哈工大数字信号处理2-5章答案

合集下载

数字信号处理教程课后习题及答案

数字信号处理教程课后习题及答案
试判断系统是否是线性的?是否是移不变的?
分析:已知边界条件,如果没有限定序列类型(例如因果序列、反因果序列等), 则递推求解必须向两个方向进行(n ≥ 0 及 n < 0)。
解 : (1) y1 (0) = 0 时, (a) 设 x1 (n) = δ (n) ,
按 y1 (n) = ay1 (n − 1) + x1 (n) i) 向 n > 0 处递推,
10
T [ax1(n)+ bx2 (n)] =
n

[ax1
(n
)
+
bx2
(n
)]
m = −∞
T[ax1(n) + bx2(n)] = ay1(n) + by2(n)
∴ 系统是线性系统
解:(2) y(n) =
[x(n )] 2
y1(n)
= T [x1(n)] = [x1(n)] 2
y2 (n) = T [x2 (n)] = [x2 (n)] 2
β α
n +1
β α β =
n +1− N −n0
N−
N
α −β
y(n) = Nα n−n0 ,
(α = β )
, (α ≠ β )
如此题所示,因而要分段求解。
2 .已知线性移不变系统的输入为 x( n ) ,系统的单位抽样响应
为 h( n ) ,试求系统的输出 y( n ) ,并画图。
(1)x(n) = δ (n)
当n ≤ −1时 当n > −1时
∑ y(n) = n a −m = a −n
m=−∞
1− a
∑ y(n) =
−1
a−m =

数字信号处理第2章习题答案

数字信号处理第2章习题答案

根据零、 极点分布可定性画幅频特性。 当频率由0到2π 变化时, 观察零点矢量长度和极点矢量长度的变化, 在极点 附近会形成峰。 极点愈靠进单位圆, 峰值愈高; 零点附近形 成谷, 零点愈靠进单位圆, 谷值愈低, 零点在单位圆上则 形成幅频特性的零点。 当然, 峰值频率就在最靠近单位圆的 极点附近, 谷值频率就在最靠近单位圆的零点附近。

X (z)z 1zN z 1 N (z 1 1 )zN z 1 N (z 1 1 )z2 1 N 1 zz N 1 1 2
[例2.4.4] 时域离散线性非移变系统的系统函数H(z)为
H(z) 1 , a和b为常数 (za)(zb)
(1) 要求系统稳定, 确定a和b的取值域。 (2) 要求系统因果稳定, 重复(1)。 解: (1) H(z)的极点为a、 b, 系统稳定的条件是收敛 域包含单位圆, 即单位圆上不能有极点。 因此, 只要满足 |a|≠1, |b|≠1即可使系统稳定, 或者说a和b的取值域为除单位圆 以的整个z平面。 (2) 系统因果稳定的条件是所有极点全在单位圆内, 所以a和b
采样间隔T=0.25 s, 得到 xˆ ( t ) , 再让 xˆ ( t ) 通过理想低通
滤波器G(jΩ), G(jΩ)用下式表示:
G(j)0.025
≤ 4π 4π
(1) 写出xˆ ( t )的表达式;
(2) 求出理想低通滤波器的输出信号y(t)。
解:(1)
x ˆ(t) [c2 o πn s)T (co 5πs n()T ](tn)T n
(3) 若y(n)=x(n)h(n), 则
Y(ej)1H(ej)X(ej) 2π
这是频域卷积定理或者称复卷积定理。
(4)
xe(n)12[x(n)x(n)]

数字信号处理,第5章课后习题答案

数字信号处理,第5章课后习题答案

第五章习题与上机题5.1 已知序列12()(),0 1 , ()()()nx n a u n a x n u n u n N =<<=--,分别求它们的自相关函数,并证明二者都是偶对称的实序列。

解:111()()()()()nn mx n n r m x n x n m a u n au n m ∞∞-=-∞=-∞=-=-∑∑当0m ≥时,122()1mmnx n ma r m aaa∞-===-∑ 当0m <时,122()1m mnx n a r m aaa -∞-===-∑ 所以,12()1mx ar m a =-2 ()()()()N x n u n u n N R n =--=22210121()()()()()1,0 =1,00, =()(1)x NN n n N mn N n m N r m x n x n m Rn R n m N m N m N m m Nm N m R m N ∞∞=-∞=-∞--=-=-=-=-⎧=--<<⎪⎪⎪⎪=-≤<⎨⎪⎪⎪⎪⎩-+-∑∑∑∑其他从1()x r m 和2()x r m 的表达式可以看出二者都是偶对称的实序列。

5.2 设()e()nTx n u n -=,T 为采样间隔。

求()x n 的自相关函数()x r m 。

解:解:()()()()e()e ()nTn m T x n n r m x n x n m u n u n m ∞∞---=-∞=-∞=-=-∑∑用5.1题计算1()x r m 的相同方法可得2e()1e m Tx Tr m --=-5.3 已知12()sin(2)sin(2)s s x n A f nT B f nT ππ=+,其中12,,,A B f f 均为常数。

求()x n 的自相关函数()x r m 。

解:解:()x n 可表为)()()(n v n u n x +=的形式,其中)2sin()(11s nT f A n u π=,=)(n v 22sin(2)s A f nT π,)(),(n v n u 的周期分别为 s T f N 111=,sT f N 221=,()x n 的周期N 则是21,N N 的最小公倍数。

数字信号处理课后答案

数字信号处理课后答案

k = n0

n
x[ k ]
(B) T {x[n]} =

x[k ]
(C) T {x[ n]} = 0.5
x[ n ]
(D) T {x[n]} = x[− n]
1-5 有一系统输入为 x[n] ,输出为 y[n] ,满足关系 y[n] = ( x[n] ∗ u[n + 2])u[n] ,则系统是(A) (A)线性的 (B)时不变的 (C)因果的 (D)稳定的 解:
(a) T { x[ n ]} = h[ n] + x[ n ], (c) T {x[ n]} = ∑ x[ n − k ]
δ [n] + aδ [n − n0 ] ,单位阶跃响应 s[n] = u[n] + au[n − n0 ] 。
1-15 线性常系数差分方程为 y[n] − y[n − 1] +
y[n] = 0 , n < 0 , 则 y[3] = 0.5 。 解: y[0] = y[ −1] − 0.25 y[ −2] + x[0] = 1 y[1] = y[0] − 0.25 y[ −1] + x[1] = 1 y[2] = y[1] − 0.25 y[0] + x[2] = 0.75 y[3] = y[2] − 0.25 y[1] + x[3] = 0.5
∞ ∞ k =−∞ n '=−∞
解: (a)
n =−∞
∑ y[n] = ∑ ∑ x[k ]h[n − k ] = ∑ x[k ] ∑ h[n − k ] = ∑ x[k ] ∑ h[n ']
n =−∞ k =−∞ k =−∞ n =−∞


