高中物理竞赛教程(超详细) 第四讲 机械振动和机械波

合集下载

高中物理竞赛专题之机械振动(共33张PPT)

高中物理竞赛专题之机械振动(共33张PPT)



提示:撤去策动力前、后振子在平衡位置的速率不变。
振子受稳态受迫振动时, 在平衡位置处的速率为:


A
在平振衡子位自置由处振的动速时率,为: A
A 2
A
理学院物理系
张晚云
2. 一摆在空中振动,某时刻振幅为A0= 0.03m,经过 t1=10s后,振幅变为 A1=0.01m,问:由振幅为A0时起 经多长时间,其振幅减为A2=0.003m ?
1、振幅
A
x02

υ0 2 ω2
注意弹簧的串、并联 及弹簧自身质量的影响
2、角频率
ω弹
k m
ω单
g l
ω复
mgl c I
3、初相位 tan φ υ0 ω x0
同一振动中位相差 与时间差的关系:
或由旋转矢量法确定
Δt Δφ ω
三、简谐振动的三种表示方法
1、 解析表达法
2、 振动曲线法
2g
g T 2g
T
标准钟的秒摆周期T=1s,移地后的周期:T 86400 1s
86400 10
T T T T 1 86400 1 10
T TT
86400 10 86390
g T 2g 2 9.800 10 0.0023m / s2
d
2 (q
dt 2
)

[ 2(1 2cos2 q0 )
g R
cosq
0
]q
cosq0
=
g

2
d 2(q )
dt 2

R2 4 g 2 R2 2
q

0

高考物理知识体系总论:机械振动和机械波讲义(教师逐字稿)

高考物理知识体系总论:机械振动和机械波讲义(教师逐字稿)

机械振动和机械波讲义(学霸版)课程简介:PPT(第1页):同学好,我们又见面了,上次课讲的内容巩固好了么,要是感觉有什么问题,可以课后和我联系,我们今天的内容是关于机械振动机械波的相关概念和知识点,让我们来一起看一下。

PPT(第2页):机械振动机械波部分是选修3-4的重点内容,主要考察内容就是机械振动的分类和特点,以及波的叠加问题和波特点的应用,同学要重视条件和特点,在这个基础上进行题型巩固。

PPT(第3页):我们看一下目录,还是老样子,梳理知识体系和解决经典问题实例。

PPT(第4页):我们先来看一下知识体系的梳理部分。

PPT(第5页):这是我们关于机械振动机械波的总框架,主要包括机械振动和机械波部分。

PPT(第6页):OK,我们先说一下机械振动部分,该部分包括简谐运动、单摆和单摆的周期公式和简谐运动的公式和图象以及受迫振动和共振,我们先说一下简谐运动。

1.简谐运动(1)定义:物体在跟位移大小成正比并且总是指向平衡位置的回复力作用下的振动。

(2)平衡位置:物体在振动过程中回复力为零的位置。

(3)回复力①定义:使物体返回到平衡位置的力。

②方向:总是指向平衡位置。

③来源:属于效果力,可以是某一个力,也可以是几个力的合力或某个力的分力。

(4)简谐运动的特征①动力学特征:F 回=-kx。

②运动学特征:x、v、a 均按正弦或余弦规律发生周期性变化(注意v、a 的变化趋势相反)。

③能量特征:系统的机械能守恒,振幅A 不变。

PPT(第7页):再看一下简谐运动的两种模型模型弹簧振子单摆示意图简谐运动条件(1)弹簧质量可忽略(2)无摩擦等阻力(3)在弹簧弹性限度内(1)摆线为不可伸缩的轻细线(2)无空气等阻力(3)最大摆角小于10°回复力弹簧的弹力提供摆球重力沿与摆线垂直(即切向)方向的分力平衡位置弹簧处于原长处最低点周期与振幅无关T =2πlg1.简谐运动的表达式(1)动力学表达式:F=-kx,其中“-”表示回复力与位移的方向相反。

高中物理奥林匹克竞赛专题--第四章机械振动(共18张PPT)

高中物理奥林匹克竞赛专题--第四章机械振动(共18张PPT)

能量守恒求振幅: 分析法求初相: A
x02

v02
2
x0A co s1,2
sinAv0 {00((13,,24象 象限 限) )
§4.2 谐振动的能量
一.动能
xA cots()
Ek

1 2
mv2
vA si n t ()
1A2 m2 sin2(t)
1). t 0时,x0 0, v0 0
A 2). t 0时,x 0 2 , v 0 0
A 3). t 0时,x 0 2 , v 0 0
例6. 一物体沿x轴作简谐振动,振幅为 1 2 c m ,
周期 T2s,t0时, 位移为6cm且向x 正方向运动,求: 1) 初位相及振动方程;
2) t 0.5s时,物体的位置、速度 和
加速度;
3) x6cm处质点向x轴负方向运动
时,物体的速度和加速度,以及从这一 位置回到平衡位置所需的最短时间;
复习: §4-1 ,2 ,3
例4-1,2,3,4,5
预习: §4-4,5
作业: 练习八
d2x dt2
2
x

0
xAcots()
振动方程、振动函数
§4.1 简谐振动
xA cots ()
三.描述谐振动的物理量
1.振幅: A
4.周期:T 2
2.角频率:
k m

5.相位:t
3.频率: 2
6.初相位:
§4.1 简谐振动
xA cots()
例1. 某物体作谐振动,振动方程为:
x2co5s(t)m
6 则该物体振动的振幅、圆频率、
频率、周期、初相以及初始时刻

