肿瘤微环境
肿瘤免疫微环境特点
肿瘤免疫微环境特点
肿瘤免疫微环境的特点主要包括整体缺氧、酸化、间质高压、血管高渗透性、炎症反应性、免疫抑制等。
肿瘤免疫微环境的特点具体如下:
1、缺氧。
肿瘤组织对氧气以及其他葡萄糖等能量物质需求量很大,随着肿瘤组织血供不足,便会出现肿瘤组织的缺氧。
2、酸化。
肿瘤组织缺氧会进行无氧呼吸,造成乳酸堆积,使肿瘤微环境整体酸化。
3、间质高压。
肿瘤无法调节组织液的动态平衡,且肿瘤血管具有高渗特性,从而造成间质高压。
4、血管高渗透性。
肿瘤血管一般呈不规则螺旋形,其间质内液、血管黏度都有一定升高。
5、炎症反应性。
肿瘤后期会出现多种慢性炎症。
6、免疫抑制。
肿瘤细胞或微环境可分泌多种免疫抑制分子,用来保护肿瘤细胞免受特异性物质杀伤。
免疫微环境 表型
免疫微环境表型
免疫微环境是肿瘤免疫治疗中一个重要的概念,它指的是肿瘤组织内部免疫细胞和分子所构成的微小环境。
根据对免疫检查点抑制剂应答效率的不同,基于T细胞的浸润情况,可以将肿瘤免疫微环境分为三种不同的表型,分别是免疫沙漠(immune-desert)型、免疫排斥(immune-excluded)型和免疫炎症(immune-inflamed)型。
1. 免疫沙漠型:这种表型的肿瘤缺乏T细胞的浸润,通常对免疫检查点抑制剂治疗不敏感。
2. 免疫排斥型:这种表型的肿瘤虽然有T细胞的浸润,但由于肿瘤细胞产生的某些分子或细胞因子,这些T细胞被排斥在肿瘤细胞之外,同样也对免疫检查点抑制剂治疗不敏感。
3. 免疫炎症型:这种表型肿瘤被T细胞深度浸润,并且显著响应免疫检查点抑制剂的治疗。
以上内容仅供参考,建议查阅关于“免疫微环境表型”的资料、文献,或者咨询生物学家,以获取更全面和准确的信息。
肿瘤免疫微环境 分类
肿瘤免疫微环境分类
肿瘤免疫微环境是指肿瘤细胞周围的免疫细胞、血管、细胞外基质等组成的微环境。
它是肿瘤发生、发展和治疗的重要因素之一。
肿瘤免疫微环境可以分为炎症型、免疫活化型、免疫抑制型和免疫缺陷型四种类型。
炎症型肿瘤免疫微环境是指肿瘤周围存在大量的炎症细胞,如中性粒细胞、单核细胞、巨噬细胞等。
这些炎症细胞可以释放大量的炎症因子,如白细胞介素-1、肿瘤坏死因子-α等,促进肿瘤的生长和转移。
免疫活化型肿瘤免疫微环境是指肿瘤周围存在大量的免疫细胞,如T细胞、B细胞、自然杀伤细胞等。
这些免疫细胞可以识别和攻击肿瘤细胞,抑制肿瘤的生长和转移。
免疫抑制型肿瘤免疫微环境是指肿瘤周围存在大量的免疫抑制细胞,如调节性T细胞、髓系细胞等。
这些免疫抑制细胞可以抑制免疫细胞的活化和攻击肿瘤细胞,促进肿瘤的生长和转移。
免疫缺陷型肿瘤免疫微环境是指肿瘤周围存在免疫缺陷,如T细胞缺陷、B细胞缺陷等。
这些免疫缺陷会导致肿瘤细胞逃避免疫攻击,促进肿瘤的生长和转移。
针对不同类型的肿瘤免疫微环境,可以采取不同的治疗策略。
例如,
对于免疫活化型肿瘤免疫微环境,可以采用免疫治疗,如免疫检查点抑制剂、CAR-T细胞治疗等;对于免疫抑制型肿瘤免疫微环境,可以采用免疫抑制剂、免疫细胞治疗等;对于免疫缺陷型肿瘤免疫微环境,可以采用免疫增强剂、细胞治疗等。
肿瘤免疫微环境是肿瘤发生、发展和治疗的重要因素之一,针对不同类型的肿瘤免疫微环境,可以采取不同的治疗策略,以提高肿瘤治疗的效果。
肿瘤微环境研究方法
肿瘤微环境研究方法
肿瘤微环境是指肿瘤细胞周围的细胞、基质和分子等环境因素,它们与肿瘤细胞相互作用,影响肿瘤的生长、转移和治疗反应。
肿瘤微环境的研究对于肿瘤的预防、诊断和治疗具有重要意义。
本文将介绍肿瘤微环境研究的方法。
1. 细胞培养
细胞培养是肿瘤微环境研究的基础。
通过细胞培养,可以获得大量的肿瘤细胞和非肿瘤细胞,用于研究它们之间的相互作用。
细胞培养的方法包括原代培养、细胞系培养和三维培养等。
2. 动物模型
动物模型是肿瘤微环境研究的重要手段。
通过建立小鼠、大鼠等动物模型,可以模拟肿瘤在体内的生长、转移和治疗反应,研究肿瘤微环境的变化和影响因素。
动物模型的建立需要考虑动物品种、肿瘤类型、移植方式等因素。
3. 组织切片
组织切片是肿瘤微环境研究的重要手段之一。
通过组织切片,可以观察肿瘤细胞和非肿瘤细胞的形态、分布和相互作用,研究肿瘤微环境的组成和变化。
组织切片的制备需要注意组织的固定、切片的厚度和染色等因素。
4. 分子生物学技术
分子生物学技术是肿瘤微环境研究的重要手段之一。
通过PCR、Western blot、ELISA等技术,可以检测肿瘤微环境中的分子表达和变化,研究肿瘤微环境的调控机制和影响因素。
分子生物学技术的应用需要注意样本的采集、RNA/DNA的提取和实验条件的控制等因素。
肿瘤微环境研究需要综合运用多种方法,包括细胞培养、动物模型、组织切片和分子生物学技术等。
这些方法的应用可以揭示肿瘤微环境的组成、变化和影响因素,为肿瘤的预防、诊断和治疗提供重要的理论和实践基础。
《肿瘤的微环境》课件
基于肿瘤微环境的免疫治疗策略
免疫检查点抑制剂
通过抑制肿瘤微环境中免疫细胞的抑制信号,激 活免疫细胞的攻击能力。
细胞免疫治疗
利用患者自身的免疫细胞,经过体外培养和扩增 后回输到患者体内,以攻击肿瘤细胞。
肿瘤疫苗
通过激发机体免疫系统对肿瘤抗原的免疫反应, 预防或延缓肿瘤的发生和发展。
THANKS
感谢观看
细胞学方法
细胞培养
将肿瘤细胞从组织中分离出来,在体外进行培养,用于研究肿瘤细胞的生长、增 殖和分化等特性。
细胞共培养
将肿瘤细胞与其他类型的细胞共同培养,模拟肿瘤细胞在体内的生长环境,研究 肿瘤细胞与周围细胞的相互作用。
分子生物学方法
基因表达分析
利用基因芯片或测序技术检测肿瘤组织中基因的表达水平,了解肿瘤细胞的基因组学特 征。
肿瘤微环境的信号转导途径
01
MAPK信号转导途径
MAPK信号转导途径是肿瘤微环境中 重要的信号转导途径之一,它可以影 响肿瘤细胞的生长、侵袭和转移。
02
PI3K/Akt信号转导 途径
PI3K/Akt信号转导途径是肿瘤微环境 中重要的信号转导途径之一,它可以 影响肿瘤细胞的生长、侵袭和转移。
03
JAK/STAT信号转导 途径
营养物质供应与代谢产物排除
肿瘤微环境中的血管为肿瘤提供营养物质,同时排出代谢产物,对肿瘤的生长和扩散具有重要影响。
肿瘤发展对肿瘤微环境的影响
肿瘤细胞对周围组织的侵袭与重塑
肿瘤细胞通过分泌酶类等物质对周围组织进行侵袭,同时重塑微环境以利于自 身的生长和扩散。
血管生成与血液供应
肿瘤在生长过程中诱导新血管生成,以获取更多的营养物质,从而影响肿瘤微 环境的血液供应。
肿瘤微环境
1.2 酸中毒 肿瘤细胞环境的维持
调节转运蛋白
Na+/H+ exchanger(NHE)
囊泡型H+-ATPase(V型质子泵) Na+/K+-ATPase、 H+/Cl-共运输体、 单羧酸转运蛋白
什么是间质?