数字信号处理课后答案+第5章

数字信号处理课后答案+第5章
画出它的直接型结构如题8解图所示。
题8解图
9. 已知FIR滤波器的系统函数为
H (z) 1 (1 0.9z 1 2.1z 2 0.9z 3 z 4 ) 10
试画出该滤波器的直接型结构和线性相位结构。 解: 画出滤波器的直接型结构、 线性相位结构分别
如题9解图(a)、 (b)所示。
题9解图
题10解图(一)
题10解图(二)
11. 已知FIR滤波器的16
H(0)=12,
H(3)~H(13)=0
H(1)=-3-j 3 ,
H(14)=1- j
H(2)=1+j,
H(15)=-3+j 3
试画出其频率采样结构, 选择r=1,
解:
1 z N N1 H (k)
H (z) N k0 1 WNk z 1
图(j)
H (z) b0 b1z 1 b2 z 2 b3 b4 z 1 1 a1z 1 a2 z 2 1 a3 z 1
题6图
7. 假设滤波器的单位脉冲响应为 h(n)=anu(n) 0<a<1
求出滤波器的系统函数, 并画出它的直接型结构。 解: 滤波器的系统函数为
H
(
z)
ZT[h(n)]
j2 πk
j8 πk
1e 5 e 5
k 0,1, 2, 3, 4
它的频率采样结构如题13解图所示。
题13解图
14. H1(z)=1-0.6z-1-1.414z-2+0.864z-3 H2(z)=1-0.98z-1+0.9z-2-0.898z-3 H3(z)=H1(z)/H2(z)
解: H1(z)、 H2(z)和H3(z)直接型结构分别如题14解图 (a)、 (b)、 (c)所示。

数字信号处理答案第二章

数字信号处理答案第二章

数字信号处理答案第⼆章第⼆章2.1 判断下列序列是否是周期序列。

若是,请确定它的最⼩周期。

(1)x(n)=Acos(685ππ+n ) (2)x(n)=)8(π-ne j(3)x(n)=Asin(343ππ+n )解 (1)对照正弦型序列的⼀般公式x(n)=Acos(?ω+n ),得出=ω85π。

因此5162=ωπ是有理数,所以是周期序列。

最⼩周期等于N=)5(16516取k k =。

(2)对照复指数序列的⼀般公式x(n)=exp[ωσj +]n,得出81=ω。

因此πωπ162=是⽆理数,所以不是周期序列。

(3)对照正弦型序列的⼀般公式x(n)=Acos(?ω+n ),⼜x(n)=Asin(343ππ+n )=Acos(-2π343ππ-n )=Acos(6143-n π),得出=ω43π。

因此382=ωπ是有理数,所以是周期序列。

最⼩周期等于N=)3(838取k k =2.2在图2.2中,x(n)和h(n)分别是线性⾮移变系统的输⼊和单位取样响应。

计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。

(a)1111(b)-1-1-1-1-1-1222222 3333 3444………nnn nnnx(n)x(n)x(n)h(n)h(n)h(n)21u(n)u(n)u(n)a n ===2 2knhkx)()(按照折叠、移位、相乘、相加、的作图⽅法,计算y(n)的每⼀个取样值。

(a) y(0)=x(O)h(0)=1y(l)=x(O)h(1)+x(1)h(O)=3y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n≥2(b) x(n)=2δ(n)-δ(n-1)h(n)=-δ(n)+2δ(n-1)+ δ(n-2)y(n)=-2δ(n)+5δ(n-1)= δ(n-3)(c) y(n)= ∑∞-∞=--kkn knuku a)()(=∑∞-∞=-aa n--+111u(n)2.3 计算线性线性卷积(1) y(n)=u(n)*u(n)(2) y(n)=λn u(n)*u(n)解:(1) y(n)= ∑∞-∞=-kknuku)(-)()(kknuku=(n+1),n≥0 即y(n)=(n+1)u(n) (2) y(n)=∑∞-∞=-kk knuku)()(λ=∑∞=-0)()(k kk n u k u λ=λy(n)=λλ--+111n u(n)2.4 图P2.4所⽰的是单位取样响应分别为h 1(n)和h 2(n)的两个线性⾮移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a n u(n),|a|<1,求系统的输出y(n).解ω(n)=x(n)*h 1(n) =∑∞-∞=k k u )([δ(n-k)-δ(n-k-4)]=u(n)-u(n-4)y(n)=ω(n)*h 2(n) =∑∞-∞=k kk u a )([u(n-k)-u(n-k-4)]=∑∞-=3n k ka,n ≥32.5 已知⼀个线性⾮移变系统的单位取样响应为h(n)=an-u(-n),0系统的单位阶跃响应。

数字信号处理 答案 第二章

数字信号处理 答案 第二章
n n
(4) h(n)=( (5) h(n)=
1 n ) u(n) 2
1 u(n) n
n
(6) h(n)= 2 R n u(n)
解 (1)因为在 n<0 时,h(n)= 2 ≠0,故该系统不是因果系统。
n
因为 S=
n =−∞


|h(n)|=

n =0

|2 |=1< ∞ ,故该系统是稳定系统。
n
(2) 因为在 n<O 时,h(n) ≠0,故该系统不是因果系统。 因为 S=
n =−∞
n =−∞
(4) 因为在 n<O 时,h(n)=0,故该系统是因果系统 。 因为 S= |h(n)|=
n =−∞

n=0
|(
1 n ) |< ∞ ,故该系统是稳定系统。 2
(5) 因为在 n<O 时,h(n)=
1 u(n)=0,故该系统是因果系统 。 n
因为 S=
n =−∞
∑ ∑


|h(n)|=
第二章
2.1 判断下列序列是否是周期序列。若是,请确定它的最小周期。 (1)x(n)=Acos( (2)x(n)= e (
j
π 5π n+ ) 8 6
n −π) 8 π 3π (3)x(n)=Asin( n+ ) 4 3
(1)对照正弦型序列的一般公式 x(n)=Acos( ωn + ϕ ),得出 ω =

=
k =0
∑ u(k )u(n − k ) =(n+1),n≥0
即 y(n)=(n+1)u(n) (2) y(n)= ∑ λ k u (k )u (n − k )

数字信号处理习题答案

数字信号处理习题答案

部分练习题参考答案第二章2.1 )1(2)(3)1()2(2)(-+++-+=n n n n n x δδδδ)6()4(2)3()2(-+-+-+-+n n n n δδδδ2.2 其卷积过程如下图所示)5(5.0)4()3()2(5.2)1(5)(2)(-------+-+=n n n n n n n y δδδδδδ2.3 (1)3142,73==ωππω这是有理数,因此是周期序列。