全国高中物理竞赛专题六 机械振动与机械波

全国高中物理竞赛专题六  机械振动与机械波

专题六 机械振动和机械波【基本内容】 一、机械振动1、物体在它的平衡位置附近所作的往复运动.如声源的振动、钟摆的摆动等.2、产生振动的条件:有恢复力的作用且所受阻力足够小.3、回复力:物体离开平衡位置时所受到的指向平衡位置的力. 二、简谐振动1、简谐振动:如果一个物体振动的位移按余弦(或正弦)函数的规律时间变化,称这种运动为简谐振动.2、周期与频率:物体进行一次全振动(振动物体运动状态完全重复一次)所需要的时间,称为振动的周期T ;单位时间的全振动次数称为频率ν,2π秒内的全振动次数称为圆频率ω.3、振幅A :质点离开平衡位置的最大位移的绝对值,称为振幅.4、相位:振动方程中的t ωϕ+称为相位.5、简谐振动的振动曲线:振动位移时间的变化关系曲线称为振动曲线.如图所示.6、旋转矢量表示法如图所示,当矢量OM 绕其始点(坐标原点)以角速度ω做匀速转动时,其末端在x 轴上的投影点P 的运动简谐振动.三、简谐振动的能量与共振1、以弹簧振子为例,简谐振动的能量为 222212121kA kx mv E E E P K =+=+=2、阻尼振动:在阻尼作用下振幅逐渐减少的振动称为阻尼振动,其振动方程为0cos()t x A e t βωϕ-=+式中, β为阻尼因子,ω为振动的圆频率,它与固有圆频率0ω和阻尼因子β关系为ω=3、受迫振动:在周期性外力作用下的振动,称为受迫振动,在稳定情况下,受迫振动是简谐振动,振动频率等于外力的频率,与振动系统的固有频率无关,其振幅为22'22'220(2)()h A βωωω=+- 当强迫力的频率等于系统固有频率时,系统将有最大的振动振幅,这种现象称为共振.强迫力的频率偏离系统的固有频率越大,振幅则越小. 四、两个简谐振动的合成有如下四种形式的合成:1、同方向、同频率的简谐振动合成,合成的结果仍然是与分振动同方向、同频率的简谐振动,合振动的振幅和相分别为A =11221122sin sin tan cos cos A A A A ϕϕϕϕϕ+=+2、同方向、频率相近的简谐振动的合成,合成的结果不再是简谐振动,合振动的振幅随时间缓慢地周期性变化,称为“拍”的频率.拍的频率12ννν=-3、相互垂直的同频率简谐振动的合成,合成运动的轨迹方程是22221212212122cos()sin ()x y xy A A A A ϕϕϕϕ+--=- 4、相互垂直、频率之比为整数比的两简谐振动合成,这时是有一定规律的稳定闭合曲线,形成李萨如图形.五、机械波1、机械振动在弹性媒质中的传播,称为机械波.当质点振动方向和波的传播方向垂直时,称为横波;当振动方向与波的传播方向一致时,称为纵波.2、波的周期(频率)、波长和波速一个完整波通过媒质中某点所需的时间,称为波的周期,在波源和观察(接收)者相对媒质静止时,波的周期就是各媒质元的振动周期,用符号T 表示.单位时间内通过媒质中某点的完整波的数目,称为波的频率,波的频率就是各媒质元的振动频率,用符号ν表示,周期和频率反映了波在时间上的周期性,有关系式 1T ν=.沿波的传播方向上相位差为2π的两点间的距离,一个完整波形的长度,称为波的波长,用符号λ表示,波长反映了波在空间的周期性.单位时间内某振动状态传播的距离,称为波速,又称相速,用符号u 表示,上述各量之间有如下关系u Tλλν==.3、波面和波线波动过程中,介质中振动相位相同的点连成的面称为波阵面,简称波面,而某一时刻,最前面的波面,称为该时刻的波前.沿波的传播方向所作的有向曲线称为波射线,简称波线.六、平面简谐波若波源和波线上各质点都作简谐振动的连续波称为简谐波,简谐波是最基本的波,各种复杂的波都可以看成许多不同频率的简谐波的合成.在波动中,每一个质点都在进行振动,对一个波的完整的描述,应该是给出波动中任一质点的振动方程,这种方程称为波函数,平面简谐在理想的无吸收的均匀无限大介质中传播的波函数表达式为2cos ()cos 2()cos ()x t x y A t A A x ut uT πωϕπϕϕλλ⎡⎤⎡⎤⎡⎤=+=+=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦式中,“-”代表沿轴正方向传播的波,“+”代表沿轴反方向传播的波. 七、波的能量、能流和能流密度波的能量包括媒质中质元的振动动能和因媒质形变产生的弹性势能,可以采用能量密度表示,即媒质单位体积内的波动能量,称为波的能量密度,用ω表示,有222sin dE x A t dV u ωρωω⎛⎫==- ⎪⎝⎭考虑一个周期内能量的平均值,称为平均能量,用ω表示,则有220112T dt A T ωωρω==⎰伴随波的传播,波的能量也在传播,将单位时间通过传播方向上单位面积的(平均)能量,称为平均能流密度,又称波的强度.用符号I 表示,有 I u ω= 八、波的干涉和衍射1、惠更斯原理在波的传播过程中,波阵面上的一点都可以看做是发射子波的波源,在其后的任一时刻,这些子波的包迹就成为新的波阵面,这就是惠更斯原理.2、波的叠加原理几列波在同一介质空间相遇时,每一列波都将独立地保持自已原有的特性,并不会因其他波的存在而改变,在它们重叠区域内,一点的振动是各列单独在该点引起振动的矢量和,波的这种性质称为波的叠加原理.3、波的干涉满足相干条件的波在空间相遇叠加时,某些点的振动始终加强,另一些点的振动始终减弱,在空间形成一个稳定的分布,这种现象称为波的干涉,两束相干波的合振幅为A =其中21212()r r πϕϕϕλ∆=---4、波的衍射波在传播中遇到障碍物时改变传播方向,传到障碍“阴影”区域的现象叫做波的衍射.发生明显衍射现象的条件是:障碍物或孔的尺寸比波长小,或者跟波长相差不多. 九、驻波由两列同振幅,相向传播的相干波叠加而成的波,称为驻波,相应的驻波方程为 22cos cos 2y A x ππνλ=十、声波弹性媒质中,各质点振动的传播过程称为“声波”,它是一种机械波.起源于发声体的、振动频率在2020000Hz 的声波能引起人的听觉,又称可听声波,频率在41020Hz - 的机械波称为次声波,频率在48210210Hz ⨯⨯ 的机械波称为超声波.1、声波的反射、干涉和衍射声波遇到障碍物而改变原来传播方向的现象称为声波的反射.围绕发生的音叉转一周听到忽强忽弱的声音,这种现象实际上就是声波的干涉. 由于声波的波长在17cm 17m 之间,声波很容易绕过障碍物进行传播.我们把这一现象叫声波的衍射.2、声音的共鸣共鸣就声音的共振现象. 3乐音与噪音好听、悦耳的声音叫乐音,是由周期性振动的声源发出的.嘈杂刺耳的声音为噪音,是由非周期性振动的声源产生的.4、音调、响度和音品是乐音的三要素 音调:基音频率的高低,基频高则称音调高.响度:声音强弱的主观描述,跟人、声强(单位时间内通过垂直于声波传播方向的单位面积的能量)等有关.音品:俗称音色,它反映了不同声源发出的声音具有不同的特色,音品由声音所包含的语言的强弱和频率决定. 十一、多普勒效应当波源、观察者相对传播波的介质运动时,观察接受到的频率偏离波源频率的现象,称为多普勒现象,有如下关系RR sR u u νννν±=式中,R ν为观察接收的频率,依赖于观察者相对于媒质的速率(R v )和波源相对于媒质的速率(s v ),s v 为波源的频率,u 为波速.【例题】例1 如图所示,弹簧下端固定在水平桌面上,当质量为1m 的A 物体连接在弹簧的上端并保持静止时,弹簧被压缩了长度a 。

