2019版七年级数学下册 第六章 实数 6.1 平方根(第2课时)教案 (新版)新人教版
人教版七年级数学下册 (平方根)实数课件教学(第2课时)
(2)因为6>4,所以 6 > 2,所以
61 >
21 =1.5.
2
2
归纳 比较数的大小,先估计其算术平方根的近似值
例3 小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积 为300cm2的长方形纸片,使它的长宽之比为3∶2.她不知能否裁得出来,正 在发愁.你能帮小丽算出她能用这块纸片裁出符合要求的纸片吗?
能否用两个面积为 1 dm2 的小正方形拼成一个面积为 2 dm2 的 大正方形?
如图,把两个小正方形分别沿对角线剪开,将所得的 4 个直角 三角形拼在一起,就得到一个面积为 2 dm2 的大正方形.
你知道这个大正方形的边长是多少吗?
解:设大正方形的边长为 x dm,则 x2 = 2.
由算术平方根的意义可知
直线平行.
3.互如相果平两行 条直线都与第三条直线平行,那么这两 条直线也
.
[检测]
1.在同一平面内,不是重合( 的两)条直线的位置关C系
A.平行或垂直
B.相交或垂直
C.平行或相交
D.不能确定
2.下列说法正确D的是 ( ) A.不相交的两条线段是平行线
B.不相交的两条直线是平行线
C.不相交的两条射线是平行线
按键顺序:
a=
注意:不同的计算器的按键方式可能有所差别
例4 用计算器求下列各式的值: 3136=
2=
利用计算器计算下表中的算术平方根,并将计算结果填在表中,你 发现了什么规律?你能说出其中的道理吗?
… 0.062 5 0.625 6.25
62.5
… 0.25 0 6 2.5
7.906
625
第 五
相交线与平行线
新人教版七年级下册第六章实数全章教案51621备课讲稿
6.1.1平方根(第一课时)】知识与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;过程与方法:通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。
情感态度与价值观:通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。
教学重点:算术平方根的概念和求法。
教学难点:算术平方根的求法。
一、情境引入:问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为225dm 的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?二、探索归纳:1.探索:学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为dm 5。
接下来教师可以再深入地引导此问题:如果正方形的面积分别是1、9、16、36、254,那么正方形的边长分别是多少呢?学生会求出边长分别是1、3、4、6、52,接下来教师可以引导性地提问:上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,教师需加以引导。
上面的问题,实际上是已知一个正数的平方,求这个正数的问题。
2.归纳:⑴算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x 2=a 那么这个正数x 叫做a 的算术平方根。
⑵算术平方根的表示方法:a 的算术平方根记为a ,读作“根号a ”或“二次很号a ”,a 叫做被开方数。
三、应用:例1、 求下列各数的算术平方根:⑴100 ⑵6449 ⑶971 ⑷0001.0 ⑸0 注:①根据算术平方根的定义解题,明确平方与开平方互为逆运算;②求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解;③0的算术平方根是0。
由此例题教师可以引导学生思考如下问题:你能求出-1,-36,-100的算术平方根吗?任意一个负数有算术平方根吗?归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根。
人教版数学七年级下册6.1.1《算数平方根》教学设计2
人教版数学七年级下册6.1.1《算数平方根》教学设计2一. 教材分析《算数平方根》是人教版数学七年级下册第六章第一节的内容,主要介绍了算数平方根的概念、性质以及求法。
这部分内容是学生学习平方根的基础,对于培养学生的数学思维能力和解决问题的能力具有重要意义。
本节课的教学内容主要包括以下几个方面:1.算数平方根的定义:一个非负数的正的平方根,叫做这个数的算数平方根。
2.算数平方根的性质:非负数的算数平方根只有一个,正数的算数平方根是正数,0的算数平方根是0。
3.求算数平方根的方法:利用平方根的性质,通过逐步逼近的方法求解。
二. 学情分析七年级的学生已经掌握了实数的基本概念,对平方根有一定的了解,但对其本质和求法还不够明确。
学生在学习过程中,需要通过实例来加深对算数平方根的理解,掌握求解方法,并能够运用到实际问题中。
三. 教学目标1.理解算数平方根的概念,掌握算数平方根的性质。
2.学会求解算数平方根的方法,提高运算能力。
3.能够运用算数平方根解决实际问题,培养解决问题的能力。
四. 教学重难点1.算数平方根的概念和性质。
2.求解算数平方根的方法。
五. 教学方法采用情境教学法、启发式教学法和小组合作学习法,通过实例引入,引导学生思考,激发学生的学习兴趣,培养学生的探究能力和合作精神。
六. 教学准备1.教学PPT。
2.练习题。
3.教学素材。
七. 教学过程1.导入(5分钟)利用一个实际问题引入,如“一块地的面积是36平方米,求这块地的长和宽分别是多少?”引导学生思考,引发对平方根的兴趣。
2.呈现(10分钟)通过PPT展示算数平方根的定义和性质,让学生初步了解算数平方根的概念。
3.操练(10分钟)让学生分组讨论,利用平方根的性质,求解一些具体的算数平方根。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生独立完成一些练习题,检验学生对算数平方根的理解和掌握程度。
教师及时批改,给予反馈。
5.拓展(10分钟)引导学生思考:如何求解一个任意正整数的算数平方根?让学生通过探究,发现求解方法。
人教七年级数学下课件(课件)6.1平方根(2)
1.96 2 2.25
因为,1.4,12 1.9881 1.422 2.0614
而,1.9所88以1 .2 2.0164
1.41 2 1.42
因为,1.4,142 1.999396 1.4152 2.002225
而,1.9所99以39.6 2 2.002225
你能将这个问题转化为数学问题吗?
解:设剪出的长方形的两边长分别为3xcm和2xcm,
则有3x∙2x=300,
6x2=300,
x2=50,
,
x 50
故长方形纸片的长为,3 宽50为cm. 2 50 cm
长方形的长和宽与正方形的边长之间的 大小关系是什么?小丽能用这块纸片裁 出符合要求的纸片吗?
解:设剪出的长方形的两边长分别为3xcm和2xcm,
8. 38介于整数 和6之间,它7 的小数 数部分是。38 6
9. x 7 6的最小值是 __6_____,此时x=__-__7__ .
10.12 m 8有 __最__大_ 值(填最大或最小) 是 ____12__,此时m ___8 .
所以m+n=25
所以m+n的算术平方根是5
1.这节课你有什么收获? 举例说明如何估算算术平方根的大小.
2.你还有什么问题或想法需要和大家交流?