细胞与细胞之间存在着细胞间质 (intercellular substance)。人体组织内 的细胞都浸润在细胞间质液中。 细胞间质是由细胞产生的不具有细胞 形态和结构的物质,它包括纤维、基 质和流体物质(组织液、淋巴液、血 浆等)。
组织缺氧和酸中毒
间质高压的形成
肿瘤微环境与肿瘤转移
4
免疫炎性反应
主要参考文献:《肿瘤微环境与肿瘤的恶变》中图分类号: R730.2 文献标识码:A 《缺氧诱导因子一1 a与恶性肿瘤的研究进展》-综述 《肿瘤酸性微环境的研究进展》-综述
1.1 组织缺氧
reason
1、肿瘤细胞生长的高代谢率
肿瘤细胞凋亡的速度明显低于其所对 应的正常组织,从而使得它对氧以及其 他葡萄糖等能量物质的需求增加;
《缺氧诱导因子一1 a与恶性肿瘤的研究进展》-综述 肿瘤微环境与肿瘤的恶变 郜明/吴家明/陆茵 蛋白酶抑制剂在肿瘤治疗中的作用研究 李卓玉 肿瘤微环境与肿瘤转移 综述 王倩荣
3.肿瘤微环境对肿瘤转移的影响
1、成纤维细胞 2、转化生长因子β与肿瘤转移 3、肿瘤相关性巨噬细胞 4、趋化因子及其受体 5、凝血酶与肿瘤转移
肿瘤相关性巨噬细胞 (Tumor correlation macrophages) 合成和分泌EGF等细胞 因子,引导肿瘤细胞 转移
3肿瘤微环境对肿瘤转移的影响
趋化因子 (Chemotactic factors) 及其受体
肿瘤微环境-
近年大量研究发现: 肿瘤微环境中的基质细胞或是基质细胞所分泌的生 物细胞因子对肿瘤转移以及耐药的形成是一大“帮凶”。
3 研究主要集中方向
3.2 针对肿瘤微环境的治疗策略
3 研究主要集中方向
肿瘤微环境与肿瘤治疗
4 肿瘤微环境研究最新报道
4.1微环境与肿瘤的发生与转移
3 研究主要集中方向
3 研究主要集中方向
当今临床研究过分强调肿瘤 的遗传学,预测标志物以及肿 瘤细胞靶向分子的鉴别,治疗 肿瘤的重点放在了肿瘤细胞本 身,如抑制肿瘤细胞所固有的 黏附和迁移能力,以至于容易 忽略了肿瘤细胞也有其微环境, 但是微环境与肿瘤的发生和发 展密切相关,所以从肿瘤微环 境入手治疗肿瘤也是一个重要 策略。
相关链接:</biology/cancer/578155.shtml>
4 肿瘤微环境研究最新报道
复旦大学学者找到清除肿瘤发生恶化“微环境”的新机制 历经3年多潜心研究,复旦大学上海医学院生物医学研究
院终于找到肿瘤发生和恶化的“微环境” 新机制 ,该研究有 望为胰腺癌等早期诊断提供可能,4月16日,国际权威杂志 《癌细胞》(Cancer Cell )以《乳酸脱氢酶A去乙酰化导致 胰腺癌发生》为题,刊发了这一重要成果,引起世界关注。
4 肿瘤微环境研究最新报道
4.2 微环境与肿瘤耐药
对于患实体瘤患者而言,对化疗药物产生耐药性是不可 避免的也是致命性的。科学家小组发现一种关键性因子促进 这种耐药性产生,这种信息可能最终被用来改善治疗方法的 疗效,从而为晚期癌症患者赢取宝贵的时间。
在这项研究中,论文通信作者Peter S. Nelson博士和同 事们发现一类正常的非癌变细胞---成纤维细胞---位于癌症的 微环境中,当接触到化疗药物时,这些细胞遭受DNA损伤而 促进一系列刺激癌症生长的生长因子产生。
肿瘤微环境--PPT文档资料
2 肿瘤微环境
2 肿瘤微环境
2.2.3 间质高压
2 肿瘤微环境
2.2.4 肿瘤血管高渗透
肿瘤血管就是当肿瘤生长到1mm3时,分泌大量 VEGF,诱使形成专属的肿瘤血管。 这些血管呈奇特的螺旋状且不规则,与人体正常血 管不同,如内皮细胞不完整或缺失、基底膜中断或缺失、 血管分布不均匀、毛细血管间距增大、动静脉短路、间 质内液增多以及血管黏度增加等。
3 研究主要集中方向
3.1.3干细胞:
肿瘤干细胞来源: 1.肿瘤突变的定居在正常组织的干细胞 2.肿瘤突变的无法进入后续有丝分裂的正常体细胞 3.从血液循环或邻近组织招募。 间质干细胞: 肿瘤的浸润和MSCs的招募有关,但在微环境中它的作 用尚不是很清楚。
3 研究主要集中方向
3.1.4血管内皮细胞:
2 肿瘤微环境
2.2.5 炎症性反应
3 研究主要集中方向
3.1 肿瘤细胞与肿瘤基质的信息交流
从宏观上来讲,个体与社会、器官与机体都 存在“cross talk”(交互对话)。 从微观层面来看,细胞与其所处的环境也存在信息 的交流。 同样作为机体的异物--肿瘤细胞与周围细胞(肿瘤 微环境)之间也有着密切的信号交互。
3 研究主要集中方向
3.2 针对肿瘤微环境的肿瘤治疗
近年大量研究发现: 肿瘤微环境中的基质细胞或是基质细胞所分泌的生 物细胞因子对肿瘤转移以及耐药的形成是一大“帮凶”。
3 研究主要集中方向
3.2 针对肿瘤微环境的治疗策略
3 研究主要集中方向
肿瘤微环境与肿瘤治疗
4 肿瘤微环境研究最新报道
4.1微环境与肿瘤的发生与转移
hematological malignancies
2 肿瘤微环境
肿瘤微环境国自然基金
肿瘤微环境国自然基金
肿瘤微环境是近年来国家自然科学基金(NSFC)重点支持的研究领域之一。
多项国自然基金项目都围绕这一主题开展研究,涵盖从基础理论探索、能量代谢重编程机制、炎症与转移关系到类器官模型的构建及应用、免疫治疗策略优化等多个方面。
例如,有以下几项与肿瘤微环境相关的国自然基金项目:霍宏宇等人获得的基金项目关注肿瘤微环境及其能量代谢的重编程。
童雪梅研究员获得了国家自然科学基金优秀青年科学基金项目,研究内容涉及肿瘤细胞代谢。
上海市肿瘤微环境与炎症重点实验室也曾得到国家自然科学基金资助,对相关课题进行深入研究。
还有其他多个关于肿瘤微环境的基础和转化研究项目得到了国家自然科学基金面上项目和地方基金的支持。
这些项目不仅体现了我国在肿瘤微环境领域的持续投入和研究深度,而且也反映了该领域对于提高肿瘤诊断准确率、开发新型治疗策略以及改善患者预后等方面的重要意义。
随着科研技术的发展,越来越多的交叉学科合作正在推进对肿瘤微环境复杂性的理解和干预手段的创新。
肿瘤微环境共价结合
肿瘤微环境共价结合
肿瘤微环境是肿瘤发生、发展、反应和抗肿瘤治疗的重要因素,在肿瘤的预后和抗肿瘤药物作用等方面起着重要作用。
近日,沈阳药科大学无涯创新学院何仲贵教授和孙丙军教授使用二硫键将SN38与内源性脂质胆固醇(CST)共价结合,制备得到了肿瘤微环境智能响应型SN38前药(SN38-SS-CST)。
在肿瘤细胞内独特的氧化还原微环境中,SN38-SS-CST NPs可以高效地释放出SN38,并且在没有氧化还原的环境中保持稳定。
在小鼠结肠癌肿瘤模型上,SN38-SS-CST NPs展现出比伊利替康更强的抗肿瘤效果,有效地抑制了肿瘤的生长,并且由于肿瘤智能响应释药的特点,没有产生明显的系统毒性,具有良好的安全性优势。
研究表明,通过调节肿瘤微环境中的化学因素,可以改善治疗效果,并为患者提供更好的治疗方案。
肿瘤微环境和免疫逃逸机制
肿瘤微环境和免疫逃逸机制是当前肿瘤学领域热门的研究方向。
在未来的肿瘤治疗中,深入研究和理解这些机制将有助于制定更有效、更个性化的治疗方案,为病人提供更好的治疗效果。
肿瘤微环境是指肿瘤细胞周围的环境,包括血管、细胞外基质和免疫细胞等。
肿瘤细胞产生一系列的生长因子和细胞因子,可以吸引和激活不同类型的免疫细胞。
免疫细胞在肿瘤微环境中的表现可以是对肿瘤细胞的杀伤或加速其发展、转移。
然而,肿瘤微环境同时还存在免疫逃逸机制,导致免疫系统无法消灭肿瘤细胞。
免疫逃逸机制主要分为以下三个方面:第一,抗原缺失。
肿瘤细胞表达的抗原不足,导致免疫细胞无法识别肿瘤细胞并发起攻击。
此外,肿瘤细胞还可通过改变表达抗原的方式来逃避免疫系统的攻击。
第二,免疫抑制。
肿瘤细胞可以通过产生一系列免疫抑制分子,如PD-L1、CTLA-4等,来抑制免疫系统的攻击。
这些分子能够与免疫细胞表面的受体结合,阻止免疫细胞的杀伤作用。
第三,免疫逃逸选择。
在免疫系统的攻击下,能够存活的肿瘤细胞更加强大。
这些能够逃逸免疫系统攻击的肿瘤细胞将会被选择出来,从而在肿瘤微环境中逐渐占据主导地位。
对于的研究有助于制定更加有效的治疗方案。
一些药物已经被成功开发,以针对抑制肿瘤免疫系统的免疫抑制分子。
例如,以PD-1抑制剂为代表的免疫治疗药物已被成功地应用于多种癌症的治疗。
此外,针对肿瘤微环境适合个体化的治疗也被越来越重视。
例如,对于PD-L1表达丰富的肿瘤,免疫治疗药物的应用效果更佳。
而对于不经过PD-L1途径的肿瘤细胞,免疫治疗药物的应用效果可能不佳。
除了药物治疗,通过调节微环境也可以对肿瘤进行治疗。
例如,通过改变肿瘤细胞分泌的生长因子和细胞因子,可以调节免疫细胞在肿瘤微环境中的活动。
还可以通过改变血管的生长和生成来改变肿瘤微环境,使得免疫细胞能够到达肿瘤区域。
总之,是领域内正在被广泛研究的重要研究课题。
通过深入研究这些机制,以后治疗肿瘤将更加精准、个性化和有效。
肿瘤微环境与药物作用
肿瘤微环境与药物作用肿瘤微环境是指肿瘤细胞周围的一系列因素,包括细胞外基质、血管、免疫细胞和细胞因子等。
这些因素对肿瘤的生成、发展和治疗反应起着重要作用。
药物作用则是指药物在体内作用于靶细胞,通过特定的机制来抑制肿瘤生长或诱导肿瘤细胞死亡。
本文将探讨肿瘤微环境对药物作用的影响以及相关机制。
肿瘤微环境对药物作用的影响细胞外基质(ECM)细胞外基质是由胶原蛋白、纤维蛋白等结构蛋白以及降解酶和其他小分子组成的复杂网络。
肿瘤细胞在ECM中生长和扩散,ECM对于肿瘤生长和转移具有重要的支持作用。
然而,ECM也可以限制药物在肿瘤内部的扩散,阻碍药物作用。
此外,肿瘤细胞可以通过改变ECM的成分和结构,降低药物在肿瘤内部的浓度,从而减弱药物的疗效。
血管肿瘤血管丰富且异常,呈现高度不规则的结构。
这种异常的血管结构导致血液流动不畅,血液中的药物难以达到靶位点并产生药效。
此外,肿瘤血管通透性增加,导致药物从血管渗透入周围组织,影响药物的浓度分布。
另外,肿瘤内部还存在缺氧状态,这使得一些靶向耗氧酶的化疗药物失去了作用。
免疫细胞免疫系统在抑制肿瘤发展中起着重要作用。
然而,在肿瘤微环境中,存在大量免疫抑制性细胞如T调节细胞、骨髓来源抑制性细胞等,它们通过抑制免疫应答、降低T细胞活性等方式来促进肿瘤逃避免疫攻击。
免疫抑制性细胞还可以产生一系列免疫抑制因子如TGF-β、IL-10等,这些因子会让肿瘤对药物产生耐受性。
细胞因子在肿瘤微环境中,存在多种促进生长和转移的细胞因子如VEGF、EGF等。
这些因子可以直接刺激肿瘤生长和侵袭,并降低对药物的敏感性。
此外,还存在多种耐药相关因子如P-gp等,在体内抵御药物通过增加泵运功效或降低其浓度等方式来降低药效。
肿瘤微环境与药物作用的相关机制肿瘤血供降低由于异常的血管结构和功能,肿瘤内部存在缺血和缺氧状态。
这种情况下,针对耗氧酶的化疗药物难以达到高浓度,并且不能有效杀灭耐氧酶区域中的肿瘤细胞。
肿瘤微环境对肿瘤发生和治疗反应的影响
肿瘤微环境对肿瘤发生和治疗反应的影响肿瘤微环境是指肿瘤细胞周围的一系列复杂的生物学环境,包括细胞因子和生长因子、细胞矩阵、免疫细胞和血管等。
它们与肿瘤细胞之间的相互作用,构成了一个生态系统,影响了肿瘤细胞的生长、转移、耐药性和治疗反应等方面。
本文将从细胞因子、免疫细胞和血管三个方面阐述肿瘤微环境对肿瘤发生和治疗反应的影响。
1. 细胞因子细胞因子是肿瘤微环境重要的组成部分,它们能够激活肿瘤细胞的增殖和侵袭能力。
例如,白细胞介素(IL)-6和IL-8等因子,能够促进肿瘤细胞的增殖和侵袭,同时抑制肿瘤细胞凋亡。
另一方面,肿瘤细胞本身也能够分泌大量的细胞因子,如转化生长因子-β(TGF-β)等,这些因子能够抑制免疫反应和加速肿瘤细胞的增殖,从而导致肿瘤的进展。
2. 免疫细胞肿瘤微环境中还有大量的免疫细胞,如T细胞、巨噬细胞和自然杀伤细胞等。
这些免疫细胞本来应该具有打击肿瘤的能力,但可惜的是,它们常常被肿瘤细胞欺骗,变得无效或甚至变得有害。
例如,肿瘤细胞可以产生一些化学物质并激活T细胞,使其进入“疲惫状态”,从而失去了打击肿瘤的能力。
此外,某些肿瘤细胞还可以诱导T细胞负性选择性(毁灭T细胞),同时抑制巨噬细胞的杀伤作用。
3. 血管肿瘤微环境的另一个重要组成部分是血管。
肿瘤细胞强烈要求血供,以便维持其快速的生长和繁殖。
为了实现这一点,肿瘤细胞会通过分泌生长因子等物质,促进新血管的形成,这种现象被称为肿瘤血管新生。
但是,由于这些新的血管往往是不规则的和异常增生的,因此很快就会失去正常血管的作用,反而会导致肿瘤细胞组织缺氧,从而导致肿瘤转移和耐药。
总之,肿瘤微环境对肿瘤发生和治疗反应有着至关重要的影响。