高一物理机械振动和机械波PPT教学课件

高一物理机械振动和机械波PPT教学课件

实质:通过传播振动的形式而将振源的能量传播出去.
②介质中各质点的振动周期和波的传播周期都与
波源的振动周期
相同. 介质
③机械波的传播速度只由
决定.
(3)波速、波长、周期、频率的关系:v= =f·λ
6.振动图象和波动图象的物理意义不同:振动图象反
映的是 一个质点在各个时刻的位置 ,而波动图象 是 某时刻各质点的位移 .振动图象随时间推移图
思路方法
1.判断波的传播方向和质点振动方向的方法:①特殊 点法,② 微平移法(波形移动法) .
2.利用波传播的周期性,双向性解题
(1)波的图象的周期性:相隔时间为周期整数倍的
ห้องสมุดไป่ตู้
两个时刻的波形相同,从而使题目的解答出现多解
的可能.
(2)波传播方向的双向性:在题目未给出传播方向 正向 负向
时,要考虑到波可沿x轴
等于这几列波分别在该质点处引起的位移的
.
9.波的现象 (1)波的叠加、干涉、衍射、多普勒效应. (2)波的干涉 ①必要条件:频率相同. ②设两列波到某一点的波程差为Δx.若两波源振 动情况完全相同,则
③加强区始终加强,减弱区始终减弱.加强区的振 幅A=A1+A2,减弱区的振幅A=|A1-A2|. ④若两波源的振动情况相反,则加强区、减弱区的
移随时间变化的表达式为:x= A sin (ωt+φ)或x= Acos (ωt+φ).
3.简谐运动的能量特征是:振动的能量与 振幅有关, 随 振幅 的增大而增大.振动系统的动能和势能相
互转化1 ,总机械能守恒,能量的转化周期是位移周
期的 2 .
弹簧振子
4.简谐运动的两种模型是
和单摆.当单摆摆

高考物理力学知识点之机械振动与机械波图文解析

高考物理力学知识点之机械振动与机械波图文解析

高考物理力学知识点之机械振动与机械波图文解析一、选择题1.一列横波某时刻的波形图如图甲所示,图乙表示介质中某质点此后一段时间内的振动图象.下列说法正确的是()A.若波沿x轴正方向传播,则图乙表示的是质点N的振动图象B.若波沿x轴负方向传播,则图乙表示的是质点K的振动图象C.若图乙表示的是质点L的振动图象,则波沿x轴正方向传播D.若图乙表示的是质点M的振动图象,则波沿x轴负方向传播2.如图所示,一单摆在做简谐运动,下列说法正确的是A.单摆的幅度越大,振动周期越大B.摆球质量越大,振动周期越大C.若将摆线变短,振动周期将变大D.若将单摆拿到月球上去,振动周期将变大3.一洗衣机在正常工作时非常平稳,当切断电源后,发现洗衣机先是振动越来越剧烈,然后振动再逐渐减弱,对这一现象,下列说法正确的是()①正常工作时,洗衣机波轮的运转频率比洗衣机的固有频率大;②正常工作时,洗衣机波轮的运转频率比洗衣机的固有频率小;③正常工作时,洗衣机波轮的运转频率等于洗衣机的固有频率;④当洗衣机振动最剧烈时,波轮的运转频率恰好等于洗衣机的固有频率.A.①B.③C.①④D.②④4.在天花板O点处通过细长轻绳栓一小球构成单摆,在O点正下方A点有一个能挡住摆线的钉子,OA的距离是单摆摆长的一半,如图所示。

现将单摆向左方拉开一个小角度θ(θ<5°),然后无初速度地释放,关于单摆以后的运动,下列说法正确的是()A .摆球往返运动一次的周期比无钉子时的单摆周期小B .摆球在平衡位置右侧上升的最大高度大于在平衡位置左侧上 升的最大高度C .摆球在平衡位置左、右两侧走过的最大弧长相等D .摆球向左经过最低点的速度大于向右经过最低点的速度5.两个弹簧振子,甲的固有频率是100Hz ,乙的固有频率是400Hz ,若它们均在频率是300Hz 的驱动力作用下做受迫振动,则 ( ) A .甲的振幅较大,振动频率是100Hz B .乙的振幅较大,振动频率是300Hz C .甲的振幅较大,振动频率是300Hz D .乙的振幅较大,振动频率是400Hz6.图甲所示为以O 点为平衡位置、在A 、B 两点间做简谐运动的弹簧振子,图乙为这个弹簧振子的振动图象,由图可知下列说法中正确的是A .在t =0.2s 时,弹簧振子运动到O 位置B .在t =0.1s 与t =0.3s 两个时刻,弹簧振子的速度相同C .从t =0到t =0.2s 的时间内,弹簧振子的动能持续地减小D .在t =0.2s 与t =0.6s 两个时刻,弹簧振子的加速度相同7.如图所示,质量为m 的物块放置在质量为M 的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T ,振动过程中m 、M 之间无相对运动,设弹簧的劲度系数为k 、物块和木板之间滑动摩擦因数为μ,A .若t 时刻和()t t +∆时刻物块受到的摩擦力大小相等,方向相反,则t ∆一定等于2T 的整数倍B .若2Tt ∆=,则在t 时刻和()t t +∆时刻弹簧的长度一定相同 C .研究木板的运动,弹簧弹力充当了木板做简谐运动的回复力D .当整体离开平衡位置的位移为x 时,物块与木板间的摩擦力大小等于mkx m M+ 8.在平静的水面上激起一列水波,使漂浮在水面上相距6.0m 的小树叶a 和b 发生振动,当树叶a 运动到上方最大位移处时,树叶b 刚好运动到下方最大位移处,经过1.0s 后,树叶a 的位移第一次变为零。

高中物理机械振动机械波知识点总结课件新人教版选修

高中物理机械振动机械波知识点总结课件新人教版选修

物理实验中的机械振动与波
实验中的振动与波
在物理实验中,我们可以设计和进行各种与机械振动和波相关的实验,如单摆实 验、共振实验、干涉和衍射实验等。这些实验可以帮助我们深入理解机械振动和 波的原理。
实验中的注意事项
在进行与机械振动和波相关的实验时,需要注意安全问题,如避免共振引起的破 坏力、防止声波对耳膜的损伤等。
科技应用中的机械振动与波
科技应用中的振动与波
在科技领域,机械振动和波的应用非 常广泛,如地震勘测、无损检测、医 疗成像等。这些应用都基于对机械振 动和波的深入理解和掌握。
科技应用的发展前景
随着科技的不断发展,机械振动和波 的应用前景将更加广阔。例如,利用 振动和波进行物质分拣、环境监测等 领域的研究正在不断深入。
学习方法与技巧
强化基础知识的学习
注重实验与观察
机械振动与机械波的知识点比较抽象,需 要强化基础知识的学习,如振动与波的基 本概念、周期公式等。
实验是学习物理的重要手段,通过实验观 察机械振动与机械波的现象,有助于加深 对知识点的理解。
多做练习题
形成知识网络
练习是巩固知识的重要途径,通过多做练 习题可以加深对知识点的理解和掌握。
波动方程的建立
波动方程的推导
通过建立微分方程,描述波动过 程中各点的振动状态,从而得出
波动方程。
波动方程的形式
常见的波动方程形式有简谐振动方 程和一维波动方程等。
波动方程的求解
通过求解波动方程,可以得到波的 传播速度、波长等物理量。
振动方程的理解与应用
振动方程的意义
振动方程描述了单个质点在平衡位置附近的振动规律。
高中物理机械振动机械波知 识点总结课件新人教版选修
目录