• 1、一个数的算术平方根等于它本身,这个 数是。
• 2、若x²=16,则5-x的算术平方根是。 • 3、若4a+1的算术平方根是5,则a²的算术平
方根是。
探究一、提出问题
能否用两个面积为1的小正方形 拼成一个面积为2的大正方形?
能否用两个面积为1dm2的小正方形 拼成一个面积为2dm2的大正方形?
贵阳市第一中学七年级数学下册 第六章 实数6.1 平方根第2课时 平方根导学案 新人教版 (2)
=±2± =±2- =±2
上面3小题的答案依次为:错误,正确,错误,理由略。
2。自学:同学们可结合自学指导进行学习.
3.助学:
(1)师助生:
①明了学情:教师巡视课堂,了解学生的学习情况,着重关注学生是否理解平方根的性质得出的理由及相应符号所表示的意义.
②差异指导:根据学情进行相应指导.
②一般地,如果一个数的平方等于a,那么这个数就叫做a的平方根或二次方根,即如果x2=a,那么x就叫做a的平方根。你能说说平方根与算术平方根的定义有什么不同吗?
③求一个数a的平方根的运算,叫做开平方,平方运算与开平方运算有什么关系?
④根据平方与开平方运算的关系,可以求一个数的平方根,按例4的格式求下列各数的平方根:
(2)求下列各数的平方根:
25 0。64 (-2)4
上面4个小题的答案依次为:±5,±0.8,±4,±3
1。自学指导:
(1)自学内容:课本P45“思考”至P46“练习"之前的内容.
(2)自学时间:6分钟.
(3)自学要求:认真阅读课本,弄清楚平方根有什么性质,用符号何表示它.
(4)自学参考提纲:
①请归纳出正数、0、负数的平方根的特征,并说说得出这些特征的理由。
(2)生助生:小组内相互交流研讨,订正纠错,互助解疑难。
4.强化:
(1)平方根的性质。
(2)平方根的符号表示:± ,其中a≥0
三、评价
1。学生的自我评价:学生代表交流学习目标的达成情况和学习感受等。
2。教师对学生的评价:
(1)表现性评价:教师对学生在本节课学习中的整体表现(态度、方法和效果等)进行总结和点评
3.(1)-2<+6 (2)0>-1.8 (3)-32>-4 (4)-3.6<-2.9<0.5
七年级数学下册第六章实数6.1平方根平方根_1
第二十四页,共二十七页。
首页
末页
当 2m-6=-(m-2)时,解得 m=38,④ 2m-6=2×83-6=-32,⑤ 这个数为49. 综上所述,这个数为 4 或49.⑥ 王老师看后说,小张的解法是错误的. 你知道小张错在哪里吗?为什么?请予改正.
第二十五页,共二十七页。
首页
末页
解:错在⑤,当 m=83时,2m-6=136-6<0,不符合题意,应舍去. ∴这个数为 4.
第五页,共二十七页。
首页
末页
4.算术平方根与平方根的区别和联系
区 别:(1)一个正数有两个平方根,它们互为相反数,而一个正数的算 术平方根只有一个;
(2)正数 a 的平方根表示为± a,而正数 a 的算术平方根表示为 a; (3)正数的算术平方根一定是正数,而正数的平方根是一正一负. 联 系:(1)一个正数的平方根包含算术平方根,算术平方根是指其平方 根中正的平方根; (2)平方根与算术平方根存在的条件相同,即被开方数均为非负数; (3)0 的平方根与算术平方根均为 0.
第二十二页,共二十七页。
首页
末页
x= 49=7, ∴4x=4×7=28,3x=3×7=21. ∵面积为 900 cm2 的正方形木板的边长为 30 cm,28 cm<30 cm, ∴能够裁出一个面积为 588 cm2 的长方形,并且长宽之比为 4∶3 的桌面. 答:桌面长、宽分别为 28 cm,21 cm.
第六页,共二十七页。
首页
末页
归类探究
类型之一 求一个非负数的平方根 求出下列各数的平方根:
(1)0.04; (2)18211; (3) 256; (4)
625 16 .
解:(1)因为(±0.2)2=0.04,
延川县一中七年级数学下册 第六章 实数6.1 平方根第2课时 用计算器求一个正数的算术平方根课件 新
2
无限不循环小数是 指小数位数无限 , 且小数部分不循环 的小数. 你以前见 过这种数吗 ?
练习Βιβλιοθήκη 1.实数 3 的值在〔B 〕
A.0 和 1 之间
B.1 和 2 之间
C.2 和 3 之间
D.3 和4 之间
2.与 1 + 5 最接近的整数是〔C 〕
A.1
B.2
C.3
D.4
知识点2 用计算器求一个数的算术平方根
v22 9 .8 6 .4 1 0 6 1 .1 1 0 4 因此 , 第一宇宙速度 v1 大约是 7.9×103 m/s , 第二宇宙速度 v2 大约是 1.1×104 m/s.
练习
1.用计算器计算 0.012345 ,下列按键
顺序正确的是(A )
A. ON
0.012345=
B. ON 0.012345 =
不能根据 3 的值 说出 3 0 的值.
例 3 小丽想用一块面积为 400 cm2 的正方 形纸片 , 沿着边的方向剪出一块面积为 300 cm2 的长方形纸片 , 使它的长宽之比为 3 : 2.她不知 能否裁得出来 , 正在发愁.小明见了说 : 〞别发 愁 , 一定能用一块面积大的纸片裁出一块面积小 的纸片.”你同意小明的说法吗 ?小丽能
解:∵36 < 40 < 49, ∴ 3 6 < 4 0 < 4 9 ,即6 < 4 0 < 7, ∴a = 6,b = 7,∴a + b = 6 + 7 = 13.