有了对肿瘤微环境的深入了解,我们可以通过清除肿瘤细胞周围的“细菌”,加强免疫反应和控制肿瘤血管的增生等手段,来限制肿瘤的生长和转移,从而更有效地治疗肿瘤。
肿瘤微环境名词解释
肿瘤微环境名词解释
肿瘤微环境是一个比较专业的术语。
肿瘤微环境是指肿瘤的发生、生长,以及转移与肿瘤细胞所处的内外环境有着非常密切的关系,不仅包括肿瘤的组织结构、功能以及代谢,还与肿瘤本身的内环境也有着密切的关系。
肿瘤与周围以及自身的环境都有着密切的关系,两者既相互依赖,又相互对抗。
肿瘤细胞可以通过自身分泌,以及促进旁分泌改善发展的条件。
而全身以及局部组织也可以通过免疫、分泌以及代谢等方式改变,限制和影响肿瘤的发展,这是一个非常复杂的过程。
肿瘤微环境与药物作用
肿瘤微环境与药物作用肿瘤微环境是一个复杂的生物体系,它不仅包括肿瘤细胞本身,还包含了周围的基质细胞、免疫细胞、血管以及细胞外基质等多种成分。
近年来,越来越多的研究表明,肿瘤微环境在癌症的发生、发展和治疗反应中起着至关重要的作用。
因此,深入理解肿瘤微环境及其与药物相互作用的机制,对于提高癌症治疗效果具有重要意义。
肿瘤微环境的组成肿瘤微环境主要由以下几部分组成:肿瘤细胞:癌细胞是肿瘤微环境中最重要的成分,它们具有不受控制的增殖能力,并能够以多种方式影响周围细胞和组织。
基质细胞:包括成纤维细胞、内皮细胞和免疫细胞等。
这些细胞在肿瘤发展过程中起到支持和调节的作用。
细胞外基质:包括一系列的蛋白质(如胶原蛋白和糖胺聚糖等),它们为肿瘤提供了结构支撑并参与信号传导。
免疫细胞:肿瘤微环境中存在多种免疫细胞,如巨噬细胞、T淋巴细胞和自然杀伤细胞,这些免疫细胞对肿瘤的发展和药物治疗效果有重要影响。
血管系统:新生血管的形成能够为肿瘤提供必要的养分和氧气,同时也为药物输送提供了通道。
肿瘤微环境的作用机制肿瘤微环境对癌症的发展具有双重性,一方面,在某些情况下可以抑制肿瘤生长,而另一方面,它也可能促进癌症进展。
具体来说,肿瘤微环境影响靶向药物和化疗药物的疗效。
增殖与存活信号肿瘤细胞在微环境中获得营养物质及信号,通过各种生长因子和信号通路(如EGFR、PI3K/Akt 等)影响其增殖及生存,从而形成恶性循环。
药物设计时需考虑这些路径的激活或抑制,以提高治疗效果。
免疫抑制许多肿瘤通过改变微环境来逃避宿主免疫系统的识别,这些变化通常会导致免疫抑制。
例如,肿瘤相关巨噬细胞(TAMs)往往表现出促炎特性,从而抑制T淋巴细胞的活性。
针对微环境中免疫抑制因素进行靶向药物开发,例如免疫检查点抑制剂,可能有助于解除这一抑制状态,提高治疗效果。
干扰药物传递癌症患者常常面临药物疗效下降的问题,这与肿瘤微环境中的高间质压力、致密的基质网络及不规则血管结构密切相关。
肿瘤免疫微环境 分类
肿瘤免疫微环境分类
肿瘤免疫微环境是指在肿瘤组织中存在的一种以免疫细胞为主要成分的微环境。
根据免疫细胞的类型和数量,肿瘤免疫微环境可以分为以下几类:
1. 热点型肿瘤免疫微环境:此类免疫微环境中存在大量的淋巴细胞、单核细胞和树突状细胞等免疫细胞,这些细胞可以识别和破坏肿瘤细胞。
热点型肿瘤免疫微环境通常与预后较好的肿瘤相关。
2. 冷门型肿瘤免疫微环境:此类免疫微环境中免疫细胞的数量较少,且功能较差。
这种微环境通常与肿瘤的发生和发展有关,并且预后较差。
3. 混合型肿瘤免疫微环境:此类免疫微环境中存在多种免疫细胞,但它们的数量和功能不均衡。
这种微环境通常发生在肿瘤发展的不同阶段。
4. 免疫抑制型肿瘤免疫微环境:此类免疫微环境中存在大量的免疫抑制细胞,如调节性 T 细胞和髓系细胞等,它们可以抑制免疫系统对肿瘤细胞的攻击。
这种微环境通常与肿瘤的快速增长和转移有关,并且预后较差。
通过对肿瘤免疫微环境的分类和分析,可以更好地了解肿瘤的免疫特征和预后情况,从而为肿瘤治疗提供更加准确和有效的方法。
- 1 -。
肿瘤乏氧微环境
肿瘤乏氧微环境
肿瘤乏氧微环境
肿瘤乏氧微环境(Hypoxic tumour microenvironment,HME)是指肿瘤细胞及其周围的细胞没有足够的氧分子,其中氧分子浓度低于正常组织的微环境。
HME是一种恶劣的环境,其令肿瘤细胞逃避宿主免疫系统的关注,增加肿瘤细胞的耐药性,促进其复发以及转移。
因此,研究HME并设计药物来抑制其形成是医学界的重要课题。
肿瘤乏氧环境的本质是细胞能量供应的缺乏,而这种缺乏可以通过调整氧水平、糖水平、热量水平及pH值等来解决。
此外,调节氧水平、糖水平、热量水平及pH值的细胞能量代谢可以通过药物作用调节实现。
研究表明,HME的形成可以使肿瘤细胞表现出耐药性,从而减少药物的疗效。
因此,研究者试图找到一种能够有效抑制HME形成的药物,以抑制其耐药性的形成。
临床上,许多种抗癌药物,如紫杉酯、化疗药物等,都可以通过抑制HME的形成来提高药物疗效。
此外,它还可以通过抑制肿瘤代谢及其依赖物的生产来减少肿瘤细胞的耐药性及转移能力,从而抑制HME形成。
有许多研究表明,抗癌药物可以通过抑制肿瘤细胞的乳酸代谢来抑制HME的形成。
因此,研究者试图通过调节HME形成的药物以及其他方法,抑制肿瘤的耐药性及转移能力,从而改善患者的治疗效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SampleTissue factor in tumor microenvironment: a systematic reviewXiao Han1Email: hx555@Bo Guo1Email: 445241891@Yongsheng Li1,2** Corresponding authorEmail: yli@Bo Zhu1,3** Corresponding authorEmail: b.davis.zhu@1 Institute of Cancer, Xinqiao Hospital, Third Military Medical University,Chongqing 400037, P. R China2 Harvard Institutes of Medicine, Department of Anesthesiology, Center forExperimental Therapeutics and Reperfusion Injury, Perioperative and PainMedicine, Brigham and Women’s Hospital and Harvard Medical School, Boston,MA 02115, USA3 Biomedical Analysis Center, Third Military Medical University, Chongqing400038, ChinaKeywordsTissue factor, Tumor microenvironment, Venous thromboembolism, Microparticles, CoagulationIntroductionTissue factor (TF), which consist of a 47-KDa-glycoprotein consisting of 263 amino acids (aa) (also named full-length TF (flTF) factor III, thromboplastin, or CD142) and an alternatively splice isoform, are encoded by F3 gene. The F3 gene locates on chromosome 1p22-p21 and contains 6 exons that produce a precursor protein with 294 amino acids. After posttranscriptional modification, the functional structure of precursor turns out to be a sausage shape membrane protein consisting of an extracellular domain (219 aa), a transmenbrane residue (23 aa) and a cytoplasmic part (21 aa) [1]. flTF is critical to initiate the extrinsic coagulation cascade in response to vascular endothelial disruption and enhances cell proliferation and migration [2].The alternatively splice isoform of TF was identified in 2003. As this isoform is a splice variant, it was named alternatively spliced tissue factor (asTF). Compared to flTF, asTF is translated by a truncated mRNA transcript that lacks exon 5. Exon 5 of TF contains an exonic splicing enhancer (ESE) sequence motif, which can bind to the serine/arginine-rich proteins alternative splicing factor/pre-mRNA-splicing factor SF2 (ASF/SF2) and serine-rich protein55 (SRp55), leading to the generation of flTF mRNA and translation of the flTF isoform protein [3]. The fusion of exon 4 and 6 creates a frameshift mutation and leads to a unique C-terminus, which enables asTF to be soluble and be secreted into extracellular fluids [4]. The coagulation activity of asTF has been debated since it was identified. Because asTF retains the conserved residues Lys165 and Lys166 which are important for substrate recognition during TF/factor VII activated (FVIIa) complex formation, some researchers believe that asTF maintains the factor X activated (FXa) generation ability and promote coagulation. Indeed, its presence in thrombi was demonstrated [4]. TNF-α and IL-6 enhanced TF-induced coagulation in human umbilical venous endothelial cells (HUVECs) [5]. However, the location on a phospholipid membrane, a prerequisite for efficient macromolecular substrate binding, was abolished by the soluble C-terminus of asTF, which may result in the disability of its pro-coagulant effect. Meanwhile, the experimental methods used in those studies did not exclude the possibility that the coagulant activity might be due to flTF indirectly, since