高中物理竞赛——振动和波基本知识

高中物理竞赛——振动和波基本知识

中学物理竞赛——振动和波基本学问《振动和波》的竞赛考纲和高考要求有很大的不同,必需做一些相对具体的补充。

一、简谐运动 1、简谐运动定义:∑F= -k x①凡是所受合力和位移满意①式的质点,均可称之为谐振子,如弹簧振子、小角度单摆等。

谐振子的加速度:a= -mk x 2、简谐运动的方程 回避高等数学工具,我们可以将简谐运动看成匀速圆周运动在某一条直线上的投影运动(以下均看在x 方向的投影),圆周运动的半径即为简谐运动的振幅A 。

依据:∑Fx = -m ω2Acos θ= -m ω2x对于一个给定的匀速圆周运动,m 、ω是恒定不变的,可以令:m ω2 = k这样,以上两式就符合了简谐运动的定义式①。

所以,x 方向的位移、速度、加速度就是简谐运动的相关规律。

从图1不难得出——位移方程:x= Acos(ωt + φ) ②速度方程:v= -ωAsin(ωt +φ) ③加速度方程:a= -ω2A cos(ωt +φ) ④ 相关名词:(ωt +φ)称相位,φ称初相。

运动学参量的相互关系:a= -ω2xA = 202)v (x ω+tg φ= -x v ω 3、简谐运动的合成a 、同方向、同频率振动合成。

两个振动x 1 = A 1cos(ωt +φ1)和x 2 = A 2cos(ωt +φ2) 合成,可令合振动x = Acos(ωt +φ) ,由于x = x 1 + x 2 ,解得A = )cos(A A 2A A 12212221φ-φ++ ,φ= arctg22112211cos A cos A sin A sin A φ+φφ+φ明显,当φ2-φ1 = 2k π时(k = 0,±1,±2,…),合振幅A 最大,当φ2-φ1 = (2k + 1)π时(k = 0,±1,±2,…),合振幅最小。

b 、方向垂直、同频率振动合成。

当质点同时参加两个垂直的振动x = A 1cos(ωt + φ1)和y = A 2cos(ωt + φ2)时,这两个振动方程事实上已经构成了质点在二维空间运动的轨迹参数方程,消去参数t 后,得一般形式的轨迹方程为212A x +222A y -221A A xy cos(φ2-φ1) = sin 2(φ2-φ1) 明显,当φ2-φ1 = 2k π时(k = 0,±1,±2,…),有y =12A A x ,轨迹为直线,合运动仍为简谐运动;当φ2-φ1 = (2k + 1)π时(k = 0,±1,±2,…),有212A x +222A y = 1 ,轨迹为椭圆,合运动不再是简谐运动;当φ2-φ1取其它值,轨迹将更为困难,称“李萨如图形”,不是简谐运动。

高中物理竞赛机械振动和机械波知识点讲解

高中物理竞赛机械振动和机械波知识点讲解

高中物理竞赛机械振动和机械波知识点讲解知识点击1.简谐运动的描述和基本模型⑴简谐振动的描述:当一质点,或一物体的质心偏离其平衡位置x,且其所受合力kk2???xx?a???0)kx??(k?F满足,故得,F mm则该物体将在其平衡位置附近作简谐振动。

⑵简谐运动的能量:一个弹簧振子的能量由振子的动能和弹簧的弹性势能构成,111?222??kx??mkAE即222?F??kx,那么这个物体⑶简谐运动的周期:如果能证明一个物体受的合外力?m2?2??T,式中m一定做简谐运动,而且振动的周期是振动物体的质量。

?k⑷弹簧振子:恒力对弹簧振子的作用:只要m和k都相同,则弹簧振子的振动周期T就是相同的,这就是说,一个振动方向上的恒力一般不会改变振动的周期。

多振子系统:如果在一个振动系统中有不止一个振子,那么我们一般要找振动系统的等效质量。

悬点不固定的弹簧振子:如果弹簧振子是有加速度的,那么在研究振子的运动时应加上惯性力.5⑸单摆及等效摆:单摆的运动在摆角小于l?l和0时可近似地看做是一个简谐运动,振g2T?的含义及值会发生变化。

,在一些“异型单摆”中,动的周期为g(6)同方向、同频率简谐振动的合成:若有两个同方向的简谐振动,它们的圆频率??,则它们的运动学方程分别为和和都是ω,振幅分别为AA,初相分别为2121??)cos(A?t?x111??)cos(A?t?x222x仍应在同一直线因振动是同方向的,所以这两个简谐振动在任一时刻的合位移x?x?x上,而且等于这两个分振动位移的代数和,即21??)tAcos(?x?由旋转矢量法,可求得合振动的运动学方程为这表明,合振动仍是简谐振动,它的圆频率与分振动的圆频率相同,而其合振幅为22??)Acos(?AA?A?2A?121122??sinsinA?A?2211?tan合振动的初相满足??cosA?Acos2112 2.机械波:(1)机械波的描述:如果有一列波沿x 方向传播,振源的振动方程为y=Acosωt,?,那么在离振源x波的传播速度为远处一个质点的振动方程便是x???(t??Acos)y,在此方程中有两个自变量:t和x,当t不变时,这个方程描写?????某一时刻波上各点相对平衡位置的位移;当x不变时,这个方程就是波中某一点的振动方程.(2)简谐波的波动方程:简谐振动在均匀、无吸收的弹性介质中传播所形成的波ox xyo?轴正方向传播,振沿平面内,以波速叫做平面简谐波。

2020湖南师大附中物理竞赛辅导课件(04机械振动)C简谐振动的能量 (共14张PPT)

2020湖南师大附中物理竞赛辅导课件(04机械振动)C简谐振动的能量 (共14张PPT)