课堂小结
估算大小
∵1 < 2 < 4
∴1 < 2 < 2
用计算器求值
ON
2
=
已知 2+ 2 的小数部分为 a , 5 – 2 的小数
七年级数学下册6.1平方根教案(新版)北师大版
平方根一、教材分析1、教材的地位与作用:《平方根》是上海科学技术出版社的第6章第一节的内容。
本节主要学习平方根和算术平方根的概念和性质,在运算方面,引入了开方运算,使学生掌握的代数运算由原来的加、减、乘、除、乘方五种扩展到六种,建立起较完善的代数运算体系。
本节内容既是对前面所学知识的深化和发展,也是今后学习二次根式、实数的预备知识,还是用直接开平方法、公式法解一元二次方程的重要依据。
因此,本节处于非常重要的地位,起着承前启后的作用。
2、教材的处理:立足教材,又不局限于教材,依据学情对教材进行有机整合。
二、教学目标【知识与技能】掌握平方根与算术平方根的概念,能通过开方运算求一个非负数的平方根及算术平方根,理解平方与开平方互为逆运算。
【过程与方法】通过对平方根算术平方根概念及性质的探究,渗透分类讨论数学思想方法,提高数学探究能力和归纳表达能力。
【情感、态度与价值观】鼓励学生积极主动地参与教与学的整个过程,激发学生求知的欲望,增加学生学习数学的兴趣与信心。
三、教学重、难点重点:平方根与算术平方根的概念和性质。
难点:平方根与算术平方根的区别与联系。
四、教学方法这是一节概念教学课,本节课的基本环节是概念的提出——概念的生成——概念的深化——概念的辨析最后是巩固与提升,各环节环环相扣、层层深入,使学生对概念有了一个清晰、全面、完整的认识。
五、教学过程设计(一)温故知新,引入新课1.比一比,看谁算得快练习1 计算:(1)23 (2)(-3)2 (3)221)( (4)221⎪⎭⎫ ⎝⎛- (5)20 练习2 填空:9) (2= 41) ( (2)2= 0) ( (3)2= 师生活动:学生分组比赛,教师巡视指导,比一比哪一组算得又快又好。
设计意图:练习1、2,显然是互逆运算,通过计算,让学生熟悉平方的运算,同时为新概念的引入埋下伏笔。
第一个练习应该没问题,第二个练习,学生有可能会漏掉负值,一旦出错,及时纠正。
2.说一说,看谁说得对(1) 概念的提出:同学们,在上面的练习中,显然9是±3的平方,那么反过来,±3又()2(4)a=分别是9的什么呢?如何表示呢?这就是我们今天要学习的内容。
最新版人教版七年级数学下册第六章实数 教案教学设计
第六章实数6.1 平方根 (1)课时1 算术平方根 (1)课时2 用计算器求一个正数的算术平方根 (5)课时3 平方根 (8)6.2 立方根 (12)6.3 实数 (16)课时1 实数及其分类 (16)课时2 实数的运算 (19)6.1 平方根课时1 算术平方根【教学目标】1. 了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.2. 了解开方与乘方互为逆运算,会用平方运算或计算器求某些非负数的算术平方根.3. 通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和学习兴趣.【教学重点】理解算术平方根的概念.【教学难点】根据算术平方根的概念正确求出非负数的算术平方根.【新课导入】教师出示下列问题1,并引导学生分析.问题1由学生直接给出结果.问题1 求出下列各数的平方.1,0,(-1),-1/3,3,1/2.问题2下列各数分别是某实数的平方,请求出某实数.25,0,4,4/25,1/144,-1/4,1.69.对学生进行提问,针对学生可能会得出的一个值,由学生互相交流指正,再由教师指明正确的考虑方式.由于52=25,(-5)2=25,故平方为25的数为5或-5.02=0,故平方为0的数为0.22=4,(-2)=4,故平方为4的数为2或-2.问题3 学校要举行美术比赛,小壮想裁一块面积为25dm2的正方形画布画一幅画,这块画布的边长应取多少?分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm.【教学过程】教师归纳出新定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记作a,读作“根号a”,a叫作被开方数.规定:0的算术平方根是0.例1求下列各数的算术平方根.分析:正数的算术平方根是正数,零的算术平方根是零,负数没有算术平方根.【教学说明】(1)算术平方根是非负数,要注意不要弄错算术平方根的符号.如:不要把23-)(=3写成23-)(=-3;(2)要审清题意,不要被表面现象迷惑.如求81的算术平方根,错误地理解为求81的算术平方根81.探究:当a 为负数时,a 2有没有算术平方根?其算术平方根与a 有什么关系?举例说明所得结论.【教学指导】当a 为负数时,a 2为正数,故a 2有算术平方根,如a=-5时,a 2=(-5)2=25,252 a =5,5是-5的相反数,故a<0时,a 2的算术平方根与a 互为相反数,表示为-a.当a 2为正数时,a 的算术平方根表示为2a ,其值为a,即2a =a.当a=0时,2a =0.【教学说明】应用上述结论解题时,可如例题的解答写出过程,熟练后再直接写出结果.对2a 结果的讨论,可以检验学生是否真正理解了算术平方根的含义.学生中出现的问题,可由学生间交流讨论.教师向学生介绍用计算器求算术平方根的方法,并由学生实际运用,体会方法.【例题展示】【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学生巩固新知.【答案】1.A 2.A 3.D【课堂小结】本节课应掌握:1.读一读本节课学习的主要内容,说出平方根与平方的关系.2.算术平方根的意义是什么样的?3.怎样求一个正数的算术平方根?【课后作业】从教材“习题6.1”中选取.课时2 用计算器求一个正数的算术平方根【教学目标】1. 了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.2. 了解开方与乘方互为逆运算,会用平方运算或计算器求某些非负数的算术平方根.3. 通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和学习兴趣.【教学重点】理解算术平方根的概念.【教学难点】根据算术平方根的概念正确求出非负数的算术平方根.【新课导入】教师出示下列问题1,并引导学生分析.问题1由学生直接给出结果.问题1 求出下列各数的平方.1,0,(-1),-1/3,3,1/2.问题2下列各数分别是某实数的平方,请求出某实数.25,0,4,4/25,1/144,-1/4,1.69.对学生进行提问,针对学生可能会得出的一个值,由学生互相交流指正,再由教师指明正确的考虑方式.由于52=25,(-5)2=25,故平方为25的数为5或-5.02=0,故平方为0的数为0.22=4,(-2)=4,故平方为4的数为2或-2.