it is extremely difficult to distinguish the precise role of two TF isoforms in coagulation in pro-coagulant assay [6]. Moreover, in FX activation assay, the cell lysate of asTF_FLAG-transfected HEK293 cells could not lead to FX activation, while flTF_FLAG-transfected HEK293 cells showed significant conversion of FX to FXa [7]. To date, no tissue and/or naturally occurring biological settings have been described that asTF is present without the full length isoform flTF [8] new approaches with higher sensitivity and specificity are needed for this scientific issue.In 1865, Armand Trousseau first described thrombophlebitis (also known as Trousseau’s syndrome) as a complication of pancreatic cancer. Since then, the idea that TF is involved in cancer development, including cell proliferation, survival, angiogenesis, epithelial-to-mesenchymal transition (EMT), and metastasis, has been gradually accepted [4,9–15]. In some malignant cancer systems, elevated TF expression can be detected in the serum as well as in tumor tissues [16–18]. In addition, tumor-derived TF-positive microparticles (TF+-MPs) are abundant in the plasma of patients with advanced diseases [19–21], which also highly correlates with venous thromboembolism (VTE) [22,23]. These findings indicate that targeting TF have potential significance for tumor diagnosis and therapy.In this review, we shall overview the current understanding of the regulation and functions of TF in different stages of cancer progression. TF-related complications in tumor patients and TF-targeted therapy in clinical trials will also be discussed.Sources of TF and their regulation in cancerEctopic expression of TF has been detected in several type of cancers, including cervical cancers [18], epithelial ovarian cancer (EOC) [24], breast cancer [25], brain tumors [26], pancreatic cancer [27], gastric cancer [28], prostate cancer [29], colorectal cancer (CRC) [30], lung cancer [31], melanoma [32], and several cancer cell lines, including human promyelocytic leukemia tumor cell lines HL-60, glioma cell line U343, gastric cell line KATOIII, SNU-5 and MKN-74, colon cancer line HCT116, epidermoid carcinoma cell line A431, melanoma cell line WM1341B and WM938A [4,33]. In addition, endothelial cells of tumor blood vessels, fibroblast and inflammatory cells also express TF [34,35]. Cervical tumors, pancreatic cancer and breast cancer specimens expressed asTF in both tumor cells and the stroma [12,36,37]. Two distinct forms of flTF, membrane-bound flTF [38] and TF+-MPs [39], are important for malignancy progression. Both tumor cells and monocytes are the main sources of TF+-MPs. Platelets and neutrophils also contribute to the production of TF+-MPs [19]. For the detail cell source of TF, see online GEO database (GSE3239).Given the aberrant TF expression in tumor cells, oncogenic signaling pathways participate in TF regulation (Figure 1). Evidence from in vivo experiments and clinical data revealed that the proto-oncogene K-ras and mutation of the tumor suppression gene p53, are primarily responsible for the upregulation of flTF. The loss function of p53 or activation of K-ras results in the activation of mitogen-activated protein kinase (MAPK)/phosphoinositide-3 kinase (PI3K) signaling pathway and subsequent induction of flTF expression [40,41]. In squamous cell carcinoma and brain tumors, epidermal growth factor receptor (EGFR) and its mutant form EGFRvIII also regulate the expression of flTF, FVII, protease-activated receptor 1(PAR1) and PAR2[42]. Additionally, EGFR can activate TF transcription via activator protein-1 (AP-1), thus further increases TF expression [43]. AsTF expression is modulated by SF2/ASF and SRp75 through the PI3K/Akt pathway [44]. c-MET-Src family kinases are required for hepatocyte growth factor (HGF)/scatter factor induced TF expression in medulloblastoma cells. Mutation of c-MET leads to the anti-apoptotic response and resistance to chemotherapy [45]. Retinoblastoma protein (Rb), which can be induced by TNF-α [46], is an important oncogenic element leading to the aberrant expression patterns and proliferation of cancer cells [47]. flTF can be significantly upregulated in retinoblastoma cells expressing mutant pRb, a member of Rb gene family [48]. In addition, TNF-α, interferon-gamma (IFN-γ), early growth response gene-1 (EGR-1), hypoxia-inducible factor 1 alpha (HIF-1α), and transforming growth factor-beta (TGF-β) upregulate flTF in cancer cells and endothelial cells [6,49–51]. TNF-α induces both TF isoform e xpression in HUVEC. Interestingly, this TNF-α-induced TF expression can be reduced by CDC-2 like kinases (Clks) inhibitor [52], whereas DNA topoisomerase I inhibition upregulates asTF and reduces flTF expression [6]. Moreover, microRNAs also involved in TF posttranscriptional regulation [53,54]. Inhibition of miR-19a or miR-126 induces the expression of both TF isoforms, asTF and flTF, in endothelial cells under normal as well as under inflammatory conditions, thereby reduces the flTF-mediated pro-coagulant activity of these cells [53–55]. Moreover, miR-19b and miR-20a, for instance, play a role in flTF regulation in colon cancer and SLE [56,57]. In medulloblastoma, flTF expression is accompanied by miR-520 g silencing, and overexpression of miR-520 g suppresses flTF levels [58]. More