周期N =14。

(2)k kp ππ168/12==,k 取任何整数时,p 都不为整数,因此为非周期序列。

(3)k kp k k p 45.02,5126/5221====ππππ,当p 1,p 2 同时为整数时k =5,x (n )为周期序列,周期N =60。

(4)k kp πππ25.16.12==,取k =4,得到p =6,因此是周期序列。

周期N =6。

2.4 (1) ∑∞-∞=-=*=m m n R m R n h n x n y )()()()()(45(a) 当n <0 时,y (n )=0-0.5 -1 2.55h (m ) x (m ) 00 mm-121 0.51 2 h (0-m)m-121 h (-1-m)m-12 1h (1-m) 0m-121y (n )n-12(b) 当30≤≤n 时,11)(0+==∑=n n y nm(c) 当74≤≤n 时,n n y n m -==∑-=81)(34(d) 当n>7时,y (n )=0所以743070810)(≤≤≤≤><⎪⎩⎪⎨⎧-+=n n n n n n n y 或 (2))2(2)(2)]2()([)(2)(444--=--*=n R n R n n n R n y δδ)]5()4()1()([2-----+=n n n n δδδδ(3)∑∞-∞=--=*=m mn m n u m R n y n x n y )(5.0)()()()(5∑∞-∞=--=m mnm n u m R )(5.0)(5.05(a) 当n <0 时,y (n )=0 (b) 当40≤≤n 时,n n nnm mn n y 5.0221215.05.05.0)(1-=--==+=-∑(c) 当5≥n 时,n nm mn n y 5.03121215.05.05.0)(540⨯=--==∑=- 最后写成统一表达式:)5(5.031)()5.02()(5-⨯+-=n u n R n y nn(4)∑∞-∞=-=*=m mn m R n h n x n y 5.0)()()()(3(a) 当n ≤0 时,y (n )=0(b) 当31≤≤n 时,n nnn m mnn y 5.0121215.05.05.0)(1-=--==∑-=-(c) 当54≤≤n 时,25.05.01621)21(25.05.05.0)(6232-⨯=--==---=-∑n n n nn m mnn y(d) 当n ≥6时,y (n )=0)5(25.0)4(75.0)3(875.0)2(75.0)1(5.0)(-+-+-+-+-=n n n n n n y δδδδδ2.6 (1)非线性、移不变系统(2)线性、移不变系统 (3)线性、移变系统 (4)非线性、移不变系统 (5)线性、移变系统2.7 (1)若∞<)(n g ,则稳定,因果,线性,时变(2)不稳定,0n n ≥时因果,0n n <时非因果,线性,时不变 (3)线性,时变,因果,不稳定 2.8 (1)因果,不稳定(2)因果,稳定(3)因果,稳定 (4)因果,稳定 (5)因果,不稳定 (6)非因果,稳定 (7)因果,稳定 (8)非因果,不稳定 (9)非因果,稳定 (10)因果,稳定2.9 因为系统是因果的,所以0)(,0=<n h n令)()(n n x δ=,)1(5.0)()1(5.0)()(-++-==n x n x n h n h n y 1)1(5.0)0()1(5.0)0(=-++-=x x h h15.05.0)0(5.0)1()0(5.0)1(=+=++=x x h h 5.0)1(5.0)2()1(5.0)2(=++=x x h h 25.0)2(5.0)3()2(5.0)3(=++=x x h h 15.0)1(5.0)()1(5.0)(-=-++-=n n x n x n h n h所以系统的单位脉冲响应为)1(5.0)()(1-+=-n u n n h n δ2.10 (1)初始条件为n <0时,y (n )=0设)()(n n x δ=,输出)(n y 就是)(n h 上式可变为)()1(5.0)(n n h n h δ+-=可得 11)1(5.0)0(=+-=h h 依次迭代求得5.00)0(5.0)1(=+=h h25.00)1(5.0)2(=+=h hn n h n h 5.00)1(5.0)(=+-=故系统的单位脉冲响应为)(5.0)(n u n h n= (2)初始条件为n ≥0时,y (n )=0)]()([2)1(n x n y n y -=-0,0)(≥=n n h2)]0()0([2)1(-=-=-x h h 22)]1()1([2)2(-=---=-x h h 32)]2()2([2)3(-=---=-x h hn n h n h 2)1(2)(-=+=所以)1(2)(---=n u n h n2.11 证明(1)因为∑∞-∞=-=*m m n h m x n h n x )()()()(令m n m -=',则)()()'()'()()('n x n h m h m n x n h n x m *=-=*∑∞-∞=(2)利用(1)证明的结果有)]()([)()]()([)(1221n h n h n x n h n h n x **=**∑∞-∞=-*-=m m n h m n h m x )]()()[(12∑∑∞-∞=∞-∞=--=m k k m n h k h m x )()()(12交换求和的次序有∑∑∞-∞=∞-∞=--=**k m k m n h m x k h n h n h n x )()()()]()([)(1221∑∞-∞=-*-=k k n h k n x k h )]()()[(12)]()([)(12n h n x n h **= )()]()([21n h n h n x **=(3)∑∞-∞=-+-=+*m m n h m n h m x n h n h n x )]()()[()]()([)(2121∑∑∞-∞=∞-∞=-+-=m m m n h m x m n h m x )()()()(21)()()()(21n h n x n h n x *+*=2.12 ∑∞-∞=--=*=m m n Nm n u a m Rn y n x n y )()()()()(∑∞-∞=--=m m Nnm n u a m Ra)()((a) 当n <0 时,y (n )=0(b) 当10-≤≤N n 时,11/11)/1(1)(110--=--==++=-∑a a a a a aan y n n nnm mn(c) 当N n ≥时,1)/1(1)/1(1)(111--=--==+-+-=-∑a a a a a a aan y N n n N nN m mn最后写成统一表达式:)(1)(11)(111N n u a a a n R a a n y N n n N n ---+--=+-++ 2.13 )]4()([*)()()()(11--=*=n n n u n h n x n y δδ)()4()(4n R n u n u =--=)()()()()(421n u a n R n h n y n y n *=*=)4(1)(113141---+--=-++n u a a a n R a a n n n2.14 (1)采样间隔为005.0200/1==T)()82sin()(ˆ0nT t nT f t xn a -+=∑∞-∞=δππ)()8100sin(nT t nT n -+=∑∞-∞=δππ(2))85.0sin()(ππ+=n n x数字频率πω5.0=,42=ωπ,周期N =42.15 (1)0)()(0n j n n j j e e nn eX ωωωδ-∞-∞=-=-=∑ (2)∑∑∞=-+-∞-∞=-==0)(0)()(n n j n j n nj j e e en x eX ωωαωω∑∞=--=0)(0n nj eeωωα)(01ωωα---=j ee (3)∑∑∑∞=+-∞=--∞-∞=-===)(0)()(n n j n nj nn nj j e eeen x eX ωαωαωω)(11ωαj e +--=(4)∑∑∞=--∞-∞=-==0cos )()(n n j n n nj j ne e en x eX ωαωωω∑∑∞=----+---∞=-+=+=0)()(0][21)(210000n n j j n j j nj n j n j n ne e e e e e ωωαωωαωωωααωαωαωωωαωωαωω2200)()(cos 21cos 111112100------+----+--=⎥⎦⎤⎢⎣⎡-+-=e e e e e e e e e e j j j j j (5)nj N N n n nj j e n N en x eX ωωωπ--=∞-∞=-∑∑⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+==12cos 1)()( ∑∑-=---=-++=1212)(21N N n n j n N j nN j N Nn nj e e e eωππω ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+--+--=+-+-+-------)()()()()()(1)1(1)1(211)1(ωπωπωπωπωπωπωωωN j N N j N N j N j N N j N N j j Nj Nj e e e e e e e e e-0.92-0.380.920.38x (n ) 0nωωωωωωπωN j j j j N j e N e e Ne N e N 232)123()2cos(cos 21cos 12sin )2sin(------+--+=2.16 (1)⎰⎰⎰-==--πωπωππωωωπωπωπ002121)(21)(d je d je d e e H n h n j nj n j j ⎪⎩⎪⎨⎧=--=为奇数为偶数n n n n n ππ20)1(1 (2))sin()()()(011n n h n x n y ω=*=)cos()()()(022n n h n x n y ω-=*=2.17 (1))(ωj eX -*(2))]()([21ωωj j e X eX -*+(3))]()([2122ωωj j e X e X -+(4))(2ωj e X2.18采样间隔为25.0=T ,采样频率π8=Ωs)(1t y a 没有失真,因为输入信号的频率π21=Ω小于π42=Ωs)(2t y a 失真,因为输入信号频率π52=Ω大于π42=Ωs第三章3.1 设)(ωj eX 和)(ωj e Y 分别是)(n x 和)(n y 的傅里叶变换,试求下列序列的傅里叶变换:(1))(0n n x - (2) )(*n x (3) )(n x - (4) )(*)(n y n x (5) )()(n y n x ∙ (6) )(n nx (7) )2(n x (8))(2n x (9)⎩⎨⎧===奇数,偶数n n n x n x 0),2()(9解:(1) FT[)(0n n x -]=∑∞-∞=--n n j e nn x ω)(0令0n n n -=',0n n n +'=,则FT[)(0n n x -]=)()(00)(ωωωj n j n n n j e X e e n x -∞-∞=+''-='∑ (2) FT[)(*n x ]=)(*])([)(**ωωωj n n j n nj e X e n x en x-∞-∞=-∞-∞=-∑∑==(3) FT[)(n x -]=∑∞-∞=--n nj en x ω)(令n n -=',则FT[)(n x -]=∑∞-∞=''n n j e n x ω)()(ωj e X -=(4) FT[)(*)(n y n x ]=)(ωj eX )(ωj e Y证明 )(*)(n y n x =∑∞-∞=-m m n y m x )()(FT[)(*)(n y n x ]=∑∑∞-∞=-∞-∞=-n nj m em n y m x ω)]()([令m n k -=,则FT[)(*)(n y n x ]=m j k kj m e ek y m x ωω-∞-∞=-∞-∞=∑∑)]()([=mj k m kj em x ek y ωω-∞-∞=∞-∞=-∑∑)()(=)(ωj eX )(ωj e Y(5) FT[)()(n y n x ∙] =∑∞-∞=-n nj en y n x ω)()(=∑⎰∞-∞=-'-''n n j n j j e d e eY n x ωωππωωπ])(21)[(=ωπωωππω'∑⎰∞-∞='---'d e n x eY n n j j )()()(21=ωπωωππω''--'⎰d e X e Y j j )()(21)( 或者 FT[)()(n y n x ]=)(*)(21ωωπj j e Y e X(6) 因为∑∞-∞=-=n nj j en x eX ωω)()(,对该式两边对ω求导,得到j e n nx j d e dX n n j j -=-=∑∞-∞=-ωωω)()(FT[)(n nx ] 因此 FT[)(n nx ]=ωωd e dX j j )((7) FT[)2(n x ]=∑∞-∞=-n nj en x ω)2(令n n 2=',则FT[)2(n x ]=∑''-'取偶数n n j en x 2)(ω=n j nn e n x n x ω21)]()1()([21-∞-∞=-+∑=])()([212121n j n n j n j n e n x e en x ωπω-∞-∞=-∞-∞=∑∑+ =)]()([21)21(21πωω-+j j e X e X 或者FT[)2(n x ]=)()]()([21212121ωωωj j j e X e X eX =+ (8) FT[)(2n x ]=∑∞-∞=-n n j e n xω)(2利用(5)题结果,令)()(n y n x =,则FT[)(2n x ]=)(*)(21ωωπj j e X e X =ωπωωππω''--'⎰d e X e X j j )()(21)( (9) FT[)(9n x ]=∑∞-∞=-取偶数n n n j e nx ω)2(令∞≤'≤∞-='n n n ,2,则FT[)(9n x ]=)()(22ωωj n n n j e X en x ='∑∞-∞='-取偶数3.2 已知⎩⎨⎧≤<<=πωωωωω||,0||,1)(00j e X求)(ωj eX 的傅里叶反变换)(n x 。

