
1、解:取如图x 坐标,平衡位置为原点O ,向下为正,m 在平衡位置
时弹簧已伸长x 0
0kx mg = ①
设m 在x 位置,分析受力, 这时弹簧伸长0x x +
)(02x x k T += ②
由牛顿第二定律和转动定律列方程: ma T mg =-1 ③
βJ R T R T =-21 ④ βR a = ⑤
联立解得 m
R J kx
a +-=)/(2
由于
x
系数为一负常数,故物体做简谐振动,其角频率为
2
2
2
)/(mR
J kR m
R J k
+=+=
ω 1、 解:由振动方程)2
5cos(06.0π
-=t y ,可得:
速度方程:)2
5sin(30.0π
-
-=t v 加速度方程:)25cos(5.1π
--=t a
(1))2
5cos(5.1π
-
-==t m ma F
0)2
0cos(5.1,0=--==π
m F t
(2),s t π=
)/(0)2
5cos(06.0s m y =-
=π
π
)/(30.0)25sin(30.0s m v -=--=π
π
0)25cos(5.1=--=π
πa
(3)2
4
1KA E E P k ==,
即 2
2)06.0(4
121k ky = 得 ())04.0m y =
(4)用旋转矢量法解。
3、解:(1) )1024cos(1.0x t y π-
π=)20
1
(4cos 1.0x t -π= (SI) (2)
t 1 = T /4 = (1 /8) s ,x 1 = λ /4 = (10 /4) m 处质点的位移
)80/4/(4cos 1.01λ-π=T y
m 1.0)8
18/1(4cos 1.0=-π= (3) 振速 )20/(4sin 4.0x t t
y
-ππ-=∂∂=v . )4/1(2
1
2==
T t s ,在 x 1 = λ /4 = (10 /4) m 处质点的振速 26.1)2
1
sin(4.02-=π-ππ-=v m/s
4、解:(1) 坐标为x 点的振动相位为
)]/([4u x t t +π=+φω)]/([4u x t +π=)]20/([4x t +π= 波的表达式为 )]20/([4cos 1032
x t y +π⨯=- (SI) (2) 以B 点为坐标原点,则坐标为x 点的振动相位为
]20
5
[4-+
π='+x t t φω (SI)
波的表达式为 ])20
(4cos[1032π-+π⨯=-x
t y (SI)。