details about the regulation of the TF isoform expression were reviewed by Leppert et al. [59].Figure 1Signaling pathways involved in TF expression. TGF-β, VEGF, HGF, EGF,TNFα, and hypoxia challenge as well as p53 each regula tes TF transcription and translation.Collectively, TF is universally expressed in tumor cells, immune cells and stromal cells. Its overexpression in tumors suggests a potential marker and therapeutic target for cancer. Understanding the roles of TF in cancer could potentially improve our knowledge of carcinogenesis.Functions of TF in tumor progressionDownstream events of TF activation include thrombin generation, fibrin deposition, platelet activation, tumor-associated macrophage (TAM) recruitment, and metastasis via EMT [60]. Here, we mainly focus on TF functions in four aspects of cancer: sustaining proliferating signaling, resisting cell death, activating invasion and metastasis, avoiding immune destruction, and lethiferous clinical complications such as VTE (Figure 2 and 3).Figure 2Function of TF in cancer progression. flTF forms TF/FVIIa complex and subsequently induce PAR signaling. PKC is phosphorylated by activated PAR complex, which leads to p-PKC translocation. PAR can also induce MAPK and PI3K activation, both of which trigger pro-tumor effects, such as proliferation, angiogenesis and metastasis. Binding to activator protein (AP) can also induce c-Jun upregulation and in turn promote tumor progression. Moreover, flTF binding to ABP-280 leads to actin modulation, resulting in tumor cells metastasis. asTF binds to integrin receptor and enhance the ability of migration, in turn leading to tumor cell angiogenesis and migration.Figure 3Cancer cells escape from T/NK cell immunity via flTF. flTF expressed on tumor cell surface tiggers local coagulation cascase, leading to thrombin gerneration. Thrombin induce C5 cleavage and C5a gerneration. C5a recruits MDSCs into tumor microenvironment and suppress T cell and NK cell anergy. Micrometastasis of tumor cells generates fibrin shield via flTF-induced coagulation, thereby preventing NK cell-induced cytolysis.TF regulates tumor cell proliferation and apoptosisflTF and asTF promote tumor cell proliferation through different mechanisms (Figure 2) [12,61]. flTF/FVIIa complex can activate PAR2, leading to AP-1 phosphorylation, cell proliferation and migration in the colon cancer SW620 cell line [62]. Furthermore, activation of PAR2 by flTF induces protein kinase Cα (PKCα) phosphorylation and translocation from the cytoplasm to the perinuclear region, promotes ERK1/2 and NF-κB phosphorylation [61]. Breast cancer cell apoptosis can be suppressed by flTF via PI3K/Akt signaling pathway and reducing IL-8 and death-associated protein kinase 1 (DAPK1) [63]. The variant isoform asTF also promotes tumor growth in pancreatic and lung cancer setting [31,64,65]. Different from flTF, asTF enhances tumor cell proliferation through integrin signaling [12] which was also reviewed in detail by Leppert et al. in 2014 [59].TF promotes tumor angiogenesis and metastasisBlood vessels in tumor tissues are essential for tumor progression, and neovasculature is a prerequisite for blood-borne metastasis. In primary breast cancer cells, flTF/FVIIa/PAR2 induces the production of pro-angiogenic factors and immune regulators [66]. Meanwhile,evidence from Hobbs et al.demonstrated that nude mice carrying asTF-overexpressing pancreatic ductal adenocarcinoma cells developed significantly larger tumors and increased angiogenesis than flTF-overexpressing cells [65]. asTF enhances pro-angiogenesis and pro-migration ability of cardiac cells via inducing angiogenesis- and migration-promoting factors such as fibroblast growth factor 2 (FGF2), cysteine-rich 61 (Cyr61) and vascular endothelial growth factor (VEGF). Meanwhile, monocytic THP-1 cells exhibit enhanced migration after treated with the supernatant of asTF-overexpressing mouse cardiomyocytic HL-1 cell [11]. Hypoxia exposure induces asTF expression in A549 cells through alternative splicing factors Clk1 and Clk4. The elevated asTF promotes the tube formation of A549 cells by increasing Cyr61, CC chemokine ligand (CCL2) and VEGF [31]. Different from flTF-PAR interaction, asTF possesses its potent pro-angiogen ic properties through interacting with integrin β1 and β3 in endothelial cell, eliciting focal adhesion kinase (FAK), p42/p44, p38 MAPK and Akt phosphorylation [36]. 6B4, an antibody which disrupts the TF-integrin interaction, can efficiently inhibit the pro-angiogenic function of asTF [67].In addition to the pro-angiogenic effects in cancer, TF also regulate cytoskeleton remodeling, which enhances tumor cell migration and subsequently promotes metastasis. flTF stimulates tumor cell migration through cytoplasmic domain by activating p38 in a Rac 1 dependent manner [68]. Specific interaction between the flTF cytoplasmic domain with actin-binding protein 280 (ABP-280) also contributes to tumor cell metastasis and vascular remodeling [69]. However, flTF exhibits its pro-metastatic characteristics mainly by initiating the pro-coagulant cascade, including thrombin formation, fibrin generation and platelet activation [70,71]. The fibrin (ogen)-platelet clot formation is essential for generating a shield around tumor cells to facilitate the spread of tumor cells