(完整word版)数字信号处理第二章习题解答

(完整word版)数字信号处理第二章习题解答

数字信号处理第2章习题解答2.1 今对三个正弦信号1()cos(2)a x t t π=,2()cos(6)a x t t π=-,3()cos(10)a x t t π=进行理想采样,采样频率为8s πΩ=,求这三个序列输出序列,比较其结果。

画出1()a x t 、2()a x t 、3()a x t 的波形及采样点位置并解释频谱混淆现象。

解:采样周期为2184T ππ== 三个正弦信号采样得到的离散信号分别表示如下:1()cos(2)cos()42a n x n n ππ=⋅=2()cos(6)cos()42a n x n n ππ=-⋅=-3()cos(10)cos()42a n x n n ππ=⋅=输出序列只有一个角频率2π,其中1()a x n 和3()a x n 采样序列完全相同,2()a x n 和1()a x n 、3()a x n 采样序列正好反相。

三个正弦信号波形及采样点位置图示如下:tx a 1(t )tx a 2(t )tx a 3(t )三个正弦信号的频率分别为1Hz 、3Hz 和5Hz ,而采样频率为4Hz ,采样频率大于第一个正弦信号频率的两倍,但是小于后两个正弦信号频率的两倍,因而由第一个信号的采样能够正确恢复模拟信号,而后两个信号的采样不能准确原始的模拟信号,产生频谱混叠现象。

2.3 给定一连续带限信号()a x t 其频谱当f B >时,()a X f 。

求以下信号的最低采样频率。

(1)2()a x t (2)(2)a x t (3)()cos(7)a x t Bt π解:设()a x t 的傅里叶变换为()a X j Ω(1)2()a x t 的傅里叶变换为22()[()]Ba a BX j X j d ππωωω-⋅Ω-⎰因为22,22B B B B πωππωπ-≤≤-≤Ω-≤ 所以44B B ππ-≤Ω≤即2()a x t 带限于2B ,最低采样频率为4B 。