A
A1
0
7
二、同方向、不同频率两谐振动的合成
x1 = A1cos (1 t+ 10) x2 = A2 cos (2t+20) 求: x= x1 +x2
x
2 A cos ( 2
1
2
t ) cos( 2
1
2
t
0 )
变化慢
变化快
合振动不是简谐振动。
当21,2 +1>> 2 - 1时, x可写作
x A(t)cos( t 0 )
x(t T) x(t)
按傅里叶级数展开
x(t)
a0 2
(an
n1
cos nt
bn
sin
nt)
若周期振动的频率为:0
2 2
T
则各分振动的频率为:0、20、30
(基频 , 二次谐频 , 三次谐频 , …)
11
x t
x1 t
x3 t
x5 t
x1+x2+x5
t
x A 2A sint 2A sin3t 2A sin5t
上述结论虽是从弹簧振子这一特例推出,但具
有普遍意义,适用于任何一个谐振动系统.
4
二、实际振动系统简谐近似
系统沿x轴振动,势能函数为Ep(x),势能曲线存在 极小值,该位置就是系统的稳定平衡位置。
在该位置(取x=0)附近将势能函数作级数展开
Ep(x)
Ep (0)
( dEp dx
) x 0
x
1 2
(
d2Ep dx 2
2
3
5
x f (t) 0A() cost d 0B()sint d
12

人教版高中物理竞赛课件 第4章 机械振动 (共133张PPT)

人教版高中物理竞赛课件 第4章 机械振动 (共133张PPT)


t0
初始时刻 作圆周运动的质点的 径矢与 轴的夹角 就是振动的初相。

x
O
x
x
26
简谐振动的速度
☆ 5
叫做振动的角频率 , 或 T 都表示简谐运动的周期性。
在 A 和 已知的条件下, 决定于质点在时刻 t 0 时的位置。
x A cos(t )
一个简谐运动的物理特征在于其振幅和周期。 对于一个振幅和周期已定的简谐运动, 用数学公式表示时,由于选作原点的时刻不同, 值就不同。Leabharlann x ☆
16
A
O

x
17
A
O

x
18

A
x
O
19

A
O
x
20

A
O
x
21
O

A
x
22
O
x
A

23
O
A
x

24
以圆心 O 为原点,设质点的径矢经过与 x 轴夹角为
的位置时开始计时,
则在任意时刻 t ,
此径矢与 x 轴的夹角为
t
t A
O

t0
也就是全部掌握该简谐运动的特征了。
因此,这三个量叫做描述简谐振动的特征量。
7
三 简谐振动的速度和加速度 任意时刻质点的速度
x A cos(t )
dx v A sin( t ) A cos( t ) dt 2
任意时刻质点的加速度 dv d 2 x a 2 2 A cos(t ) 2 A cos(t ) dt dt

高一物理竞赛讲义4_机械振动_教师版

高一物理竞赛讲义4_机械振动_教师版

第四讲 机械振动1 .简谐振动的受力分析2 .等效法研究简谐振动3 .三角函数法描述振动第一部分:振动的受力特点以及参数知识点睛 一、模型引入 1.什么是振动?振动是自然界和工程技术领域常见的一种运动,广泛存在于机械运动、电磁运动、热运动、原子运动等运动形式之中.从狭义上说,通常把具有时间周期性的运动称为振动.如钟摆、发声体、开动的机器、行驶中的交通工具都有机械振动.如图:振动演示实验:当振子往复振动时,匀速的拉动纸带,就可以研究振子离开中心位置的位移与时间的关系。

广义地说,任何一个物理量在某一数值附近作周期性的变化,都称为振动.变化的物理量称为振动量,它可以是力学量,电学量或其它物理量.例如:交流电压、电流的变化、无线电波电磁场的变化等等.2.什么是机械振动?机械振动是最直观的振动,它是物体在一定位置附近的来回往复的运动,口语称为“来回晃悠”。

如活塞的运动,钟摆的摆动等都是机械振动.产生机械振动的条件是:物体受到回复力的作用; 回复力:使振动物体返回平衡位置的力叫回复力.回复力时刻指向平衡位置.回复力是以效果命名的力,它是振动物体在振动方向上的合外力,可能是几个力的合力,也可能是某个力或某个力的分力,可能是重力、弹力、摩擦力、电场力、磁场力等.3.简谐运动物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力作用下的振动,叫简谐运动.表达式为:F kx =-.做简谐运动物体的位移是相对于平衡位置的,位移的方向总是由平衡位置指向物体,而回复力总由物体是指向平衡位置,所以回复力总跟位移方向相反,式中的负号表示了这种相反关系. 4.描述简谐运动的物理量知识模块本讲介绍⑴ 位移x :由平衡位置指向振子所在处的有向线段,最大值等于振幅; ⑵ 振幅A :是描述振动强弱的物理量.(一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的,而位移是时刻在改变的)⑶ 周期T :是描述振动快慢的物理量.频率1f T=.5.简谐振动的图像为了研究弹簧振子的运动规律,我们以小球的平衡位置为坐标原点O ,沿着它的振动方向建立坐标轴.小球在平衡位置的右边时它对平衡位置的位移为正,在左边时为负.左图所示的弹簧振子的频闪照片.频闪仪每隔0.05s 闪光一次,闪光的瞬间振子被照亮.拍摄时底片从下向上匀速运动,因此在底片上留下了小球和弹簧的一系列的像,相邻两个像之间相隔0.05s .右图中的两个坐标轴分别代表时间t 和小球位移x ,因此它就是小球在平衡位置附近往复运动时的位移—时间图象,即x t -图象.简谐运动及其图象我们对弹簧振子的位移与时间的关系做些深入的研究.从图中可以看出,小球运动时位移与时间的关系很像正弦函数的关系.例题精讲【例1】 如图所示,质量为m 的小球放在劲度为k 的轻弹簧上,使小球上下振动而又始终未脱离弹簧,证明其做简谐振动.【例2】 把一个密度小于水的正方体木块放入水中,并用手稍微按入水中一点,证明手释放后木块做简谐振动,不考虑阻力与水面的变化.【解析】 设物体相对飘浮位置位移x .其受合力为相比飘浮时的浮力差.F g V ρ∆=∆浮水gS x ρ=⋅浮 K gS ρ=水【例3】 三根长度均为 2.00l =米,质量均匀的直杆,构成一正三角形框架ABC .C 点悬挂在一光滑水平转轴上,整个框架可绕转轴转动.杆AB 是一导轨,一电动玩具松鼠可在导轨上运动,如图所示.现观察到松鼠正在导轨上运动,而框架却静止不动,试论证松鼠的运动是一种什么样的运动.【解析】 如图,松鼠受力如图:由力矩平衡可知:N 与f 合力必须过ABC框的C 点才能平衡. 即Nx fh =,且N mg =∴mgxf h =为简谐振动. 且mgK h =.第二部分 简谐振动参量关系:知识点睛由于是变力作用,所以简谐振动的物体运动量与时间的关系很难用初等数学解答,一般的解法是直接解微分方程.根据牛顿第二定律: f ma =可得物体的加速度为:f ka x m m==-对于给定的弹簧振子,m 和k 均为正值常量,令2kmω=则上式可以改写为 2a x ω=-或2220d xx dtω+=这是个二阶的微分方程,这里就给出具体解的过程了。