问题3 学校要举行美术比赛,小壮想裁一块面积为25dm 2的正方形画布画一幅画,这块画布的边长应取多少?分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm.【教学过程】 教师归纳出新定义:一般地,如果一个正数x 的平方等于a,即x2=a,那么这个正数x 叫做a 的算术平方根,记作a ,读作“根号a”,a 叫作被开方数.规定:0的算术平方根是0. 例1求下列各数的算术平方根.分析:正数的算术平方根是正数,零的算术平方根是零,负数没有算术平方根.【教学说明】(1)算术平方根是非负数,要注意不要弄错算术平方根的符号.如:不要把23-)(=3写成23-)(=-3;(2)要审清题意,不要被表面现象迷惑.如求81的算术平方根,错误地理解为求81的算术平方根81.探究:当a 为负数时,a 2有没有算术平方根?其算术平方根与a 有什么关系?举例说明所得结论.【教学指导】当a 为负数时,a 2为正数,故a 2有算术平方根,如a=-5时,a 2=(-5)2=25,252 a =5,5是-5的相反数,故a<0时,a 2的算术平方根与a 互为相反数,表示为-a.当a 2为正数时,a 的算术平方根表示为2a ,其值为a,即2a =a.当a=0时,2a=0.【教学说明】应用上述结论解题时,可如例题的解答写出过程,熟练后再直接写出结果.对2a结果的讨论,可以检验学生是否真正理解了算术平方根的含义.学生中出现的问题,可由学生间交流讨论.教师向学生介绍用计算器求算术平方根的方法,并由学生实际运用,体会方法.【例题展示】【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学生巩固新知.【答案】1.A 2.A 3.D【课堂小结】本节课应掌握:1.读一读本节课学习的主要内容,说出平方根与平方的关系.2.算术平方根的意义是什么样的?3.怎样求一个正数的算术平方根?【课后作业】从教材“习题6.1”中选取.课时3 平方根【教学目标】1. 掌握平方根的概念,明确平方根与算术平方根之间的联系与区别.2. 能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系.3. 通过对平方根的学习,培养学生从多方面,多角度分析问题,解决问题的思想意识,养成全面分析问题的习惯.【教学重点】平方根的概念和求一个数的平方根.【教学难点】平方根和算术平方根的联系与区别.【新课导入】问题已知一个数的平方等于16,这个数是多少?如何表示这个数呢?【教学分析】由于42=16,(-4)2=16,故平方等于16的数有两个:4和-4,把4和-4叫做16的平方根,记为4=16,则-4=-16,把4和-4称为16的平方根.提出平方根定义:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根,即若x 2=a ,则x 为a 的平方根,记为x=±a .【教学过程】把求一个数a 的平方根的运算,叫做开平方,而平方运算与开平方运算互为逆运算,根据这种关系,可以求一个数的平方根.例1 求下列各数的平方根和算术平方根.分析:一个正数的平方根有两个,且互为相反数,其中正的平方根为算术平方根.可根据平方与开平方的互逆关系,通过平方运算求一个数的平方根.【教学说明】一个正数的平方根有两个,不要丢掉其中负的平方根,算术平方根是其中的一个正平方根,不要弄错了符号.求平方根时一定要把所求的数化成x 2的形式,同时注意正数有两个平方根.例2计算下列各题.分析:(1)484就是求484的算术平方根;(2)是求4112的平方根,可把带分数化成假分数;(4)应先求出被开方数的大小.【教学说明】提醒学生注意分清每个算式的符号(包括性质符号).例3 求下列各式的值.分析:先要弄清每个符号表示的意义,并注意运算顺序.【教学说明】(1)混合运算的运算顺序是先算开平方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学时可根据平方根,算术平方根的意义和表示方2(a>0)来解.法来解,熟练后直接根据aa例4 求下列各式中的x.(1)x2-361=0;(2)(x+1)2=289;(3)9(3x+2)2-64=0.分析:表面上本题是求方程的解,但实质上可理解为求平方根,用开平方求出x值;(2)中(x+1)、(3)中(3x+2)看作一个整体,求出它们后,再求x.例5 某建筑工地,用一根钢筋围成一个面积是25m2的正方形后还剩下7m,你能求出这根钢筋的长度吗?分析:先求出面积是25m2的正方形需用的钢筋长度,然后再求出这根钢筋的总长度.解:正方形的边长为5m,钢筋的长度为27m.【教学说明】在实际问题中要注意正方形的面积与边长的关系即一个正数与它的算术平方根的关系.【例题展示】【教学说明】学生自主完成,教师巡视,然后集体订正.【课堂小结】根据下列问题梳理所学知识,学生交流.问题:1.什么叫一个数的平方根?2.正数,0,负数的平方根有什么规律?3.怎样求出一个数的平方根?数a的平方根怎样表示?【课后作业】从教材“习题6.1”中选取.6.2 立方根【教学目标】1. 了解立方根的概念,初步学会用根号表示一个数的立方根.2. 了解立方与开立方互为逆运算,会用立方运算或计算器求某数的立方根.3. 能用类比平方根的方法学习立方根及开立方运算.【教学重点】立方根的概念及求法.【教学难点】立方根与平方根的区别.【新课导入】问题填写,并探求交流立方值与平方值的不同.鼓励学生踊跃发言表述各自总结的结论.【教学说明】求立方运算时,当底数互为相反数,其立方值也互为相反数,这与平方运算不同,平方运算的底数为相反数时,平方值相等.故一个正数的平方根有两个值,但一个正数的立方根只有一个值.引出立方根定义:若x 3=a,则x 为a 的立方根,记为3a . 根据上述定义,请学生口述下列问题的结果,并推广到一般规律.【教学总结】由教师汇总得出下列结论:1.正数的立方根是正数,负数的立方根是负数,0的立方根是0.2.33a a -=-. 【教学过程】例1 求下列各数的立方根.分析:依据立方根的定义,先写出这四个数分别是由哪个数的立方得到的,从而求出立方根.【教学说明】被开方数是带分数时,先将其化成假分数. 例2 求下列各式的值.分析:先要分清符号的实际意义,如3512表示求-512的立方根,而-3512表示求512的立方根的相反数.解:(1)-8;(2)29;(3)-0.2;(4)6.【教学说明】以上两例中可总结得到:(1)任何数的立方根只有一个,而且被开方数的符号与立方根的符号相同;(2)被开方数是算式,可先算出结果.例3 求下列各式中的x.分析:可根据立方根的定义求得x 的大小.(2)(3)(4)中分别把(x+2),(x-1),(2x+3)看作一个整体.【教学说明】本题实质是解关于x 的三次方程,两边同时开立方是解题的基本思路.