数字信号处理课后答案课件

数字信号处理课后答案课件
傅里叶变换具有线性、对称性、时移性、频移性等性质,这些性质 在信号处理中具有重要应用。
傅里叶变换的性质
线性性质
若离散信号x(n)和y(n)的 傅里叶变换分别为 X(e^jωn)和Y(e^jωn), 则对于任意实数a和b,有 aX(e^jωn) + bY(e^jωn) 的傅里叶变换等于 aX(e^jωn)和bY(e^jωn) 的傅里叶变换之和。
从而实现信号的分离、抑制或提 取。
滤波器分类
根据不同的特性,滤波器可分为 低通、高通、带通和带阻滤波器,
每种滤波器都有各自的应用场景 和特点。
滤波器原理
滤波器的原理是基于频率响应, 即不同频率的信号经过滤波器后, 其幅度和相位会发生不同的变化。
IIR滤波器设计
IIR滤波器概述
IIR滤波器设计方法
IIR滤波器稳定性
在设计IIR滤波器时,需要考虑其稳定 性。如果系统函数的极点位于单位圆 外,则系统不稳定,可能会导致无穷 大的输出。因此,在设计过程中需要 进行稳定性分析。
FIR滤波器设计
FIR滤波器概述
FIR(Finite Impulse Response)滤 波器是一种具有有限冲击响应的数字 滤波器,其系统函数可以表示为有限 项之和。
插值法
对于非周期性的连续时间信号,可以通过插值法得到离散时间信号。常用的插值方法包括 线性插值、多项式插值、样条插值等。
傅里叶变换法
对于任何连续时间信号,可以通过傅里叶变换将其转换为频域表示形式,然后对频域表示 形式进行采样,得到离散时间信号。再通过逆傅里叶变换将其转换回时域表示形式。
05 第五章 信号的分 析与合成
抽样定理的充分性
对于任何连续时间信号,如果其最高频率分量小于等于fmax,则可 以通过其抽样信号无失真地重建出原信号。

数字信号处理作业 第五章 参考答案

数字信号处理作业 第五章 参考答案
为得到 H ( z ) ,
(1) 由极点构成 H a ( s ) 的分母多项式,分子为分母多项式的常数。 (2) H a ( s ) 展成部分分式。 (3) 据有理分式变换得到对应的 H ( z ) 各分式,整理得到最后的 H ( z ) 。 22、 取 T=1, 预畸, 由已知列出对模拟滤波器的衰减要求, 解出 N=6.04, 取 N=7, 得到
−0.5
Z −1
−1
0.9
−0.81
4、 H ( z ) = −4.9383 +
2.1572 4.7811 − 1.5959 z −1 + 1 + 0.5 z −1 1 − 0.9 z −1 + 0.81z −2
−4.9383
x ( n) y ( n)
2.1572 −0.5
Z −1
4.7811
Z
0.9 −0.81
= H 2 ( z)
α 02 + α12 z -1 -3.1986 + 0.2591z -1 = 1 +z 2 1 + 1.618 z - 4π 2 2 1 + r z 1 - 2rz -cos 5
频率取样型实现流程图:
−10.125
Z −1
18.3236
x ( n)
Z −1
x ( n)
Z −1
Z −1
+
Z −1
− 7 4
+
Z −1
− 69 8
+
y ( n) 4) 频率取样型:取 r=1,N=5,得到 DFT{h(n)}为:
{-10.1250 9.1618 + 6.6564i -1.5993 - 4.9221i -1.5993 + 4.9221i 9.1618 - 6.6564i}

数字信号处理》课后作业参考答案

数字信号处理》课后作业参考答案

第3章 离散时间信号与系统时域分析3.1画出下列序列的波形(2)1()0.5(1)n x n u n -=- n=0:8; x=(1/2).^n;n1=n+1; stem(n1,x);axis([-2,9,-0.5,3]); ylabel('x(n)'); xlabel('n');(3) ()0.5()nx n u n =-()n=0:8; x=(-1/2).^n;stem(n,x);axis([-2,9,-0.5,3]); ylabel('x(n)'); xlabel('n');3.8 已知1,020,36(),2,780,..n n x n n other n≤≤⎧⎪≤≤⎪=⎨≤≤⎪⎪⎩,14()0..n n h n other n≤≤⎧=⎨⎩,求卷积()()*()y n x n h n =并用Matlab 检查结果。

解:竖式乘法计算线性卷积: 1 1 1 0 0 0 0 2 2)01 2 3 4)14 4 4 0 0 0 0 8 83 3 3 0 0 0 0 6 62 2 2 0 0 0 0 4 41 1 1 0 0 0 02 21 3 6 9 7 4 02 6 10 14 8)1x (n )nx (n )nMatlab 程序:x1=[1 1 1 0 0 0 0 2 2]; n1=0:8; x2=[1 2 3 4]; n2=1:4; n0=n1(1)+n2(1);N=length(n1)+length(n2)-1; n=n0:n0+N-1; x=conv(x1,x2); stem(n,x);ylabel('x(n)=x1(n)*x2(n)');xlabel('n'); 结果:x = 1 3 6 9 7 4 0 2 6 10 14 83.12 (1) 37πx (n )=5sin(n) 解:2214337w πππ==,所以N=14 (2) 326n ππ-x (n )=sin()-sin(n)解:22211213322212,2122612T N w T N w N ππππππ=========,所以(6) 3228n π-x (n )=5sin()-cos(n) 解:22161116313822222()T N w T w x n ππππππ=======,为无理数,所以不是周期序列所以不是周期序列3.20 已知差分方程2()3(1)(2)2()y n y n y n x n --+-=,()4()nx n u n -=,(1)4y -=,(2)10,y -=用Mtalab 编程求系统的完全响应和零状态响应,并画出图形。

数字信号处理第5章答案

数字信号处理第5章答案
最小, 而既非通带波纹最小, 又非阻带波动最小。 所以, 用这种优化程序设计的滤波器的阻带最小衰减和通带波纹可能 不满足要求。
第5章 无限脉冲响应(IIR)数字滤波器的设

特别是以理想滤波器特性作为Hd(ejω)时, 为了使ε2最小,
优化过程尽可能逼近Hd(ejω)的间断特性(即使过渡带最窄), 而使通带出现较大过冲、 阻带最小衰减过小, 不能满足工
H(ejω)=|H(ejω)|ejθ(ω) 其中, |H(ejω)|称为幅频特性函数, θ(ω)称为相频特性函数。
常用的典型滤波器|H(ejω)|是归一化的, 即|H(ejω)|max=1, 下 的讨论一般就是针对归一化情况的。 对IIR数字滤波器, 通
常用幅频响应函数|H(ejω)|来描述设计指标, 而对线性相位特 性的滤波器, 一般用FIR数字滤波器设计实现。