(完整word)高中物理机械波教案讲义.doc

(完整word)高中物理机械波教案讲义.doc

机械振动与机械波一、基础知识1. 简谐运动2π ( 1)位移表达式:x=Asin( ωt+ φ),x 表示距离平衡位置的距离,A 表示振幅, ω表示角速度ω= ,φT表示起始位置的角度。

( 2)特征: 回复力与相对平衡位置的位移成正比。

F=-kx 或 F=-mglx( 3)周期: 弹簧振子 T=2πm;单摆 T=2πl k g2. 机械波( 1)特点: 每个质点都以它的平衡位置为中心做简谐运动,后一质点的振动总是落后于前一质点的 振动。

波的传播只是振动形式的传播,质点不随波移动。

( 2)振动图像: 表示一个质点一段时间内的活动,记录各个时刻相对平衡位置的位移,随时间的推移,图像将沿横坐标正方向延伸,原有图像不发生变化。

( 3)波动图像: 表示某时刻各个质点相对平衡位置的位移,随时间推移,波的图像将沿波的传播方 向平移,每经过一个周期,图像又恢复原来的形状。

λs ( 4 )波的速度: v= T = t( 5)质点的位移和路程:在半周期内,质点的位移为2A ,若t=nT,则路程 s=2nA 。

当质点的初2 始位移为 x 0时,经过 T的奇数倍时, x 1=-x 0,经过 T的偶数倍时, x 2 0 。

22 =x二、习题1.一列沿 x 轴正方向传播的简谐机械横波 ,波速为 4m/s 。

某时刻波形如图所示,下列说法正确的是 ( D)A. 这列波的振幅为 4 cmB. 这列波的周期为 1 sC.此时 x= 4m 处质点沿 y 轴负方向运动D. 此时 x= 4m 处质点的加速度为λ振幅为 2cm , A 错。

T= v =2s , B 错。

同侧法 x=4m 处质点沿 y 轴正方向运动, C 错。

平衡位置的质点速度最大,加速度为 0,D 对。

2.一列横波在x 上播。

t= 0s ,x 上0 至12m 区域内的波形象如所示(x= 8m 的点P 恰好位于平衡位置),t= 1.2s ,其恰好第三次重复出示的波形。

根据以上的信息,不能确定的是( C )A. 波的播速度的大小B. t= 1.2s 内点P 的路程C.t= 0.6s 刻点P 的速度方向D. t= 0.6s 刻的波形1.2s 第三次重复出示的波形,明周期T=0.6s,波知道,可以确定波速, A 。

高中物理竞赛讲义(完整版)

高中物理竞赛讲义(完整版)

—-可编辑修改,可打印——别找了你想要的都有!精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——全力满足教学需求,真实规划教学环节最新全面教学资源,打造完美教学模式最新高中物理竞赛讲义(完整版)目录最新高中物理竞赛讲义(完整版) (1)第0部分绪言 (4)一、高中物理奥赛概况 (4)二、知识体系 (4)第一部分力&物体的平衡 (5)第一讲力的处理 (5)第二讲物体的平衡 (7)第三讲习题课 (7)第四讲摩擦角及其它 (11)第二部分牛顿运动定律 (13)第一讲牛顿三定律 (13)第二讲牛顿定律的应用 (13)第二讲配套例题选讲 (20)第三部分运动学 (21)第一讲基本知识介绍 (21)第二讲运动的合成与分解、相对运动 (22)第四部分曲线运动万有引力 (24)第一讲基本知识介绍 (24)第二讲重要模型与专题 (25)第三讲典型例题解析 (33)第五部分动量和能量 (33)第一讲基本知识介绍 (33)第二讲重要模型与专题 (35)第三讲典型例题解析 (46)第六部分振动和波 (46)第一讲基本知识介绍 (46)第二讲重要模型与专题 (49)第三讲典型例题解析 (58)第七部分热学 (58)一、分子动理论 (58)二、热现象和基本热力学定律 (60)三、理想气体 (61)四、相变 (67)五、固体和液体 (71)第八部分静电场 (71)第一讲基本知识介绍 (71)第二讲重要模型与专题 (74)第九部分稳恒电流 (83)第一讲基本知识介绍 (83)第二讲重要模型和专题 (87)第十部分磁场 (95)第一讲基本知识介绍 (95)第二讲典型例题解析 (98)第十一部分电磁感应 (103)第一讲、基本定律 (103)第二讲感生电动势 (106)第三讲自感、互感及其它 (109)第十二部分量子论 (112)第一节黑体辐射 (112)第二节光电效应 (114)第三节波粒二象性 (120)第四节测不准关系 (123)第0部分绪言一、高中物理奥赛概况1、国际(International Physics Olympiad 简称IPhO)① 1967年第一届,(波兰)华沙,只有五国参加。

南师附中高中物理竞赛辅导课件机械振动PPT课件

南师附中高中物理竞赛辅导课件机械振动PPT课件
谢谢观看!
[名师课堂教学]南师附中高中物理 竞赛辅 导课件 机械振 动PPT课 件(完 整版PP T)
ymgcos(k t)
k
m
[名师课堂教学]南师附中高中物理 竞赛辅 导课件 机械振 动PPT课 件(完 整版PP T)
THE END
祝大家竞赛顺利、学业有成
[名师课堂教学]南师附中高中物理 竞赛辅 导课件 机械振 动PPT课 件(完 整版PP T)
[名师课堂教学]南师附中高中物理 竞赛辅 导课件 机械振 动PPT课 件(完 整版PP T)
k m

d2y dt2
2y 0
----得证
[名师课堂教学]南师附中高中物理 竞赛辅 导课件 机械振 动PPT课 件(完 整版PP T)
设振动表达式为 由旋转矢量法得
yAcost()
A 0 A y
t=0时
yAcosA
A mg
y0
mg k
k
[名师课堂教学]南师附中高中物理 竞赛辅 导课件 机械振 动PPT课 件(完 整版PP T)
2
[名师课堂教学]南师附中高中物理 竞赛辅 导课件 机械振 动PPT课 件(完 整版PP T)
[名师课堂教学]南师附中高中物理 竞赛辅 导课件 机械振 动PPT课 件(完 整版PP T)
由旋转矢量法得 0
x0.24cost m 2
0.24
0
0.24 x
(2) t=0.5s:
x0.24cos10.17m
弹簧,下挂一质量为m的砝 码。开始时用手托住砝码,
k
使弹簧为原长,放手后砝码
m
开始振动。证明砝码作谐 振动,并写出振动表达式
my 0
0
解:建立如图坐标系,原点为 物体静平衡时位置,它距弹簧 y