例 4 在做浮力实验时,小华用一根细线将一正方体铁块拴住,完全浸入盛满水的圆柱烧杯中,并用一量筒量得被铁块排开的水的体积为40.5cm 3,小华又将铁块从水中提起,量得水杯中的水位下降了0.62cm,请问烧杯内部的底面半径和铁块的棱长各是多少?(用计算器求结果,结果精确到0.1cm).分析:铁块排出的40.5cm 3的水的体积,是铁块的体积,也是高为0.62cm 烧杯的体积.【答案】烧杯内部的底面半径约是4.6cm,铁块的棱长约是3.4cm.【教学说明】引导学生完成上述问题后,指导学生用计算器求立方根,并用实际训练形成应用能力.【例题展示】例1.计算下列各题例2.某金属冶炼厂将27个大小相同的立方体钢铁在炉火中熔化后浇铸成一个长方体钢铁,此长方体的长,宽,高分别为160cm,80cm和40cm,求原来立方体钢铁的边长.例3.有一边长为6cm的正方体的容器中盛满水,将这些水倒入另一正方体容器时,还需再加水127cm3才满,求另一正方体容器的棱长.例4.若3x+16的立方根是4,求2x+4的平方根.【教学说明】通过上述几道题目的练习,可进一步巩固对本节知识的理解和领悟.【课堂小结】按下列问题顺序让学生表达,并补充完善.1.立方和开立方的意义.2.正数、0、负数的立方根的特征.3.立方根与平方根的异同.【课后作业】从教材“习题6.2”中选取.6.3 实数课时1 实数及其分类【教学目标】1. 了解无理数和实数的概念,会将实数按一定的标准进行分类.2. 知道实数与数轴上的点一一对应.3. 从分类、集合的思想中领悟数学的内涵,激发兴趣.【教学重点】正确理解实数的概念.【教学难点】对“实数与数轴上的点一一对应关系”的理解.【新课导入】问题请学生回忆有理数的分类,及与有理数相关的概念等.教师引导得出下列结论:任何一个有理数都可以写成有限小数或无限循环小数的形式,如等.引导学生反向探讨:任何一个有限小数或无限循环小数都能化成分数吗?【教学说明】任何一个有限小数和一个无限循环小数都可以化成分数,所以任何一个有限小数和一个无限循环小数都是有理数.【教学过程】例1 (1)试着写出几个无理数.(2)判断下列各数中,哪些是有理数?哪些是无理数?由学生共同完成上述问题后,要求学生思考:1.如何把实数分类?2.用根号形式表示的数一定是无理数吗?出示实数分类表:【教学说明】指导学生认识两种分类方式的异同,并特别强调“0”在表中的位置,考虑问题时不能忘记特殊数——0.例2 将例1(2)中各数填入相应括号内.整数集合{ ……}正数集合{ ……}有理数集合{ ……}负数集合{ ……}无理数集合{ ……}由学生完成填空后探究:每个有理数都可以用数轴上的点表示,无理数是否也可以用数轴上的点表示呢?例3 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′表示的数是什么?由这个图示你能想到什么?解:由图可知,OO′的长是这个圆的周长π,所以O′点表示的数是π,由此可知,数轴上的点可以表示无理数.结合教材内容,让学生找到数轴上表示2,3,…等的点.【教学说明】每一个无理数都可以用数轴上的一个点表示出来,数轴上的点有些表示有理数,有些表示无理数.实数与数轴上的点是一一对应的.例4下列说法错误的是( ).A.16的平方根是±2B.2是无理数是有理数C.327D.22是分数 分析:16的平方根即4的平方根±2, 327-=-3是有理数,而22是无理数,不属于有理数范围,故其不可能是分数.故选D.【教学说明】判断一个数是不是无理数,不能只看最初形式,而要看化简后的最后结果.【例题展示】例1.下列说法中正确的是( ) A.4是一个无理数 B.在1-x 中x≥1 C.8的立方根是±2D.若点P (2,a )和点Q (b,-3)关于y 轴对称,则a+b 的值是5 例2.下列各数中,不是无理数的是( )例3.下列各数中:其中无理数有 . 有理数有 . 例4.判断正误.(1)有理数包括整数、分数和零. (2)不带根号的数是有理数. (3)带根号的数是无理数. (4)无理数都是无限小数. (5)无限小数都是无理数.【教学说明】学生自主完成,教师巡视,然后集体订正. 【答案】1.B 2.D【课堂小结】通过这节课的学习,你掌握了哪些新知识?你还有哪些问题,与同伴交流.【课后作业】从教材“习题6.3”中选取.课时2 实数的运算【教学目标】1. 了解实数范围内的相反数和绝对值的意义,会求一个实数的相反数和绝对值.2. 学会比较两个实数的大小.3. 了解在有理数范围内的运算及运算法则\,运算性质等在实数范围内仍然成立,能熟练地进行实数运算.【教学重点】有理数的大小比较和运算.【教学难点】带有绝对值的有理数的运算.【新课导入】同学们,我们在七年级的时候学习了有理数相反数,绝对值的概念,那么,这一法则能否推广到实数呢?答案是肯定的,数a的相反数是-a(a表示任意一个实数,一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0)教师讲解课本例1【教学说明】教师可让同学们先计算-6,5.8,2111 有理数的绝对值与相反数,从而导出实数相反数和绝对值的法则.【教学过程】【教学导语】在数拓展到实数后,有理数范围内的法则、规律、公式仍然适用于实数范围,请同学们共同回忆,归纳在实数范围内适用的公式,法则.1.在数轴上表示的数,右边的数总比左边的大.2.两个正实数,绝对值较大的值也大;两个负实数,绝对值大的值反而小;正数大于0,负数小于0,正数大于负数.3.运算律:(1)加法交换律:a+b=b+a. (2)加法结合律:(a+b)+c=a+(b+c). (3)乘法交换律:ab=ba. (4)乘法结合律:(ab)c=a(bc). (5)分配律:a(b+c)=ab+ac. 例1比较下列各实数的大小:【教学说明】实数比较大小常用以下方法:(1)两个负数比较,绝对值大的反而小;(2)被开方数大,它的算术平方根也大;(3)立方数大原数也大.例2计算下列各题:分析:先逐个化简后,再按照计算法则计算.【教学说明】实数的运算同有理数的运算律和运算性质、运算顺序一样.【教学说明】教师指导学生归纳得到下列结论:(1)非负数的和等于零的条件是当且仅当每个非负数的值都等于0.(2)任何实数的绝对值是一个非负数,任何一个非负数的算术平方根也是一个非负数.【例题展示】例1.(1)绝对值等于3的实数是 ,绝对值是22的实数是 . (2)257 的相反数是 ,绝对值是 . 例2.比较2010-1与1949+1的大小.例3.由于水资源缺乏,B,C 两地不得不从河上的抽水站A 处引水,这就需要在A,B,C 之间铺设地下管道.有人设计了三种方案:如图甲,图中实线表示管道铺设线路,在图乙中,AD ⊥BC 于D,在图丙中,OA=OB=OC,为减少渗漏\,节约水资源,并降低工程造价,铺设线路尽量缩短.已知△ABC 是一个边长为a 的等边三角形,请你通过计算.判断哪个铺设方案好.【教学说明】第1题较易,2、3题稍难,教师可引导学生完成.【课堂小结】让学生回顾本节知识,思考整个学习过程,看看知道了什么,还有什么疑惑? 【课后作业】从教材“习题6.3”中选取.。