图5.1.6
第5章 无限脉冲响应(IIR)数字滤波器的设

5.1.4 IIR-DF的直接设计法
所谓直接设计法, 就是直接在数字域设计IIR[CD*2]DF 的方法。 相对而言, 因为从AF入手设计DF是先设计相应的 AF, 然后再通过s-z平面映射, 将Ha(s)转换成H(z), 所以 这属于间接设计法。 该设计法只能设计与几种典型AF相对 应的幅频特性的DF。 而需要设计任意形状幅频特性的DF时, 只能用直接设计法。 直接设计法一般都要借助于计算机进行 设计, 即计算机辅助设计(CAD)。 现在已有多种DF优化 设计程序。 优化准则不同, 所设计的滤波器特点亦不同。所 以最主要的是建立优化设计的概念, 了解各种优化准则的 特点, 并根据设计要求, 选择合适的优化程序设计DF。
≤≤
(5.1.1)

(5.1.2)

数字信号处理教程课后题答案

数字信号处理教程课后题答案

第一章 离散时间信号与系统2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2(4)3 .已知 10,)1()(<<--=-a n u a n h n,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。

4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313si n()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a分析:序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列,nmm m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 31 2 5 . 0 ) ( 01当 3 4n m nm m n n y n 2 2 5 . 0 ) ( 1⋅ = = - ≤ ∑ -∞ = - 当 aa a n y n a a an y n n h n x n y a n u a n h n u n x m m nnm mn -==->-==-≤=<<--==∑∑--∞=---∞=--1)(11)(1)(*)()(10,)1()()()(:1时当时当解①当=0/2ωπ整数,则周期为0/2ωπ;②;为为互素的整数)则周期、(有理数当 , 2 0Q Q P QP =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。

解:(1)0142/3πω=,周期为14 (2)062/13πω=,周期为6 (2)02/12πωπ=,不是周期的 7.(1)[][]12121212()()()()()()[()()]()()()()[()][()]T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+所以是线性的T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。

数字信号处理第五章习题解答

数字信号处理第五章习题解答

————第五章————数字滤波网络5.1 学 习 要 点本章主要介绍数字滤波器的系统函数()z H 与其网络结构流图之间的相互转换方法,二者之间的转换关系用Masson 公式描述。

由于信号流图的基本概念及Masson 公式已在信号与系统分析课程中讲过,所以下面归纳IIR 系统和FIR 系统的各种网络结构及其特点。

5.1.1 IIR 系统的基本网络结构1. 直接型结构如果将系统函数()z H 化为标准形式(5.1)式:()∑∑=-=--=Nk kkMk kkz az bz H 11 (5.1) 则可根据Masson 公式直接画出()z H 的直接II 型网络结构流图如图5.1所示(取N=4,M=3)。

二阶直接II 型网络结构最有用,它是级联型和并联型网络结构的基本网络单元。

优点:可直接由标准形式(5.1)或差分方程()()()∑∑==-+-=Mk kN k kk n x b k n y a n y 01画出网络结构流图,简单直观。

缺点:对于高阶系统:(1)调整零、极点困难;(2)对系数量化效应敏感度高;(3)乘法运算量化误差在系统输出端的噪声功率最大。

2. 级联型结构将(5.1)式描述的系统函数()z H 分解成多个二阶子系统函数的乘积形式()()()()z H z H z H z H m 21⋅= (5.2) (),1221122110------++=zzzzz H i i i i i i ααβββ m i ,,2,1 = (5.3)画出的级联型方框图如图5.2所示。

图中每一个子系统均为二阶直接型结构,根据()z H 的具体表达式确定()z H i 的系数i i i i 1210,,,αβββ和i 2α后,可画出()z H i 的网络结构流图如图5.3所示。

优点:(1)系统结构组成灵活;(2)调整零、极点容易,因为每一级二阶子系统()z H i 独立地确定一对共轭零点和一对共轭极点;(3)对系数量化效应敏感度低。

哈尔滨工程大学《数字信号处理》(1-7章)习题解答

哈尔滨工程大学《数字信号处理》(1-7章)习题解答
(4)利用欧拉公式
由于 是无理数,所以 是非周期的。
4、判断下列系统是否为线性、时不变、因果、稳定系统,说明理由。其中, 与 分别为系统的输入与输出。
(1) (2)
(3) (4)
解:(1)首先判断系统是否是线性系统,假设在 和 单独输入时的输出分别为 和 ,即:
那么当输入为 时,系统的输出为
所以系统是线性系统。
3、判断下列信号是否为周期的,并对周期信号求其基本周期。
(1) (2)
(3) (4)
解:(1)由于 是有理数,所以 是周期的,且周期为16。
(2)对于 , ,那么它的周期为24;对于 , ,则它的周期为36, 的周期为这两个信号周期的最小公倍数,所以周期为72。
(3)由于 是有理数,所以 是周期的,周期为14。
(1)
(2)
解:初值定理 ,终值定理 。终值定理只有当 时, 收敛才可应用,即要求 的极点必须在单位圆内(单位圆上的极点只能位于 ,且是一阶极点。)若 发散,则不存在终值。
(1) 。
的极点为 和 , 发散,不存在终值。
(2) 。
, 的极点为 和 , 收敛, 。
5、已知 ,求证 。
证明:这里的z变换是指单边z变换,那么
题13图
解:假设加法器的输出为 ,由系统的结构框图可知
联立解得,

对差分方程两边进行z变换得
因此系统函数为
当 时,系统函数为
它有一个零点 ,两个极点 和 ,零极点图如题13解图(1)所示。由于系统是因果稳定系统,因此 的收敛域为 ,那么单位脉冲响应为
当系统是稳定系统时,频率响应 就是 在单位圆上的值,

(4)由DFT的定义
(5)由DFT的定义
从分子中提出复指数 ,从分母中提出复指数 ,则DFT可以写为

数字信号处理答案2和3章(DOC)

数字信号处理答案2和3章(DOC)

数字信号处理答案2和3章(DOC)合工大《数字信号处理》习题答案第2章 习 题2.1)1()()1()2(2)4()(-+++-+++=n n n n n n x δδδδδ)6(2)4(5.0)3(4)2(2-+-+-+-+n n n n δδδδ 2.3 (1)31420=ωπ,所以周期为14。

(2)πωπ1620=,是无理数,所以)(n x 是非周期的。

2.4 设系统分别用下面的差分方程描述,)(n x 与)(n y 分别表示系统输入和输出,判断系统是否是线性非时变的。

(1))()(0n n x n y -=(2))()(2n xn y =(3))sin()()(n n x n y ω= (4))()(n x e n y =2.4 (1)由于)()]([0n n x n x T -=)()()]([0m n y n m n x m n x T -=--=-所以是时不变系统。

)()()()()]()([21020121n by n ay n n bx n n ax n bx n ax T +=-+-=+所以是线性系统。

(2))()()]([2m n y m n x m n x T -=-=-,所以是时不变系统。

)()()]()([)]()([2122121n by n ay n bx n ax n bx n ax T +≠+=+,所以是非线性系统。

(3))()sin()()]([m n y n m n x m n x T -≠-=-ω,所以不是时不变系统。

)()()sin()]()([)]()([212121n by n ay n n bx n ax n bx n ax T +=+=+ω,所以是线性系统。

(4))()()]()([21)()()]()([212121n by n ay e e en bx n ax T n bx n ax n bx n ax +≠==++,所以是非线性系统。