教科版 高中物理选修3-4 机械振动+机械波

教科版 高中物理选修3-4 机械振动+机械波

(1)振幅:振动物体离开平衡位置的最大距离叫做振动的振幅。

①振幅是标量。

②振幅是反映振动强弱的物理量。

(2)周期和频率:①振动物体完成一次全振动所用的时间叫做振动的周期。

②单位时间内完成全振动的次数叫做全振动的频率。

它们的关系是T=1/f 。

在一个周期内振动物体通过的路程为振幅的4倍;在半个周期内振动物体通过的路程为振幅2倍;在1/4个周期内物体通过的路程不一定等于振幅 3)简谐运动的表达式:)sin(ϕω+=t A x 4)简谐运动的图像:振动图像表示了振动物体的位移随时间变化的规律。

反映了振动质点在所有时刻的位移。

从图像中可得到的信息: ①某时刻的位置、振幅、周期②速度:方向→顺时而去;大小比较→看位移大小 ③加速度:方向→与位移方向相反;大小→与位移成正比 3、简谐运动的能量转化过程:1)简谐运动的能量:简谐运动的能量就是振动系统的总机械能。

①振动系统的机械能与振幅有关,振幅越大,则系统机械能越大。

②阻尼振动的振幅越来越小。

2)简谐运动过程中能量的转化:系统的动能和势能相互转化,转化过程中机械能的总量保持不变。

在平衡位置处,动能最大势能最小,在最大位移处,势能最大,动能为零。

(二)简谐运动的一个典型例子→单摆: 1、单摆振动的回复力:摆球重力的切向分力。

①简谐振动物体的周期和频率是由振动系统本身的条件决定的。

②单摆周期公式中的L是指摆动圆弧的圆心到摆球重心的距离,一般也叫等效摆长。

4、利用单摆测重力加速度:(三)受迫振动:1、受迫振动的含义:物体在外界驱动力的作用下的运动叫做受迫振动。

2、受迫振动的规律:物体做受迫振动的频率等于策动力的频率,而跟物体固有频率无关。

1)受迫振动的频率:物体做稳定的受迫振动时振动频率等于驱动力的频率,与物体的固有频率无关。

2)受迫振动的振幅:与振动物体的固有频率和驱动力频率差有关3、共振:当策动力的频率跟物体固有频率相等时,受迫振动的振幅最大,这种现象叫共振。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果在电梯中竖直悬挂一个弹簧振子,弹簧原长,振子的质量为m=1.0kg,电梯静止时弹簧伸长=0.10m,从t=0时,开始电梯以g/2的加速度加速下降,然后又以g/2加速减速下降直至停止试画出弹簧的伸长随时间t变化的图线。
由于弹簧振子是相对电梯做简谐运动,而电梯是一个有加速度的非惯性系,因此要考虑弹簧振子所受到的惯性力f。在匀速运动中,惯性力是一个恒力,不会改变振子的振动周期,振动周期
由此可见A、B两物体都做简谐运动,周期都是
此问题也可用另一种观点来解释:因为两物体质心处的弹簧是不动的,所以可以将弹簧看成两段。如果弹簧总长为,左边一段原长为,劲度系数为;右边一段原长为,劲度系数为,这样处理所得结果与上述结果是相同的,有兴趣的同学可以讨论,如果将弹簧压缩之后,不是同时释放两个物体,而是先释放一个,再释放另一个,这样两个物体将做什么运动?系统的质心做什么运动?
说明单摆在摆角小于5o时可近似地看作是一个简谐振动,振动的周期为
在一些异型单摆中,和g的含意以及值会发生变化。
(1)等效重力加速度
单摆的等效重力加速度等于摆球相对静止在平衡位置时,指向圆心的弹力与摆球质量的比值。
如在加速上升和加速下降的升降机中有一单摆,当摆球相对静止在平衡位置时,绳子中张力为,因此该单摆的等效重力加速度为=。周期为
当m作小角度摆动时,实际上是围绕AB的中点D运动,故等效摆长
正因为m绕D点摆动,当它静止在平衡位置时,指向D点的弹力为,等效重力加速度为,因此此异型摆的周期
(3)悬点不固定的单摆
如图5-2-11,一质量为M的车厢放在水平光滑地面上,车厢中悬有一个摆长为,摆球的质量为m的单摆。显然,当摆球来回摆动时,车厢也将作往复运动,悬点不固定。
§5.2 弹簧振子和单摆
简谐振动的教学中经常讨论的是弹簧振子和单摆,下面分别加以讨论。
5.2.1、弹簧振子
弹簧在弹性范围内胡克定律成立,弹簧的弹力为一个线性回复力,因此弹簧振子的运动是简谐振动,振动周期

(1)恒力对弹簧振子的作用
比较一个在光滑水平面上振动和另一个竖直悬挂振动的弹簧振子,如果m和k都相同(如图5-2-1),则它们的振动周期T是相同的,也就是说,一个振动方向上的恒力不会改变振动的周期。
当m向下偏离平衡位置时,弹簧组伸长了2 ,增加的弹力为
m受到的合外力(弹簧和动滑轮质量都忽略)
所以m的振动周期
=
再看如图5-2-4所示的装置,当弹簧1由平衡状态伸长时,弹簧2由平衡位置伸长了5.1.3、简谐振动的判据
物体的受力或运动,满足下列三条件之一者,其运动即为简谐运动:
①物体运动中所受回复力应满足 ;
②物体的运动加速度满足 ;
③物体的运动方程可以表示为 。
事实上,上述的三条并不是互相独立的。其中条件①是基本的,由它可以导出另外两个条件②和③。
各弹簧受的拉力也是F,所以有