沪科版数学七年级下册6.1《平方根》教学设计1)
沪科版数学七年级下册6.1《平方根》教学设计1)一. 教材分析《平方根》是沪科版数学七年级下册第六章的第一节内容。
本节课的主要内容是让学生理解平方根的概念,掌握求平方根的方法,以及理解平方根在实际问题中的应用。
教材通过引入平方根的概念,让学生了解平方根的性质,进而学习求平方根的方法,最后通过实际问题让学生体会平方根的应用价值。
二. 学情分析学生在七年级上学期已经学习了有理数、实数等概念,对数的运算也有一定的了解。
但是,对于平方根的概念和性质可能还存在一定的困惑。
因此,在教学过程中,需要引导学生通过实际问题来理解平方根的概念,并通过例题让学生掌握求平方根的方法。
三. 教学目标1.知识与技能:让学生理解平方根的概念,掌握求平方根的方法,以及理解平方根在实际问题中的应用。
2.过程与方法:通过实际问题引入平方根的概念,让学生通过自主学习、合作交流的方式掌握求平方根的方法。
3.情感态度价值观:激发学生对数学的兴趣,培养学生的逻辑思维能力,让学生感受数学在生活中的应用。
四. 教学重难点1.重点:平方根的概念,求平方根的方法。
2.难点:理解平方根的性质,求平方根的方法。
五. 教学方法1.情境教学法:通过实际问题引入平方根的概念,让学生在具体的情境中理解平方根的意义。
2.自主学习法:让学生通过自主学习,掌握求平方根的方法。
3.合作交流法:学生在小组内合作交流,共同解决问题,培养学生的团队协作能力。
六. 教学准备1.课件:制作平方根的教学课件,包括平方根的概念、性质、求法等。
2.例题:准备一些求平方根的例题,包括简单和复杂的题目。
3.练习题:准备一些练习题,让学生在课堂上进行操练。
七. 教学过程1.导入(5分钟)利用课件展示一些实际问题,如:一个正方形的面积是36,求这个正方形的边长。
让学生思考如何解决这个问题,从而引入平方根的概念。
2.呈现(10分钟)介绍平方根的概念,让学生理解平方根的定义,并通过PPT展示平方根的性质。
新人教版数学七年级下册第六章《实数》全章教案
5.144的算术平方根是多少?怎样用符号表示?
学生活动:独立思考1、2答案,提出疑难问题。
给学生充足的时间和空间,理解和感知算术平方根概念,通过讨论、交流,提出问题
师
生
互
动
归
纳
新
知
问题1:你能叙述算术平方根的概念吗?
一般地:如果一个正数 的平方等于a,即 =a,那么这个正数 叫做a的算术平方根。a的算术平方根记为 ,读作“根号a”,a叫做被开方数。
年级
七年级
课题
6.1平方根(2)
课型
新授
教
学
目
标
知识
技能
1.用有理数估计无理数的大致范围,并初步体验“无限不循环小数”的含义.
2.用计算器求一个非负数的算术平方根.
过程
方法
通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;
情感
态度
通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习的兴趣。
问题(四)
两种运算有什么不同?
问:前四个是什么运算?后面的又是什么运算?
教师板书:求一个数a的平方根的运算,叫开平方,其中a叫被开方数.。
学生思考,小组讨论,个别回答
问题是知识能力生长点,通过富有实际意义的问题,激发学生原有认知,促使学生主动地进行探索和思考,让他们体会数学的韵味.。
尝
试
应
用
问题(五)
(2)0的平方根和算术平方根都是0。
区别
(1)定义不同:
“如果一个数 的平方等于a,那么这个数 叫做a的平方根”,
“如果一个正数x的平方等于a,即 ,那么这个正数x叫做a的算术平方根”。
6.1平方根(导学案)
第六章 实数第一课时:6.1平方根(一)【学习目标】1.经历算术平方根概念的形成过程,了解算术平方根的概念.2.学会求某些正数(完全平方数)的算术平方根并会用符号表示.【学习重点】算术平方根的概念. 【学习难点】算术平方根的概念. 【学习过程】 一、学前准备写出下列数的平方=21 ;=22 ;=23 ;=24 ;=25 ;=26 ;=27 ;=28 ;=29 ;=210 ;=211 ;=212 ;=213 ;=214 ;=215 ;=216 ;=217 ;=218 ;=219 ;=220 ;=225 ;二、探索思考算术平方根的概念: a 的算术平方根记为 ,读作 ,a 叫做 据算术平方根的概念可知:a 是 数是 数练习一: 1.填空:(1)因为_____2=64,所以64的算术平方根是______=______; (2)因为_____2=0.25,所以0.25的算术平方根是____________;(3)因为_____2=1649,所以1649的算术平方根是____________. 2.求下列各式的值:=______;=______;=______;______;______;=______. 按被开放数从小到大排列可以发现:被开方数越大,对应的算术平方根3、2的算术平方根是 ,10的算术平方根是 ,36的算术平方根是4、辨析题:卓玛认为,因为(-4)2=16,所以16的算术平方根是-4.你认为卓玛的看法对吗?为什么?三、典例分析例:已知:023=-++y x,求yx 的算术平方根。
四、当堂反馈1、若一个数的算术平方根等于它本身,这个数是2、如果2a-18=0,那么a 的算术平方根是 . 3、、下列数没有算术平方根的是()A.0B.-1C.10D.1024有意义,则x 的取值范围是( )A .x ≥0B .0x <C .0x ≠D .0x> 5、填空并记住下列各式:_______,_______,_____________________,_______,_______,___________ ___,=625 ;6、若x 、y 为实数,且 5+x +|y-2|=0,求x+y 的值五、学习反思第二课时:6.1平方根(二)【学习目标】1.2不循环小数的特点.2.会估计带根号的数的大小。
人教版七年级下数学第6章实数6.1平方根算术平方根课件(2)
计 (-算23: )2=22= ____49____4___;_; 02=(-__2_)_02=_____._4___;(23)2=
4 ___9___
;
6.1 平方根
活动2 师生互动,学习新知 阅读教材第 40 页填表,然后完成下面的填空. (1)因为 22=4,所以 4 的算术平方根是__2__.
活动1、创设情境 引入新课 知识点 算术平方根的概念
第六章
实数
活动1、创设情境 引入新课
活动1、创设情境 引入新课 知识点 算术平方根的概念
活动1、创设情境 引入新课 这节课你学到了哪些知识?