and the escape of newly formed micrometastasis from natural killer(NK) cell-mediated cytolysis [72,73]. TFPI, an inhibitor of TF, can significantly reduce the metastasis of B16F10 murine melanoma cells [74]. The TF-induced coagulation can promote TAMs recruitment and the establishment of the pro-metastatic niche [75].Cancer stem cells (CSC), which express CD133 [76], CD44, ATP-binding cassette sub-family G member 2 (ABCG2) and Aldehyde dehydrogenases (ALDH) [77], are a subpopulation of tumor cells that display self-renewal and the ability to give rise to heterogeneous lineages of cancer cells. These heterogeneous cells are responsible for tumor initiation, angiogenesis, and metastasis. Results from our lab revealed that CD133+ ovarian cancer stem cells remarkably overexpress flTF compared with CD133−cancer cells [78]. Moreover, evidence from Chloe C. Milsom and her colleagues demonstrated that the TF-blocking antibody (CNTO 859) delays A431 cell initiation and metastasis through blocking EMT [79]. The functions of TF in angiogenesis and metastasis as well as the location of CSCs in the perivascular niche suggest that the interfering with CSCs by targeting TF would be of interest and worth for further research.Hence, the expression of TF can effectively enhance angiogenesis and coagulation-associated metastasis via either the interaction of the cytoplasmic domain with the PAR family, or through the integrin signaling pathway (Figure 2 and 3).TF modulate immune responses within the tumor microenvironment Cytotoxic T lymphocytes and NK cells are the major effector cells mediating anti-tumor immunity. However, anti-tumor immunity is abrogated primarily due to the dysfunction of cytotoxic T lymphocytes and NK cells and the accumulation of myeloid-derived suppressorcells (MDSCs) in the tumor microenvironment [80]. As mentioned above, flTF is responsible for local thrombin generation and fibrin deposition. Once thrombin is generated, it can directly cleaves complement component C5 to produce C5a and C5b [81]. C5a, also known as anaphylatoxin, has a pro-tumor effect via recruiting MDSCs to the tumor microenvironment, resulting in an immunosuppressive milieu [82] (Figure 3). Meanwhile, TF-mediated thrombosis within the tumor microenvironment may cause local ischemia and hypoxia, leading to the local inflammatory response and tumor tissue necrosis. The TF-induced hypoxia could in turn upregulate flTF, Clk1 and Clk4, resulting in asTF production [31]. This potential positive feedback loop may contribute to tumor cell proliferation and angiogenesis, as well as increase MDSC infiltration within the tumor microenvironment. TF-triggered tumor cell-clot formation induces vascular cell adhesion molecule-1 (VCAM-1) expression and the recruitment of myeloid cells, and promotes tumor invasion and metastasis [83]. Taken together, TF assists tumor cells to metastasis and escape from the host immune system via modulating the tumor microenvironment.TF expression correlates with increased VTESince VTE, particularly deep venous thrombosis of the lower extremities and pulmonary embolism, comprises the second leading cause of death in cancer patients [84], efficient anticoagulation therapies are of profound clinical importance. Clinical studies indicate that administration of low molecular weight heparins (LMWH) in cancer patients significantly improves survival [85–87].The phosphatidylserine (PS) acts synergistically with flTF to amplify its role as a coagulation initiator [21,88]. Both flTF and PS in systemic circulation assemble on the surface of MPs from tumors, resulting in the formation of the coagulation complex. Therefore, circulating tumor cell-derived TF+-MPs may trigger venous thrombosis formation in the absence of vessel injury. TF+-MPs in the systemic circulation of patients with advanced colorectal cancer increased the risk of VTE by two fold when compared with healthy controls [89]. Another study showed that cancer patients suffering from VTE had a higher level of TF+-MPs compared with those without VTE [90]. In addition to the plasma antigen level, an increase of TF+-MPs activity in cancer patients with VTE was reported by several groups. Tessellar et al. observed a higher level of TF+-MPs activity in acute VTE patients than in patients without VTE [91,92]. Owens and Mackman found elevated MP-TF activity in 9 of 11 patients [19]. Similarly, Zwicher et al. reported a 7-fold increased risk of thrombosis in VTE-free patients with elevated TF+-MP levels than in VTE-free plus TF+-MPs negative patients [93]. The association between mortality and the level of TF+-MPs was also demonstrated. Tesselaar and Bharthuar individually reported that in breast cancer and pancreaticobiliary cancer, patients with VTE, who presented higher level of MP-TF activity, had a lower survival rate than patients with lower levels of MP-TF activity [23,91]. These studies indicate that TF+-MP amount and MP-TF activity may have prognostic values in cancer patients. Conclusion and prospectiveIn conclusion, the traditional extrinsic coagulation pathway initiator flTF and its isoform actively participate in malignant disease progression. The signaling pathways associated with TF are critical for tumor initiation, growth, angiogenesis and metastasis and clinical complications such as VTE. Targeting