根据劲度系数的定义,弹簧组的劲度系数
即得
如果上述几个弹簧并联在一起构成一个新的弹簧组,那么各弹簧的伸长是相同的。要使各弹簧都伸长,需要的外力
简谐振动的能量还为我们提供了求振子频率的另一种方法,这种方法不涉及振子所受的力,在力不易求得时较为方便,将势能写成位移的函数,即,。
另有
也可用总能量和振幅表示为
5.3.2、阻尼振动
简谐振动过程的机械能是守恒的,这类振动一旦开始,就永不停止,是一种理想状态。实际上由于摩擦等阻力不可完全避免,在没有外来动力的条件下,振动总会逐渐减弱以致最后停息。这种振幅逐渐减小的振动,称为阻尼振动。阻尼振动不是谐振动。
(2)等效摆长
单摆的等效摆长并不一定是摆球到悬点的距离,而是指摆球的圆弧轨迹的半径。如图5-2-9中的双线摆,其等效摆长不是,而是,周期
再如图5-2-10所示,摆球m固定在边长为L、质量可忽略的等边三角形支架ABC的顶角C上,三角支架可围绕固定的AB边自由转动,AB边与竖直方向成角。
①振动模型与运动规律
如图5-3-2所示,为考虑阻尼影响的振动模型,c为阻尼器,粘性阻尼时,阻力R=-cv,设m运动在任一x位置,由有
因为,所以
因此在电梯向下加速或减速运动的过程中,振动的次数都为
当电梯向下加速运动时,振子受到向上的惯性力mg/2,在此力和重力mg的共同作用下,振子的平衡位置在
的地方,同样,当电梯向下减速运动时,振子的平衡位置在
注意:物体离开平衡位置的位移,并不就是弹簧伸长的长度。
5.1.2、简谐振动的方程
由于简谐振动是变加速运动,讨论起来极不方便,为此。可引入一个连续的匀速圆周运动,因为它在任一直径上的分运动为简谐振动,以平衡位置O为圆心,以振幅A为半径作圆,这圆就称为参考圆,如图5-1-2,设有一质点在参考圆上以角速度作匀速圆周运动,它在开始时与O的连线跟轴夹角为,那么在时刻t,参考圆上的质点与O的连线跟的夹角就成为,它在轴上的投影点的坐标
的地方。在电梯向下加速运动期间,振子正好完成5次全振动,因此两个阶段内振子的振幅都是。弹簧的伸长随时间变化的规律如图5-2-2所示,读者可以思考一下,如果电梯第二阶段的匀减速运动不是从5T时刻而是从4.5T时刻开始的,那么图线将是怎样的?
(2)弹簧的组合 设有几个劲度系数分别为、......的轻弹簧串联起来,组成一个新弹簧组,当这个新弹簧组在F力作用下伸长时,各弹簧的伸长为,那么总伸长
如以竖直弹簧振子为例,则弹簧振子的能量由振子的动能、重力势能和弹簧的弹性势能构成,尽管振动过程中,系统的机械能守恒,但能量的研究仍比较复杂。由于此时回复力是由弹簧的弹力和重力共同提供的,而且是线性力(如图5-3-1),因此,回复力做的功(图中阴影部分的面积)也就是系统瞬时弹性势能和重力势能之和,所以类比水平弹簧振子瞬时弹性势能表达式,式中x应指振子离开平衡位置的位移,则就是弹性势能和重力势能之和,不必分开研究。
5. 3.1、简谐振动中的能量
以水平弹簧振子为例,弹簧振子的能量由振子的动能和弹簧的弹性势能构成,在振动过程中,振子的瞬时动能为:
振子的瞬时弹性势能为:
振子的总能量为:
简谐振动中,回复力与离开平衡位置的位移x的比值k以及振幅A都是恒量,即是恒量,因此振动过程中,系统的机械能守恒。
则由①、③式可得
把它代入②
摆球偏离平衡位置的位移
所以
因此摆球作简谐振动,周期
由周期表达式可知:当M"m时,,因为此时M基本不动,一般情况下,
§5.3 振动能量与共振
想象两端各用一个大小为F、方向相反的力将弹簧压缩,假设某时刻A、B各偏离了原来的平衡位置和,因为系统受的合力始终是零,所以应该有

A、B两物体受的力的大小

由①、②两式可解得
由摆球相对于车厢的运动是我们熟悉的单摆,故取车厢为非惯性系,摆球受到重力mg,摆线拉力N和惯性力的作用,如图
分析摆球
N= ①(忽略摆球向心力)
回复力 ②
分析车厢:

因为很小,所以可认为,,
由于弹簧2的伸长,使弹簧1悬点下降
因此物体m总的由平衡位置下降了
此时m所受的合外力
所以系统的振动周期
(3)没有固定悬点的弹簧振子 质量分别为和的两木块A和B,用一根劲度系数为k的轻弹簧联接起来,放在光滑的水平桌面上(图5-2-5)。现在让两木块将弹簧压缩后由静止释放,求系统振动的周期。
根据劲度系数的定义,弹簧组的劲度系数
导出了弹簧串、并联的等效劲度系数后,在解题中要灵活地应用,如图5-2-3所示的一个振动装置,两根弹簧到底是并联还是串联?这里我们必须抓住弹簧串并联的本质特征:串联的本质特征是每根弹簧受力相同;并联的本质特征是每根弹簧形变相同。由此可见图5-2-3中两根弹簧是串联。
(2)
这就是简谐振动方程,式中是t=0时的相位,称为初相:是t时刻的相位。
参考圆上的质点的线速度为,其方向与参考圆相切,这个线速度在轴上的投影是
) (3)
这也就是简谐振动的速度
参考圆上的质点的加速度为,其方向指向圆心,它在轴上的投影是
§5.1简谐振动
5.1.1、简谐振动的动力学特点
如果一个物体受到的回复力与它偏离平衡位置的位移大小成正比,方向相反。即满足:的关系,那么这个物体的运动就定义为简谐振动根据牛顿第二是律,物体的加速度,因此作简谐振动的物体,其加速度也和它偏离平衡位置的位移大小成正比,方何相反。
现有一劲度系数为k的轻质弹簧,上端固定在P点,下端固定一个质量为m的物体,物体平衡时的位置记作O点。现把物体拉离O点后松手,使其上下振动,如图5-1-1所示。
再如图5-2-7所示,在倾角为的光滑斜面上有一单摆,当摆球相对静止在平衡位置时,绳中张力为,因此单摆的等效重力加速度为=,周期为
又如一节车厢中悬挂一个摆长为的单摆,车厢以加速度在水平地面上运动(如图5-2-8)。由于小球m相对车厢受到一个惯性力,所以它可以"平衡"在OA位置,,此单摆可以在车厢中以OA为中心做简谐振动。当小球相对静止在平衡位置A处时,绳中张力为,等效重力加速度,单摆的周期
) (4)
这也就是简谐振动的加速度
由公式(2)、(4)可得
由牛顿第二定律简谐振动的加速度为
因此有
(5)
简谐振动的周期T也就是参考圆上质点的运动周期,所以
5.2.2、单摆
一个质量为m的小球用一轻质细绳悬挂在天花板上的O点,小球摆动至与竖直方向夹角,其受力情况如图5-2-6所示。其中回复力,即合力的切向分力为
当<5o时,△OAB可视为直角三角形,切向分力指向平衡位置A,且,所以
(式中)
当物体运动到离O点距离为x处时,有
式中为物体处于平衡位置时,弹簧伸长的长度,且有,因此
相关文档
最新文档