数字信号处理第二章习题答案

数字信号处理第二章习题答案

2-1 试求如下序列的傅里叶变换: (1))()(01n n n x -=δ (2))1(21)()1(21)(2--++=n n n n x δδδ (3)),2()(3+=n u a n x n10<<a(4))4()3()(4--+=n u n u n x(5)∑∞=-⎪⎭⎫⎝⎛=05)3(41)(k nk n n x δ(6)()6cos ,14()0,n n x n π⎧-≤≤=⎨⎩其他解: (1) 010()()j n j j nn X e n n ee ωωωδ∞--=-∞=-=∑(2) 2211()()122j j nj j n X e x n e e e ωωωω∞--=-∞==+-∑ωsin 1j +=(3) 2232()(2)1j j nj nn j nj n n a e X e a u n ea eaeωωωωω-∞∞---=-∞=-=+==-∑∑, 10<<a(4) []4()(3)(4)j j nn X e u n u n eωω∞-=-∞=+--∑∑-=-=33n nj e ω∑∑==-+=313n n j n nj e eωω(等比数列求解)ωωωωωj j j j j e e e e e --+--=--111134=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=----ωωωωω21sin 27sin 1137j j j e ee ((1-e^a)提出e^(0.5a))(5) 3350011()(3)44nkj jn j k n k k X e n k e e ωωωδ∞∞+∞--=-∞==⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∞+=--⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛=033411141k j kj e e ωω(6) 44336441()cos 32j j j jn jn n n X e nee e e ππωωωπ---=-=-⎛⎫==+ ⎪⎝⎭∑∑994()()4()()3333001122j j n j j n n n e e e e ππππωωωω--++===+∑∑ ()9()9334()4()33()()3311112211j j j j j j e e e e e e ππωωππωωππωω-+-+-+⎡⎤⎡⎤--⎢⎥⎢⎥=+⎢⎥⎢⎥++⎢⎥⎢⎥⎣⎦⎣⎦2-2 设信号}1,2,3,2,1{)(---=n x ,它的傅里叶变换为)(ωj e X ,试计算(1)0()j X e (2)()j X ed πωπω-⎰(3)2()j X e d πωπω-⎰。

数字信号处理课后习题答案全章

数字信号处理课后习题答案全章
5. 设系统分别用下面的差分方程描述, x(n)与y(n)分别表示系统 输入和输出, 判断系统是否是线性非时变的。
(1)y(n)=x(n)+2x(n-1)+3x(n-2) (2)y(n)=2x(n)+3 (3)y(n)=x(n-n0) n0 (4)y(n)=x(-n)
团结 信赖 创造 挑战
(5)y(n)=x2(n)
因此系统是非时变系统。
团结 信赖 创造 挑战
(5) y(n)=x2(n)
令输入为
输出为
x(n-n0)
y′(n)=x2(n-n0)
y(n-n0)=x2(n-n0)=y′(n)
故系统是非时变系统。 由于
T[ax1(n)+bx2(n)]=[ax1(n)+bx2(n)]2 ≠aT[x1(n)]+bT[x2(n) =ax21(n)+bx22(n)
x(n)=-δ(n+2)+δ(n-1)+2δ(n-3)
h(n)=2δ(n)+δ(n-1)+ δ(n-12)
由于
2
x(n)*δ(n)=x(n)
x(n)*Aδ(n-k)=Ax(n-k)

团结 信赖 创造 挑战
y(n)=x(n)*h(n)
=x(n)*[2δ(n)+δ(n-1)+ δ(n-21 ) 2
=2x(n)+x(n-1)+ x1 (n-2) 将x(n)的表示式代入上式, 得到2
解: (1) y(n)=x(n)*h(n)=
R4(m)R5(n-m)
先确定求和域。 由R4(m)和R5(n-mm)确定y(n)对于m的
间如下:
0≤m≤3
-4≤m≤n

《数字信号处理》课后答案

《数字信号处理》课后答案

数字信号处理课后答案 1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。

解:()(4)2(2)(1)2()(1)2(2)4(3)0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。

解:(1)x(n)的波形如题2解图(一)所示。

(2)()3(4)(3)(2)3(1)6()6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。

(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。

3. 判断下面的序列是否是周期的,若是周期的,确定其周期。

(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n e π-=。

解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14; (2)12,168w wππ==,这是无理数,因此是非周期序列。

5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章(冀振元主编)1.根据奇偶序列的定义,有:x 1(-n )=x 1(n ), x 2(-n )=-x 2(n ), 则 y (-n )= x 1(-n )·x 2(-n )= x 1(n )·(-x 2(n )) =-x 1(n )·x 2(n ) =-y (n )故 y (n )为奇序列。

2.x (n )的共轭对称部分是:()()(){}12e x n x n x n *=+- 用其实部与虚部表示x (n ),得()()()()(){}()()()()()()()()12121122e r i r i r i r i r r i i x n x n jx n x n jx n x n jx n x n jx n x n x n j x n x n *⎡⎤=++-+-⎣⎦=++---⎡⎤⎣⎦=+-+--⎡⎤⎡⎤⎣⎦⎣⎦ 故x e (n )的实部是偶对称的,虚部是奇对称的。