flTF and anticoagulation therapies have already been used for several types of cancer [26]. Understanding the precise regulatory mechanisms offlTF as well as its soluble isoform asTF in tumor progression could be of potential interest for improving the theory of tumor immunoediting and developing individual therapeutic strategies for cancer.AbbreviationsABP-280, Actin-binding protein 280; ABCG2, ATP-binding cassette sub-family G member 2; ALDH, Aldehyde dehydrogenase; AP-1, Activator protein-1; APC, Activated protein C; APL, Acute promyelocytic leukemia; ASF/SF2, Alternative splicing factor/pre-mRNA-splicing factor SF2; asTF, Alternatively spliced tissue factor; ATRA, All-trans retinoic acid; CCL2, CC chemokine ligand; Clk, CDC-2 like kinases; CRC, Colorectal cancer; CSCs, Cancer stem cells; Cyr61, Cysteine-rich 61; EGFR, Epidermal growth factor receptor; EGR-1, Early growth response gene-1; EMT, Epithelial-to-mesenchymal transition; EOC, Epithelial ovarian cancer; ESE, Exonic splicing enhancer; FAK, Focal adhesion kinase; FGF, Fibroblast growth factor; flTF, Full-length tissue factor; HGF, Hepatocyte growth factor; JNK, c-Jun amino-terminal kinase; LMWH, Low molecular weight heparins; MAC, Membrane attack complex; MAPK, Mitogen-activated protein kinase; MDSCs, Myeloid-derived suppressor cells; MMP-1, Matrix metalloproteinase-1; MPM, Malignant pleural mesothelioma; NSCLC, Non-small cell lung cancer; OCSC, Ovarian cancer stem cells; PAK-1, p21-activated kinase 1; PAR, Protease-activated receptor; PDGF, Platelet-derived growth factor; PI3K, Phosphoinositide-3 kinase; PKCα, Protein kinase Cα; PS, Phosphatidylserine; RAS, Renin-angiotensin system; TAMs, Tumor associated macrophages; TF, Tissue factor; TF+-MPs, Tissue factor-positive microparticles; TFPI, Tissue factor pathway inhibitor; TICs, Tumor-initiating cells; TM, Thrombinmodulin; VCAM-1, Vascular cell adhesion molecule-1; VEGF, Vascular endothelial growth factor; VTE, Venous thromboembolism. Competing interestsThe authors declare that they have no competing interests.Authors’ contributionsXH, YL and BZ drafted the manuscript and figures; YL, BG and BZ contributed to editing of the manuscript. All authors have read and approved the final manuscript. AcknowledgementsThis work is supported by National Nature Science Foundation of China (No.81372271, No.81071772, and No.81222031) and by National Key Basic Research Program of China (973 program, No.2010CB529404 and No. 2012CB526603).References1. Spicer EK, Horton R, Bloem L, Bach R, Williams KR, Guha A, Kraus J, Lin TC, Nemerson Y, Konigsberg WH: Isolation of cDNA clones coding for human tissue factor: primary structure of the protein and cDNA.Proc Natl Acad Sci U S A1987, 84:5148–5152.2. Versteeg HH, Peppelenbosch MP, Spek CA: The pleiotropic effects of tissue factor: a possible role for factor VIIa-induced intracellular signalling?Thromb Haemost2001, 86:1353–1359.3. Tardos JG, Eisenreich A, Deikus G, Bechhofer DH, Chandradas S, Zafar U, Rauch U, Bogdanov VY: SR proteins ASF/SF2 and SRp55 participate in tissue factor biosynthesis in human monocytic cells.J Thromb Haemost 2008, 6:877–884.4. Bogdanov VY, Balasubramanian V, Hathcock J, Vele O, Lieb M, Nemerson Y: Alternatively spliced human tissue factor: a circulating, soluble, thrombogenic protein. Nat Med 2003, 9:458–462.5. Szotowski B, Antoniak S, Poller W, Schultheiss HP, Rauch U: Procoagulant soluble tissue factor is released from endothelial cells in response to inflammatory cytokines. Circ Res 2005, 96:1233–1239.6. Eisenreich A, Bogdanov VY, Zakrzewicz A, Pries A, Antoniak S, Poller W, Schultheiss HP, Rauch U: Cdc2-like kinases and DNA topoisomerase I regulate alternative splicing of tissue factor in human endothelial cells.Circ Res 2009, 104:589–599.7. Censarek P, Bobbe A, Grandoch M, Schror K, Weber AA: Alternatively spliced human tissue factor (asHTF) is not pro-coagulant.Thromb Haemost 2007, 97:11–14.8. Srinivasan R, Bogdanov VY: Alternatively spliced tissue factor: discovery, insights, clinical implications.Front Biosci 2011, 16:3061–3071.9. Bick RL: Cancer-associated thrombosis.N Engl J Med 2003, 349:109–111.10. Yu YJ, Li YM, Hou XD, Guo C, Cao N, Jiao ZY: Effect of tissue factor on invasion inhibition and apoptosis inducing effect of oxaliplatin in human gastric cancer cell. Asian Pac J Cancer Prev 2012, 13:1845–1849.11. Eisenreich A, Boltzen U, Malz R, Schultheiss HP, Rauch U: Overexpression of alternatively spliced tissue factor induces the pro-angiogenic properties of murine cardiomyocytic HL-1 cells.Circ J 2011, 75:1235–1242.12. Kocaturk B, Van den Berg YW, Tieken C, Mieog JS, de Kruijf EM, Engels CC, van der Ent MA, Kuppen PJ, Van de Velde CJ, Ruf W, Reitsma PH, Osanto S, Liefers GJ, Bogdanov VY, Versteeg HH: Alternatively spliced tissue factor promotes breast cancer growth in a beta1 integrin-dependent manner.Proc Natl Acad Sci U S A 2013, 110:11517–11522. 