6.1 平方根
知识点 算术平方根的概念
这节课你学到了哪些知识? 知识点 算术平方根的概念 活动1、创设情境 引入新课
6.1 平方根
[点拨] (1) a也可以写成2 a,读作“二次根号 a”,在这里
“2”叫做根指数,通常省略不写.
(2)由算术平方根的定义知:a≥0, a≥0,即算.术.平.方.根.和.被.
开.方.数.均.为.非.负.数..
6.1 平方根
动手实践 学以致用
例 1 [教材例 1 针对训练]求下列各数的算术平方根: (1)116;(2)214;(3)(-5)2;(4)-(-4). [解析] (1)直接根据算术平方根的定义;(2)先化成假分数; (3)先计算(-5)2,再求结果的算术平方根;(4)进行符号化简, 即-(-4)=4.
6.1 平方根
探究二 运用算术平方根进行计算
例 2 [教材补充例题]计算下列各式的值:
9
9
(1) 4- 49;(2) 116- 144+ 81.
[解析]
(1)94=232;(2)1196=2156=452.
七年级下册数学人教版-第6章--实数6.1--平方根6.1.1--算术平方根【说课稿】
算术平方根教材分析:《算术平方根》是人教版初中数学七年级下第六章第一节第一课时。
在此之前,学生已经学习了有理数、有理数的乘方、用字母表示数等知识,这为过渡到本节起着铺垫作用。
本节主要学习算术平方根的概念和性质,在运算方面,引入了开方运算,使学生掌握的代数运算由原来的加、减、乘、除、乘方五种扩展到六种,建立起较完善的代数运算体系。
本节内容既是对前面所学知识的深化和发展,也是今后学习二次根式、实数的预备知识,还是用直接开平方法、公式法解一元二次方程的重要依据。
因此,本节处于非常重要的地位,起着承前启后的作用。
学生分析:八年级的学生已经能从具体事例中归纳问题的本质,通过观察、类比等活动抽象出问题的规律,同时学生在前面的学习中已经熟练掌握算术平方根的知识,具备了用所学知识来分析算术平方根性质的基础。
教学目标:1. 知识与技能掌握算术平方根的概念,能通过开方运算求一个非负数算术平方根。
2. 过程与方法从现实生活中提出数学问题,在学生已有的基础上建立新旧知识的联系,让学生用自己的语言有条理地、清晰的阐述算术平方根的概念、意义及求法,提高理解能力和语言表达能力。
3 情感、态度与价值观准确理解把握概念,将对知识的理解转化为数学技能,鼓励学生积极主动地参与教与学的整个过程,激发学生求知的欲望,增加学生学习数学的兴趣与信心。
教学重、难点:本节课的重点是算术平方根的概念和性质。
正确理解这个概念是学好本章的关键之一。
本节课的难点是根据算术平方根的概念正确求出非负数的算术平方根。
说教法与学法:1 教法学生在七年级学过乘方运算,但由于间隔时间长,他们会有不同程度的遗忘,为了实现新旧教学方式和学习方式的接轨,我利用情景与问题教学激发学生的兴趣,利用对比教学让学生掌握概念的本质,完善学生的知识结构。
2 学法学生才是学习的主人,教师应该把过程还给学生,让过程与结果并重。
新课程也强调学生的学习应在教师的指导下,主动地、富有个性地学习.据此本节的学法我定为小组交流合作法和自主学习法。
新疆沙雅县第二中学七年级数学下册教案:6.1.2平方根
-平方根的运算:学会求一个数的平方根,包括整数和简单小数的平方根,并能进行基本的平方根运算。
举例:讲解9的平方根时,强调9的平方根是3,因为3×3=9,同时也要说明-3也是9的平方根,因为(-3)×(-3)=9。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平方根的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对平方根的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平方根的基本概念。平方根是指一个数的另一个数,使得这两个数的乘积等于这个数。它是解决几何图形中长度、面积等问题的关键。
2.案例分析:接下来,我们来看一个具体的案例。通过计算正方形的对角线长度,展示平方根在实际中的应用,以及它如何帮助我们解决问题。
最后,我要提醒自己,在关注教学效果的同时,也要关注学生的情感态度,营造轻松愉快的课堂氛围,让每个学生都能在课堂上感受到数学的魅力。
五、教学反思
在今天的教学中,我尝试通过生活中的实际例子引入平方根的概念,希望以此激发学生的兴趣。从课堂反应来看,大部分同学对平方根的定义和性质有了初步的理解,但也发现了一些问题。
在讲解平方根的性质时,我发现部分同学对于负数没有实数平方根这一点感到困惑。这让我意识到,需要通过更多具体的例子和形象的解释来帮助学生理解这一概念。在今后的教学中,我打算引入更多图形和实际情境,让学生更直观地感受到负数平方根的“不存在”。
人教版七年级数学下册优秀教学案例:6.1平方根概念教学
1.教学课件:制作精美的教学课件,辅助讲解和展示平方根的概念和性质。
2.练习题:设计具有层次性的练习题,让学生在实践中掌握求一个数的平方根的方法。
3.教学道具:准备一些直观的教具,帮助学生形象地理解平方根的概念和性质。
4.多媒体设备:使用多媒体设备,展示实例和练习题,方便学生观看和参与。
3.小组合作:将学生分成小组,让他们在小组内进行讨论和交流,共同解决问题。这种小组合作的学习方式能够提高学生的合作意识和沟通能力,培养他们的团队协作能力。
4.总结归纳:教师引导学生用自己的话总结平方根的概念和性质,检查他们对知识的理解和掌握程度。同时,教师让学生总结求一个数的平方根的方法,并给出实例进行说明,检查他们对方法的掌握程度。这种总结归纳的教学策略能够帮助学生巩固所学知识,提高他们的学习效果。
五、教学评价
1.知识与技能:通过课堂提问、作业和测试等方式,评价学生对平方根的概念和性质的掌握程度。
2.过程与方法:通过观察学生的课堂表现、小组讨论和练习题的完成情况,评价学生在学习过程中的参与程度和思维能力。
3.情感态度与价值观:通过观察学生的学习态度、课堂表现和作业完成情况,评价学生的学习兴趣、自信心和责任心。
5.对学生进行有针对性的个别辅导,帮助他们克服学习中的困难,提高他们的自信心和自主学习能力。
二、教学目标
(一)知识与技能
1.理解平方根的概念,掌握求一个数的平方根的方法。
2.了解平方根的性质,能够运用平方根的性质解决实际问题。
3.能够运用平方根的概念和性质,解决一些与平方根相关的数学问题。
(二)过程与方法
2.平方根的性质:讲解平方根的性质,如正数的平方根有两个,互为相反数;零的平方根是零;负数没有实数平方根等,引导学生主动发现和总结。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1 平方根
第2课时
【教学目标】
知识技能目标
1.了解平方根的概念.