3.(1) ω=5π/8,则2π/ω=16/5故 x (n ) 是周期的,最小周期为16。

(2) 对照复指数序列的一般公式()e x p []x n j w n σ=+,得出ω=1/8,因此2π/ω=16π,是无理数,所以x (n ) 是非周期的。

4.< 法一 >()()()()()()()()()()()()()()()()()()()()()()12210011344141111411k k n k k n n n y n x n h n h n h n x n h n a u k u n k n n a u n n n a u n n n a a a a u n u n a aδδδδδδ∞==++-=**=**⎛⎫=-*-- ⎪⎝⎭⎛⎫=*-- ⎪⎝⎭-=*--<---=----∑∑< 法二 >()()()()()()()()()()()()144123k w n x n h n u k n k n k u n u n n n n n δδδδδδ∞=-∞=*=----⎡⎤⎣⎦=--=+-+-+-∑()()()()()()()()()()()()2123123123nn n n n y n w n h n n n n n a u n a u n a u n a u n a u n δδδδ---=*⎡⎤=+-+-+-*⋅⎡⎤⎣⎦⎣⎦=⋅+⋅-+⋅-+⋅-5.交换律:()()()()()m y n x n h n x m h n m ∞=-∞=*=-∑令k =n -m ,则()()()()()()()k k y n x n k h k h k x n k h n x n -∞=∞∞=-∞=-=-=*∑∑结合律:{x (n )*h 1(n )} *h 2(n )= x (n )*{h 1(n ) *h 2(n )} 证:右边= x (n )*{h 1(n ) *h 2(n )}()()(){}()()(){}()()()()()()()(){}()()(){}()()(){}()21212112121212m m k k m k m n k m x n h n h n x m h n m h n m x m h k h n m k x m h n m k h k x n k h n k h k x m h m h n m x n h n h n ∞=-∞∞∞=-∞=-∞∞∞=-∞=-∞∞=-∞-∞=-=∞=**=⋅-*-⎧⎫=⋅--⎨⎬⎩⎭⎧⎫=⋅--⎨⎬⎩⎭=-*-=*-=**∑∑∑∑∑∑∑ =左边分配律:x (n )*{h 1(n ) +h 2(n )}= x (n )*h 1(n )+ x (n ) *h 2(n ) 证:左边= x (n )*{h 1(n ) +h 2(n )}()()(){}()()()(){}()()()()()()()()12121212m m m m x m h n m h n m x m h n m x m h n m x m h n m x m h n m x n h n x n h n ∞=-∞∞=-∞∞∞=-∞=-∞=⋅-+-=⋅-+⋅-=⋅-+⋅-=*+*∑∑∑∑=右边6.(1)稳定,因果,非线性,移不变 稳定性:若 | x (n )| ≤M则 |y (n )|=|2 x (n )+3|≤2M +3 有界,所以是稳定系统。

因果性:对任意n 0,系统在n 0深刻的响应仅取决于在时刻n = n 0的输入,所以是因果系统。

线性:()()()()()()()()()()()()12121212223223T ax n bx n ax n bx n aT x n bT x n ax n bx n a b +=++≠+=+++所以系统非线性。

移不变性:()()()()00023T x n n x n n y n n -=-+=- 所以是移不变系统。

(2) 稳定,因果,线性,移变线性:设112222()()sin[],()()sin[]3636y n ax n n y n bx n n ππππ=+=+,由于 1212122()[()()][()()]sin[]36()()y n T ax n bx n ax n bx n n ay n by n ππ=+=++=+,系统是线性的。

移不变性:[()]()T x n k y n k -≠-,故系统是移变的稳定性:设| x (n )| ≤M ,则有()222()sin ()sin sin 363636y n x n n x n n M n M ππππππ⎛⎫⎛⎫⎛⎫=+=+≤+≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭系统是稳定的因果性:因y(n)只取决于现在和过去的输入x(n),不取决于未来的输入,故该系统是因果系统。

(3)不稳定,因果,线性,移不变 稳定性:不稳定 ()().,nk y n x k L M As L T =-∞=≤⋅→∞→∞∑。

因果性:因y (n )只取决于现在和过去的输入x (n ),故该系统是因果系统。

线性:()()()()()()()()()12121212nk nnk k T ax n bx n ax k bx k a x k b x k aT x n bT x n =-∞=-∞=-∞+=+⎡⎤⎣⎦=+=+⎡⎤⎡⎤⎣⎦⎣⎦∑∑∑ 因此为线性系统。

移不变性:()()()()()000n n n m k T x n n x m n x k y n n -=-∞=-∞-=-==-∑∑ 移不变系统(4)不稳定,因果|非因果,线性,移变 稳定性:()()0.,nk n y n x k n nM As n T ==≤-⋅→∞→∞∑. 所以系统不稳定因果性:若0n n ≥,该系统是因果系统,当n <n 0时,非因果系统 线性:()()()()()()()()()012121212nk n n nk n k n T ax n bx n ax k bx k a x k b x k aT x n bT x n ===+=+⎡⎤⎣⎦=+=+⎡⎤⎡⎤⎣⎦⎣⎦∑∑∑因此为线性系统。

移不变性:()()()()()()010110111nk n n n k n n n n k n T x n n x k n x k y n n x k =-=--=-=-=≠-=∑∑∑所以是移变系统。

(5)稳定|不稳定,因果,线性,移变稳定性:设 () M x n ≤<∞ 则()()y n g n M ≤⋅如果 g (n )有界,则系统稳定。

因果性:因y (n )只取决于现在的输入x (n ),不取决于未来的输入,故系统是因果系统 线性:()()()()()()()()()()()()12121212T ax n bx n g n ax n bx n ag n x n bg n x n aT x n bT x n +=+⎡⎤⎣⎦=+=+⎡⎤⎡⎤⎣⎦⎣⎦因此为线性系统。

移不变性:()()()()()()00000T x n n g n x n n y n n g n n x n n -=-⎡⎤⎣⎦≠-=--所以是移变系统。

(6)稳定,因果|非因果,线性,移不变 稳定性:设 | x (n )| ≤M则()()0T x n x n n M =-≤⎡⎤⎣⎦ 所以是稳定系统。

因果性:若n 0≥0,则系统为因果系统,否则为非因果系统。

线性:()()()()()()12102012T ax n bx n ax n n bx n n aT x n bT x n +=-+-⎡⎤⎣⎦=+⎡⎤⎡⎤⎣⎦⎣⎦因此为线性系统。

移不变性:()()()0d d d T x n n x n n n y n n -=--=-⎡⎤⎣⎦因此为移不变系统。

7. (1)当n <0时,h (n )≠0,所以系统是非因果的。

()11nn n n n h n aa ∞-∞-=-∞=-∞===∑∑∑所以当1a >时,系统稳定;当|a |≤1时,系统不稳定。

(2)当n <0时,h (n )≠0,所以系统是非因果的。

因为()1n h n ∞=-∞=∑,所以系统稳定。

(3)当n <0时,h (n )≠0,所以系统是非因果的。

()1211222112n h n ∞--=-∞=+++==-∑,故系统是稳定的。

(4)当n <0时,h (n )=0,所以系统是因果的。

()121111212212n h n ∞=-∞⎛⎫⎛⎫=+++== ⎪ ⎪⎝⎭⎝⎭-∑,故系统是稳定的。

(5)若N≥1,则T [x (n )]的值取决于x (n )当前和过去的值,所以是因果系统;否则是非因果系统。

若 | x (n )| ≤M则()()()1100111N N k k T x n x n k x n k N M M NN N --===-≤⋅-≤⋅=⎡⎤⎣⎦∑∑,所以是稳定系统 (6)T [x (n )]的值取决于未来的值,所以是非因果系统。

若 | x (n )| ≤M则()()()()()112T x n x n x n x n x n M M M =++≤++≤+=⎡⎤⎣⎦,所以是稳定系统。

(7)当n 0≠0时,T [x (n )]的值取决于x (n )未来的值,所以为非因果系统;当n 0=0时,为因果系统。

若 | x (n )| ≤M 则()()021n n k n n T x n x k nM +=-≤≤+⋅⎡⎤⎣⎦∑,所以系统稳定。

(8)T [x (n )]的值仅取决于x (n )当前的值,所以为因果系统。

若 | x (n )| ≤M则()()()x n x n M T x n e e e ≤≤≤⎡⎤⎣⎦,所以系统稳定。

相关文档
最新文档