13. Liu Y, Jiang P, Capkova K, Xue D, Ye L, Sinha SC, Mackman N, Janda KD, Liu C: Tissue factor-activated coagulation cascade in the tumor microenvironment is critical for tumor progression and an effective target for therapy.Cancer Res2011, 71:6492–6502.14. Saito Y, Hashimoto Y, Kuroda J, Yasunaga M, Koga Y, Takahashi A, Matsumura Y: The inhibition of pancreatic cancer invasion-metastasis cascade in both cellular signal and blood coagulation cascade of tissue factor by its neutralisation antibody.Eur J Cancer 2011, 47:2230–2239.15. Schaffner F, Yokota N, Ruf W: Tissue factor proangiogenic signaling in cancer progression.Thromb Res 2012, 129(Suppl 1):S127–S131.16. Welsh J, Smith JD, Yates KR, Greenman J, Maraveyas A, Madden LA: Tissue factor expression determines tumour cell coagulation kinetics.Int J Lab Hematol 2012, 34:396–402.17. Hong H, Zhang Y, Nayak TR, Engle JW, Wong HC, Liu B, Barnhart TE, Cai W: Immuno-PET of tissue factor in pancreatic cancer.J Nucl Med 2012, 53:1748–1754.18. Cocco E, Varughese J, Buza N, Bellone S, Glasgow M, Bellone M, Todeschini P, Carrara L, Silasi DA, Azodi M, Schwartz PE, Rutherford TJ, Pecorelli S, Lockwood CJ, Santin AD: Expression of tissue factor in adenocarcinoma and squamous cell carcinoma of the uterine cervix: implications for immunotherapy with hI-con1, a factor VII-IgGFc chimeric protein targeting tissue factor.BMC Cancer 2011, 11:263.19. Owens AP 3rd, Mackman N: Microparticles in hemostasis and thrombosis.Circ Res 2011, 108:1284–1297.20. Rak J: Microparticles in cancer.Semin Thromb Hemost 2010, 36:888–906.21. Castellana D, Toti F, Freyssinet JM: Membrane microvesicles: macromessengers in cancer disease and progression.Thromb Res 2010, 125(Suppl 2):S84–S88.22. Pabinger I, Thaler J, Ay C: Biomarkers for prediction of venous thromboembolism in cancer.Blood 2013, 122:2011–2018.23. Bharthuar A, Khorana AA, Hutson A, Wang JG, Key NS, Mackman N, Iyer RV: Circulating microparticle tissue factor, thromboembolism and survival in pancreaticobiliary cancers.Thromb Res 2013, 132:180–184.24. Ma Z, Zhang T, Wang R, Cheng Z, Xu H, Li W, Wang Y, Wang X: Tissue factor-factor VIIa complex induces epithelial ovarian cancer cell invasion and metastasis through a monocytes-dependent mechanism.Int J Gynecol Cancer 2011, 21:616–624.25. Cole M, Bromberg M: Tissue factor as a novel target for treatment of breast cancer. Oncologist 2013, 18:14–18.26. Perry JR: Thromboembolic disease in patients with high-grade glioma.Neuro Oncol 2012, 14(Suppl 4):iv73–iv80.27. Thaler J, Ay C, Mackman N, Metz-Schimmerl S, Stift J, Kaider A, Mullauer L, Gnant M, Scheithauer W, Pabinger I: Microparticle-associated tissue factor activity in patients with pancreatic cancer: correlation with clinicopathological features.Eur J Clin Invest 2013, 43:277–285.28. Yamashita H, Kitayama J, Ishikawa M, Nagawa H: Tissue factor expression is a clinical indicator of lymphatic metastasis and poor prognosis in gastric cancer with intestinal phenotype.J Surg Oncol 2007, 95:324–331.29. Lwaleed BA, Lam L, Lasebai M, Cooper AJ: Expression of tissue factor and tissue factor pathway inhibitor in microparticles and subcellular fractions of normal and malignant prostate cell lines.Blood Coagul Fibrinolysis 2013, 24:339–343.30. Li H, Tian ML, Yu G, Liu YC, Wang X, Zhang J, Ji SQ, Zhu J, Wan YL, Tang JQ: Hyperthermia synergizes with tissue factor knockdown to suppress the growth and hepatic metastasis of colorectal cancer in orthotopic tumor model.J Surg Oncol 2012, 106:689–695.31. Eisenreich A, Zakrzewicz A, Huber K, Thierbach H, Pepke W, Goldin-Lang P, Schultheiss HP, Pries A, Rauch U: Regulation of pro-angiogenic tissue factor expression in hypoxia-induced human lung cancer cells.Oncol Rep 2013, 30:462–470.32. Zhao Y, Zhang D, Wang S, Tao L, Wang A, Chen W, Zhu Z, Zheng S, Gao X, Lu Y: Holothurian glycosaminoglycan inhibits metastasis and thrombosis via targeting of nuclear factor-kappaB/tissue factor/Factor Xa pathway in melanoma B16F10 cells. PLoS One 2013, 8:e56557.33. Yu JL, Rak JW: Shedding of tissue factor (TF)-containing microparticles rather than alternatively spliced TF is the main source of TF activity released from human cancer cells.J Thromb Haemost 2004, 2:2065–2067.34. Contrino J, Hair G, Kreutzer DL, Rickles FR: In situ detection of tissue factor in vascular endothelial cells: correlation with the malignant phenotype of human breast disease.Nat Med 1996, 2:209–215.35. Vrana JA, Stang MT, Grande JP, Getz MJ: Expression of tissue factor in tumor stroma correlates with progression to invasive human breast cancer: paracrine regulation by carcinoma cell-derived members of the transforming growth factor beta family.Cancer Res 1996, 56:5063–5070.36. van den Berg YW, van den Hengel LG, Myers HR, Ayachi O, Jordanova E, Ruf W, Spek CA, Reitsma PH, Bogdanov VY, Versteeg HH: Alternatively spliced tissue factor induces angiogenesis through integrin ligation.Proc Natl Acad Sci U S A 2009, 106:19497–19502.37. Godby RC, Van Den Berg YW, Srinivasan R, Sturm R, Hui DY, Konieczny SF, Aronow BJ, Ozhegov E, Ruf W, Versteeg HH, Bogdanov VY: Nonproteolytic properties of murine alternatively spliced tissue factor: implications for integrin-mediated signaling in murine models.Mol Med 2012, 18:771–779.38. Rao LV, Pendurthi UR: Regulation of tissue factor coagulant activity on cell surfaces. J Thromb Haemost 2012, 10:2242–2253.39. Rautou PE, Mackman N: Microvesicles as risk markers for venous thrombosis.Expert Rev Hematol 2013, 6:91–101.40. Rao B, Gao Y, Huang J, Gao X, Fu X, Huang M, Yao J, Wang J, Li W, Zhang J, Liu H, Wang L: Mutations of p53 and K-ras correlate TF expression in human colorectal carcinomas: TF downregulation as a marker of poor prognosis.Int J Colorectal Dis 2011, 26:593–601.。