2.会用根号表示一个非负数的平方根.
3.了解开方与乘方的互逆运算;会用符号表示一个非负数的平方根.
过程性目标
通过学习平方根,进一步建立数感和符号感,发展抽象思维.通过对正数平方根特点的探究,了解平方根与算术平方根的区别和联系,体验类比、化归等问题的解决及数学思想方法的运用,提高学生对问题的迁移能力.
情感态度目标
通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的.通过探究活动培养动手能力和锻炼克服困难的意志,建立自信心,提高学习热情.
【重点难点】
重点:1.平方根的概念和性质及表示方法.
2.会用符号表示一个非负数的平方根.
难点:平方根与算术平方根的区别和联系.
【教学过程】
一、创设情境
1.回顾旧知
(1)什么叫做算术平方根?
a的算术平方根记为:_______;读作:_______;
a叫做:_______.
(2)判断下列各数有没有算术平方根,如果有请求出它们的算术平方根.
①0.64,②2,③0,④-4,⑤.
强调:正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.
2.情境引入
思考:如果一个数的平方等于9,这个数是多少?
讨论:这样的数有两个,它们是3和-3.注意(-3)2=9中括号的作用.
二、新知探究
探究点1:平方根的相关概念
自学课本P44-46,完成下列问题:
1.∵()2=9,
∴9的平方根是_______和_______,
记作:±=_______.
2.∵()2=1,
∴1的平方根是_______和_______,
记作:±=_______.
3.∵()2=
∴的平方根是_______和_______,
记作:±=_______.
4.∵()2=0
∴0的平方根是_______,
记作:=_______.
5.有没有平方等于-4的数?为什么?
6.按照平方根的概念,请同学们思考并讨论下列问题:
(1)正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?
(2)正数有两个平方根,即正数进行开平方运算有两个结果,负数没有平方根,即负数不能进行开平方运算,符号:正数a的算术平方根可用“”表示;正数a的负的平方根可用“-”表示.
要点归纳:
1.平方根的概念
一般地,如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果x2=a,那么x叫做a的平方根. 表示方法:正数a的平方根记为±;
读作“正、负根号a”.
表示正数a的算术平方根,
-表示正数a的负的平方根.
2.开平方:求一个数的平方根的运算,叫做开平方.平方与开平方互为逆运算.
3.平方根的性质:
(1)正数的平方根有两个,它们互为相反数.
(2)0的平方根是0.
(3)负数没有平方根.
【微点拨】平方根和算术平方根两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根.
例题讲解
例1 (教材P45例4)
【方法总结】求正数的平方根时,只要知道它的算术平方根,就能确定了,因为其算术平方根和算术平方根的相反数即为该数的平方根.同样如果知道某数的算术平方根的相反数,则该数的平方根同样可确定. 例2 (教材P46例5)
例3 已知一个正数x的两个平方根分别是2a-2和a-4,求a和x的值.
【应用提高】
例4 1.求下列各式中的x:
(1)x2=25;(2)x2-81=0.
2.若++y=3成立,则y x=_______.
三、检测反馈
1.判断题:对的画“√”,错的画“×”.
(1)0的平方根是0. ( )
(2)-25的平方根是-5. ( )
(3)-5的平方是25. ( )
(4)5是25的一个平方根. ( )
(5)25的平方根是5. ( )
(6)25的算术平方根是5. ( )
2.下面式子书写正确的是( )
A.±=0.5
B.=±0.5
C.±=±0.5
D.-=0.5
3.(-0.7)2的平方根是_______.
4.的算术平方根是_______,平方根是_______.
5.若+有意义,则±=_______.
6.求满足下列各式的x的值
(1)x2=(2)x2=9.
7.选做题:已知a,b满足+|b-3a-1|=0,则b2-5a的平方根是_______.
四、本课小结
本节课你学到了什么?有什么收获和体会?还有什么困惑?
1.一个数x的平方等于a,即x2=a,那么这个数x就叫做a的_______.
2.0的平方根是_______;0的算术平方根是_______.
3.非负数a的算术平方根记为_______;平方根记为_______;
4.一个非负数的平方根有_______个;它们的关系是_______.
5.算术平方根等于它本身的数是_______;平方根等于它本身的数有_______.
五、布置作业
课堂作业:课后第46页练习
课后作业:第48页第8,9,10题
六、板书设计
七、教学反思
掌握好概念是本节课的基础和关键,我们要重视概念课教学,综合运用各种教学方法和教学手段,优化课堂,力求使学生能正确理解概念,从而能够灵活使用概念解答问题.
一般新知识都是建立在原有知识的基础之上的,这样引入新课是建立在学生对数字的规律和联系的把握上的,学生是比较容易接受的.如:
带着问题进入教学探究.什么数的平方等于9?,并且还设计了( )2=9让学生填空,学生很快填出32=9,又提问“还有几的平方也等于9呢?”这时又有学生回答(-3)2,于是我们得到“+3和-3的平方都等于9”,为后面学平方根做了一个铺垫.随后刚才的老问题又来了:( )2=7?学生无法找到一个数,使它的平方等于7,当无法找到符合这个条件的数时,我们就需要引入一个新的知识:平方根.我们也及时给出了表示方法:( )2=7.那到底什么叫做平方根呢?要求学生自己阅读教材中的相关内容,并设计让学生自己去发现规律,并能用自己的语言加以表达,加深学生对平方根概念的理解,从而归纳出三个结论:一个正数的平方根有2个,它们互为相反数;0的平方根有1个,还是0;负数没有平方根.通过这些探索,最后让学生体会到,要求一个非负数的平方根,可以利用平方来检验或寻找.
为了让学生正确掌握“算术平方根”的表示,把与之相反的“负的平方根”的表示也同时列举出来,让学生通过对比进一步加深印象.学到概念后正面的强化很重要,如何求一个数的平方根,算术平方根,负的平方根?通过学生讨论、练习、总结,给学生正确的表达方法,进行强化训练.随后就是通过不同形式的练习,分组分层进行训练,让学生对平方根的概念及表示方法形成正确的第一印象并加以巩固.如:求49的平方根,他写成7出现错误.“对于容易混淆的概念,要引导学生用对比的方法,弄清它们的区别与联系”,因此在批改学生的练习过程中注重及时纠错,反复强调平方根与算术平方根的区别与联系.。